1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * SPDX-License-Identifier: GPL-2.0+ 6 */ 7 8 /* 9 * NOTE: 10 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this 11 * limits the maximum size of addressable storage to < 2 Terra Bytes 12 */ 13 #include <asm/unaligned.h> 14 #include <common.h> 15 #include <command.h> 16 #include <ide.h> 17 #include <inttypes.h> 18 #include <malloc.h> 19 #include <memalign.h> 20 #include <part_efi.h> 21 #include <linux/ctype.h> 22 23 DECLARE_GLOBAL_DATA_PTR; 24 25 #ifdef HAVE_BLOCK_DEVICE 26 /** 27 * efi_crc32() - EFI version of crc32 function 28 * @buf: buffer to calculate crc32 of 29 * @len - length of buf 30 * 31 * Description: Returns EFI-style CRC32 value for @buf 32 */ 33 static inline u32 efi_crc32(const void *buf, u32 len) 34 { 35 return crc32(0, buf, len); 36 } 37 38 /* 39 * Private function prototypes 40 */ 41 42 static int pmbr_part_valid(struct partition *part); 43 static int is_pmbr_valid(legacy_mbr * mbr); 44 static int is_gpt_valid(block_dev_desc_t *dev_desc, u64 lba, 45 gpt_header *pgpt_head, gpt_entry **pgpt_pte); 46 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 47 gpt_header * pgpt_head); 48 static int is_pte_valid(gpt_entry * pte); 49 50 static char *print_efiname(gpt_entry *pte) 51 { 52 static char name[PARTNAME_SZ + 1]; 53 int i; 54 for (i = 0; i < PARTNAME_SZ; i++) { 55 u8 c; 56 c = pte->partition_name[i] & 0xff; 57 c = (c && !isprint(c)) ? '.' : c; 58 name[i] = c; 59 } 60 name[PARTNAME_SZ] = 0; 61 return name; 62 } 63 64 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 65 66 static inline int is_bootable(gpt_entry *p) 67 { 68 return p->attributes.fields.legacy_bios_bootable || 69 !memcmp(&(p->partition_type_guid), &system_guid, 70 sizeof(efi_guid_t)); 71 } 72 73 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba, 74 lbaint_t lastlba) 75 { 76 uint32_t crc32_backup = 0; 77 uint32_t calc_crc32; 78 79 /* Check the GPT header signature */ 80 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) { 81 printf("%s signature is wrong: 0x%llX != 0x%llX\n", 82 "GUID Partition Table Header", 83 le64_to_cpu(gpt_h->signature), 84 GPT_HEADER_SIGNATURE); 85 return -1; 86 } 87 88 /* Check the GUID Partition Table CRC */ 89 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup)); 90 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32)); 91 92 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 93 le32_to_cpu(gpt_h->header_size)); 94 95 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup)); 96 97 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 98 printf("%s CRC is wrong: 0x%x != 0x%x\n", 99 "GUID Partition Table Header", 100 le32_to_cpu(crc32_backup), calc_crc32); 101 return -1; 102 } 103 104 /* 105 * Check that the my_lba entry points to the LBA that contains the GPT 106 */ 107 if (le64_to_cpu(gpt_h->my_lba) != lba) { 108 printf("GPT: my_lba incorrect: %llX != " LBAF "\n", 109 le64_to_cpu(gpt_h->my_lba), 110 lba); 111 return -1; 112 } 113 114 /* 115 * Check that the first_usable_lba and that the last_usable_lba are 116 * within the disk. 117 */ 118 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) { 119 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n", 120 le64_to_cpu(gpt_h->first_usable_lba), lastlba); 121 return -1; 122 } 123 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) { 124 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n", 125 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 126 return -1; 127 } 128 129 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: " 130 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba), 131 le64_to_cpu(gpt_h->last_usable_lba), lastlba); 132 133 return 0; 134 } 135 136 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e) 137 { 138 uint32_t calc_crc32; 139 140 /* Check the GUID Partition Table Entry Array CRC */ 141 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 142 le32_to_cpu(gpt_h->num_partition_entries) * 143 le32_to_cpu(gpt_h->sizeof_partition_entry)); 144 145 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) { 146 printf("%s: 0x%x != 0x%x\n", 147 "GUID Partition Table Entry Array CRC is wrong", 148 le32_to_cpu(gpt_h->partition_entry_array_crc32), 149 calc_crc32); 150 return -1; 151 } 152 153 return 0; 154 } 155 156 static void prepare_backup_gpt_header(gpt_header *gpt_h) 157 { 158 uint32_t calc_crc32; 159 uint64_t val; 160 161 /* recalculate the values for the Backup GPT Header */ 162 val = le64_to_cpu(gpt_h->my_lba); 163 gpt_h->my_lba = gpt_h->alternate_lba; 164 gpt_h->alternate_lba = cpu_to_le64(val); 165 gpt_h->partition_entry_lba = 166 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1); 167 gpt_h->header_crc32 = 0; 168 169 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 170 le32_to_cpu(gpt_h->header_size)); 171 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 172 } 173 174 #ifdef CONFIG_EFI_PARTITION 175 /* 176 * Public Functions (include/part.h) 177 */ 178 179 void print_part_efi(block_dev_desc_t * dev_desc) 180 { 181 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 182 gpt_entry *gpt_pte = NULL; 183 int i = 0; 184 char uuid[37]; 185 unsigned char *uuid_bin; 186 187 if (!dev_desc) { 188 printf("%s: Invalid Argument(s)\n", __func__); 189 return; 190 } 191 /* This function validates AND fills in the GPT header and PTE */ 192 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 193 gpt_head, &gpt_pte) != 1) { 194 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 195 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 196 gpt_head, &gpt_pte) != 1) { 197 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 198 __func__); 199 return; 200 } else { 201 printf("%s: *** Using Backup GPT ***\n", 202 __func__); 203 } 204 } 205 206 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 207 208 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 209 printf("\tAttributes\n"); 210 printf("\tType GUID\n"); 211 printf("\tPartition GUID\n"); 212 213 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 214 /* Stop at the first non valid PTE */ 215 if (!is_pte_valid(&gpt_pte[i])) 216 break; 217 218 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 219 le64_to_cpu(gpt_pte[i].starting_lba), 220 le64_to_cpu(gpt_pte[i].ending_lba), 221 print_efiname(&gpt_pte[i])); 222 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 223 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b; 224 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 225 printf("\ttype:\t%s\n", uuid); 226 #ifdef CONFIG_PARTITION_TYPE_GUID 227 if (!uuid_guid_get_str(uuid_bin, uuid)) 228 printf("\ttype:\t%s\n", uuid); 229 #endif 230 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b; 231 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); 232 printf("\tguid:\t%s\n", uuid); 233 } 234 235 /* Remember to free pte */ 236 free(gpt_pte); 237 return; 238 } 239 240 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part, 241 disk_partition_t * info) 242 { 243 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 244 gpt_entry *gpt_pte = NULL; 245 246 /* "part" argument must be at least 1 */ 247 if (!dev_desc || !info || part < 1) { 248 printf("%s: Invalid Argument(s)\n", __func__); 249 return -1; 250 } 251 252 /* This function validates AND fills in the GPT header and PTE */ 253 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 254 gpt_head, &gpt_pte) != 1) { 255 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 256 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), 257 gpt_head, &gpt_pte) != 1) { 258 printf("%s: *** ERROR: Invalid Backup GPT ***\n", 259 __func__); 260 return -1; 261 } else { 262 printf("%s: *** Using Backup GPT ***\n", 263 __func__); 264 } 265 } 266 267 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 268 !is_pte_valid(&gpt_pte[part - 1])) { 269 debug("%s: *** ERROR: Invalid partition number %d ***\n", 270 __func__, part); 271 free(gpt_pte); 272 return -1; 273 } 274 275 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */ 276 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba); 277 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 278 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1 279 - info->start; 280 info->blksz = dev_desc->blksz; 281 282 sprintf((char *)info->name, "%s", 283 print_efiname(&gpt_pte[part - 1])); 284 sprintf((char *)info->type, "U-Boot"); 285 info->bootable = is_bootable(&gpt_pte[part - 1]); 286 #ifdef CONFIG_PARTITION_UUIDS 287 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, 288 UUID_STR_FORMAT_GUID); 289 #endif 290 #ifdef CONFIG_PARTITION_TYPE_GUID 291 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b, 292 info->type_guid, UUID_STR_FORMAT_GUID); 293 #endif 294 295 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__, 296 info->start, info->size, info->name); 297 298 /* Remember to free pte */ 299 free(gpt_pte); 300 return 0; 301 } 302 303 int get_partition_info_efi_by_name(block_dev_desc_t *dev_desc, 304 const char *name, disk_partition_t *info) 305 { 306 int ret; 307 int i; 308 for (i = 1; i < GPT_ENTRY_NUMBERS; i++) { 309 ret = get_partition_info_efi(dev_desc, i, info); 310 if (ret != 0) { 311 /* no more entries in table */ 312 return -1; 313 } 314 if (strcmp(name, (const char *)info->name) == 0) { 315 /* matched */ 316 return 0; 317 } 318 } 319 return -2; 320 } 321 322 int test_part_efi(block_dev_desc_t * dev_desc) 323 { 324 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 325 326 /* Read legacy MBR from block 0 and validate it */ 327 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1) 328 || (is_pmbr_valid(legacymbr) != 1)) { 329 return -1; 330 } 331 return 0; 332 } 333 334 /** 335 * set_protective_mbr(): Set the EFI protective MBR 336 * @param dev_desc - block device descriptor 337 * 338 * @return - zero on success, otherwise error 339 */ 340 static int set_protective_mbr(block_dev_desc_t *dev_desc) 341 { 342 /* Setup the Protective MBR */ 343 ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1); 344 memset(p_mbr, 0, sizeof(*p_mbr)); 345 346 if (p_mbr == NULL) { 347 printf("%s: calloc failed!\n", __func__); 348 return -1; 349 } 350 /* Append signature */ 351 p_mbr->signature = MSDOS_MBR_SIGNATURE; 352 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 353 p_mbr->partition_record[0].start_sect = 1; 354 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1; 355 356 /* Write MBR sector to the MMC device */ 357 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) { 358 printf("** Can't write to device %d **\n", 359 dev_desc->dev); 360 return -1; 361 } 362 363 return 0; 364 } 365 366 int write_gpt_table(block_dev_desc_t *dev_desc, 367 gpt_header *gpt_h, gpt_entry *gpt_e) 368 { 369 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 370 * sizeof(gpt_entry)), dev_desc); 371 u32 calc_crc32; 372 373 debug("max lba: %x\n", (u32) dev_desc->lba); 374 /* Setup the Protective MBR */ 375 if (set_protective_mbr(dev_desc) < 0) 376 goto err; 377 378 /* Generate CRC for the Primary GPT Header */ 379 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 380 le32_to_cpu(gpt_h->num_partition_entries) * 381 le32_to_cpu(gpt_h->sizeof_partition_entry)); 382 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 383 384 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 385 le32_to_cpu(gpt_h->header_size)); 386 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 387 388 /* Write the First GPT to the block right after the Legacy MBR */ 389 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1) 390 goto err; 391 392 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e) 393 != pte_blk_cnt) 394 goto err; 395 396 prepare_backup_gpt_header(gpt_h); 397 398 if (dev_desc->block_write(dev_desc->dev, 399 (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba) 400 + 1, 401 pte_blk_cnt, gpt_e) != pte_blk_cnt) 402 goto err; 403 404 if (dev_desc->block_write(dev_desc->dev, 405 (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1, 406 gpt_h) != 1) 407 goto err; 408 409 debug("GPT successfully written to block device!\n"); 410 return 0; 411 412 err: 413 printf("** Can't write to device %d **\n", dev_desc->dev); 414 return -1; 415 } 416 417 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, 418 disk_partition_t *partitions, int parts) 419 { 420 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba); 421 lbaint_t start; 422 lbaint_t last_usable_lba = (lbaint_t) 423 le64_to_cpu(gpt_h->last_usable_lba); 424 int i, k; 425 size_t efiname_len, dosname_len; 426 #ifdef CONFIG_PARTITION_UUIDS 427 char *str_uuid; 428 unsigned char *bin_uuid; 429 #endif 430 #ifdef CONFIG_PARTITION_TYPE_GUID 431 char *str_type_guid; 432 unsigned char *bin_type_guid; 433 #endif 434 435 for (i = 0; i < parts; i++) { 436 /* partition starting lba */ 437 start = partitions[i].start; 438 if (start && (start < offset)) { 439 printf("Partition overlap\n"); 440 return -1; 441 } 442 if (start) { 443 gpt_e[i].starting_lba = cpu_to_le64(start); 444 offset = start + partitions[i].size; 445 } else { 446 gpt_e[i].starting_lba = cpu_to_le64(offset); 447 offset += partitions[i].size; 448 } 449 if (offset >= last_usable_lba) { 450 printf("Partitions layout exceds disk size\n"); 451 return -1; 452 } 453 /* partition ending lba */ 454 if ((i == parts - 1) && (partitions[i].size == 0)) 455 /* extend the last partition to maximuim */ 456 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 457 else 458 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 459 460 #ifdef CONFIG_PARTITION_TYPE_GUID 461 str_type_guid = partitions[i].type_guid; 462 bin_type_guid = gpt_e[i].partition_type_guid.b; 463 if (strlen(str_type_guid)) { 464 if (uuid_str_to_bin(str_type_guid, bin_type_guid, 465 UUID_STR_FORMAT_GUID)) { 466 printf("Partition no. %d: invalid type guid: %s\n", 467 i, str_type_guid); 468 return -1; 469 } 470 } else { 471 /* default partition type GUID */ 472 memcpy(bin_type_guid, 473 &PARTITION_BASIC_DATA_GUID, 16); 474 } 475 #else 476 /* partition type GUID */ 477 memcpy(gpt_e[i].partition_type_guid.b, 478 &PARTITION_BASIC_DATA_GUID, 16); 479 #endif 480 481 #ifdef CONFIG_PARTITION_UUIDS 482 str_uuid = partitions[i].uuid; 483 bin_uuid = gpt_e[i].unique_partition_guid.b; 484 485 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_STD)) { 486 printf("Partition no. %d: invalid guid: %s\n", 487 i, str_uuid); 488 return -1; 489 } 490 #endif 491 492 /* partition attributes */ 493 memset(&gpt_e[i].attributes, 0, 494 sizeof(gpt_entry_attributes)); 495 496 /* partition name */ 497 efiname_len = sizeof(gpt_e[i].partition_name) 498 / sizeof(efi_char16_t); 499 dosname_len = sizeof(partitions[i].name); 500 501 memset(gpt_e[i].partition_name, 0, 502 sizeof(gpt_e[i].partition_name)); 503 504 for (k = 0; k < min(dosname_len, efiname_len); k++) 505 gpt_e[i].partition_name[k] = 506 (efi_char16_t)(partitions[i].name[k]); 507 508 debug("%s: name: %s offset[%d]: 0x" LBAF 509 " size[%d]: 0x" LBAF "\n", 510 __func__, partitions[i].name, i, 511 offset, i, partitions[i].size); 512 } 513 514 return 0; 515 } 516 517 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h, 518 char *str_guid, int parts_count) 519 { 520 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 521 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 522 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 523 gpt_h->my_lba = cpu_to_le64(1); 524 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 525 gpt_h->first_usable_lba = cpu_to_le64(34); 526 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 527 gpt_h->partition_entry_lba = cpu_to_le64(2); 528 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 529 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 530 gpt_h->header_crc32 = 0; 531 gpt_h->partition_entry_array_crc32 = 0; 532 533 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) 534 return -1; 535 536 return 0; 537 } 538 539 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid, 540 disk_partition_t *partitions, int parts_count) 541 { 542 int ret; 543 544 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), 545 dev_desc)); 546 gpt_entry *gpt_e; 547 548 if (gpt_h == NULL) { 549 printf("%s: calloc failed!\n", __func__); 550 return -1; 551 } 552 553 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS 554 * sizeof(gpt_entry), 555 dev_desc)); 556 if (gpt_e == NULL) { 557 printf("%s: calloc failed!\n", __func__); 558 free(gpt_h); 559 return -1; 560 } 561 562 /* Generate Primary GPT header (LBA1) */ 563 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 564 if (ret) 565 goto err; 566 567 /* Generate partition entries */ 568 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); 569 if (ret) 570 goto err; 571 572 /* Write GPT partition table */ 573 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 574 575 err: 576 free(gpt_e); 577 free(gpt_h); 578 return ret; 579 } 580 581 int is_valid_gpt_buf(block_dev_desc_t *dev_desc, void *buf) 582 { 583 gpt_header *gpt_h; 584 gpt_entry *gpt_e; 585 586 /* determine start of GPT Header in the buffer */ 587 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 588 dev_desc->blksz); 589 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA, 590 dev_desc->lba)) 591 return -1; 592 593 /* determine start of GPT Entries in the buffer */ 594 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 595 dev_desc->blksz); 596 if (validate_gpt_entries(gpt_h, gpt_e)) 597 return -1; 598 599 return 0; 600 } 601 602 int write_mbr_and_gpt_partitions(block_dev_desc_t *dev_desc, void *buf) 603 { 604 gpt_header *gpt_h; 605 gpt_entry *gpt_e; 606 int gpt_e_blk_cnt; 607 lbaint_t lba; 608 int cnt; 609 610 if (is_valid_gpt_buf(dev_desc, buf)) 611 return -1; 612 613 /* determine start of GPT Header in the buffer */ 614 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * 615 dev_desc->blksz); 616 617 /* determine start of GPT Entries in the buffer */ 618 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * 619 dev_desc->blksz); 620 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) * 621 le32_to_cpu(gpt_h->sizeof_partition_entry)), 622 dev_desc); 623 624 /* write MBR */ 625 lba = 0; /* MBR is always at 0 */ 626 cnt = 1; /* MBR (1 block) */ 627 if (dev_desc->block_write(dev_desc->dev, lba, cnt, buf) != cnt) { 628 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 629 __func__, "MBR", cnt, lba); 630 return 1; 631 } 632 633 /* write Primary GPT */ 634 lba = GPT_PRIMARY_PARTITION_TABLE_LBA; 635 cnt = 1; /* GPT Header (1 block) */ 636 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_h) != cnt) { 637 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 638 __func__, "Primary GPT Header", cnt, lba); 639 return 1; 640 } 641 642 lba = le64_to_cpu(gpt_h->partition_entry_lba); 643 cnt = gpt_e_blk_cnt; 644 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_e) != cnt) { 645 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 646 __func__, "Primary GPT Entries", cnt, lba); 647 return 1; 648 } 649 650 prepare_backup_gpt_header(gpt_h); 651 652 /* write Backup GPT */ 653 lba = le64_to_cpu(gpt_h->partition_entry_lba); 654 cnt = gpt_e_blk_cnt; 655 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_e) != cnt) { 656 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 657 __func__, "Backup GPT Entries", cnt, lba); 658 return 1; 659 } 660 661 lba = le64_to_cpu(gpt_h->my_lba); 662 cnt = 1; /* GPT Header (1 block) */ 663 if (dev_desc->block_write(dev_desc->dev, lba, cnt, gpt_h) != cnt) { 664 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", 665 __func__, "Backup GPT Header", cnt, lba); 666 return 1; 667 } 668 669 return 0; 670 } 671 #endif 672 673 /* 674 * Private functions 675 */ 676 /* 677 * pmbr_part_valid(): Check for EFI partition signature 678 * 679 * Returns: 1 if EFI GPT partition type is found. 680 */ 681 static int pmbr_part_valid(struct partition *part) 682 { 683 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 684 get_unaligned_le32(&part->start_sect) == 1UL) { 685 return 1; 686 } 687 688 return 0; 689 } 690 691 /* 692 * is_pmbr_valid(): test Protective MBR for validity 693 * 694 * Returns: 1 if PMBR is valid, 0 otherwise. 695 * Validity depends on two things: 696 * 1) MSDOS signature is in the last two bytes of the MBR 697 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 698 */ 699 static int is_pmbr_valid(legacy_mbr * mbr) 700 { 701 int i = 0; 702 703 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 704 return 0; 705 706 for (i = 0; i < 4; i++) { 707 if (pmbr_part_valid(&mbr->partition_record[i])) { 708 return 1; 709 } 710 } 711 return 0; 712 } 713 714 /** 715 * is_gpt_valid() - tests one GPT header and PTEs for validity 716 * 717 * lba is the logical block address of the GPT header to test 718 * gpt is a GPT header ptr, filled on return. 719 * ptes is a PTEs ptr, filled on return. 720 * 721 * Description: returns 1 if valid, 0 on error. 722 * If valid, returns pointers to PTEs. 723 */ 724 static int is_gpt_valid(block_dev_desc_t *dev_desc, u64 lba, 725 gpt_header *pgpt_head, gpt_entry **pgpt_pte) 726 { 727 if (!dev_desc || !pgpt_head) { 728 printf("%s: Invalid Argument(s)\n", __func__); 729 return 0; 730 } 731 732 /* Read GPT Header from device */ 733 if (dev_desc->block_read(dev_desc->dev, (lbaint_t)lba, 1, pgpt_head) 734 != 1) { 735 printf("*** ERROR: Can't read GPT header ***\n"); 736 return 0; 737 } 738 739 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba)) 740 return 0; 741 742 /* Read and allocate Partition Table Entries */ 743 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 744 if (*pgpt_pte == NULL) { 745 printf("GPT: Failed to allocate memory for PTE\n"); 746 return 0; 747 } 748 749 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) { 750 free(*pgpt_pte); 751 return 0; 752 } 753 754 /* We're done, all's well */ 755 return 1; 756 } 757 758 /** 759 * alloc_read_gpt_entries(): reads partition entries from disk 760 * @dev_desc 761 * @gpt - GPT header 762 * 763 * Description: Returns ptes on success, NULL on error. 764 * Allocates space for PTEs based on information found in @gpt. 765 * Notes: remember to free pte when you're done! 766 */ 767 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 768 gpt_header * pgpt_head) 769 { 770 size_t count = 0, blk_cnt; 771 gpt_entry *pte = NULL; 772 773 if (!dev_desc || !pgpt_head) { 774 printf("%s: Invalid Argument(s)\n", __func__); 775 return NULL; 776 } 777 778 count = le32_to_cpu(pgpt_head->num_partition_entries) * 779 le32_to_cpu(pgpt_head->sizeof_partition_entry); 780 781 debug("%s: count = %u * %u = %zu\n", __func__, 782 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 783 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count); 784 785 /* Allocate memory for PTE, remember to FREE */ 786 if (count != 0) { 787 pte = memalign(ARCH_DMA_MINALIGN, 788 PAD_TO_BLOCKSIZE(count, dev_desc)); 789 } 790 791 if (count == 0 || pte == NULL) { 792 printf("%s: ERROR: Can't allocate 0x%zX " 793 "bytes for GPT Entries\n", 794 __func__, count); 795 return NULL; 796 } 797 798 /* Read GPT Entries from device */ 799 blk_cnt = BLOCK_CNT(count, dev_desc); 800 if (dev_desc->block_read (dev_desc->dev, 801 (lbaint_t)le64_to_cpu(pgpt_head->partition_entry_lba), 802 (lbaint_t) (blk_cnt), pte) 803 != blk_cnt) { 804 805 printf("*** ERROR: Can't read GPT Entries ***\n"); 806 free(pte); 807 return NULL; 808 } 809 return pte; 810 } 811 812 /** 813 * is_pte_valid(): validates a single Partition Table Entry 814 * @gpt_entry - Pointer to a single Partition Table Entry 815 * 816 * Description: returns 1 if valid, 0 on error. 817 */ 818 static int is_pte_valid(gpt_entry * pte) 819 { 820 efi_guid_t unused_guid; 821 822 if (!pte) { 823 printf("%s: Invalid Argument(s)\n", __func__); 824 return 0; 825 } 826 827 /* Only one validation for now: 828 * The GUID Partition Type != Unused Entry (ALL-ZERO) 829 */ 830 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 831 832 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 833 sizeof(unused_guid.b)) == 0) { 834 835 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 836 (unsigned int)(uintptr_t)pte); 837 838 return 0; 839 } else { 840 return 1; 841 } 842 } 843 #endif 844