1 /* 2 * Copyright (C) 2008 RuggedCom, Inc. 3 * Richard Retanubun <RichardRetanubun@RuggedCom.com> 4 * 5 * See file CREDITS for list of people who contributed to this 6 * project. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 of 11 * the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, 21 * MA 02111-1307 USA 22 */ 23 24 /* 25 * Problems with CONFIG_SYS_64BIT_LBA: 26 * 27 * struct disk_partition.start in include/part.h is sized as ulong. 28 * When CONFIG_SYS_64BIT_LBA is activated, lbaint_t changes from ulong to uint64_t. 29 * For now, it is cast back to ulong at assignment. 30 * 31 * This limits the maximum size of addressable storage to < 2 Terra Bytes 32 */ 33 #include <asm/unaligned.h> 34 #include <common.h> 35 #include <command.h> 36 #include <ide.h> 37 #include <malloc.h> 38 #include <part_efi.h> 39 #include <linux/ctype.h> 40 41 DECLARE_GLOBAL_DATA_PTR; 42 43 #ifdef HAVE_BLOCK_DEVICE 44 /** 45 * efi_crc32() - EFI version of crc32 function 46 * @buf: buffer to calculate crc32 of 47 * @len - length of buf 48 * 49 * Description: Returns EFI-style CRC32 value for @buf 50 */ 51 static inline u32 efi_crc32(const void *buf, u32 len) 52 { 53 return crc32(0, buf, len); 54 } 55 56 /* 57 * Private function prototypes 58 */ 59 60 static int pmbr_part_valid(struct partition *part); 61 static int is_pmbr_valid(legacy_mbr * mbr); 62 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, 63 gpt_header * pgpt_head, gpt_entry ** pgpt_pte); 64 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 65 gpt_header * pgpt_head); 66 static int is_pte_valid(gpt_entry * pte); 67 68 static char *print_efiname(gpt_entry *pte) 69 { 70 static char name[PARTNAME_SZ + 1]; 71 int i; 72 for (i = 0; i < PARTNAME_SZ; i++) { 73 u8 c; 74 c = pte->partition_name[i] & 0xff; 75 c = (c && !isprint(c)) ? '.' : c; 76 name[i] = c; 77 } 78 name[PARTNAME_SZ] = 0; 79 return name; 80 } 81 82 static void uuid_string(unsigned char *uuid, char *str) 83 { 84 static const u8 le[16] = {3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 85 12, 13, 14, 15}; 86 int i; 87 88 for (i = 0; i < 16; i++) { 89 sprintf(str, "%02x", uuid[le[i]]); 90 str += 2; 91 switch (i) { 92 case 3: 93 case 5: 94 case 7: 95 case 9: 96 *str++ = '-'; 97 break; 98 } 99 } 100 } 101 102 static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; 103 104 static inline int is_bootable(gpt_entry *p) 105 { 106 return p->attributes.fields.legacy_bios_bootable || 107 !memcmp(&(p->partition_type_guid), &system_guid, 108 sizeof(efi_guid_t)); 109 } 110 111 #ifdef CONFIG_EFI_PARTITION 112 /* 113 * Public Functions (include/part.h) 114 */ 115 116 void print_part_efi(block_dev_desc_t * dev_desc) 117 { 118 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 119 gpt_entry *gpt_pte = NULL; 120 int i = 0; 121 char uuid[37]; 122 123 if (!dev_desc) { 124 printf("%s: Invalid Argument(s)\n", __func__); 125 return; 126 } 127 /* This function validates AND fills in the GPT header and PTE */ 128 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 129 gpt_head, &gpt_pte) != 1) { 130 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 131 return; 132 } 133 134 debug("%s: gpt-entry at %p\n", __func__, gpt_pte); 135 136 printf("Part\tStart LBA\tEnd LBA\t\tName\n"); 137 printf("\tAttributes\n"); 138 printf("\tType UUID\n"); 139 printf("\tPartition UUID\n"); 140 141 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { 142 /* Stop at the first non valid PTE */ 143 if (!is_pte_valid(&gpt_pte[i])) 144 break; 145 146 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), 147 le64_to_cpu(gpt_pte[i].starting_lba), 148 le64_to_cpu(gpt_pte[i].ending_lba), 149 print_efiname(&gpt_pte[i])); 150 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); 151 uuid_string(gpt_pte[i].partition_type_guid.b, uuid); 152 printf("\ttype:\t%s\n", uuid); 153 uuid_string(gpt_pte[i].unique_partition_guid.b, uuid); 154 printf("\tuuid:\t%s\n", uuid); 155 } 156 157 /* Remember to free pte */ 158 free(gpt_pte); 159 return; 160 } 161 162 int get_partition_info_efi(block_dev_desc_t * dev_desc, int part, 163 disk_partition_t * info) 164 { 165 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); 166 gpt_entry *gpt_pte = NULL; 167 168 /* "part" argument must be at least 1 */ 169 if (!dev_desc || !info || part < 1) { 170 printf("%s: Invalid Argument(s)\n", __func__); 171 return -1; 172 } 173 174 /* This function validates AND fills in the GPT header and PTE */ 175 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, 176 gpt_head, &gpt_pte) != 1) { 177 printf("%s: *** ERROR: Invalid GPT ***\n", __func__); 178 return -1; 179 } 180 181 if (part > le32_to_cpu(gpt_head->num_partition_entries) || 182 !is_pte_valid(&gpt_pte[part - 1])) { 183 printf("%s: *** ERROR: Invalid partition number %d ***\n", 184 __func__, part); 185 return -1; 186 } 187 188 /* The ulong casting limits the maximum disk size to 2 TB */ 189 info->start = (u64)le64_to_cpu(gpt_pte[part - 1].starting_lba); 190 /* The ending LBA is inclusive, to calculate size, add 1 to it */ 191 info->size = ((u64)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1) 192 - info->start; 193 info->blksz = dev_desc->blksz; 194 195 sprintf((char *)info->name, "%s", 196 print_efiname(&gpt_pte[part - 1])); 197 sprintf((char *)info->type, "U-Boot"); 198 info->bootable = is_bootable(&gpt_pte[part - 1]); 199 #ifdef CONFIG_PARTITION_UUIDS 200 uuid_string(gpt_pte[part - 1].unique_partition_guid.b, info->uuid); 201 #endif 202 203 debug("%s: start 0x%lX, size 0x%lX, name %s", __func__, 204 info->start, info->size, info->name); 205 206 /* Remember to free pte */ 207 free(gpt_pte); 208 return 0; 209 } 210 211 int test_part_efi(block_dev_desc_t * dev_desc) 212 { 213 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); 214 215 /* Read legacy MBR from block 0 and validate it */ 216 if ((dev_desc->block_read(dev_desc->dev, 0, 1, (ulong *)legacymbr) != 1) 217 || (is_pmbr_valid(legacymbr) != 1)) { 218 return -1; 219 } 220 return 0; 221 } 222 223 /** 224 * set_protective_mbr(): Set the EFI protective MBR 225 * @param dev_desc - block device descriptor 226 * 227 * @return - zero on success, otherwise error 228 */ 229 static int set_protective_mbr(block_dev_desc_t *dev_desc) 230 { 231 legacy_mbr *p_mbr; 232 233 /* Setup the Protective MBR */ 234 p_mbr = calloc(1, sizeof(p_mbr)); 235 if (p_mbr == NULL) { 236 printf("%s: calloc failed!\n", __func__); 237 return -1; 238 } 239 /* Append signature */ 240 p_mbr->signature = MSDOS_MBR_SIGNATURE; 241 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; 242 p_mbr->partition_record[0].start_sect = 1; 243 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba; 244 245 /* Write MBR sector to the MMC device */ 246 if (dev_desc->block_write(dev_desc->dev, 0, 1, p_mbr) != 1) { 247 printf("** Can't write to device %d **\n", 248 dev_desc->dev); 249 free(p_mbr); 250 return -1; 251 } 252 253 free(p_mbr); 254 return 0; 255 } 256 257 /** 258 * string_uuid(); Convert UUID stored as string to bytes 259 * 260 * @param uuid - UUID represented as string 261 * @param dst - GUID buffer 262 * 263 * @return return 0 on successful conversion 264 */ 265 static int string_uuid(char *uuid, u8 *dst) 266 { 267 efi_guid_t guid; 268 u16 b, c, d; 269 u64 e; 270 u32 a; 271 u8 *p; 272 u8 i; 273 274 const u8 uuid_str_len = 36; 275 276 /* The UUID is written in text: */ 277 /* 1 9 14 19 24 */ 278 /* xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx */ 279 280 debug("%s: uuid: %s\n", __func__, uuid); 281 282 if (strlen(uuid) != uuid_str_len) 283 return -1; 284 285 for (i = 0; i < uuid_str_len; i++) { 286 if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) { 287 if (uuid[i] != '-') 288 return -1; 289 } else { 290 if (!isxdigit(uuid[i])) 291 return -1; 292 } 293 } 294 295 a = (u32)simple_strtoul(uuid, NULL, 16); 296 b = (u16)simple_strtoul(uuid + 9, NULL, 16); 297 c = (u16)simple_strtoul(uuid + 14, NULL, 16); 298 d = (u16)simple_strtoul(uuid + 19, NULL, 16); 299 e = (u64)simple_strtoull(uuid + 24, NULL, 16); 300 301 p = (u8 *) &e; 302 guid = EFI_GUID(a, b, c, d >> 8, d & 0xFF, 303 *(p + 5), *(p + 4), *(p + 3), 304 *(p + 2), *(p + 1) , *p); 305 306 memcpy(dst, guid.b, sizeof(efi_guid_t)); 307 308 return 0; 309 } 310 311 int write_gpt_table(block_dev_desc_t *dev_desc, 312 gpt_header *gpt_h, gpt_entry *gpt_e) 313 { 314 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries 315 * sizeof(gpt_entry)), dev_desc); 316 u32 calc_crc32; 317 u64 val; 318 319 debug("max lba: %x\n", (u32) dev_desc->lba); 320 /* Setup the Protective MBR */ 321 if (set_protective_mbr(dev_desc) < 0) 322 goto err; 323 324 /* Generate CRC for the Primary GPT Header */ 325 calc_crc32 = efi_crc32((const unsigned char *)gpt_e, 326 le32_to_cpu(gpt_h->num_partition_entries) * 327 le32_to_cpu(gpt_h->sizeof_partition_entry)); 328 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); 329 330 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 331 le32_to_cpu(gpt_h->header_size)); 332 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 333 334 /* Write the First GPT to the block right after the Legacy MBR */ 335 if (dev_desc->block_write(dev_desc->dev, 1, 1, gpt_h) != 1) 336 goto err; 337 338 if (dev_desc->block_write(dev_desc->dev, 2, pte_blk_cnt, gpt_e) 339 != pte_blk_cnt) 340 goto err; 341 342 /* recalculate the values for the Second GPT Header */ 343 val = le64_to_cpu(gpt_h->my_lba); 344 gpt_h->my_lba = gpt_h->alternate_lba; 345 gpt_h->alternate_lba = cpu_to_le64(val); 346 gpt_h->header_crc32 = 0; 347 348 calc_crc32 = efi_crc32((const unsigned char *)gpt_h, 349 le32_to_cpu(gpt_h->header_size)); 350 gpt_h->header_crc32 = cpu_to_le32(calc_crc32); 351 352 if (dev_desc->block_write(dev_desc->dev, 353 le32_to_cpu(gpt_h->last_usable_lba + 1), 354 pte_blk_cnt, gpt_e) != pte_blk_cnt) 355 goto err; 356 357 if (dev_desc->block_write(dev_desc->dev, 358 le32_to_cpu(gpt_h->my_lba), 1, gpt_h) != 1) 359 goto err; 360 361 debug("GPT successfully written to block device!\n"); 362 return 0; 363 364 err: 365 printf("** Can't write to device %d **\n", dev_desc->dev); 366 return -1; 367 } 368 369 int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, 370 disk_partition_t *partitions, int parts) 371 { 372 u32 offset = (u32)le32_to_cpu(gpt_h->first_usable_lba); 373 ulong start; 374 int i, k; 375 size_t name_len; 376 #ifdef CONFIG_PARTITION_UUIDS 377 char *str_uuid; 378 #endif 379 380 for (i = 0; i < parts; i++) { 381 /* partition starting lba */ 382 start = partitions[i].start; 383 if (start && (start < offset)) { 384 printf("Partition overlap\n"); 385 return -1; 386 } 387 if (start) { 388 gpt_e[i].starting_lba = cpu_to_le64(start); 389 offset = start + partitions[i].size; 390 } else { 391 gpt_e[i].starting_lba = cpu_to_le64(offset); 392 offset += partitions[i].size; 393 } 394 if (offset >= gpt_h->last_usable_lba) { 395 printf("Partitions layout exceds disk size\n"); 396 return -1; 397 } 398 /* partition ending lba */ 399 if ((i == parts - 1) && (partitions[i].size == 0)) 400 /* extend the last partition to maximuim */ 401 gpt_e[i].ending_lba = gpt_h->last_usable_lba; 402 else 403 gpt_e[i].ending_lba = cpu_to_le64(offset - 1); 404 405 /* partition type GUID */ 406 memcpy(gpt_e[i].partition_type_guid.b, 407 &PARTITION_BASIC_DATA_GUID, 16); 408 409 #ifdef CONFIG_PARTITION_UUIDS 410 str_uuid = partitions[i].uuid; 411 if (string_uuid(str_uuid, gpt_e[i].unique_partition_guid.b)) { 412 printf("Partition no. %d: invalid guid: %s\n", 413 i, str_uuid); 414 return -1; 415 } 416 #endif 417 418 /* partition attributes */ 419 memset(&gpt_e[i].attributes, 0, 420 sizeof(gpt_entry_attributes)); 421 422 /* partition name */ 423 name_len = sizeof(gpt_e[i].partition_name) 424 / sizeof(efi_char16_t); 425 for (k = 0; k < name_len; k++) 426 gpt_e[i].partition_name[k] = 427 (efi_char16_t)(partitions[i].name[k]); 428 429 debug("%s: name: %s offset[%d]: 0x%x size[%d]: 0x%lx\n", 430 __func__, partitions[i].name, i, 431 offset, i, partitions[i].size); 432 } 433 434 return 0; 435 } 436 437 int gpt_fill_header(block_dev_desc_t *dev_desc, gpt_header *gpt_h, 438 char *str_guid, int parts_count) 439 { 440 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); 441 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); 442 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); 443 gpt_h->my_lba = cpu_to_le64(1); 444 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); 445 gpt_h->first_usable_lba = cpu_to_le64(34); 446 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); 447 gpt_h->partition_entry_lba = cpu_to_le64(2); 448 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); 449 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); 450 gpt_h->header_crc32 = 0; 451 gpt_h->partition_entry_array_crc32 = 0; 452 453 if (string_uuid(str_guid, gpt_h->disk_guid.b)) 454 return -1; 455 456 return 0; 457 } 458 459 int gpt_restore(block_dev_desc_t *dev_desc, char *str_disk_guid, 460 disk_partition_t *partitions, int parts_count) 461 { 462 int ret; 463 464 gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), 465 dev_desc)); 466 gpt_entry *gpt_e; 467 468 if (gpt_h == NULL) { 469 printf("%s: calloc failed!\n", __func__); 470 return -1; 471 } 472 473 gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS 474 * sizeof(gpt_entry), 475 dev_desc)); 476 if (gpt_e == NULL) { 477 printf("%s: calloc failed!\n", __func__); 478 free(gpt_h); 479 return -1; 480 } 481 482 /* Generate Primary GPT header (LBA1) */ 483 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); 484 if (ret) 485 goto err; 486 487 /* Generate partition entries */ 488 ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); 489 if (ret) 490 goto err; 491 492 /* Write GPT partition table */ 493 ret = write_gpt_table(dev_desc, gpt_h, gpt_e); 494 495 err: 496 free(gpt_e); 497 free(gpt_h); 498 return ret; 499 } 500 #endif 501 502 /* 503 * Private functions 504 */ 505 /* 506 * pmbr_part_valid(): Check for EFI partition signature 507 * 508 * Returns: 1 if EFI GPT partition type is found. 509 */ 510 static int pmbr_part_valid(struct partition *part) 511 { 512 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && 513 get_unaligned_le32(&part->start_sect) == 1UL) { 514 return 1; 515 } 516 517 return 0; 518 } 519 520 /* 521 * is_pmbr_valid(): test Protective MBR for validity 522 * 523 * Returns: 1 if PMBR is valid, 0 otherwise. 524 * Validity depends on two things: 525 * 1) MSDOS signature is in the last two bytes of the MBR 526 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() 527 */ 528 static int is_pmbr_valid(legacy_mbr * mbr) 529 { 530 int i = 0; 531 532 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 533 return 0; 534 535 for (i = 0; i < 4; i++) { 536 if (pmbr_part_valid(&mbr->partition_record[i])) { 537 return 1; 538 } 539 } 540 return 0; 541 } 542 543 /** 544 * is_gpt_valid() - tests one GPT header and PTEs for validity 545 * 546 * lba is the logical block address of the GPT header to test 547 * gpt is a GPT header ptr, filled on return. 548 * ptes is a PTEs ptr, filled on return. 549 * 550 * Description: returns 1 if valid, 0 on error. 551 * If valid, returns pointers to PTEs. 552 */ 553 static int is_gpt_valid(block_dev_desc_t * dev_desc, unsigned long long lba, 554 gpt_header * pgpt_head, gpt_entry ** pgpt_pte) 555 { 556 u32 crc32_backup = 0; 557 u32 calc_crc32; 558 unsigned long long lastlba; 559 560 if (!dev_desc || !pgpt_head) { 561 printf("%s: Invalid Argument(s)\n", __func__); 562 return 0; 563 } 564 565 /* Read GPT Header from device */ 566 if (dev_desc->block_read(dev_desc->dev, lba, 1, pgpt_head) != 1) { 567 printf("*** ERROR: Can't read GPT header ***\n"); 568 return 0; 569 } 570 571 /* Check the GPT header signature */ 572 if (le64_to_cpu(pgpt_head->signature) != GPT_HEADER_SIGNATURE) { 573 printf("GUID Partition Table Header signature is wrong:" 574 "0x%llX != 0x%llX\n", 575 le64_to_cpu(pgpt_head->signature), 576 GPT_HEADER_SIGNATURE); 577 return 0; 578 } 579 580 /* Check the GUID Partition Table CRC */ 581 memcpy(&crc32_backup, &pgpt_head->header_crc32, sizeof(crc32_backup)); 582 memset(&pgpt_head->header_crc32, 0, sizeof(pgpt_head->header_crc32)); 583 584 calc_crc32 = efi_crc32((const unsigned char *)pgpt_head, 585 le32_to_cpu(pgpt_head->header_size)); 586 587 memcpy(&pgpt_head->header_crc32, &crc32_backup, sizeof(crc32_backup)); 588 589 if (calc_crc32 != le32_to_cpu(crc32_backup)) { 590 printf("GUID Partition Table Header CRC is wrong:" 591 "0x%x != 0x%x\n", 592 le32_to_cpu(crc32_backup), calc_crc32); 593 return 0; 594 } 595 596 /* Check that the my_lba entry points to the LBA that contains the GPT */ 597 if (le64_to_cpu(pgpt_head->my_lba) != lba) { 598 printf("GPT: my_lba incorrect: %llX != %llX\n", 599 le64_to_cpu(pgpt_head->my_lba), 600 lba); 601 return 0; 602 } 603 604 /* Check the first_usable_lba and last_usable_lba are within the disk. */ 605 lastlba = (unsigned long long)dev_desc->lba; 606 if (le64_to_cpu(pgpt_head->first_usable_lba) > lastlba) { 607 printf("GPT: first_usable_lba incorrect: %llX > %llX\n", 608 le64_to_cpu(pgpt_head->first_usable_lba), lastlba); 609 return 0; 610 } 611 if (le64_to_cpu(pgpt_head->last_usable_lba) > lastlba) { 612 printf("GPT: last_usable_lba incorrect: %llX > %llX\n", 613 (u64) le64_to_cpu(pgpt_head->last_usable_lba), lastlba); 614 return 0; 615 } 616 617 debug("GPT: first_usable_lba: %llX last_usable_lba %llX last lba %llX\n", 618 le64_to_cpu(pgpt_head->first_usable_lba), 619 le64_to_cpu(pgpt_head->last_usable_lba), lastlba); 620 621 /* Read and allocate Partition Table Entries */ 622 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); 623 if (*pgpt_pte == NULL) { 624 printf("GPT: Failed to allocate memory for PTE\n"); 625 return 0; 626 } 627 628 /* Check the GUID Partition Table Entry Array CRC */ 629 calc_crc32 = efi_crc32((const unsigned char *)*pgpt_pte, 630 le32_to_cpu(pgpt_head->num_partition_entries) * 631 le32_to_cpu(pgpt_head->sizeof_partition_entry)); 632 633 if (calc_crc32 != le32_to_cpu(pgpt_head->partition_entry_array_crc32)) { 634 printf("GUID Partition Table Entry Array CRC is wrong:" 635 "0x%x != 0x%x\n", 636 le32_to_cpu(pgpt_head->partition_entry_array_crc32), 637 calc_crc32); 638 639 free(*pgpt_pte); 640 return 0; 641 } 642 643 /* We're done, all's well */ 644 return 1; 645 } 646 647 /** 648 * alloc_read_gpt_entries(): reads partition entries from disk 649 * @dev_desc 650 * @gpt - GPT header 651 * 652 * Description: Returns ptes on success, NULL on error. 653 * Allocates space for PTEs based on information found in @gpt. 654 * Notes: remember to free pte when you're done! 655 */ 656 static gpt_entry *alloc_read_gpt_entries(block_dev_desc_t * dev_desc, 657 gpt_header * pgpt_head) 658 { 659 size_t count = 0, blk_cnt; 660 gpt_entry *pte = NULL; 661 662 if (!dev_desc || !pgpt_head) { 663 printf("%s: Invalid Argument(s)\n", __func__); 664 return NULL; 665 } 666 667 count = le32_to_cpu(pgpt_head->num_partition_entries) * 668 le32_to_cpu(pgpt_head->sizeof_partition_entry); 669 670 debug("%s: count = %u * %u = %zu\n", __func__, 671 (u32) le32_to_cpu(pgpt_head->num_partition_entries), 672 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), count); 673 674 /* Allocate memory for PTE, remember to FREE */ 675 if (count != 0) { 676 pte = memalign(ARCH_DMA_MINALIGN, 677 PAD_TO_BLOCKSIZE(count, dev_desc)); 678 } 679 680 if (count == 0 || pte == NULL) { 681 printf("%s: ERROR: Can't allocate 0x%zX " 682 "bytes for GPT Entries\n", 683 __func__, count); 684 return NULL; 685 } 686 687 /* Read GPT Entries from device */ 688 blk_cnt = BLOCK_CNT(count, dev_desc); 689 if (dev_desc->block_read (dev_desc->dev, 690 le64_to_cpu(pgpt_head->partition_entry_lba), 691 (lbaint_t) (blk_cnt), pte) 692 != blk_cnt) { 693 694 printf("*** ERROR: Can't read GPT Entries ***\n"); 695 free(pte); 696 return NULL; 697 } 698 return pte; 699 } 700 701 /** 702 * is_pte_valid(): validates a single Partition Table Entry 703 * @gpt_entry - Pointer to a single Partition Table Entry 704 * 705 * Description: returns 1 if valid, 0 on error. 706 */ 707 static int is_pte_valid(gpt_entry * pte) 708 { 709 efi_guid_t unused_guid; 710 711 if (!pte) { 712 printf("%s: Invalid Argument(s)\n", __func__); 713 return 0; 714 } 715 716 /* Only one validation for now: 717 * The GUID Partition Type != Unused Entry (ALL-ZERO) 718 */ 719 memset(unused_guid.b, 0, sizeof(unused_guid.b)); 720 721 if (memcmp(pte->partition_type_guid.b, unused_guid.b, 722 sizeof(unused_guid.b)) == 0) { 723 724 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, 725 (unsigned int)(uintptr_t)pte); 726 727 return 0; 728 } else { 729 return 1; 730 } 731 } 732 #endif 733