xref: /openbmc/u-boot/disk/part_efi.c (revision 3f41ffe4)
1 /*
2  * Copyright (C) 2008 RuggedCom, Inc.
3  * Richard Retanubun <RichardRetanubun@RuggedCom.com>
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  */
7 
8 /*
9  * Problems with CONFIG_SYS_64BIT_LBA:
10  *
11  * struct disk_partition.start in include/part.h is sized as ulong.
12  * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t.
13  * For now, it is cast back to ulong at assignment.
14  *
15  * This limits the maximum size of addressable storage to < 2 Terra Bytes
16  */
17 #include <asm/unaligned.h>
18 #include <common.h>
19 #include <command.h>
20 #include <ide.h>
21 #include <malloc.h>
22 #include <part_efi.h>
23 #include <linux/ctype.h>
24 
25 DECLARE_GLOBAL_DATA_PTR;
26 
27 #ifdef HAVE_BLOCK_DEVICE
28 /**
29  * efi_crc32() - EFI version of crc32 function
30  * @buf: buffer to calculate crc32 of
31  * @len - length of buf
32  *
33  * Description: Returns EFI-style CRC32 value for @buf
34  */
35 static inline u32 efi_crc32(const void *buf, u32 len)
36 {
37 	return crc32(0, buf, len);
38 }
39 
40 /*
41  * Private function prototypes
42  */
43 
44 static int pmbr_part_valid(struct partition *part);
45 static int is_pmbr_valid(legacy_mbr * mbr);
46 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
47 				gpt_header * pgpt_head, gpt_entry ** pgpt_pte);
48 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
49 				gpt_header * pgpt_head);
50 static int is_pte_valid(gpt_entry * pte);
51 
52 static char *print_efiname(gpt_entry *pte)
53 {
54 	static char name[PARTNAME_SZ + 1];
55 	int i;
56 	for (i = 0; i < PARTNAME_SZ; i++) {
57 		u8 c;
58 		c = pte->partition_name[i] & 0xff;
59 		c = (c && !isprint(c)) ? '.' : c;
60 		name[i] = c;
61 	}
62 	name[PARTNAME_SZ] = 0;
63 	return name;
64 }
65 
66 static void uuid_string(unsigned char *uuid, char *str)
67 {
68 	static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11,
69 				  12, 13, 14, 15};
70 	int i;
71 
72 	for (i = 0; i < 16; i++) {
73 		sprintf(str, "%02x", uuid[le[i]]);
74 		str += 2;
75 		switch (i) {
76 		case 3:
77 		case 5:
78 		case 7:
79 		case 9:
80 			*str++ = '-';
81 			break;
82 		}
83 	}
84 }
85 
86 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
87 
88 static inline int is_bootable(gpt_entry *p)
89 {
90 	return p->attributes.fields.legacy_bios_bootable ||
91 		!memcmp(&(p->partition_type_guid), &system_guid,
92 			sizeof(efi_guid_t));
93 }
94 
95 #ifdef CONFIG_EFI_PARTITION
96 /*
97  * Public Functions (include/part.h)
98  */
99 
100 void print_part_efi(block_dev_desc_t * dev_desc)
101 {
102 	ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
103 	gpt_entry *gpt_pte = NULL;
104 	int i = 0;
105 	char uuid[37];
106 
107 	if (!dev_desc) {
108 		printf("%s: Invalid Argument(s)\n", __func__);
109 		return;
110 	}
111 	/* This function validates AND fills in the GPT header and PTE */
112 	if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
113 			 gpt_head, &gpt_pte) != 1) {
114 		printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
115 		return;
116 	}
117 
118 	debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
119 
120 	printf("Part\tStart LBA\tEnd LBA\t\tName\n");
121 	printf("\tAttributes\n");
122 	printf("\tType UUID\n");
123 	printf("\tPartition UUID\n");
124 
125 	for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
126 		/* Stop at the first non valid PTE */
127 		if (!is_pte_valid(&gpt_pte[i]))
128 			break;
129 
130 		printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
131 			le64_to_cpu(gpt_pte[i].starting_lba),
132 			le64_to_cpu(gpt_pte[i].ending_lba),
133 			print_efiname(&gpt_pte[i]));
134 		printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
135 		uuid_string(gpt_pte[i].partition_type_guid.b, uuid);
136 		printf("\ttype:\t%s\n", uuid);
137 		uuid_string(gpt_pte[i].unique_partition_guid.b, uuid);
138 		printf("\tuuid:\t%s\n", uuid);
139 	}
140 
141 	/* Remember to free pte */
142 	free(gpt_pte);
143 	return;
144 }
145 
146 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part,
147 				disk_partition_t * info)
148 {
149 	ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
150 	gpt_entry *gpt_pte = NULL;
151 
152 	/* "part" argument must be at least 1 */
153 	if (!dev_desc || !info || part < 1) {
154 		printf("%s: Invalid Argument(s)\n", __func__);
155 		return -1;
156 	}
157 
158 	/* This function validates AND fills in the GPT header and PTE */
159 	if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
160 			gpt_head, &gpt_pte) != 1) {
161 		printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
162 		return -1;
163 	}
164 
165 	if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
166 	    !is_pte_valid(&gpt_pte[part - 1])) {
167 		debug("%s: *** ERROR: Invalid partition number %d ***\n",
168 			__func__, part);
169 		free(gpt_pte);
170 		return -1;
171 	}
172 
173 	/* The ulong casting limits the maximum disk size to 2 TB */
174 	info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba);
175 	/* The ending LBA is inclusive, to calculate size, add 1 to it */
176 	info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1)
177 		     - info->start;
178 	info->blksz = dev_desc->blksz;
179 
180 	sprintf((char *)info->name, "%s",
181 			print_efiname(&gpt_pte[part - 1]));
182 	sprintf((char *)info->type, "U-Boot");
183 	info->bootable = is_bootable(&gpt_pte[part - 1]);
184 #ifdef CONFIG_PARTITION_UUIDS
185 	uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid);
186 #endif
187 
188 	debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s", __func__,
189 	      info->start, info->size, info->name);
190 
191 	/* Remember to free pte */
192 	free(gpt_pte);
193 	return 0;
194 }
195 
196 int test_part_efi(block_dev_desc_t * dev_desc)
197 {
198 	ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
199 
200 	/* Read legacy MBR from block 0 and validate it */
201 	if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1)
202 		|| (is_pmbr_valid(legacymbr) != 1)) {
203 		return -1;
204 	}
205 	return 0;
206 }
207 
208 /**
209  * set_protective_mbr(): Set the EFI protective MBR
210  * @param dev_desc - block device descriptor
211  *
212  * @return - zero on success, otherwise error
213  */
214 static int set_protective_mbr(block_dev_desc_t *dev_desc)
215 {
216 	/* Setup the Protective MBR */
217 	ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1);
218 	memset(p_mbr, 0, sizeof(*p_mbr));
219 
220 	if (p_mbr == NULL) {
221 		printf("%s: calloc failed!\n", __func__);
222 		return -1;
223 	}
224 	/* Append signature */
225 	p_mbr->signature = MSDOS_MBR_SIGNATURE;
226 	p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
227 	p_mbr->partition_record[0].start_sect = 1;
228 	p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba;
229 
230 	/* Write MBR sector to the MMC device */
231 	if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) {
232 		printf("** Can't write to device %d **\n",
233 			dev_desc->dev);
234 		return -1;
235 	}
236 
237 	return 0;
238 }
239 
240 /**
241  * string_uuid(); Convert UUID stored as string to bytes
242  *
243  * @param uuid - UUID represented as string
244  * @param dst - GUID buffer
245  *
246  * @return return 0 on successful conversion
247  */
248 static int string_uuid(char *uuid, u8 *dst)
249 {
250 	efi_guid_t guid;
251 	u16 b, c, d;
252 	u64 e;
253 	u32 a;
254 	u8 *p;
255 	u8 i;
256 
257 	const u8 uuid_str_len = 36;
258 
259 	/* The UUID is written in text: */
260 	/* 1        9    14   19   24 */
261 	/* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx */
262 
263 	debug("%s: uuid: %s\n", __func__, uuid);
264 
265 	if (strlen(uuid) != uuid_str_len)
266 		return -1;
267 
268 	for (i = 0; i < uuid_str_len; i++) {
269 		if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) {
270 			if (uuid[i] != '-')
271 				return -1;
272 		} else {
273 			if (!isxdigit(uuid[i]))
274 				return -1;
275 		}
276 	}
277 
278 	a = (u32)simple_strtoul(uuid, NULL, 16);
279 	b = (u16)simple_strtoul(uuid + 9, NULL, 16);
280 	c = (u16)simple_strtoul(uuid + 14, NULL, 16);
281 	d = (u16)simple_strtoul(uuid + 19, NULL, 16);
282 	e = (u64)simple_strtoull(uuid + 24, NULL, 16);
283 
284 	p = (u8 *) &e;
285 	guid = EFI_GUID(a, b, c, d >> 8, d & 0xFF,
286 			*(p + 5), *(p + 4), *(p + 3),
287 			*(p + 2), *(p + 1) , *p);
288 
289 	memcpy(dst, guid.b, sizeof(efi_guid_t));
290 
291 	return 0;
292 }
293 
294 int write_gpt_table(block_dev_desc_t *dev_desc,
295 		gpt_header *gpt_h, gpt_entry *gpt_e)
296 {
297 	const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
298 					   * sizeof(gpt_entry)), dev_desc);
299 	u32 calc_crc32;
300 	u64 val;
301 
302 	debug("max lba: %x\n", (u32) dev_desc->lba);
303 	/* Setup the Protective MBR */
304 	if (set_protective_mbr(dev_desc) < 0)
305 		goto err;
306 
307 	/* Generate CRC for the Primary GPT Header */
308 	calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
309 			      le32_to_cpu(gpt_h->num_partition_entries) *
310 			      le32_to_cpu(gpt_h->sizeof_partition_entry));
311 	gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
312 
313 	calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
314 			      le32_to_cpu(gpt_h->header_size));
315 	gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
316 
317 	/* Write the First GPT to the block right after the Legacy MBR */
318 	if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1)
319 		goto err;
320 
321 	if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e)
322 	    != pte_blk_cnt)
323 		goto err;
324 
325 	/* recalculate the values for the Second GPT Header */
326 	val = le64_to_cpu(gpt_h->my_lba);
327 	gpt_h->my_lba = gpt_h->alternate_lba;
328 	gpt_h->alternate_lba = cpu_to_le64(val);
329 	gpt_h->header_crc32 = 0;
330 
331 	calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
332 			      le32_to_cpu(gpt_h->header_size));
333 	gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
334 
335 	if (dev_desc->block_write(dev_desc->dev,
336 				  le32_to_cpu(gpt_h->last_usable_lba + 1),
337 				  pte_blk_cnt, gpt_e) != pte_blk_cnt)
338 		goto err;
339 
340 	if (dev_desc->block_write(dev_desc->dev,
341 				  le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1)
342 		goto err;
343 
344 	debug("GPT successfully written to block device!\n");
345 	return 0;
346 
347  err:
348 	printf("** Can't write to device %d **\n", dev_desc->dev);
349 	return -1;
350 }
351 
352 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e,
353 		disk_partition_t *partitions, int parts)
354 {
355 	u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba);
356 	ulong start;
357 	int i, k;
358 	size_t efiname_len, dosname_len;
359 #ifdef CONFIG_PARTITION_UUIDS
360 	char *str_uuid;
361 #endif
362 
363 	for (i = 0; i < parts; i++) {
364 		/* partition starting lba */
365 		start = partitions[i].start;
366 		if (start && (start < offset)) {
367 			printf("Partition overlap\n");
368 			return -1;
369 		}
370 		if (start) {
371 			gpt_e[i].starting_lba = cpu_to_le64(start);
372 			offset = start + partitions[i].size;
373 		} else {
374 			gpt_e[i].starting_lba = cpu_to_le64(offset);
375 			offset += partitions[i].size;
376 		}
377 		if (offset >= gpt_h->last_usable_lba) {
378 			printf("Partitions layout exceds disk size\n");
379 			return -1;
380 		}
381 		/* partition ending lba */
382 		if ((i == parts - 1) && (partitions[i].size == 0))
383 			/* extend the last partition to maximuim */
384 			gpt_e[i].ending_lba = gpt_h->last_usable_lba;
385 		else
386 			gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
387 
388 		/* partition type GUID */
389 		memcpy(gpt_e[i].partition_type_guid.b,
390 			&PARTITION_BASIC_DATA_GUID, 16);
391 
392 #ifdef CONFIG_PARTITION_UUIDS
393 		str_uuid = partitions[i].uuid;
394 		if (string_uuid(str_uuid, gpt_e[i].unique_partition_guid.b)) {
395 			printf("Partition no. %d: invalid guid: %s\n",
396 				i, str_uuid);
397 			return -1;
398 		}
399 #endif
400 
401 		/* partition attributes */
402 		memset(&gpt_e[i].attributes, 0,
403 		       sizeof(gpt_entry_attributes));
404 
405 		/* partition name */
406 		efiname_len = sizeof(gpt_e[i].partition_name)
407 			/ sizeof(efi_char16_t);
408 		dosname_len = sizeof(partitions[i].name);
409 
410 		memset(gpt_e[i].partition_name, 0,
411 		       sizeof(gpt_e[i].partition_name));
412 
413 		for (k = 0; k < min(dosname_len, efiname_len); k++)
414 			gpt_e[i].partition_name[k] =
415 				(efi_char16_t)(partitions[i].name[k]);
416 
417 		debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x" LBAF "\n",
418 		      __func__, partitions[i].name, i,
419 		      offset, i, partitions[i].size);
420 	}
421 
422 	return 0;
423 }
424 
425 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h,
426 		char *str_guid, int parts_count)
427 {
428 	gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE);
429 	gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
430 	gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
431 	gpt_h->my_lba = cpu_to_le64(1);
432 	gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
433 	gpt_h->first_usable_lba = cpu_to_le64(34);
434 	gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
435 	gpt_h->partition_entry_lba = cpu_to_le64(2);
436 	gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
437 	gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
438 	gpt_h->header_crc32 = 0;
439 	gpt_h->partition_entry_array_crc32 = 0;
440 
441 	if (string_uuid(str_guid, gpt_h->disk_guid.b))
442 		return -1;
443 
444 	return 0;
445 }
446 
447 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid,
448 		disk_partition_t *partitions, int parts_count)
449 {
450 	int ret;
451 
452 	gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header),
453 						       dev_desc));
454 	gpt_entry *gpt_e;
455 
456 	if (gpt_h == NULL) {
457 		printf("%s: calloc failed!\n", __func__);
458 		return -1;
459 	}
460 
461 	gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS
462 					       * sizeof(gpt_entry),
463 					       dev_desc));
464 	if (gpt_e == NULL) {
465 		printf("%s: calloc failed!\n", __func__);
466 		free(gpt_h);
467 		return -1;
468 	}
469 
470 	/* Generate Primary GPT header (LBA1) */
471 	ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
472 	if (ret)
473 		goto err;
474 
475 	/* Generate partition entries */
476 	ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count);
477 	if (ret)
478 		goto err;
479 
480 	/* Write GPT partition table */
481 	ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
482 
483 err:
484 	free(gpt_e);
485 	free(gpt_h);
486 	return ret;
487 }
488 #endif
489 
490 /*
491  * Private functions
492  */
493 /*
494  * pmbr_part_valid(): Check for EFI partition signature
495  *
496  * Returns: 1 if EFI GPT partition type is found.
497  */
498 static int pmbr_part_valid(struct partition *part)
499 {
500 	if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
501 		get_unaligned_le32(&part->start_sect) == 1UL) {
502 		return 1;
503 	}
504 
505 	return 0;
506 }
507 
508 /*
509  * is_pmbr_valid(): test Protective MBR for validity
510  *
511  * Returns: 1 if PMBR is valid, 0 otherwise.
512  * Validity depends on two things:
513  *  1) MSDOS signature is in the last two bytes of the MBR
514  *  2) One partition of type 0xEE is found, checked by pmbr_part_valid()
515  */
516 static int is_pmbr_valid(legacy_mbr * mbr)
517 {
518 	int i = 0;
519 
520 	if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
521 		return 0;
522 
523 	for (i = 0; i < 4; i++) {
524 		if (pmbr_part_valid(&mbr->partition_record[i])) {
525 			return 1;
526 		}
527 	}
528 	return 0;
529 }
530 
531 /**
532  * is_gpt_valid() - tests one GPT header and PTEs for validity
533  *
534  * lba is the logical block address of the GPT header to test
535  * gpt is a GPT header ptr, filled on return.
536  * ptes is a PTEs ptr, filled on return.
537  *
538  * Description: returns 1 if valid,  0 on error.
539  * If valid, returns pointers to PTEs.
540  */
541 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba,
542 			gpt_header * pgpt_head, gpt_entry ** pgpt_pte)
543 {
544 	u32 crc32_backup = 0;
545 	u32 calc_crc32;
546 	unsigned long long lastlba;
547 
548 	if (!dev_desc || !pgpt_head) {
549 		printf("%s: Invalid Argument(s)\n", __func__);
550 		return 0;
551 	}
552 
553 	/* Read GPT Header from device */
554 	if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) {
555 		printf("*** ERROR: Can't read GPT header ***\n");
556 		return 0;
557 	}
558 
559 	/* Check the GPT header signature */
560 	if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) {
561 		printf("GUID Partition Table Header signature is wrong:"
562 			"0x%llX != 0x%llX\n",
563 			le64_to_cpu(pgpt_head->signature),
564 			GPT_HEADER_SIGNATURE);
565 		return 0;
566 	}
567 
568 	/* Check the GUID Partition Table CRC */
569 	memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup));
570 	memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32));
571 
572 	calc_crc32 = efi_crc32((const unsigned char *)pgpt_head,
573 		le32_to_cpu(pgpt_head->header_size));
574 
575 	memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup));
576 
577 	if (calc_crc32 != le32_to_cpu(crc32_backup)) {
578 		printf("GUID Partition Table Header CRC is wrong:"
579 			"0x%x != 0x%x\n",
580 		       le32_to_cpu(crc32_backup), calc_crc32);
581 		return 0;
582 	}
583 
584 	/* Check that the my_lba entry points to the LBA that contains the GPT */
585 	if (le64_to_cpu(pgpt_head->my_lba) != lba) {
586 		printf("GPT: my_lba incorrect: %llX != %llX\n",
587 			le64_to_cpu(pgpt_head->my_lba),
588 			lba);
589 		return 0;
590 	}
591 
592 	/* Check the first_usable_lba and last_usable_lba are within the disk. */
593 	lastlba = (unsigned long long)dev_desc->lba;
594 	if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) {
595 		printf("GPT: first_usable_lba incorrect: %llX > %llX\n",
596 			le64_to_cpu(pgpt_head->first_usable_lba), lastlba);
597 		return 0;
598 	}
599 	if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) {
600 		printf("GPT: last_usable_lba incorrect: %llX > %llX\n",
601 			(u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
602 		return 0;
603 	}
604 
605 	debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n",
606 		le64_to_cpu(pgpt_head->first_usable_lba),
607 		le64_to_cpu(pgpt_head->last_usable_lba), lastlba);
608 
609 	/* Read and allocate Partition Table Entries */
610 	*pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
611 	if (*pgpt_pte == NULL) {
612 		printf("GPT: Failed to allocate memory for PTE\n");
613 		return 0;
614 	}
615 
616 	/* Check the GUID Partition Table Entry Array CRC */
617 	calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte,
618 		le32_to_cpu(pgpt_head->num_partition_entries) *
619 		le32_to_cpu(pgpt_head->sizeof_partition_entry));
620 
621 	if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) {
622 		printf("GUID Partition Table Entry Array CRC is wrong:"
623 			"0x%x != 0x%x\n",
624 			le32_to_cpu(pgpt_head->partition_entry_array_crc32),
625 			calc_crc32);
626 
627 		free(*pgpt_pte);
628 		return 0;
629 	}
630 
631 	/* We're done, all's well */
632 	return 1;
633 }
634 
635 /**
636  * alloc_read_gpt_entries(): reads partition entries from disk
637  * @dev_desc
638  * @gpt - GPT header
639  *
640  * Description: Returns ptes on success,  NULL on error.
641  * Allocates space for PTEs based on information found in @gpt.
642  * Notes: remember to free pte when you're done!
643  */
644 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc,
645 					 gpt_header * pgpt_head)
646 {
647 	size_t count = 0, blk_cnt;
648 	gpt_entry *pte = NULL;
649 
650 	if (!dev_desc || !pgpt_head) {
651 		printf("%s: Invalid Argument(s)\n", __func__);
652 		return NULL;
653 	}
654 
655 	count = le32_to_cpu(pgpt_head->num_partition_entries) *
656 		le32_to_cpu(pgpt_head->sizeof_partition_entry);
657 
658 	debug("%s: count = %u * %u = %zu\n", __func__,
659 	      (u32) le32_to_cpu(pgpt_head->num_partition_entries),
660 	      (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count);
661 
662 	/* Allocate memory for PTE, remember to FREE */
663 	if (count != 0) {
664 		pte = memalign(ARCH_DMA_MINALIGN,
665 			       PAD_TO_BLOCKSIZE(count, dev_desc));
666 	}
667 
668 	if (count == 0 || pte == NULL) {
669 		printf("%s: ERROR: Can't allocate 0x%zX "
670 		       "bytes for GPT Entries\n",
671 			__func__, count);
672 		return NULL;
673 	}
674 
675 	/* Read GPT Entries from device */
676 	blk_cnt = BLOCK_CNT(count, dev_desc);
677 	if (dev_desc->block_read (dev_desc->dev,
678 		le64_to_cpu(pgpt_head->partition_entry_lba),
679 		(lbaint_t) (blk_cnt), pte)
680 		!= blk_cnt) {
681 
682 		printf("*** ERROR: Can't read GPT Entries ***\n");
683 		free(pte);
684 		return NULL;
685 	}
686 	return pte;
687 }
688 
689 /**
690  * is_pte_valid(): validates a single Partition Table Entry
691  * @gpt_entry - Pointer to a single Partition Table Entry
692  *
693  * Description: returns 1 if valid,  0 on error.
694  */
695 static int is_pte_valid(gpt_entry * pte)
696 {
697 	efi_guid_t unused_guid;
698 
699 	if (!pte) {
700 		printf("%s: Invalid Argument(s)\n", __func__);
701 		return 0;
702 	}
703 
704 	/* Only one validation for now:
705 	 * The GUID Partition Type != Unused Entry (ALL-ZERO)
706 	 */
707 	memset(unused_guid.b, 0, sizeof(unused_guid.b));
708 
709 	if (memcmp(pte->partition_type_guid.b, unused_guid.b,
710 		sizeof(unused_guid.b)) == 0) {
711 
712 		debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
713 		      (unsigned int)(uintptr_t)pte);
714 
715 		return 0;
716 	} else {
717 		return 1;
718 	}
719 }
720 #endif
721