1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* 9 * Problems with CONFIG_SYS_64BIT_LBA: 10 * 11 * struct disk_partition.start in include/part.h is sized as ulong. 12 * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t. 13 * For now, it is cast back to ulong at assignment. 14 * 15 * This limits the maximum size of addressable storage to < 2 Terra Bytes 16 */ 17 #include <asm/unaligned.h> 18 #include <common.h> 19 #include <command.h> 20 #include <ide.h> 21 #include <malloc.h> 22 #include <part_efi.h> 23 #include <linux/ctype.h> 24 25 DECLARE_GLOBAL_DATA_PTR; 26 27 #ifdef HAVE_BLOCK_DEVICE 28 /** 29 * efi_crc32() - EFI version of crc32 function 30 * @buf: buffer to calculate crc32 of 31 * @len - length of buf 32 * 33 * Description: Returns EFI-style CRC32 value for @buf 34 */ 35 static inline u32 efi_crc32(const void *buf, u32 len) 36 { 37 return crc32(0, buf, len); 38 } 39 40 /* 41 * Private function prototypes 42 */ 43 44 static int pmbr_part_valid(struct partition *part); 45 static int is_pmbr_valid(legacy_mbr * mbr); 46 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, 47 gpt_header * pgpt_head, gpt_entry ** pgpt_pte); 48 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 49 gpt_header * pgpt_head); 50 static int is_pte_valid(gpt_entry * pte); 51 52 static char *print_efiname(gpt_entry *pte) 53 { 54 static char name[PARTNAME_SZ + 1]; 55 int i; 56 for (i = 0; i < PARTNAME_SZ; i++) { 57 u8 c; 58 c = pte->partition_name[i] & 0xff; 59 c = (c && !isprint(c)) ? '.' : c; 60 name[i] = c; 61 } 62 name[PARTNAME_SZ] = 0; 63 return name; 64 } 65 66 static void uuid_string(unsigned char *uuid, char *str) 67 { 68 static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 69 12, 13, 14, 15}; 70 int i; 71 72 for (i = 0; i < 16; i++) { 73 sprintf(str, "%02x", uuid[le[i]]); 74 str += 2; 75 switch (i) { 76 case 3: 77 case 5: 78 case 7: 79 case 9: 80 *str++ = '-'; 81 break; 82 } 83 } 84 } 85 86 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 87 88 static inline int is_bootable(gpt_entry *p) 89 { 90 return p->attributes.fields.legacy_bios_bootable || 91 !memcmp(&(p->partition_type_guid), &system_guid, 92 sizeof(efi_guid_t)); 93 } 94 95 #ifdef CONFIG_EFI_PARTITION 96 /* 97 * Public Functions (include/part.h) 98 */ 99 100 void print_part_efi(block_dev_desc_t * dev_desc) 101 { 102 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 103 gpt_entry *gpt_pte = NULL; 104 int i = 0; 105 char uuid[37]; 106 107 if (!dev_desc) { 108 printf("%s: Invalid Argument(s)\n", __func__); 109 return; 110 } 111 /* This function validates AND fills in the GPT header and PTE */ 112 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 113 gpt_head, &gpt_pte) != 1) { 114 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 115 return; 116 } 117 118 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 119 120 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 121 printf("\tAttributes\n"); 122 printf("\tType UUID\n"); 123 printf("\tPartition UUID\n"); 124 125 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 126 /* Stop at the first non valid PTE */ 127 if (!is_pte_valid(&gpt_pte[i])) 128 break; 129 130 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 131 le64_to_cpu(gpt_pte[i].starting_lba), 132 le64_to_cpu(gpt_pte[i].ending_lba), 133 print_efiname(&gpt_pte[i])); 134 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 135 uuid_string(gpt_pte[i].partition_type_guid.b, uuid); 136 printf("\ttype:\t%s\n", uuid); 137 uuid_string(gpt_pte[i].unique_partition_guid.b, uuid); 138 printf("\tuuid:\t%s\n", uuid); 139 } 140 141 /* Remember to free pte */ 142 free(gpt_pte); 143 return; 144 } 145 146 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part, 147 disk_partition_t * info) 148 { 149 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 150 gpt_entry *gpt_pte = NULL; 151 152 /* "part" argument must be at least 1 */ 153 if (!dev_desc || !info || part < 1) { 154 printf("%s: Invalid Argument(s)\n", __func__); 155 return -1; 156 } 157 158 /* This function validates AND fills in the GPT header and PTE */ 159 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 160 gpt_head, &gpt_pte) != 1) { 161 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 162 return -1; 163 } 164 165 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 166 !is_pte_valid(&gpt_pte[part - 1])) { 167 printf("%s: *** ERROR: Invalid partition number %d ***\n", 168 __func__, part); 169 return -1; 170 } 171 172 /* The ulong casting limits the maximum disk size to 2 TB */ 173 info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba); 174 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 175 info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1) 176 - info->start; 177 info->blksz = dev_desc->blksz; 178 179 sprintf((char *)info->name, "%s", 180 print_efiname(&gpt_pte[part - 1])); 181 sprintf((char *)info->type, "U-Boot"); 182 info->bootable = is_bootable(&gpt_pte[part - 1]); 183 #ifdef CONFIG_PARTITION_UUIDS 184 uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid); 185 #endif 186 187 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s", __func__, 188 info->start, info->size, info->name); 189 190 /* Remember to free pte */ 191 free(gpt_pte); 192 return 0; 193 } 194 195 int test_part_efi(block_dev_desc_t * dev_desc) 196 { 197 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 198 199 /* Read legacy MBR from block 0 and validate it */ 200 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1) 201 || (is_pmbr_valid(legacymbr) != 1)) { 202 return -1; 203 } 204 return 0; 205 } 206 207 /** 208 * set_protective_mbr(): Set the EFI protective MBR 209 * @param dev_desc - block device descriptor 210 * 211 * @return - zero on success, otherwise error 212 */ 213 static int set_protective_mbr(block_dev_desc_t *dev_desc) 214 { 215 legacy_mbr *p_mbr; 216 217 /* Setup the Protective MBR */ 218 p_mbr = calloc(1, sizeof(p_mbr)); 219 if (p_mbr == NULL) { 220 printf("%s: calloc failed!\n", __func__); 221 return -1; 222 } 223 /* Append signature */ 224 p_mbr->signature = MSDOS_MBR_SIGNATURE; 225 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 226 p_mbr->partition_record[0].start_sect = 1; 227 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba; 228 229 /* Write MBR sector to the MMC device */ 230 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) { 231 printf("** Can't write to device %d **\n", 232 dev_desc->dev); 233 free(p_mbr); 234 return -1; 235 } 236 237 free(p_mbr); 238 return 0; 239 } 240 241 /** 242 * string_uuid(); Convert UUID stored as string to bytes 243 * 244 * @param uuid - UUID represented as string 245 * @param dst - GUID buffer 246 * 247 * @return return 0 on successful conversion 248 */ 249 static int string_uuid(char *uuid, u8 *dst) 250 { 251 efi_guid_t guid; 252 u16 b, c, d; 253 u64 e; 254 u32 a; 255 u8 *p; 256 u8 i; 257 258 const u8 uuid_str_len = 36; 259 260 /* The UUID is written in text: */ 261 /* 1 9 14 19 24 */ 262 /* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx */ 263 264 debug("%s: uuid: %s\n", __func__, uuid); 265 266 if (strlen(uuid) != uuid_str_len) 267 return -1; 268 269 for (i = 0; i < uuid_str_len; i++) { 270 if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) { 271 if (uuid[i] != '-') 272 return -1; 273 } else { 274 if (!isxdigit(uuid[i])) 275 return -1; 276 } 277 } 278 279 a = (u32)simple_strtoul(uuid, NULL, 16); 280 b = (u16)simple_strtoul(uuid + 9, NULL, 16); 281 c = (u16)simple_strtoul(uuid + 14, NULL, 16); 282 d = (u16)simple_strtoul(uuid + 19, NULL, 16); 283 e = (u64)simple_strtoull(uuid + 24, NULL, 16); 284 285 p = (u8 *) &e; 286 guid = EFI_GUID(a, b, c, d >> 8, d & 0xFF, 287 *(p + 5), *(p + 4), *(p + 3), 288 *(p + 2), *(p + 1) , *p); 289 290 memcpy(dst, guid.b, sizeof(efi_guid_t)); 291 292 return 0; 293 } 294 295 int write_gpt_table(block_dev_desc_t *dev_desc, 296 gpt_header *gpt_h, gpt_entry *gpt_e) 297 { 298 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 299 * sizeof(gpt_entry)), dev_desc); 300 u32 calc_crc32; 301 u64 val; 302 303 debug("max lba: %x\n", (u32) dev_desc->lba); 304 /* Setup the Protective MBR */ 305 if (set_protective_mbr(dev_desc) < 0) 306 goto err; 307 308 /* Generate CRC for the Primary GPT Header */ 309 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 310 le32_to_cpu(gpt_h->num_partition_entries) * 311 le32_to_cpu(gpt_h->sizeof_partition_entry)); 312 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 313 314 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 315 le32_to_cpu(gpt_h->header_size)); 316 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 317 318 /* Write the First GPT to the block right after the Legacy MBR */ 319 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1) 320 goto err; 321 322 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e) 323 != pte_blk_cnt) 324 goto err; 325 326 /* recalculate the values for the Second GPT Header */ 327 val = le64_to_cpu(gpt_h->my_lba); 328 gpt_h->my_lba = gpt_h->alternate_lba; 329 gpt_h->alternate_lba = cpu_to_le64(val); 330 gpt_h->header_crc32 = 0; 331 332 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 333 le32_to_cpu(gpt_h->header_size)); 334 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 335 336 if (dev_desc->block_write(dev_desc->dev, 337 le32_to_cpu(gpt_h->last_usable_lba + 1), 338 pte_blk_cnt, gpt_e) != pte_blk_cnt) 339 goto err; 340 341 if (dev_desc->block_write(dev_desc->dev, 342 le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1) 343 goto err; 344 345 debug("GPT successfully written to block device!\n"); 346 return 0; 347 348 err: 349 printf("** Can't write to device %d **\n", dev_desc->dev); 350 return -1; 351 } 352 353 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, 354 disk_partition_t *partitions, int parts) 355 { 356 u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba); 357 ulong start; 358 int i, k; 359 size_t efiname_len, dosname_len; 360 #ifdef CONFIG_PARTITION_UUIDS 361 char *str_uuid; 362 #endif 363 364 for (i = 0; i < parts; i++) { 365 /* partition starting lba */ 366 start = partitions[i].start; 367 if (start && (start < offset)) { 368 printf("Partition overlap\n"); 369 return -1; 370 } 371 if (start) { 372 gpt_e[i].starting_lba = cpu_to_le64(start); 373 offset = start + partitions[i].size; 374 } else { 375 gpt_e[i].starting_lba = cpu_to_le64(offset); 376 offset += partitions[i].size; 377 } 378 if (offset >= gpt_h->last_usable_lba) { 379 printf("Partitions layout exceds disk size\n"); 380 return -1; 381 } 382 /* partition ending lba */ 383 if ((i == parts - 1) && (partitions[i].size == 0)) 384 /* extend the last partition to maximuim */ 385 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 386 else 387 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 388 389 /* partition type GUID */ 390 memcpy(gpt_e[i].partition_type_guid.b, 391 &PARTITION_BASIC_DATA_GUID, 16); 392 393 #ifdef CONFIG_PARTITION_UUIDS 394 str_uuid = partitions[i].uuid; 395 if (string_uuid(str_uuid, gpt_e[i].unique_partition_guid.b)) { 396 printf("Partition no. %d: invalid guid: %s\n", 397 i, str_uuid); 398 return -1; 399 } 400 #endif 401 402 /* partition attributes */ 403 memset(&gpt_e[i].attributes, 0, 404 sizeof(gpt_entry_attributes)); 405 406 /* partition name */ 407 efiname_len = sizeof(gpt_e[i].partition_name) 408 / sizeof(efi_char16_t); 409 dosname_len = sizeof(partitions[i].name); 410 411 memset(gpt_e[i].partition_name, 0, 412 sizeof(gpt_e[i].partition_name)); 413 414 for (k = 0; k < min(dosname_len, efiname_len); k++) 415 gpt_e[i].partition_name[k] = 416 (efi_char16_t)(partitions[i].name[k]); 417 418 debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x" LBAF "\n", 419 __func__, partitions[i].name, i, 420 offset, i, partitions[i].size); 421 } 422 423 return 0; 424 } 425 426 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h, 427 char *str_guid, int parts_count) 428 { 429 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 430 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 431 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 432 gpt_h->my_lba = cpu_to_le64(1); 433 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 434 gpt_h->first_usable_lba = cpu_to_le64(34); 435 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 436 gpt_h->partition_entry_lba = cpu_to_le64(2); 437 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 438 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 439 gpt_h->header_crc32 = 0; 440 gpt_h->partition_entry_array_crc32 = 0; 441 442 if (string_uuid(str_guid, gpt_h->disk_guid.b)) 443 return -1; 444 445 return 0; 446 } 447 448 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid, 449 disk_partition_t *partitions, int parts_count) 450 { 451 int ret; 452 453 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), 454 dev_desc)); 455 gpt_entry *gpt_e; 456 457 if (gpt_h == NULL) { 458 printf("%s: calloc failed!\n", __func__); 459 return -1; 460 } 461 462 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS 463 * sizeof(gpt_entry), 464 dev_desc)); 465 if (gpt_e == NULL) { 466 printf("%s: calloc failed!\n", __func__); 467 free(gpt_h); 468 return -1; 469 } 470 471 /* Generate Primary GPT header (LBA1) */ 472 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 473 if (ret) 474 goto err; 475 476 /* Generate partition entries */ 477 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); 478 if (ret) 479 goto err; 480 481 /* Write GPT partition table */ 482 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 483 484 err: 485 free(gpt_e); 486 free(gpt_h); 487 return ret; 488 } 489 #endif 490 491 /* 492 * Private functions 493 */ 494 /* 495 * pmbr_part_valid(): Check for EFI partition signature 496 * 497 * Returns: 1 if EFI GPT partition type is found. 498 */ 499 static int pmbr_part_valid(struct partition *part) 500 { 501 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 502 get_unaligned_le32(&part->start_sect) == 1UL) { 503 return 1; 504 } 505 506 return 0; 507 } 508 509 /* 510 * is_pmbr_valid(): test Protective MBR for validity 511 * 512 * Returns: 1 if PMBR is valid, 0 otherwise. 513 * Validity depends on two things: 514 * 1) MSDOS signature is in the last two bytes of the MBR 515 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 516 */ 517 static int is_pmbr_valid(legacy_mbr * mbr) 518 { 519 int i = 0; 520 521 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 522 return 0; 523 524 for (i = 0; i < 4; i++) { 525 if (pmbr_part_valid(&mbr->partition_record[i])) { 526 return 1; 527 } 528 } 529 return 0; 530 } 531 532 /** 533 * is_gpt_valid() - tests one GPT header and PTEs for validity 534 * 535 * lba is the logical block address of the GPT header to test 536 * gpt is a GPT header ptr, filled on return. 537 * ptes is a PTEs ptr, filled on return. 538 * 539 * Description: returns 1 if valid, 0 on error. 540 * If valid, returns pointers to PTEs. 541 */ 542 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, 543 gpt_header * pgpt_head, gpt_entry ** pgpt_pte) 544 { 545 u32 crc32_backup = 0; 546 u32 calc_crc32; 547 unsigned long long lastlba; 548 549 if (!dev_desc || !pgpt_head) { 550 printf("%s: Invalid Argument(s)\n", __func__); 551 return 0; 552 } 553 554 /* Read GPT Header from device */ 555 if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) { 556 printf("*** ERROR: Can't read GPT header ***\n"); 557 return 0; 558 } 559 560 /* Check the GPT header signature */ 561 if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) { 562 printf("GUID Partition Table Header signature is wrong:" 563 "0x%llX != 0x%llX\n", 564 le64_to_cpu(pgpt_head->signature), 565 GPT_HEADER_SIGNATURE); 566 return 0; 567 } 568 569 /* Check the GUID Partition Table CRC */ 570 memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup)); 571 memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32)); 572 573 calc_crc32 = efi_crc32((const unsigned char *)pgpt_head, 574 le32_to_cpu(pgpt_head->header_size)); 575 576 memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup)); 577 578 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 579 printf("GUID Partition Table Header CRC is wrong:" 580 "0x%x != 0x%x\n", 581 le32_to_cpu(crc32_backup), calc_crc32); 582 return 0; 583 } 584 585 /* Check that the my_lba entry points to the LBA that contains the GPT */ 586 if (le64_to_cpu(pgpt_head->my_lba) != lba) { 587 printf("GPT: my_lba incorrect: %llX != %llX\n", 588 le64_to_cpu(pgpt_head->my_lba), 589 lba); 590 return 0; 591 } 592 593 /* Check the first_usable_lba and last_usable_lba are within the disk. */ 594 lastlba = (unsigned long long)dev_desc->lba; 595 if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) { 596 printf("GPT: first_usable_lba incorrect: %llX > %llX\n", 597 le64_to_cpu(pgpt_head->first_usable_lba), lastlba); 598 return 0; 599 } 600 if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) { 601 printf("GPT: last_usable_lba incorrect: %llX > %llX\n", 602 (u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba); 603 return 0; 604 } 605 606 debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n", 607 le64_to_cpu(pgpt_head->first_usable_lba), 608 le64_to_cpu(pgpt_head->last_usable_lba), lastlba); 609 610 /* Read and allocate Partition Table Entries */ 611 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 612 if (*pgpt_pte == NULL) { 613 printf("GPT: Failed to allocate memory for PTE\n"); 614 return 0; 615 } 616 617 /* Check the GUID Partition Table Entry Array CRC */ 618 calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte, 619 le32_to_cpu(pgpt_head->num_partition_entries) * 620 le32_to_cpu(pgpt_head->sizeof_partition_entry)); 621 622 if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) { 623 printf("GUID Partition Table Entry Array CRC is wrong:" 624 "0x%x != 0x%x\n", 625 le32_to_cpu(pgpt_head->partition_entry_array_crc32), 626 calc_crc32); 627 628 free(*pgpt_pte); 629 return 0; 630 } 631 632 /* We're done, all's well */ 633 return 1; 634 } 635 636 /** 637 * alloc_read_gpt_entries(): reads partition entries from disk 638 * @dev_desc 639 * @gpt - GPT header 640 * 641 * Description: Returns ptes on success, NULL on error. 642 * Allocates space for PTEs based on information found in @gpt. 643 * Notes: remember to free pte when you're done! 644 */ 645 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 646 gpt_header * pgpt_head) 647 { 648 size_t count = 0, blk_cnt; 649 gpt_entry *pte = NULL; 650 651 if (!dev_desc || !pgpt_head) { 652 printf("%s: Invalid Argument(s)\n", __func__); 653 return NULL; 654 } 655 656 count = le32_to_cpu(pgpt_head->num_partition_entries) * 657 le32_to_cpu(pgpt_head->sizeof_partition_entry); 658 659 debug("%s: count = %u * %u = %zu\n", __func__, 660 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 661 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count); 662 663 /* Allocate memory for PTE, remember to FREE */ 664 if (count != 0) { 665 pte = memalign(ARCH_DMA_MINALIGN, 666 PAD_TO_BLOCKSIZE(count, dev_desc)); 667 } 668 669 if (count == 0 || pte == NULL) { 670 printf("%s: ERROR: Can't allocate 0x%zX " 671 "bytes for GPT Entries\n", 672 __func__, count); 673 return NULL; 674 } 675 676 /* Read GPT Entries from device */ 677 blk_cnt = BLOCK_CNT(count, dev_desc); 678 if (dev_desc->block_read (dev_desc->dev, 679 le64_to_cpu(pgpt_head->partition_entry_lba), 680 (lbaint_t) (blk_cnt), pte) 681 != blk_cnt) { 682 683 printf("*** ERROR: Can't read GPT Entries ***\n"); 684 free(pte); 685 return NULL; 686 } 687 return pte; 688 } 689 690 /** 691 * is_pte_valid(): validates a single Partition Table Entry 692 * @gpt_entry - Pointer to a single Partition Table Entry 693 * 694 * Description: returns 1 if valid, 0 on error. 695 */ 696 static int is_pte_valid(gpt_entry * pte) 697 { 698 efi_guid_t unused_guid; 699 700 if (!pte) { 701 printf("%s: Invalid Argument(s)\n", __func__); 702 return 0; 703 } 704 705 /* Only one validation for now: 706 * The GUID Partition Type != Unused Entry (ALL-ZERO) 707 */ 708 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 709 710 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 711 sizeof(unused_guid.b)) == 0) { 712 713 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 714 (unsigned int)(uintptr_t)pte); 715 716 return 0; 717 } else { 718 return 1; 719 } 720 } 721 #endif 722