1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* 9 * NOTE: 10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this 11 * limits the maximum size of addressable storage to < 2 Terra Bytes 12 */ 13 #include <asm/unaligned.h> 14 #include <common.h> 15 #include <command.h> 16 #include <ide.h> 17 #include <inttypes.h> 18 #include <malloc.h> 19 #include <part_efi.h> 20 #include <linux/ctype.h> 21 22 DECLARE_GLOBAL_DATA_PTR; 23 24 #ifdef HAVE_BLOCK_DEVICE 25 /** 26 * efi_crc32() - EFI version of crc32 function 27 * @buf: buffer to calculate crc32 of 28 * @len - length of buf 29 * 30 * Description: Returns EFI-style CRC32 value for @buf 31 */ 32 static inline u32 efi_crc32(const void *buf, u32 len) 33 { 34 return crc32(0, buf, len); 35 } 36 37 /* 38 * Private function prototypes 39 */ 40 41 static int pmbr_part_valid(struct partition *part); 42 static int is_pmbr_valid(legacy_mbr * mbr); 43 static int is_gpt_valid(block_dev_desc_t *dev_desc, u64 lba, 44 gpt_header *pgpt_head, gpt_entry **pgpt_pte); 45 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 46 gpt_header * pgpt_head); 47 static int is_pte_valid(gpt_entry * pte); 48 49 static char *print_efiname(gpt_entry *pte) 50 { 51 static char name[PARTNAME_SZ + 1]; 52 int i; 53 for (i = 0; i < PARTNAME_SZ; i++) { 54 u8 c; 55 c = pte->partition_name[i] & 0xff; 56 c = (c && !isprint(c)) ? '.' : c; 57 name[i] = c; 58 } 59 name[PARTNAME_SZ] = 0; 60 return name; 61 } 62 63 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 64 65 static inline int is_bootable(gpt_entry *p) 66 { 67 return p->attributes.fields.legacy_bios_bootable || 68 !memcmp(&(p->partition_type_guid), &system_guid, 69 sizeof(efi_guid_t)); 70 } 71 72 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba, 73 lbaint_t lastlba) 74 { 75 uint32_t crc32_backup = 0; 76 uint32_t calc_crc32; 77 78 /* Check the GPT header signature */ 79 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) { 80 printf("%s signature is wrong: 0x%llX != 0x%llX\n", 81 "GUID Partition Table Header", 82 le64_to_cpu(gpt_h->signature), 83 GPT_HEADER_SIGNATURE); 84 return -1; 85 } 86 87 /* Check the GUID Partition Table CRC */ 88 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup)); 89 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32)); 90 91 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 92 le32_to_cpu(gpt_h->header_size)); 93 94 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup)); 95 96 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 97 printf("%s CRC is wrong: 0x%x != 0x%x\n", 98 "GUID Partition Table Header", 99 le32_to_cpu(crc32_backup), calc_crc32); 100 return -1; 101 } 102 103 /* 104 * Check that the my_lba entry points to the LBA that contains the GPT 105 */ 106 if (le64_to_cpu(gpt_h->my_lba) != lba) { 107 printf("GPT: my_lba incorrect: %llX != " LBAF "\n", 108 le64_to_cpu(gpt_h->my_lba), 109 lba); 110 return -1; 111 } 112 113 /* 114 * Check that the first_usable_lba and that the last_usable_lba are 115 * within the disk. 116 */ 117 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) { 118 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n", 119 le64_to_cpu(gpt_h->first_usable_lba), lastlba); 120 return -1; 121 } 122 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) { 123 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n", 124 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 125 return -1; 126 } 127 128 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: " 129 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba), 130 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 131 132 return 0; 133 } 134 135 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e) 136 { 137 uint32_t calc_crc32; 138 139 /* Check the GUID Partition Table Entry Array CRC */ 140 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 141 le32_to_cpu(gpt_h->num_partition_entries) * 142 le32_to_cpu(gpt_h->sizeof_partition_entry)); 143 144 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) { 145 printf("%s: 0x%x != 0x%x\n", 146 "GUID Partition Table Entry Array CRC is wrong", 147 le32_to_cpu(gpt_h->partition_entry_array_crc32), 148 calc_crc32); 149 return -1; 150 } 151 152 return 0; 153 } 154 155 static void prepare_backup_gpt_header(gpt_header *gpt_h) 156 { 157 uint32_t calc_crc32; 158 uint64_t val; 159 160 /* recalculate the values for the Backup GPT Header */ 161 val = le64_to_cpu(gpt_h->my_lba); 162 gpt_h->my_lba = gpt_h->alternate_lba; 163 gpt_h->alternate_lba = cpu_to_le64(val); 164 gpt_h->partition_entry_lba = 165 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1); 166 gpt_h->header_crc32 = 0; 167 168 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 169 le32_to_cpu(gpt_h->header_size)); 170 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 171 } 172 173 #ifdef CONFIG_EFI_PARTITION 174 /* 175 * Public Functions (include/part.h) 176 */ 177 178 void print_part_efi(block_dev_desc_t * dev_desc) 179 { 180 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 181 gpt_entry *gpt_pte = NULL; 182 int i = 0; 183 char uuid[37]; 184 unsigned char *uuid_bin; 185 186 if (!dev_desc) { 187 printf("%s: Invalid Argument(s)\n", __func__); 188 return; 189 } 190 /* This function validates AND fills in the GPT header and PTE */ 191 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 192 gpt_head, &gpt_pte) != 1) { 193 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 194 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 195 gpt_head, &gpt_pte) != 1) { 196 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 197 __func__); 198 return; 199 } else { 200 printf("%s: *** Using Backup GPT ***\n", 201 __func__); 202 } 203 } 204 205 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 206 207 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 208 printf("\tAttributes\n"); 209 printf("\tType GUID\n"); 210 printf("\tPartition GUID\n"); 211 212 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 213 /* Stop at the first non valid PTE */ 214 if (!is_pte_valid(&gpt_pte[i])) 215 break; 216 217 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 218 le64_to_cpu(gpt_pte[i].starting_lba), 219 le64_to_cpu(gpt_pte[i].ending_lba), 220 print_efiname(&gpt_pte[i])); 221 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 222 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b; 223 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 224 printf("\ttype:\t%s\n", uuid); 225 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b; 226 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 227 printf("\tguid:\t%s\n", uuid); 228 } 229 230 /* Remember to free pte */ 231 free(gpt_pte); 232 return; 233 } 234 235 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part, 236 disk_partition_t * info) 237 { 238 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 239 gpt_entry *gpt_pte = NULL; 240 241 /* "part" argument must be at least 1 */ 242 if (!dev_desc || !info || part < 1) { 243 printf("%s: Invalid Argument(s)\n", __func__); 244 return -1; 245 } 246 247 /* This function validates AND fills in the GPT header and PTE */ 248 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 249 gpt_head, &gpt_pte) != 1) { 250 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 251 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 252 gpt_head, &gpt_pte) != 1) { 253 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 254 __func__); 255 return -1; 256 } else { 257 printf("%s: *** Using Backup GPT ***\n", 258 __func__); 259 } 260 } 261 262 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 263 !is_pte_valid(&gpt_pte[part - 1])) { 264 debug("%s: *** ERROR: Invalid partition number %d ***\n", 265 __func__, part); 266 free(gpt_pte); 267 return -1; 268 } 269 270 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */ 271 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba); 272 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 273 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1 274 - info->start; 275 info->blksz = dev_desc->blksz; 276 277 sprintf((char *)info->name, "%s", 278 print_efiname(&gpt_pte[part - 1])); 279 sprintf((char *)info->type, "U-Boot"); 280 info->bootable = is_bootable(&gpt_pte[part - 1]); 281 #ifdef CONFIG_PARTITION_UUIDS 282 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, 283 UUID_STR_FORMAT_GUID); 284 #endif 285 286 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__, 287 info->start, info->size, info->name); 288 289 /* Remember to free pte */ 290 free(gpt_pte); 291 return 0; 292 } 293 294 int get_partition_info_efi_by_name(block_dev_desc_t *dev_desc, 295 const char *name, disk_partition_t *info) 296 { 297 int ret; 298 int i; 299 for (i = 1; i < GPT_ENTRY_NUMBERS; i++) { 300 ret = get_partition_info_efi(dev_desc, i, info); 301 if (ret != 0) { 302 /* no more entries in table */ 303 return -1; 304 } 305 if (strcmp(name, (const char *)info->name) == 0) { 306 /* matched */ 307 return 0; 308 } 309 } 310 return -2; 311 } 312 313 int test_part_efi(block_dev_desc_t * dev_desc) 314 { 315 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 316 317 /* Read legacy MBR from block 0 and validate it */ 318 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1) 319 || (is_pmbr_valid(legacymbr) != 1)) { 320 return -1; 321 } 322 return 0; 323 } 324 325 /** 326 * set_protective_mbr(): Set the EFI protective MBR 327 * @param dev_desc - block device descriptor 328 * 329 * @return - zero on success, otherwise error 330 */ 331 static int set_protective_mbr(block_dev_desc_t *dev_desc) 332 { 333 /* Setup the Protective MBR */ 334 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1); 335 memset(p_mbr, 0, sizeof(*p_mbr)); 336 337 if (p_mbr == NULL) { 338 printf("%s: calloc failed!\n", __func__); 339 return -1; 340 } 341 /* Append signature */ 342 p_mbr->signature = MSDOS_MBR_SIGNATURE; 343 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 344 p_mbr->partition_record[0].start_sect = 1; 345 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1; 346 347 /* Write MBR sector to the MMC device */ 348 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) { 349 printf("** Can't write to device %d **\n", 350 dev_desc->dev); 351 return -1; 352 } 353 354 return 0; 355 } 356 357 int write_gpt_table(block_dev_desc_t *dev_desc, 358 gpt_header *gpt_h, gpt_entry *gpt_e) 359 { 360 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 361 * sizeof(gpt_entry)), dev_desc); 362 u32 calc_crc32; 363 364 debug("max lba: %x\n", (u32) dev_desc->lba); 365 /* Setup the Protective MBR */ 366 if (set_protective_mbr(dev_desc) < 0) 367 goto err; 368 369 /* Generate CRC for the Primary GPT Header */ 370 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 371 le32_to_cpu(gpt_h->num_partition_entries) * 372 le32_to_cpu(gpt_h->sizeof_partition_entry)); 373 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 374 375 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 376 le32_to_cpu(gpt_h->header_size)); 377 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 378 379 /* Write the First GPT to the block right after the Legacy MBR */ 380 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1) 381 goto err; 382 383 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e) 384 != pte_blk_cnt) 385 goto err; 386 387 prepare_backup_gpt_header(gpt_h); 388 389 if (dev_desc->block_write(dev_desc->dev, 390 (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba) 391 + 1, 392 pte_blk_cnt, gpt_e) != pte_blk_cnt) 393 goto err; 394 395 if (dev_desc->block_write(dev_desc->dev, 396 (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1, 397 gpt_h) != 1) 398 goto err; 399 400 debug("GPT successfully written to block device!\n"); 401 return 0; 402 403 err: 404 printf("** Can't write to device %d **\n", dev_desc->dev); 405 return -1; 406 } 407 408 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, 409 disk_partition_t *partitions, int parts) 410 { 411 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba); 412 lbaint_t start; 413 lbaint_t last_usable_lba = (lbaint_t) 414 le64_to_cpu(gpt_h->last_usable_lba); 415 int i, k; 416 size_t efiname_len, dosname_len; 417 #ifdef CONFIG_PARTITION_UUIDS 418 char *str_uuid; 419 unsigned char *bin_uuid; 420 #endif 421 422 for (i = 0; i < parts; i++) { 423 /* partition starting lba */ 424 start = partitions[i].start; 425 if (start && (start < offset)) { 426 printf("Partition overlap\n"); 427 return -1; 428 } 429 if (start) { 430 gpt_e[i].starting_lba = cpu_to_le64(start); 431 offset = start + partitions[i].size; 432 } else { 433 gpt_e[i].starting_lba = cpu_to_le64(offset); 434 offset += partitions[i].size; 435 } 436 if (offset >= last_usable_lba) { 437 printf("Partitions layout exceds disk size\n"); 438 return -1; 439 } 440 /* partition ending lba */ 441 if ((i == parts - 1) && (partitions[i].size == 0)) 442 /* extend the last partition to maximuim */ 443 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 444 else 445 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 446 447 /* partition type GUID */ 448 memcpy(gpt_e[i].partition_type_guid.b, 449 &PARTITION_BASIC_DATA_GUID, 16); 450 451 #ifdef CONFIG_PARTITION_UUIDS 452 str_uuid = partitions[i].uuid; 453 bin_uuid = gpt_e[i].unique_partition_guid.b; 454 455 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_STD)) { 456 printf("Partition no. %d: invalid guid: %s\n", 457 i, str_uuid); 458 return -1; 459 } 460 #endif 461 462 /* partition attributes */ 463 memset(&gpt_e[i].attributes, 0, 464 sizeof(gpt_entry_attributes)); 465 466 /* partition name */ 467 efiname_len = sizeof(gpt_e[i].partition_name) 468 / sizeof(efi_char16_t); 469 dosname_len = sizeof(partitions[i].name); 470 471 memset(gpt_e[i].partition_name, 0, 472 sizeof(gpt_e[i].partition_name)); 473 474 for (k = 0; k < min(dosname_len, efiname_len); k++) 475 gpt_e[i].partition_name[k] = 476 (efi_char16_t)(partitions[i].name[k]); 477 478 debug("%s: name: %s offset[%d]: 0x" LBAF 479 " size[%d]: 0x" LBAF "\n", 480 __func__, partitions[i].name, i, 481 offset, i, partitions[i].size); 482 } 483 484 return 0; 485 } 486 487 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h, 488 char *str_guid, int parts_count) 489 { 490 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 491 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 492 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 493 gpt_h->my_lba = cpu_to_le64(1); 494 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 495 gpt_h->first_usable_lba = cpu_to_le64(34); 496 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 497 gpt_h->partition_entry_lba = cpu_to_le64(2); 498 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 499 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 500 gpt_h->header_crc32 = 0; 501 gpt_h->partition_entry_array_crc32 = 0; 502 503 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) 504 return -1; 505 506 return 0; 507 } 508 509 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid, 510 disk_partition_t *partitions, int parts_count) 511 { 512 int ret; 513 514 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), 515 dev_desc)); 516 gpt_entry *gpt_e; 517 518 if (gpt_h == NULL) { 519 printf("%s: calloc failed!\n", __func__); 520 return -1; 521 } 522 523 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS 524 * sizeof(gpt_entry), 525 dev_desc)); 526 if (gpt_e == NULL) { 527 printf("%s: calloc failed!\n", __func__); 528 free(gpt_h); 529 return -1; 530 } 531 532 /* Generate Primary GPT header (LBA1) */ 533 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 534 if (ret) 535 goto err; 536 537 /* Generate partition entries */ 538 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); 539 if (ret) 540 goto err; 541 542 /* Write GPT partition table */ 543 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 544 545 err: 546 free(gpt_e); 547 free(gpt_h); 548 return ret; 549 } 550 551 int is_valid_gpt_buf(block_dev_desc_t *dev_desc, void *buf) 552 { 553 gpt_header *gpt_h; 554 gpt_entry *gpt_e; 555 556 /* determine start of GPT Header in the buffer */ 557 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 558 dev_desc->blksz); 559 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA, 560 dev_desc->lba)) 561 return -1; 562 563 /* determine start of GPT Entries in the buffer */ 564 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 565 dev_desc->blksz); 566 if (validate_gpt_entries(gpt_h, gpt_e)) 567 return -1; 568 569 return 0; 570 } 571 572 int write_mbr_and_gpt_partitions(block_dev_desc_t *dev_desc, void *buf) 573 { 574 gpt_header *gpt_h; 575 gpt_entry *gpt_e; 576 int gpt_e_blk_cnt; 577 lbaint_t lba; 578 int cnt; 579 580 if (is_valid_gpt_buf(dev_desc, buf)) 581 return -1; 582 583 /* determine start of GPT Header in the buffer */ 584 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 585 dev_desc->blksz); 586 587 /* determine start of GPT Entries in the buffer */ 588 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 589 dev_desc->blksz); 590 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) * 591 le32_to_cpu(gpt_h->sizeof_partition_entry)), 592 dev_desc); 593 594 /* write MBR */ 595 lba = 0; /* MBR is always at 0 */ 596 cnt = 1; /* MBR (1 block) */ 597 if (dev_desc->block_write(dev_desc->dev, lba, cnt, buf) != cnt) { 598 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 599 __func__, "MBR", cnt, lba); 600 return 1; 601 } 602 603 /* write Primary GPT */ 604 lba = GPT_PRIMARY_PARTITION_TABLE_LBA; 605 cnt = 1; /* GPT Header (1 block) */ 606 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_h) != cnt) { 607 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 608 __func__, "Primary GPT Header", cnt, lba); 609 return 1; 610 } 611 612 lba = le64_to_cpu(gpt_h->partition_entry_lba); 613 cnt = gpt_e_blk_cnt; 614 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_e) != cnt) { 615 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 616 __func__, "Primary GPT Entries", cnt, lba); 617 return 1; 618 } 619 620 prepare_backup_gpt_header(gpt_h); 621 622 /* write Backup GPT */ 623 lba = le64_to_cpu(gpt_h->partition_entry_lba); 624 cnt = gpt_e_blk_cnt; 625 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_e) != cnt) { 626 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 627 __func__, "Backup GPT Entries", cnt, lba); 628 return 1; 629 } 630 631 lba = le64_to_cpu(gpt_h->my_lba); 632 cnt = 1; /* GPT Header (1 block) */ 633 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_h) != cnt) { 634 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 635 __func__, "Backup GPT Header", cnt, lba); 636 return 1; 637 } 638 639 return 0; 640 } 641 #endif 642 643 /* 644 * Private functions 645 */ 646 /* 647 * pmbr_part_valid(): Check for EFI partition signature 648 * 649 * Returns: 1 if EFI GPT partition type is found. 650 */ 651 static int pmbr_part_valid(struct partition *part) 652 { 653 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 654 get_unaligned_le32(&part->start_sect) == 1UL) { 655 return 1; 656 } 657 658 return 0; 659 } 660 661 /* 662 * is_pmbr_valid(): test Protective MBR for validity 663 * 664 * Returns: 1 if PMBR is valid, 0 otherwise. 665 * Validity depends on two things: 666 * 1) MSDOS signature is in the last two bytes of the MBR 667 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 668 */ 669 static int is_pmbr_valid(legacy_mbr * mbr) 670 { 671 int i = 0; 672 673 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 674 return 0; 675 676 for (i = 0; i < 4; i++) { 677 if (pmbr_part_valid(&mbr->partition_record[i])) { 678 return 1; 679 } 680 } 681 return 0; 682 } 683 684 /** 685 * is_gpt_valid() - tests one GPT header and PTEs for validity 686 * 687 * lba is the logical block address of the GPT header to test 688 * gpt is a GPT header ptr, filled on return. 689 * ptes is a PTEs ptr, filled on return. 690 * 691 * Description: returns 1 if valid, 0 on error. 692 * If valid, returns pointers to PTEs. 693 */ 694 static int is_gpt_valid(block_dev_desc_t *dev_desc, u64 lba, 695 gpt_header *pgpt_head, gpt_entry **pgpt_pte) 696 { 697 if (!dev_desc || !pgpt_head) { 698 printf("%s: Invalid Argument(s)\n", __func__); 699 return 0; 700 } 701 702 /* Read GPT Header from device */ 703 if (dev_desc->block_read(dev_desc->dev, (lbaint_t)lba, 1, pgpt_head) 704 != 1) { 705 printf("*** ERROR: Can't read GPT header ***\n"); 706 return 0; 707 } 708 709 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba)) 710 return 0; 711 712 /* Read and allocate Partition Table Entries */ 713 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 714 if (*pgpt_pte == NULL) { 715 printf("GPT: Failed to allocate memory for PTE\n"); 716 return 0; 717 } 718 719 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) { 720 free(*pgpt_pte); 721 return 0; 722 } 723 724 /* We're done, all's well */ 725 return 1; 726 } 727 728 /** 729 * alloc_read_gpt_entries(): reads partition entries from disk 730 * @dev_desc 731 * @gpt - GPT header 732 * 733 * Description: Returns ptes on success, NULL on error. 734 * Allocates space for PTEs based on information found in @gpt. 735 * Notes: remember to free pte when you're done! 736 */ 737 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 738 gpt_header * pgpt_head) 739 { 740 size_t count = 0, blk_cnt; 741 gpt_entry *pte = NULL; 742 743 if (!dev_desc || !pgpt_head) { 744 printf("%s: Invalid Argument(s)\n", __func__); 745 return NULL; 746 } 747 748 count = le32_to_cpu(pgpt_head->num_partition_entries) * 749 le32_to_cpu(pgpt_head->sizeof_partition_entry); 750 751 debug("%s: count = %u * %u = %zu\n", __func__, 752 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 753 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count); 754 755 /* Allocate memory for PTE, remember to FREE */ 756 if (count != 0) { 757 pte = memalign(ARCH_DMA_MINALIGN, 758 PAD_TO_BLOCKSIZE(count, dev_desc)); 759 } 760 761 if (count == 0 || pte == NULL) { 762 printf("%s: ERROR: Can't allocate 0x%zX " 763 "bytes for GPT Entries\n", 764 __func__, count); 765 return NULL; 766 } 767 768 /* Read GPT Entries from device */ 769 blk_cnt = BLOCK_CNT(count, dev_desc); 770 if (dev_desc->block_read (dev_desc->dev, 771 (lbaint_t)le64_to_cpu(pgpt_head->partition_entry_lba), 772 (lbaint_t) (blk_cnt), pte) 773 != blk_cnt) { 774 775 printf("*** ERROR: Can't read GPT Entries ***\n"); 776 free(pte); 777 return NULL; 778 } 779 return pte; 780 } 781 782 /** 783 * is_pte_valid(): validates a single Partition Table Entry 784 * @gpt_entry - Pointer to a single Partition Table Entry 785 * 786 * Description: returns 1 if valid, 0 on error. 787 */ 788 static int is_pte_valid(gpt_entry * pte) 789 { 790 efi_guid_t unused_guid; 791 792 if (!pte) { 793 printf("%s: Invalid Argument(s)\n", __func__); 794 return 0; 795 } 796 797 /* Only one validation for now: 798 * The GUID Partition Type != Unused Entry (ALL-ZERO) 799 */ 800 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 801 802 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 803 sizeof(unused_guid.b)) == 0) { 804 805 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 806 (unsigned int)(uintptr_t)pte); 807 808 return 0; 809 } else { 810 return 1; 811 } 812 } 813 #endif 814