1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2008 RuggedCom, Inc.
4 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
5 */
6
7 /*
8 * NOTE:
9 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
10 * limits the maximum size of addressable storage to < 2 Terra Bytes
11 */
12 #include <asm/unaligned.h>
13 #include <common.h>
14 #include <command.h>
15 #include <fdtdec.h>
16 #include <ide.h>
17 #include <malloc.h>
18 #include <memalign.h>
19 #include <part_efi.h>
20 #include <linux/compiler.h>
21 #include <linux/ctype.h>
22
23 DECLARE_GLOBAL_DATA_PTR;
24
25 /*
26 * GUID for basic data partions.
27 */
28 static const efi_guid_t partition_basic_data_guid = PARTITION_BASIC_DATA_GUID;
29
30 #ifdef CONFIG_HAVE_BLOCK_DEVICE
31 /**
32 * efi_crc32() - EFI version of crc32 function
33 * @buf: buffer to calculate crc32 of
34 * @len - length of buf
35 *
36 * Description: Returns EFI-style CRC32 value for @buf
37 */
efi_crc32(const void * buf,u32 len)38 static inline u32 efi_crc32(const void *buf, u32 len)
39 {
40 return crc32(0, buf, len);
41 }
42
43 /*
44 * Private function prototypes
45 */
46
47 static int pmbr_part_valid(struct partition *part);
48 static int is_pmbr_valid(legacy_mbr * mbr);
49 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
50 gpt_header *pgpt_head, gpt_entry **pgpt_pte);
51 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
52 gpt_header *pgpt_head);
53 static int is_pte_valid(gpt_entry * pte);
54
print_efiname(gpt_entry * pte)55 static char *print_efiname(gpt_entry *pte)
56 {
57 static char name[PARTNAME_SZ + 1];
58 int i;
59 for (i = 0; i < PARTNAME_SZ; i++) {
60 u8 c;
61 c = pte->partition_name[i] & 0xff;
62 c = (c && !isprint(c)) ? '.' : c;
63 name[i] = c;
64 }
65 name[PARTNAME_SZ] = 0;
66 return name;
67 }
68
69 static const efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
70
is_bootable(gpt_entry * p)71 static inline int is_bootable(gpt_entry *p)
72 {
73 return p->attributes.fields.legacy_bios_bootable ||
74 !memcmp(&(p->partition_type_guid), &system_guid,
75 sizeof(efi_guid_t));
76 }
77
validate_gpt_header(gpt_header * gpt_h,lbaint_t lba,lbaint_t lastlba)78 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
79 lbaint_t lastlba)
80 {
81 uint32_t crc32_backup = 0;
82 uint32_t calc_crc32;
83
84 /* Check the GPT header signature */
85 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE_UBOOT) {
86 printf("%s signature is wrong: 0x%llX != 0x%llX\n",
87 "GUID Partition Table Header",
88 le64_to_cpu(gpt_h->signature),
89 GPT_HEADER_SIGNATURE_UBOOT);
90 return -1;
91 }
92
93 /* Check the GUID Partition Table CRC */
94 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
95 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
96
97 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
98 le32_to_cpu(gpt_h->header_size));
99
100 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
101
102 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
103 printf("%s CRC is wrong: 0x%x != 0x%x\n",
104 "GUID Partition Table Header",
105 le32_to_cpu(crc32_backup), calc_crc32);
106 return -1;
107 }
108
109 /*
110 * Check that the my_lba entry points to the LBA that contains the GPT
111 */
112 if (le64_to_cpu(gpt_h->my_lba) != lba) {
113 printf("GPT: my_lba incorrect: %llX != " LBAF "\n",
114 le64_to_cpu(gpt_h->my_lba),
115 lba);
116 return -1;
117 }
118
119 /*
120 * Check that the first_usable_lba and that the last_usable_lba are
121 * within the disk.
122 */
123 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
124 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
125 le64_to_cpu(gpt_h->first_usable_lba), lastlba);
126 return -1;
127 }
128 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
129 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
130 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
131 return -1;
132 }
133
134 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
135 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
136 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
137
138 return 0;
139 }
140
validate_gpt_entries(gpt_header * gpt_h,gpt_entry * gpt_e)141 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
142 {
143 uint32_t calc_crc32;
144
145 /* Check the GUID Partition Table Entry Array CRC */
146 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
147 le32_to_cpu(gpt_h->num_partition_entries) *
148 le32_to_cpu(gpt_h->sizeof_partition_entry));
149
150 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
151 printf("%s: 0x%x != 0x%x\n",
152 "GUID Partition Table Entry Array CRC is wrong",
153 le32_to_cpu(gpt_h->partition_entry_array_crc32),
154 calc_crc32);
155 return -1;
156 }
157
158 return 0;
159 }
160
prepare_backup_gpt_header(gpt_header * gpt_h)161 static void prepare_backup_gpt_header(gpt_header *gpt_h)
162 {
163 uint32_t calc_crc32;
164 uint64_t val;
165
166 /* recalculate the values for the Backup GPT Header */
167 val = le64_to_cpu(gpt_h->my_lba);
168 gpt_h->my_lba = gpt_h->alternate_lba;
169 gpt_h->alternate_lba = cpu_to_le64(val);
170 gpt_h->partition_entry_lba =
171 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
172 gpt_h->header_crc32 = 0;
173
174 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
175 le32_to_cpu(gpt_h->header_size));
176 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
177 }
178
179 #if CONFIG_IS_ENABLED(EFI_PARTITION)
180 /*
181 * Public Functions (include/part.h)
182 */
183
184 /*
185 * UUID is displayed as 32 hexadecimal digits, in 5 groups,
186 * separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters
187 */
get_disk_guid(struct blk_desc * dev_desc,char * guid)188 int get_disk_guid(struct blk_desc * dev_desc, char *guid)
189 {
190 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
191 gpt_entry *gpt_pte = NULL;
192 unsigned char *guid_bin;
193
194 /* This function validates AND fills in the GPT header and PTE */
195 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
196 gpt_head, &gpt_pte) != 1) {
197 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
198 if (is_gpt_valid(dev_desc, dev_desc->lba - 1,
199 gpt_head, &gpt_pte) != 1) {
200 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
201 __func__);
202 return -EINVAL;
203 } else {
204 printf("%s: *** Using Backup GPT ***\n",
205 __func__);
206 }
207 }
208
209 guid_bin = gpt_head->disk_guid.b;
210 uuid_bin_to_str(guid_bin, guid, UUID_STR_FORMAT_GUID);
211
212 return 0;
213 }
214
part_print_efi(struct blk_desc * dev_desc)215 void part_print_efi(struct blk_desc *dev_desc)
216 {
217 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
218 gpt_entry *gpt_pte = NULL;
219 int i = 0;
220 char uuid[UUID_STR_LEN + 1];
221 unsigned char *uuid_bin;
222
223 /* This function validates AND fills in the GPT header and PTE */
224 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
225 gpt_head, &gpt_pte) != 1) {
226 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
227 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
228 gpt_head, &gpt_pte) != 1) {
229 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
230 __func__);
231 return;
232 } else {
233 printf("%s: *** Using Backup GPT ***\n",
234 __func__);
235 }
236 }
237
238 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
239
240 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
241 printf("\tAttributes\n");
242 printf("\tType GUID\n");
243 printf("\tPartition GUID\n");
244
245 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
246 /* Stop at the first non valid PTE */
247 if (!is_pte_valid(&gpt_pte[i]))
248 break;
249
250 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
251 le64_to_cpu(gpt_pte[i].starting_lba),
252 le64_to_cpu(gpt_pte[i].ending_lba),
253 print_efiname(&gpt_pte[i]));
254 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
255 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b;
256 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
257 printf("\ttype:\t%s\n", uuid);
258 #ifdef CONFIG_PARTITION_TYPE_GUID
259 if (!uuid_guid_get_str(uuid_bin, uuid))
260 printf("\ttype:\t%s\n", uuid);
261 #endif
262 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
263 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
264 printf("\tguid:\t%s\n", uuid);
265 }
266
267 /* Remember to free pte */
268 free(gpt_pte);
269 return;
270 }
271
part_get_info_efi(struct blk_desc * dev_desc,int part,disk_partition_t * info)272 int part_get_info_efi(struct blk_desc *dev_desc, int part,
273 disk_partition_t *info)
274 {
275 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
276 gpt_entry *gpt_pte = NULL;
277
278 /* "part" argument must be at least 1 */
279 if (part < 1) {
280 printf("%s: Invalid Argument(s)\n", __func__);
281 return -1;
282 }
283
284 /* This function validates AND fills in the GPT header and PTE */
285 if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA,
286 gpt_head, &gpt_pte) != 1) {
287 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
288 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
289 gpt_head, &gpt_pte) != 1) {
290 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
291 __func__);
292 return -1;
293 } else {
294 printf("%s: *** Using Backup GPT ***\n",
295 __func__);
296 }
297 }
298
299 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
300 !is_pte_valid(&gpt_pte[part - 1])) {
301 debug("%s: *** ERROR: Invalid partition number %d ***\n",
302 __func__, part);
303 free(gpt_pte);
304 return -1;
305 }
306
307 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
308 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
309 /* The ending LBA is inclusive, to calculate size, add 1 to it */
310 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
311 - info->start;
312 info->blksz = dev_desc->blksz;
313
314 sprintf((char *)info->name, "%s",
315 print_efiname(&gpt_pte[part - 1]));
316 strcpy((char *)info->type, "U-Boot");
317 info->bootable = is_bootable(&gpt_pte[part - 1]);
318 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
319 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid,
320 UUID_STR_FORMAT_GUID);
321 #endif
322 #ifdef CONFIG_PARTITION_TYPE_GUID
323 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b,
324 info->type_guid, UUID_STR_FORMAT_GUID);
325 #endif
326
327 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__,
328 info->start, info->size, info->name);
329
330 /* Remember to free pte */
331 free(gpt_pte);
332 return 0;
333 }
334
part_test_efi(struct blk_desc * dev_desc)335 static int part_test_efi(struct blk_desc *dev_desc)
336 {
337 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
338
339 /* Read legacy MBR from block 0 and validate it */
340 if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1)
341 || (is_pmbr_valid(legacymbr) != 1)) {
342 return -1;
343 }
344 return 0;
345 }
346
347 /**
348 * set_protective_mbr(): Set the EFI protective MBR
349 * @param dev_desc - block device descriptor
350 *
351 * @return - zero on success, otherwise error
352 */
set_protective_mbr(struct blk_desc * dev_desc)353 static int set_protective_mbr(struct blk_desc *dev_desc)
354 {
355 /* Setup the Protective MBR */
356 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, p_mbr, 1, dev_desc->blksz);
357 if (p_mbr == NULL) {
358 printf("%s: calloc failed!\n", __func__);
359 return -1;
360 }
361
362 /* Read MBR to backup boot code if it exists */
363 if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) {
364 pr_err("** Can't read from device %d **\n", dev_desc->devnum);
365 return -1;
366 }
367
368 /* Clear all data in MBR except of backed up boot code */
369 memset((char *)p_mbr + MSDOS_MBR_BOOT_CODE_SIZE, 0, sizeof(*p_mbr) -
370 MSDOS_MBR_BOOT_CODE_SIZE);
371
372 /* Append signature */
373 p_mbr->signature = MSDOS_MBR_SIGNATURE;
374 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
375 p_mbr->partition_record[0].start_sect = 1;
376 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1;
377
378 /* Write MBR sector to the MMC device */
379 if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) {
380 printf("** Can't write to device %d **\n",
381 dev_desc->devnum);
382 return -1;
383 }
384
385 return 0;
386 }
387
write_gpt_table(struct blk_desc * dev_desc,gpt_header * gpt_h,gpt_entry * gpt_e)388 int write_gpt_table(struct blk_desc *dev_desc,
389 gpt_header *gpt_h, gpt_entry *gpt_e)
390 {
391 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
392 * sizeof(gpt_entry)), dev_desc);
393 u32 calc_crc32;
394
395 debug("max lba: %x\n", (u32) dev_desc->lba);
396 /* Setup the Protective MBR */
397 if (set_protective_mbr(dev_desc) < 0)
398 goto err;
399
400 /* Generate CRC for the Primary GPT Header */
401 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
402 le32_to_cpu(gpt_h->num_partition_entries) *
403 le32_to_cpu(gpt_h->sizeof_partition_entry));
404 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
405
406 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
407 le32_to_cpu(gpt_h->header_size));
408 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
409
410 /* Write the First GPT to the block right after the Legacy MBR */
411 if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1)
412 goto err;
413
414 if (blk_dwrite(dev_desc, le64_to_cpu(gpt_h->partition_entry_lba),
415 pte_blk_cnt, gpt_e) != pte_blk_cnt)
416 goto err;
417
418 prepare_backup_gpt_header(gpt_h);
419
420 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
421 + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt)
422 goto err;
423
424 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
425 gpt_h) != 1)
426 goto err;
427
428 debug("GPT successfully written to block device!\n");
429 return 0;
430
431 err:
432 printf("** Can't write to device %d **\n", dev_desc->devnum);
433 return -1;
434 }
435
gpt_fill_pte(struct blk_desc * dev_desc,gpt_header * gpt_h,gpt_entry * gpt_e,disk_partition_t * partitions,int parts)436 int gpt_fill_pte(struct blk_desc *dev_desc,
437 gpt_header *gpt_h, gpt_entry *gpt_e,
438 disk_partition_t *partitions, int parts)
439 {
440 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
441 lbaint_t last_usable_lba = (lbaint_t)
442 le64_to_cpu(gpt_h->last_usable_lba);
443 int i, k;
444 size_t efiname_len, dosname_len;
445 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
446 char *str_uuid;
447 unsigned char *bin_uuid;
448 #endif
449 #ifdef CONFIG_PARTITION_TYPE_GUID
450 char *str_type_guid;
451 unsigned char *bin_type_guid;
452 #endif
453 size_t hdr_start = gpt_h->my_lba;
454 size_t hdr_end = hdr_start + 1;
455
456 size_t pte_start = gpt_h->partition_entry_lba;
457 size_t pte_end = pte_start +
458 gpt_h->num_partition_entries * gpt_h->sizeof_partition_entry /
459 dev_desc->blksz;
460
461 for (i = 0; i < parts; i++) {
462 /* partition starting lba */
463 lbaint_t start = partitions[i].start;
464 lbaint_t size = partitions[i].size;
465
466 if (start) {
467 offset = start + size;
468 } else {
469 start = offset;
470 offset += size;
471 }
472
473 /*
474 * If our partition overlaps with either the GPT
475 * header, or the partition entry, reject it.
476 */
477 if (((start < hdr_end && hdr_start < (start + size)) ||
478 (start < pte_end && pte_start < (start + size)))) {
479 printf("Partition overlap\n");
480 return -1;
481 }
482
483 gpt_e[i].starting_lba = cpu_to_le64(start);
484
485 if (offset > (last_usable_lba + 1)) {
486 printf("Partitions layout exceds disk size\n");
487 return -1;
488 }
489 /* partition ending lba */
490 if ((i == parts - 1) && (size == 0))
491 /* extend the last partition to maximuim */
492 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
493 else
494 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
495
496 #ifdef CONFIG_PARTITION_TYPE_GUID
497 str_type_guid = partitions[i].type_guid;
498 bin_type_guid = gpt_e[i].partition_type_guid.b;
499 if (strlen(str_type_guid)) {
500 if (uuid_str_to_bin(str_type_guid, bin_type_guid,
501 UUID_STR_FORMAT_GUID)) {
502 printf("Partition no. %d: invalid type guid: %s\n",
503 i, str_type_guid);
504 return -1;
505 }
506 } else {
507 /* default partition type GUID */
508 memcpy(bin_type_guid,
509 &partition_basic_data_guid, 16);
510 }
511 #else
512 /* partition type GUID */
513 memcpy(gpt_e[i].partition_type_guid.b,
514 &partition_basic_data_guid, 16);
515 #endif
516
517 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
518 str_uuid = partitions[i].uuid;
519 bin_uuid = gpt_e[i].unique_partition_guid.b;
520
521 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) {
522 printf("Partition no. %d: invalid guid: %s\n",
523 i, str_uuid);
524 return -1;
525 }
526 #endif
527
528 /* partition attributes */
529 memset(&gpt_e[i].attributes, 0,
530 sizeof(gpt_entry_attributes));
531
532 if (partitions[i].bootable)
533 gpt_e[i].attributes.fields.legacy_bios_bootable = 1;
534
535 /* partition name */
536 efiname_len = sizeof(gpt_e[i].partition_name)
537 / sizeof(efi_char16_t);
538 dosname_len = sizeof(partitions[i].name);
539
540 memset(gpt_e[i].partition_name, 0,
541 sizeof(gpt_e[i].partition_name));
542
543 for (k = 0; k < min(dosname_len, efiname_len); k++)
544 gpt_e[i].partition_name[k] =
545 (efi_char16_t)(partitions[i].name[k]);
546
547 debug("%s: name: %s offset[%d]: 0x" LBAF
548 " size[%d]: 0x" LBAF "\n",
549 __func__, partitions[i].name, i,
550 offset, i, size);
551 }
552
553 return 0;
554 }
555
partition_entries_offset(struct blk_desc * dev_desc)556 static uint32_t partition_entries_offset(struct blk_desc *dev_desc)
557 {
558 uint32_t offset_blks = 2;
559 uint32_t __maybe_unused offset_bytes;
560 int __maybe_unused config_offset;
561
562 #if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF)
563 /*
564 * Some architectures require their SPL loader at a fixed
565 * address within the first 16KB of the disk. To avoid an
566 * overlap with the partition entries of the EFI partition
567 * table, the first safe offset (in bytes, from the start of
568 * the disk) for the entries can be set in
569 * CONFIG_EFI_PARTITION_ENTRIES_OFF.
570 */
571 offset_bytes =
572 PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, dev_desc);
573 offset_blks = offset_bytes / dev_desc->blksz;
574 #endif
575
576 #if defined(CONFIG_OF_CONTROL)
577 /*
578 * Allow the offset of the first partition entires (in bytes
579 * from the start of the device) to be specified as a property
580 * of the device tree '/config' node.
581 */
582 config_offset = fdtdec_get_config_int(gd->fdt_blob,
583 "u-boot,efi-partition-entries-offset",
584 -EINVAL);
585 if (config_offset != -EINVAL) {
586 offset_bytes = PAD_TO_BLOCKSIZE(config_offset, dev_desc);
587 offset_blks = offset_bytes / dev_desc->blksz;
588 }
589 #endif
590
591 debug("efi: partition entries offset (in blocks): %d\n", offset_blks);
592
593 /*
594 * The earliest LBA this can be at is LBA#2 (i.e. right behind
595 * the (protective) MBR and the GPT header.
596 */
597 if (offset_blks < 2)
598 offset_blks = 2;
599
600 return offset_blks;
601 }
602
gpt_fill_header(struct blk_desc * dev_desc,gpt_header * gpt_h,char * str_guid,int parts_count)603 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h,
604 char *str_guid, int parts_count)
605 {
606 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE_UBOOT);
607 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
608 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
609 gpt_h->my_lba = cpu_to_le64(1);
610 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
611 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
612 gpt_h->partition_entry_lba =
613 cpu_to_le64(partition_entries_offset(dev_desc));
614 gpt_h->first_usable_lba =
615 cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32);
616 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
617 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
618 gpt_h->header_crc32 = 0;
619 gpt_h->partition_entry_array_crc32 = 0;
620
621 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
622 return -1;
623
624 return 0;
625 }
626
gpt_restore(struct blk_desc * dev_desc,char * str_disk_guid,disk_partition_t * partitions,int parts_count)627 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid,
628 disk_partition_t *partitions, int parts_count)
629 {
630 gpt_header *gpt_h;
631 gpt_entry *gpt_e;
632 int ret, size;
633
634 size = PAD_TO_BLOCKSIZE(sizeof(gpt_header), dev_desc);
635 gpt_h = malloc_cache_aligned(size);
636 if (gpt_h == NULL) {
637 printf("%s: calloc failed!\n", __func__);
638 return -1;
639 }
640 memset(gpt_h, 0, size);
641
642 size = PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS * sizeof(gpt_entry),
643 dev_desc);
644 gpt_e = malloc_cache_aligned(size);
645 if (gpt_e == NULL) {
646 printf("%s: calloc failed!\n", __func__);
647 free(gpt_h);
648 return -1;
649 }
650 memset(gpt_e, 0, size);
651
652 /* Generate Primary GPT header (LBA1) */
653 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
654 if (ret)
655 goto err;
656
657 /* Generate partition entries */
658 ret = gpt_fill_pte(dev_desc, gpt_h, gpt_e, partitions, parts_count);
659 if (ret)
660 goto err;
661
662 /* Write GPT partition table */
663 ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
664
665 err:
666 free(gpt_e);
667 free(gpt_h);
668 return ret;
669 }
670
gpt_convert_efi_name_to_char(char * s,efi_char16_t * es,int n)671 static void gpt_convert_efi_name_to_char(char *s, efi_char16_t *es, int n)
672 {
673 char *ess = (char *)es;
674 int i, j;
675
676 memset(s, '\0', n);
677
678 for (i = 0, j = 0; j < n; i += 2, j++) {
679 s[j] = ess[i];
680 if (!ess[i])
681 return;
682 }
683 }
684
gpt_verify_headers(struct blk_desc * dev_desc,gpt_header * gpt_head,gpt_entry ** gpt_pte)685 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head,
686 gpt_entry **gpt_pte)
687 {
688 /*
689 * This function validates AND
690 * fills in the GPT header and PTE
691 */
692 if (is_gpt_valid(dev_desc,
693 GPT_PRIMARY_PARTITION_TABLE_LBA,
694 gpt_head, gpt_pte) != 1) {
695 printf("%s: *** ERROR: Invalid GPT ***\n",
696 __func__);
697 return -1;
698 }
699 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
700 gpt_head, gpt_pte) != 1) {
701 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
702 __func__);
703 return -1;
704 }
705
706 return 0;
707 }
708
gpt_verify_partitions(struct blk_desc * dev_desc,disk_partition_t * partitions,int parts,gpt_header * gpt_head,gpt_entry ** gpt_pte)709 int gpt_verify_partitions(struct blk_desc *dev_desc,
710 disk_partition_t *partitions, int parts,
711 gpt_header *gpt_head, gpt_entry **gpt_pte)
712 {
713 char efi_str[PARTNAME_SZ + 1];
714 u64 gpt_part_size;
715 gpt_entry *gpt_e;
716 int ret, i;
717
718 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte);
719 if (ret)
720 return ret;
721
722 gpt_e = *gpt_pte;
723
724 for (i = 0; i < parts; i++) {
725 if (i == gpt_head->num_partition_entries) {
726 pr_err("More partitions than allowed!\n");
727 return -1;
728 }
729
730 /* Check if GPT and ENV partition names match */
731 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name,
732 PARTNAME_SZ + 1);
733
734 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ",
735 __func__, i, efi_str, partitions[i].name);
736
737 if (strncmp(efi_str, (char *)partitions[i].name,
738 sizeof(partitions->name))) {
739 pr_err("Partition name: %s does not match %s!\n",
740 efi_str, (char *)partitions[i].name);
741 return -1;
742 }
743
744 /* Check if GPT and ENV sizes match */
745 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) -
746 le64_to_cpu(gpt_e[i].starting_lba) + 1;
747 debug("size(LBA) - GPT: %8llu, ENV: %8llu ",
748 (unsigned long long)gpt_part_size,
749 (unsigned long long)partitions[i].size);
750
751 if (le64_to_cpu(gpt_part_size) != partitions[i].size) {
752 /* We do not check the extend partition size */
753 if ((i == parts - 1) && (partitions[i].size == 0))
754 continue;
755
756 pr_err("Partition %s size: %llu does not match %llu!\n",
757 efi_str, (unsigned long long)gpt_part_size,
758 (unsigned long long)partitions[i].size);
759 return -1;
760 }
761
762 /*
763 * Start address is optional - check only if provided
764 * in '$partition' variable
765 */
766 if (!partitions[i].start) {
767 debug("\n");
768 continue;
769 }
770
771 /* Check if GPT and ENV start LBAs match */
772 debug("start LBA - GPT: %8llu, ENV: %8llu\n",
773 le64_to_cpu(gpt_e[i].starting_lba),
774 (unsigned long long)partitions[i].start);
775
776 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) {
777 pr_err("Partition %s start: %llu does not match %llu!\n",
778 efi_str, le64_to_cpu(gpt_e[i].starting_lba),
779 (unsigned long long)partitions[i].start);
780 return -1;
781 }
782 }
783
784 return 0;
785 }
786
is_valid_gpt_buf(struct blk_desc * dev_desc,void * buf)787 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf)
788 {
789 gpt_header *gpt_h;
790 gpt_entry *gpt_e;
791
792 /* determine start of GPT Header in the buffer */
793 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
794 dev_desc->blksz);
795 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
796 dev_desc->lba))
797 return -1;
798
799 /* determine start of GPT Entries in the buffer */
800 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
801 dev_desc->blksz);
802 if (validate_gpt_entries(gpt_h, gpt_e))
803 return -1;
804
805 return 0;
806 }
807
write_mbr_and_gpt_partitions(struct blk_desc * dev_desc,void * buf)808 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf)
809 {
810 gpt_header *gpt_h;
811 gpt_entry *gpt_e;
812 int gpt_e_blk_cnt;
813 lbaint_t lba;
814 int cnt;
815
816 if (is_valid_gpt_buf(dev_desc, buf))
817 return -1;
818
819 /* determine start of GPT Header in the buffer */
820 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
821 dev_desc->blksz);
822
823 /* determine start of GPT Entries in the buffer */
824 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
825 dev_desc->blksz);
826 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
827 le32_to_cpu(gpt_h->sizeof_partition_entry)),
828 dev_desc);
829
830 /* write MBR */
831 lba = 0; /* MBR is always at 0 */
832 cnt = 1; /* MBR (1 block) */
833 if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) {
834 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
835 __func__, "MBR", cnt, lba);
836 return 1;
837 }
838
839 /* write Primary GPT */
840 lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
841 cnt = 1; /* GPT Header (1 block) */
842 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
843 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
844 __func__, "Primary GPT Header", cnt, lba);
845 return 1;
846 }
847
848 lba = le64_to_cpu(gpt_h->partition_entry_lba);
849 cnt = gpt_e_blk_cnt;
850 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
851 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
852 __func__, "Primary GPT Entries", cnt, lba);
853 return 1;
854 }
855
856 prepare_backup_gpt_header(gpt_h);
857
858 /* write Backup GPT */
859 lba = le64_to_cpu(gpt_h->partition_entry_lba);
860 cnt = gpt_e_blk_cnt;
861 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
862 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
863 __func__, "Backup GPT Entries", cnt, lba);
864 return 1;
865 }
866
867 lba = le64_to_cpu(gpt_h->my_lba);
868 cnt = 1; /* GPT Header (1 block) */
869 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
870 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
871 __func__, "Backup GPT Header", cnt, lba);
872 return 1;
873 }
874
875 return 0;
876 }
877 #endif
878
879 /*
880 * Private functions
881 */
882 /*
883 * pmbr_part_valid(): Check for EFI partition signature
884 *
885 * Returns: 1 if EFI GPT partition type is found.
886 */
pmbr_part_valid(struct partition * part)887 static int pmbr_part_valid(struct partition *part)
888 {
889 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
890 get_unaligned_le32(&part->start_sect) == 1UL) {
891 return 1;
892 }
893
894 return 0;
895 }
896
897 /*
898 * is_pmbr_valid(): test Protective MBR for validity
899 *
900 * Returns: 1 if PMBR is valid, 0 otherwise.
901 * Validity depends on two things:
902 * 1) MSDOS signature is in the last two bytes of the MBR
903 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
904 */
is_pmbr_valid(legacy_mbr * mbr)905 static int is_pmbr_valid(legacy_mbr * mbr)
906 {
907 int i = 0;
908
909 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
910 return 0;
911
912 for (i = 0; i < 4; i++) {
913 if (pmbr_part_valid(&mbr->partition_record[i])) {
914 return 1;
915 }
916 }
917 return 0;
918 }
919
920 /**
921 * is_gpt_valid() - tests one GPT header and PTEs for validity
922 *
923 * lba is the logical block address of the GPT header to test
924 * gpt is a GPT header ptr, filled on return.
925 * ptes is a PTEs ptr, filled on return.
926 *
927 * Description: returns 1 if valid, 0 on error.
928 * If valid, returns pointers to PTEs.
929 */
is_gpt_valid(struct blk_desc * dev_desc,u64 lba,gpt_header * pgpt_head,gpt_entry ** pgpt_pte)930 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
931 gpt_header *pgpt_head, gpt_entry **pgpt_pte)
932 {
933 /* Confirm valid arguments prior to allocation. */
934 if (!dev_desc || !pgpt_head) {
935 printf("%s: Invalid Argument(s)\n", __func__);
936 return 0;
937 }
938
939 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, mbr, 1, dev_desc->blksz);
940
941 /* Read MBR Header from device */
942 if (blk_dread(dev_desc, 0, 1, (ulong *)mbr) != 1) {
943 printf("*** ERROR: Can't read MBR header ***\n");
944 return 0;
945 }
946
947 /* Read GPT Header from device */
948 if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) {
949 printf("*** ERROR: Can't read GPT header ***\n");
950 return 0;
951 }
952
953 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba))
954 return 0;
955
956 if (dev_desc->sig_type == SIG_TYPE_NONE) {
957 efi_guid_t empty = {};
958 if (memcmp(&pgpt_head->disk_guid, &empty, sizeof(empty))) {
959 dev_desc->sig_type = SIG_TYPE_GUID;
960 memcpy(&dev_desc->guid_sig, &pgpt_head->disk_guid,
961 sizeof(empty));
962 } else if (mbr->unique_mbr_signature != 0) {
963 dev_desc->sig_type = SIG_TYPE_MBR;
964 dev_desc->mbr_sig = mbr->unique_mbr_signature;
965 }
966 }
967
968 /* Read and allocate Partition Table Entries */
969 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
970 if (*pgpt_pte == NULL) {
971 printf("GPT: Failed to allocate memory for PTE\n");
972 return 0;
973 }
974
975 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
976 free(*pgpt_pte);
977 return 0;
978 }
979
980 /* We're done, all's well */
981 return 1;
982 }
983
984 /**
985 * alloc_read_gpt_entries(): reads partition entries from disk
986 * @dev_desc
987 * @gpt - GPT header
988 *
989 * Description: Returns ptes on success, NULL on error.
990 * Allocates space for PTEs based on information found in @gpt.
991 * Notes: remember to free pte when you're done!
992 */
alloc_read_gpt_entries(struct blk_desc * dev_desc,gpt_header * pgpt_head)993 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
994 gpt_header *pgpt_head)
995 {
996 size_t count = 0, blk_cnt;
997 lbaint_t blk;
998 gpt_entry *pte = NULL;
999
1000 if (!dev_desc || !pgpt_head) {
1001 printf("%s: Invalid Argument(s)\n", __func__);
1002 return NULL;
1003 }
1004
1005 count = le32_to_cpu(pgpt_head->num_partition_entries) *
1006 le32_to_cpu(pgpt_head->sizeof_partition_entry);
1007
1008 debug("%s: count = %u * %u = %lu\n", __func__,
1009 (u32) le32_to_cpu(pgpt_head->num_partition_entries),
1010 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry),
1011 (ulong)count);
1012
1013 /* Allocate memory for PTE, remember to FREE */
1014 if (count != 0) {
1015 pte = memalign(ARCH_DMA_MINALIGN,
1016 PAD_TO_BLOCKSIZE(count, dev_desc));
1017 }
1018
1019 if (count == 0 || pte == NULL) {
1020 printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n",
1021 __func__, (ulong)count);
1022 return NULL;
1023 }
1024
1025 /* Read GPT Entries from device */
1026 blk = le64_to_cpu(pgpt_head->partition_entry_lba);
1027 blk_cnt = BLOCK_CNT(count, dev_desc);
1028 if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) {
1029 printf("*** ERROR: Can't read GPT Entries ***\n");
1030 free(pte);
1031 return NULL;
1032 }
1033 return pte;
1034 }
1035
1036 /**
1037 * is_pte_valid(): validates a single Partition Table Entry
1038 * @gpt_entry - Pointer to a single Partition Table Entry
1039 *
1040 * Description: returns 1 if valid, 0 on error.
1041 */
is_pte_valid(gpt_entry * pte)1042 static int is_pte_valid(gpt_entry * pte)
1043 {
1044 efi_guid_t unused_guid;
1045
1046 if (!pte) {
1047 printf("%s: Invalid Argument(s)\n", __func__);
1048 return 0;
1049 }
1050
1051 /* Only one validation for now:
1052 * The GUID Partition Type != Unused Entry (ALL-ZERO)
1053 */
1054 memset(unused_guid.b, 0, sizeof(unused_guid.b));
1055
1056 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
1057 sizeof(unused_guid.b)) == 0) {
1058
1059 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
1060 (unsigned int)(uintptr_t)pte);
1061
1062 return 0;
1063 } else {
1064 return 1;
1065 }
1066 }
1067
1068 /*
1069 * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to
1070 * check EFI first, since a DOS partition is often used as a 'protective MBR'
1071 * with EFI.
1072 */
1073 U_BOOT_PART_TYPE(a_efi) = {
1074 .name = "EFI",
1075 .part_type = PART_TYPE_EFI,
1076 .max_entries = GPT_ENTRY_NUMBERS,
1077 .get_info = part_get_info_ptr(part_get_info_efi),
1078 .print = part_print_ptr(part_print_efi),
1079 .test = part_test_efi,
1080 };
1081 #endif
1082