1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* 9 * NOTE: 10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this 11 * limits the maximum size of addressable storage to < 2 Terra Bytes 12 */ 13 #include <asm/unaligned.h> 14 #include <common.h> 15 #include <command.h> 16 #include <ide.h> 17 #include <inttypes.h> 18 #include <malloc.h> 19 #include <memalign.h> 20 #include <part_efi.h> 21 #include <linux/ctype.h> 22 23 DECLARE_GLOBAL_DATA_PTR; 24 25 #ifdef HAVE_BLOCK_DEVICE 26 /** 27 * efi_crc32() - EFI version of crc32 function 28 * @buf: buffer to calculate crc32 of 29 * @len - length of buf 30 * 31 * Description: Returns EFI-style CRC32 value for @buf 32 */ 33 static inline u32 efi_crc32(const void *buf, u32 len) 34 { 35 return crc32(0, buf, len); 36 } 37 38 /* 39 * Private function prototypes 40 */ 41 42 static int pmbr_part_valid(struct partition *part); 43 static int is_pmbr_valid(legacy_mbr * mbr); 44 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 45 gpt_header *pgpt_head, gpt_entry **pgpt_pte); 46 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 47 gpt_header *pgpt_head); 48 static int is_pte_valid(gpt_entry * pte); 49 50 static char *print_efiname(gpt_entry *pte) 51 { 52 static char name[PARTNAME_SZ + 1]; 53 int i; 54 for (i = 0; i < PARTNAME_SZ; i++) { 55 u8 c; 56 c = pte->partition_name[i] & 0xff; 57 c = (c && !isprint(c)) ? '.' : c; 58 name[i] = c; 59 } 60 name[PARTNAME_SZ] = 0; 61 return name; 62 } 63 64 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 65 66 static inline int is_bootable(gpt_entry *p) 67 { 68 return p->attributes.fields.legacy_bios_bootable || 69 !memcmp(&(p->partition_type_guid), &system_guid, 70 sizeof(efi_guid_t)); 71 } 72 73 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba, 74 lbaint_t lastlba) 75 { 76 uint32_t crc32_backup = 0; 77 uint32_t calc_crc32; 78 79 /* Check the GPT header signature */ 80 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) { 81 printf("%s signature is wrong: 0x%llX != 0x%llX\n", 82 "GUID Partition Table Header", 83 le64_to_cpu(gpt_h->signature), 84 GPT_HEADER_SIGNATURE); 85 return -1; 86 } 87 88 /* Check the GUID Partition Table CRC */ 89 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup)); 90 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32)); 91 92 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 93 le32_to_cpu(gpt_h->header_size)); 94 95 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup)); 96 97 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 98 printf("%s CRC is wrong: 0x%x != 0x%x\n", 99 "GUID Partition Table Header", 100 le32_to_cpu(crc32_backup), calc_crc32); 101 return -1; 102 } 103 104 /* 105 * Check that the my_lba entry points to the LBA that contains the GPT 106 */ 107 if (le64_to_cpu(gpt_h->my_lba) != lba) { 108 printf("GPT: my_lba incorrect: %llX != " LBAF "\n", 109 le64_to_cpu(gpt_h->my_lba), 110 lba); 111 return -1; 112 } 113 114 /* 115 * Check that the first_usable_lba and that the last_usable_lba are 116 * within the disk. 117 */ 118 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) { 119 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n", 120 le64_to_cpu(gpt_h->first_usable_lba), lastlba); 121 return -1; 122 } 123 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) { 124 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n", 125 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 126 return -1; 127 } 128 129 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: " 130 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba), 131 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 132 133 return 0; 134 } 135 136 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e) 137 { 138 uint32_t calc_crc32; 139 140 /* Check the GUID Partition Table Entry Array CRC */ 141 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 142 le32_to_cpu(gpt_h->num_partition_entries) * 143 le32_to_cpu(gpt_h->sizeof_partition_entry)); 144 145 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) { 146 printf("%s: 0x%x != 0x%x\n", 147 "GUID Partition Table Entry Array CRC is wrong", 148 le32_to_cpu(gpt_h->partition_entry_array_crc32), 149 calc_crc32); 150 return -1; 151 } 152 153 return 0; 154 } 155 156 static void prepare_backup_gpt_header(gpt_header *gpt_h) 157 { 158 uint32_t calc_crc32; 159 uint64_t val; 160 161 /* recalculate the values for the Backup GPT Header */ 162 val = le64_to_cpu(gpt_h->my_lba); 163 gpt_h->my_lba = gpt_h->alternate_lba; 164 gpt_h->alternate_lba = cpu_to_le64(val); 165 gpt_h->partition_entry_lba = 166 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1); 167 gpt_h->header_crc32 = 0; 168 169 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 170 le32_to_cpu(gpt_h->header_size)); 171 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 172 } 173 174 #if CONFIG_IS_ENABLED(EFI_PARTITION) 175 /* 176 * Public Functions (include/part.h) 177 */ 178 179 void part_print_efi(struct blk_desc *dev_desc) 180 { 181 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 182 gpt_entry *gpt_pte = NULL; 183 int i = 0; 184 char uuid[37]; 185 unsigned char *uuid_bin; 186 187 /* This function validates AND fills in the GPT header and PTE */ 188 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 189 gpt_head, &gpt_pte) != 1) { 190 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 191 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 192 gpt_head, &gpt_pte) != 1) { 193 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 194 __func__); 195 return; 196 } else { 197 printf("%s: *** Using Backup GPT ***\n", 198 __func__); 199 } 200 } 201 202 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 203 204 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 205 printf("\tAttributes\n"); 206 printf("\tType GUID\n"); 207 printf("\tPartition GUID\n"); 208 209 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 210 /* Stop at the first non valid PTE */ 211 if (!is_pte_valid(&gpt_pte[i])) 212 break; 213 214 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 215 le64_to_cpu(gpt_pte[i].starting_lba), 216 le64_to_cpu(gpt_pte[i].ending_lba), 217 print_efiname(&gpt_pte[i])); 218 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 219 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b; 220 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 221 printf("\ttype:\t%s\n", uuid); 222 #ifdef CONFIG_PARTITION_TYPE_GUID 223 if (!uuid_guid_get_str(uuid_bin, uuid)) 224 printf("\ttype:\t%s\n", uuid); 225 #endif 226 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b; 227 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 228 printf("\tguid:\t%s\n", uuid); 229 } 230 231 /* Remember to free pte */ 232 free(gpt_pte); 233 return; 234 } 235 236 int part_get_info_efi(struct blk_desc *dev_desc, int part, 237 disk_partition_t *info) 238 { 239 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 240 gpt_entry *gpt_pte = NULL; 241 242 /* "part" argument must be at least 1 */ 243 if (part < 1) { 244 printf("%s: Invalid Argument(s)\n", __func__); 245 return -1; 246 } 247 248 /* This function validates AND fills in the GPT header and PTE */ 249 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 250 gpt_head, &gpt_pte) != 1) { 251 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 252 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 253 gpt_head, &gpt_pte) != 1) { 254 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 255 __func__); 256 return -1; 257 } else { 258 printf("%s: *** Using Backup GPT ***\n", 259 __func__); 260 } 261 } 262 263 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 264 !is_pte_valid(&gpt_pte[part - 1])) { 265 debug("%s: *** ERROR: Invalid partition number %d ***\n", 266 __func__, part); 267 free(gpt_pte); 268 return -1; 269 } 270 271 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */ 272 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba); 273 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 274 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1 275 - info->start; 276 info->blksz = dev_desc->blksz; 277 278 sprintf((char *)info->name, "%s", 279 print_efiname(&gpt_pte[part - 1])); 280 strcpy((char *)info->type, "U-Boot"); 281 info->bootable = is_bootable(&gpt_pte[part - 1]); 282 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 283 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, 284 UUID_STR_FORMAT_GUID); 285 #endif 286 #ifdef CONFIG_PARTITION_TYPE_GUID 287 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b, 288 info->type_guid, UUID_STR_FORMAT_GUID); 289 #endif 290 291 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__, 292 info->start, info->size, info->name); 293 294 /* Remember to free pte */ 295 free(gpt_pte); 296 return 0; 297 } 298 299 static int part_test_efi(struct blk_desc *dev_desc) 300 { 301 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 302 303 /* Read legacy MBR from block 0 and validate it */ 304 if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1) 305 || (is_pmbr_valid(legacymbr) != 1)) { 306 return -1; 307 } 308 return 0; 309 } 310 311 /** 312 * set_protective_mbr(): Set the EFI protective MBR 313 * @param dev_desc - block device descriptor 314 * 315 * @return - zero on success, otherwise error 316 */ 317 static int set_protective_mbr(struct blk_desc *dev_desc) 318 { 319 /* Setup the Protective MBR */ 320 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1); 321 memset(p_mbr, 0, sizeof(*p_mbr)); 322 323 if (p_mbr == NULL) { 324 printf("%s: calloc failed!\n", __func__); 325 return -1; 326 } 327 328 /* Read MBR to backup boot code if it exists */ 329 if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) { 330 error("** Can't read from device %d **\n", dev_desc->devnum); 331 return -1; 332 } 333 334 /* Append signature */ 335 p_mbr->signature = MSDOS_MBR_SIGNATURE; 336 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 337 p_mbr->partition_record[0].start_sect = 1; 338 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1; 339 340 /* Write MBR sector to the MMC device */ 341 if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) { 342 printf("** Can't write to device %d **\n", 343 dev_desc->devnum); 344 return -1; 345 } 346 347 return 0; 348 } 349 350 int write_gpt_table(struct blk_desc *dev_desc, 351 gpt_header *gpt_h, gpt_entry *gpt_e) 352 { 353 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 354 * sizeof(gpt_entry)), dev_desc); 355 u32 calc_crc32; 356 357 debug("max lba: %x\n", (u32) dev_desc->lba); 358 /* Setup the Protective MBR */ 359 if (set_protective_mbr(dev_desc) < 0) 360 goto err; 361 362 /* Generate CRC for the Primary GPT Header */ 363 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 364 le32_to_cpu(gpt_h->num_partition_entries) * 365 le32_to_cpu(gpt_h->sizeof_partition_entry)); 366 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 367 368 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 369 le32_to_cpu(gpt_h->header_size)); 370 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 371 372 /* Write the First GPT to the block right after the Legacy MBR */ 373 if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1) 374 goto err; 375 376 if (blk_dwrite(dev_desc, 2, pte_blk_cnt, gpt_e) 377 != pte_blk_cnt) 378 goto err; 379 380 prepare_backup_gpt_header(gpt_h); 381 382 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba) 383 + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt) 384 goto err; 385 386 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1, 387 gpt_h) != 1) 388 goto err; 389 390 debug("GPT successfully written to block device!\n"); 391 return 0; 392 393 err: 394 printf("** Can't write to device %d **\n", dev_desc->devnum); 395 return -1; 396 } 397 398 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, 399 disk_partition_t *partitions, int parts) 400 { 401 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba); 402 lbaint_t start; 403 lbaint_t last_usable_lba = (lbaint_t) 404 le64_to_cpu(gpt_h->last_usable_lba); 405 int i, k; 406 size_t efiname_len, dosname_len; 407 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 408 char *str_uuid; 409 unsigned char *bin_uuid; 410 #endif 411 #ifdef CONFIG_PARTITION_TYPE_GUID 412 char *str_type_guid; 413 unsigned char *bin_type_guid; 414 #endif 415 416 for (i = 0; i < parts; i++) { 417 /* partition starting lba */ 418 start = partitions[i].start; 419 if (start && (start < offset)) { 420 printf("Partition overlap\n"); 421 return -1; 422 } 423 if (start) { 424 gpt_e[i].starting_lba = cpu_to_le64(start); 425 offset = start + partitions[i].size; 426 } else { 427 gpt_e[i].starting_lba = cpu_to_le64(offset); 428 offset += partitions[i].size; 429 } 430 if (offset > (last_usable_lba + 1)) { 431 printf("Partitions layout exceds disk size\n"); 432 return -1; 433 } 434 /* partition ending lba */ 435 if ((i == parts - 1) && (partitions[i].size == 0)) 436 /* extend the last partition to maximuim */ 437 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 438 else 439 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 440 441 #ifdef CONFIG_PARTITION_TYPE_GUID 442 str_type_guid = partitions[i].type_guid; 443 bin_type_guid = gpt_e[i].partition_type_guid.b; 444 if (strlen(str_type_guid)) { 445 if (uuid_str_to_bin(str_type_guid, bin_type_guid, 446 UUID_STR_FORMAT_GUID)) { 447 printf("Partition no. %d: invalid type guid: %s\n", 448 i, str_type_guid); 449 return -1; 450 } 451 } else { 452 /* default partition type GUID */ 453 memcpy(bin_type_guid, 454 &PARTITION_BASIC_DATA_GUID, 16); 455 } 456 #else 457 /* partition type GUID */ 458 memcpy(gpt_e[i].partition_type_guid.b, 459 &PARTITION_BASIC_DATA_GUID, 16); 460 #endif 461 462 #if CONFIG_IS_ENABLED(PARTITION_UUIDS) 463 str_uuid = partitions[i].uuid; 464 bin_uuid = gpt_e[i].unique_partition_guid.b; 465 466 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_STD)) { 467 printf("Partition no. %d: invalid guid: %s\n", 468 i, str_uuid); 469 return -1; 470 } 471 #endif 472 473 /* partition attributes */ 474 memset(&gpt_e[i].attributes, 0, 475 sizeof(gpt_entry_attributes)); 476 477 if (partitions[i].bootable) 478 gpt_e[i].attributes.fields.legacy_bios_bootable = 1; 479 480 /* partition name */ 481 efiname_len = sizeof(gpt_e[i].partition_name) 482 / sizeof(efi_char16_t); 483 dosname_len = sizeof(partitions[i].name); 484 485 memset(gpt_e[i].partition_name, 0, 486 sizeof(gpt_e[i].partition_name)); 487 488 for (k = 0; k < min(dosname_len, efiname_len); k++) 489 gpt_e[i].partition_name[k] = 490 (efi_char16_t)(partitions[i].name[k]); 491 492 debug("%s: name: %s offset[%d]: 0x" LBAF 493 " size[%d]: 0x" LBAF "\n", 494 __func__, partitions[i].name, i, 495 offset, i, partitions[i].size); 496 } 497 498 return 0; 499 } 500 501 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h, 502 char *str_guid, int parts_count) 503 { 504 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 505 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 506 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 507 gpt_h->my_lba = cpu_to_le64(1); 508 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 509 gpt_h->first_usable_lba = cpu_to_le64(34); 510 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 511 gpt_h->partition_entry_lba = cpu_to_le64(2); 512 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 513 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 514 gpt_h->header_crc32 = 0; 515 gpt_h->partition_entry_array_crc32 = 0; 516 517 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) 518 return -1; 519 520 return 0; 521 } 522 523 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid, 524 disk_partition_t *partitions, int parts_count) 525 { 526 int ret; 527 528 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), 529 dev_desc)); 530 gpt_entry *gpt_e; 531 532 if (gpt_h == NULL) { 533 printf("%s: calloc failed!\n", __func__); 534 return -1; 535 } 536 537 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS 538 * sizeof(gpt_entry), 539 dev_desc)); 540 if (gpt_e == NULL) { 541 printf("%s: calloc failed!\n", __func__); 542 free(gpt_h); 543 return -1; 544 } 545 546 /* Generate Primary GPT header (LBA1) */ 547 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 548 if (ret) 549 goto err; 550 551 /* Generate partition entries */ 552 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); 553 if (ret) 554 goto err; 555 556 /* Write GPT partition table */ 557 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 558 559 err: 560 free(gpt_e); 561 free(gpt_h); 562 return ret; 563 } 564 565 static void gpt_convert_efi_name_to_char(char *s, efi_char16_t *es, int n) 566 { 567 char *ess = (char *)es; 568 int i, j; 569 570 memset(s, '\0', n); 571 572 for (i = 0, j = 0; j < n; i += 2, j++) { 573 s[j] = ess[i]; 574 if (!ess[i]) 575 return; 576 } 577 } 578 579 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head, 580 gpt_entry **gpt_pte) 581 { 582 /* 583 * This function validates AND 584 * fills in the GPT header and PTE 585 */ 586 if (is_gpt_valid(dev_desc, 587 GPT_PRIMARY_PARTITION_TABLE_LBA, 588 gpt_head, gpt_pte) != 1) { 589 printf("%s: *** ERROR: Invalid GPT ***\n", 590 __func__); 591 return -1; 592 } 593 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 594 gpt_head, gpt_pte) != 1) { 595 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 596 __func__); 597 return -1; 598 } 599 600 return 0; 601 } 602 603 int gpt_verify_partitions(struct blk_desc *dev_desc, 604 disk_partition_t *partitions, int parts, 605 gpt_header *gpt_head, gpt_entry **gpt_pte) 606 { 607 char efi_str[PARTNAME_SZ + 1]; 608 u64 gpt_part_size; 609 gpt_entry *gpt_e; 610 int ret, i; 611 612 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte); 613 if (ret) 614 return ret; 615 616 gpt_e = *gpt_pte; 617 618 for (i = 0; i < parts; i++) { 619 if (i == gpt_head->num_partition_entries) { 620 error("More partitions than allowed!\n"); 621 return -1; 622 } 623 624 /* Check if GPT and ENV partition names match */ 625 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name, 626 PARTNAME_SZ + 1); 627 628 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ", 629 __func__, i, efi_str, partitions[i].name); 630 631 if (strncmp(efi_str, (char *)partitions[i].name, 632 sizeof(partitions->name))) { 633 error("Partition name: %s does not match %s!\n", 634 efi_str, (char *)partitions[i].name); 635 return -1; 636 } 637 638 /* Check if GPT and ENV sizes match */ 639 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) - 640 le64_to_cpu(gpt_e[i].starting_lba) + 1; 641 debug("size(LBA) - GPT: %8llu, ENV: %8llu ", 642 (unsigned long long)gpt_part_size, 643 (unsigned long long)partitions[i].size); 644 645 if (le64_to_cpu(gpt_part_size) != partitions[i].size) { 646 /* We do not check the extend partition size */ 647 if ((i == parts - 1) && (partitions[i].size == 0)) 648 continue; 649 650 error("Partition %s size: %llu does not match %llu!\n", 651 efi_str, (unsigned long long)gpt_part_size, 652 (unsigned long long)partitions[i].size); 653 return -1; 654 } 655 656 /* 657 * Start address is optional - check only if provided 658 * in '$partition' variable 659 */ 660 if (!partitions[i].start) { 661 debug("\n"); 662 continue; 663 } 664 665 /* Check if GPT and ENV start LBAs match */ 666 debug("start LBA - GPT: %8llu, ENV: %8llu\n", 667 le64_to_cpu(gpt_e[i].starting_lba), 668 (unsigned long long)partitions[i].start); 669 670 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) { 671 error("Partition %s start: %llu does not match %llu!\n", 672 efi_str, le64_to_cpu(gpt_e[i].starting_lba), 673 (unsigned long long)partitions[i].start); 674 return -1; 675 } 676 } 677 678 return 0; 679 } 680 681 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf) 682 { 683 gpt_header *gpt_h; 684 gpt_entry *gpt_e; 685 686 /* determine start of GPT Header in the buffer */ 687 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 688 dev_desc->blksz); 689 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA, 690 dev_desc->lba)) 691 return -1; 692 693 /* determine start of GPT Entries in the buffer */ 694 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 695 dev_desc->blksz); 696 if (validate_gpt_entries(gpt_h, gpt_e)) 697 return -1; 698 699 return 0; 700 } 701 702 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf) 703 { 704 gpt_header *gpt_h; 705 gpt_entry *gpt_e; 706 int gpt_e_blk_cnt; 707 lbaint_t lba; 708 int cnt; 709 710 if (is_valid_gpt_buf(dev_desc, buf)) 711 return -1; 712 713 /* determine start of GPT Header in the buffer */ 714 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 715 dev_desc->blksz); 716 717 /* determine start of GPT Entries in the buffer */ 718 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 719 dev_desc->blksz); 720 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) * 721 le32_to_cpu(gpt_h->sizeof_partition_entry)), 722 dev_desc); 723 724 /* write MBR */ 725 lba = 0; /* MBR is always at 0 */ 726 cnt = 1; /* MBR (1 block) */ 727 if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) { 728 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 729 __func__, "MBR", cnt, lba); 730 return 1; 731 } 732 733 /* write Primary GPT */ 734 lba = GPT_PRIMARY_PARTITION_TABLE_LBA; 735 cnt = 1; /* GPT Header (1 block) */ 736 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { 737 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 738 __func__, "Primary GPT Header", cnt, lba); 739 return 1; 740 } 741 742 lba = le64_to_cpu(gpt_h->partition_entry_lba); 743 cnt = gpt_e_blk_cnt; 744 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { 745 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 746 __func__, "Primary GPT Entries", cnt, lba); 747 return 1; 748 } 749 750 prepare_backup_gpt_header(gpt_h); 751 752 /* write Backup GPT */ 753 lba = le64_to_cpu(gpt_h->partition_entry_lba); 754 cnt = gpt_e_blk_cnt; 755 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { 756 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 757 __func__, "Backup GPT Entries", cnt, lba); 758 return 1; 759 } 760 761 lba = le64_to_cpu(gpt_h->my_lba); 762 cnt = 1; /* GPT Header (1 block) */ 763 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { 764 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 765 __func__, "Backup GPT Header", cnt, lba); 766 return 1; 767 } 768 769 return 0; 770 } 771 #endif 772 773 /* 774 * Private functions 775 */ 776 /* 777 * pmbr_part_valid(): Check for EFI partition signature 778 * 779 * Returns: 1 if EFI GPT partition type is found. 780 */ 781 static int pmbr_part_valid(struct partition *part) 782 { 783 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 784 get_unaligned_le32(&part->start_sect) == 1UL) { 785 return 1; 786 } 787 788 return 0; 789 } 790 791 /* 792 * is_pmbr_valid(): test Protective MBR for validity 793 * 794 * Returns: 1 if PMBR is valid, 0 otherwise. 795 * Validity depends on two things: 796 * 1) MSDOS signature is in the last two bytes of the MBR 797 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 798 */ 799 static int is_pmbr_valid(legacy_mbr * mbr) 800 { 801 int i = 0; 802 803 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 804 return 0; 805 806 for (i = 0; i < 4; i++) { 807 if (pmbr_part_valid(&mbr->partition_record[i])) { 808 return 1; 809 } 810 } 811 return 0; 812 } 813 814 /** 815 * is_gpt_valid() - tests one GPT header and PTEs for validity 816 * 817 * lba is the logical block address of the GPT header to test 818 * gpt is a GPT header ptr, filled on return. 819 * ptes is a PTEs ptr, filled on return. 820 * 821 * Description: returns 1 if valid, 0 on error. 822 * If valid, returns pointers to PTEs. 823 */ 824 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, 825 gpt_header *pgpt_head, gpt_entry **pgpt_pte) 826 { 827 if (!dev_desc || !pgpt_head) { 828 printf("%s: Invalid Argument(s)\n", __func__); 829 return 0; 830 } 831 832 /* Read GPT Header from device */ 833 if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) { 834 printf("*** ERROR: Can't read GPT header ***\n"); 835 return 0; 836 } 837 838 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba)) 839 return 0; 840 841 /* Read and allocate Partition Table Entries */ 842 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 843 if (*pgpt_pte == NULL) { 844 printf("GPT: Failed to allocate memory for PTE\n"); 845 return 0; 846 } 847 848 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) { 849 free(*pgpt_pte); 850 return 0; 851 } 852 853 /* We're done, all's well */ 854 return 1; 855 } 856 857 /** 858 * alloc_read_gpt_entries(): reads partition entries from disk 859 * @dev_desc 860 * @gpt - GPT header 861 * 862 * Description: Returns ptes on success, NULL on error. 863 * Allocates space for PTEs based on information found in @gpt. 864 * Notes: remember to free pte when you're done! 865 */ 866 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, 867 gpt_header *pgpt_head) 868 { 869 size_t count = 0, blk_cnt; 870 lbaint_t blk; 871 gpt_entry *pte = NULL; 872 873 if (!dev_desc || !pgpt_head) { 874 printf("%s: Invalid Argument(s)\n", __func__); 875 return NULL; 876 } 877 878 count = le32_to_cpu(pgpt_head->num_partition_entries) * 879 le32_to_cpu(pgpt_head->sizeof_partition_entry); 880 881 debug("%s: count = %u * %u = %lu\n", __func__, 882 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 883 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), 884 (ulong)count); 885 886 /* Allocate memory for PTE, remember to FREE */ 887 if (count != 0) { 888 pte = memalign(ARCH_DMA_MINALIGN, 889 PAD_TO_BLOCKSIZE(count, dev_desc)); 890 } 891 892 if (count == 0 || pte == NULL) { 893 printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n", 894 __func__, (ulong)count); 895 return NULL; 896 } 897 898 /* Read GPT Entries from device */ 899 blk = le64_to_cpu(pgpt_head->partition_entry_lba); 900 blk_cnt = BLOCK_CNT(count, dev_desc); 901 if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) { 902 printf("*** ERROR: Can't read GPT Entries ***\n"); 903 free(pte); 904 return NULL; 905 } 906 return pte; 907 } 908 909 /** 910 * is_pte_valid(): validates a single Partition Table Entry 911 * @gpt_entry - Pointer to a single Partition Table Entry 912 * 913 * Description: returns 1 if valid, 0 on error. 914 */ 915 static int is_pte_valid(gpt_entry * pte) 916 { 917 efi_guid_t unused_guid; 918 919 if (!pte) { 920 printf("%s: Invalid Argument(s)\n", __func__); 921 return 0; 922 } 923 924 /* Only one validation for now: 925 * The GUID Partition Type != Unused Entry (ALL-ZERO) 926 */ 927 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 928 929 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 930 sizeof(unused_guid.b)) == 0) { 931 932 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 933 (unsigned int)(uintptr_t)pte); 934 935 return 0; 936 } else { 937 return 1; 938 } 939 } 940 941 /* 942 * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to 943 * check EFI first, since a DOS partition is often used as a 'protective MBR' 944 * with EFI. 945 */ 946 U_BOOT_PART_TYPE(a_efi) = { 947 .name = "EFI", 948 .part_type = PART_TYPE_EFI, 949 .max_entries = GPT_ENTRY_NUMBERS, 950 .get_info = part_get_info_ptr(part_get_info_efi), 951 .print = part_print_ptr(part_print_efi), 952 .test = part_test_efi, 953 }; 954 #endif 955