1 /* 2 * (C) Copyright 2008 Semihalf 3 * 4 * (C) Copyright 2000-2006 5 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 6 * 7 * SPDX-License-Identifier: GPL-2.0+ 8 */ 9 10 #ifndef USE_HOSTCC 11 #include <common.h> 12 #include <watchdog.h> 13 14 #ifdef CONFIG_SHOW_BOOT_PROGRESS 15 #include <status_led.h> 16 #endif 17 18 #ifdef CONFIG_HAS_DATAFLASH 19 #include <dataflash.h> 20 #endif 21 22 #ifdef CONFIG_LOGBUFFER 23 #include <logbuff.h> 24 #endif 25 26 #include <rtc.h> 27 28 #include <environment.h> 29 #include <image.h> 30 #include <mapmem.h> 31 32 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT 33 #include <libfdt.h> 34 #include <fdt_support.h> 35 #include <fpga.h> 36 #include <xilinx.h> 37 #endif 38 39 #include <u-boot/md5.h> 40 #include <u-boot/sha1.h> 41 #include <linux/errno.h> 42 #include <asm/io.h> 43 44 #ifdef CONFIG_CMD_BDI 45 extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); 46 #endif 47 48 DECLARE_GLOBAL_DATA_PTR; 49 50 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 51 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 52 int verify); 53 #endif 54 #else 55 #include "mkimage.h" 56 #include <u-boot/md5.h> 57 #include <time.h> 58 #include <image.h> 59 60 #ifndef __maybe_unused 61 # define __maybe_unused /* unimplemented */ 62 #endif 63 #endif /* !USE_HOSTCC*/ 64 65 #include <u-boot/crc.h> 66 67 #ifndef CONFIG_SYS_BARGSIZE 68 #define CONFIG_SYS_BARGSIZE 512 69 #endif 70 71 static const table_entry_t uimage_arch[] = { 72 { IH_ARCH_INVALID, "invalid", "Invalid ARCH", }, 73 { IH_ARCH_ALPHA, "alpha", "Alpha", }, 74 { IH_ARCH_ARM, "arm", "ARM", }, 75 { IH_ARCH_I386, "x86", "Intel x86", }, 76 { IH_ARCH_IA64, "ia64", "IA64", }, 77 { IH_ARCH_M68K, "m68k", "M68K", }, 78 { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", }, 79 { IH_ARCH_MIPS, "mips", "MIPS", }, 80 { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", }, 81 { IH_ARCH_NIOS2, "nios2", "NIOS II", }, 82 { IH_ARCH_PPC, "powerpc", "PowerPC", }, 83 { IH_ARCH_PPC, "ppc", "PowerPC", }, 84 { IH_ARCH_S390, "s390", "IBM S390", }, 85 { IH_ARCH_SH, "sh", "SuperH", }, 86 { IH_ARCH_SPARC, "sparc", "SPARC", }, 87 { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", }, 88 { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", }, 89 { IH_ARCH_AVR32, "avr32", "AVR32", }, 90 { IH_ARCH_NDS32, "nds32", "NDS32", }, 91 { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",}, 92 { IH_ARCH_SANDBOX, "sandbox", "Sandbox", }, 93 { IH_ARCH_ARM64, "arm64", "AArch64", }, 94 { IH_ARCH_ARC, "arc", "ARC", }, 95 { IH_ARCH_X86_64, "x86_64", "AMD x86_64", }, 96 { IH_ARCH_XTENSA, "xtensa", "Xtensa", }, 97 { -1, "", "", }, 98 }; 99 100 static const table_entry_t uimage_os[] = { 101 { IH_OS_INVALID, "invalid", "Invalid OS", }, 102 { IH_OS_LINUX, "linux", "Linux", }, 103 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC) 104 { IH_OS_LYNXOS, "lynxos", "LynxOS", }, 105 #endif 106 { IH_OS_NETBSD, "netbsd", "NetBSD", }, 107 { IH_OS_OSE, "ose", "Enea OSE", }, 108 { IH_OS_PLAN9, "plan9", "Plan 9", }, 109 { IH_OS_RTEMS, "rtems", "RTEMS", }, 110 { IH_OS_U_BOOT, "u-boot", "U-Boot", }, 111 { IH_OS_VXWORKS, "vxworks", "VxWorks", }, 112 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC) 113 { IH_OS_QNX, "qnx", "QNX", }, 114 #endif 115 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC) 116 { IH_OS_INTEGRITY,"integrity", "INTEGRITY", }, 117 #endif 118 #ifdef USE_HOSTCC 119 { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", }, 120 { IH_OS_DELL, "dell", "Dell", }, 121 { IH_OS_ESIX, "esix", "Esix", }, 122 { IH_OS_FREEBSD, "freebsd", "FreeBSD", }, 123 { IH_OS_IRIX, "irix", "Irix", }, 124 { IH_OS_NCR, "ncr", "NCR", }, 125 { IH_OS_OPENBSD, "openbsd", "OpenBSD", }, 126 { IH_OS_PSOS, "psos", "pSOS", }, 127 { IH_OS_SCO, "sco", "SCO", }, 128 { IH_OS_SOLARIS, "solaris", "Solaris", }, 129 { IH_OS_SVR4, "svr4", "SVR4", }, 130 #endif 131 #if defined(CONFIG_BOOTM_OPENRTOS) || defined(USE_HOSTCC) 132 { IH_OS_OPENRTOS, "openrtos", "OpenRTOS", }, 133 #endif 134 135 { -1, "", "", }, 136 }; 137 138 static const table_entry_t uimage_type[] = { 139 { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",}, 140 { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", }, 141 { IH_TYPE_FIRMWARE, "firmware", "Firmware", }, 142 { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", }, 143 { IH_TYPE_GPIMAGE, "gpimage", "TI Keystone SPL Image",}, 144 { IH_TYPE_KERNEL, "kernel", "Kernel Image", }, 145 { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", }, 146 { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",}, 147 { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",}, 148 { IH_TYPE_INVALID, "invalid", "Invalid Image", }, 149 { IH_TYPE_MULTI, "multi", "Multi-File Image", }, 150 { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",}, 151 { IH_TYPE_PBLIMAGE, "pblimage", "Freescale PBL Boot Image",}, 152 { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", }, 153 { IH_TYPE_SCRIPT, "script", "Script", }, 154 { IH_TYPE_SOCFPGAIMAGE, "socfpgaimage", "Altera SOCFPGA preloader",}, 155 { IH_TYPE_STANDALONE, "standalone", "Standalone Program", }, 156 { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",}, 157 { IH_TYPE_MXSIMAGE, "mxsimage", "Freescale MXS Boot Image",}, 158 { IH_TYPE_ATMELIMAGE, "atmelimage", "ATMEL ROM-Boot Image",}, 159 { IH_TYPE_X86_SETUP, "x86_setup", "x86 setup.bin", }, 160 { IH_TYPE_LPC32XXIMAGE, "lpc32xximage", "LPC32XX Boot Image", }, 161 { IH_TYPE_RKIMAGE, "rkimage", "Rockchip Boot Image" }, 162 { IH_TYPE_RKSD, "rksd", "Rockchip SD Boot Image" }, 163 { IH_TYPE_RKSPI, "rkspi", "Rockchip SPI Boot Image" }, 164 { IH_TYPE_VYBRIDIMAGE, "vybridimage", "Vybrid Boot Image", }, 165 { IH_TYPE_ZYNQIMAGE, "zynqimage", "Xilinx Zynq Boot Image" }, 166 { IH_TYPE_ZYNQMPIMAGE, "zynqmpimage", "Xilinx ZynqMP Boot Image" }, 167 { IH_TYPE_FPGA, "fpga", "FPGA Image" }, 168 { -1, "", "", }, 169 }; 170 171 static const table_entry_t uimage_comp[] = { 172 { IH_COMP_NONE, "none", "uncompressed", }, 173 { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", }, 174 { IH_COMP_GZIP, "gzip", "gzip compressed", }, 175 { IH_COMP_LZMA, "lzma", "lzma compressed", }, 176 { IH_COMP_LZO, "lzo", "lzo compressed", }, 177 { IH_COMP_LZ4, "lz4", "lz4 compressed", }, 178 { -1, "", "", }, 179 }; 180 181 struct table_info { 182 const char *desc; 183 int count; 184 const table_entry_t *table; 185 }; 186 187 static const struct table_info table_info[IH_COUNT] = { 188 { "architecture", IH_ARCH_COUNT, uimage_arch }, 189 { "compression", IH_COMP_COUNT, uimage_comp }, 190 { "operating system", IH_OS_COUNT, uimage_os }, 191 { "image type", IH_TYPE_COUNT, uimage_type }, 192 }; 193 194 /*****************************************************************************/ 195 /* Legacy format routines */ 196 /*****************************************************************************/ 197 int image_check_hcrc(const image_header_t *hdr) 198 { 199 ulong hcrc; 200 ulong len = image_get_header_size(); 201 image_header_t header; 202 203 /* Copy header so we can blank CRC field for re-calculation */ 204 memmove(&header, (char *)hdr, image_get_header_size()); 205 image_set_hcrc(&header, 0); 206 207 hcrc = crc32(0, (unsigned char *)&header, len); 208 209 return (hcrc == image_get_hcrc(hdr)); 210 } 211 212 int image_check_dcrc(const image_header_t *hdr) 213 { 214 ulong data = image_get_data(hdr); 215 ulong len = image_get_data_size(hdr); 216 ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32); 217 218 return (dcrc == image_get_dcrc(hdr)); 219 } 220 221 /** 222 * image_multi_count - get component (sub-image) count 223 * @hdr: pointer to the header of the multi component image 224 * 225 * image_multi_count() returns number of components in a multi 226 * component image. 227 * 228 * Note: no checking of the image type is done, caller must pass 229 * a valid multi component image. 230 * 231 * returns: 232 * number of components 233 */ 234 ulong image_multi_count(const image_header_t *hdr) 235 { 236 ulong i, count = 0; 237 uint32_t *size; 238 239 /* get start of the image payload, which in case of multi 240 * component images that points to a table of component sizes */ 241 size = (uint32_t *)image_get_data(hdr); 242 243 /* count non empty slots */ 244 for (i = 0; size[i]; ++i) 245 count++; 246 247 return count; 248 } 249 250 /** 251 * image_multi_getimg - get component data address and size 252 * @hdr: pointer to the header of the multi component image 253 * @idx: index of the requested component 254 * @data: pointer to a ulong variable, will hold component data address 255 * @len: pointer to a ulong variable, will hold component size 256 * 257 * image_multi_getimg() returns size and data address for the requested 258 * component in a multi component image. 259 * 260 * Note: no checking of the image type is done, caller must pass 261 * a valid multi component image. 262 * 263 * returns: 264 * data address and size of the component, if idx is valid 265 * 0 in data and len, if idx is out of range 266 */ 267 void image_multi_getimg(const image_header_t *hdr, ulong idx, 268 ulong *data, ulong *len) 269 { 270 int i; 271 uint32_t *size; 272 ulong offset, count, img_data; 273 274 /* get number of component */ 275 count = image_multi_count(hdr); 276 277 /* get start of the image payload, which in case of multi 278 * component images that points to a table of component sizes */ 279 size = (uint32_t *)image_get_data(hdr); 280 281 /* get address of the proper component data start, which means 282 * skipping sizes table (add 1 for last, null entry) */ 283 img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t); 284 285 if (idx < count) { 286 *len = uimage_to_cpu(size[idx]); 287 offset = 0; 288 289 /* go over all indices preceding requested component idx */ 290 for (i = 0; i < idx; i++) { 291 /* add up i-th component size, rounding up to 4 bytes */ 292 offset += (uimage_to_cpu(size[i]) + 3) & ~3 ; 293 } 294 295 /* calculate idx-th component data address */ 296 *data = img_data + offset; 297 } else { 298 *len = 0; 299 *data = 0; 300 } 301 } 302 303 static void image_print_type(const image_header_t *hdr) 304 { 305 const char __maybe_unused *os, *arch, *type, *comp; 306 307 os = genimg_get_os_name(image_get_os(hdr)); 308 arch = genimg_get_arch_name(image_get_arch(hdr)); 309 type = genimg_get_type_name(image_get_type(hdr)); 310 comp = genimg_get_comp_name(image_get_comp(hdr)); 311 312 printf("%s %s %s (%s)\n", arch, os, type, comp); 313 } 314 315 /** 316 * image_print_contents - prints out the contents of the legacy format image 317 * @ptr: pointer to the legacy format image header 318 * @p: pointer to prefix string 319 * 320 * image_print_contents() formats a multi line legacy image contents description. 321 * The routine prints out all header fields followed by the size/offset data 322 * for MULTI/SCRIPT images. 323 * 324 * returns: 325 * no returned results 326 */ 327 void image_print_contents(const void *ptr) 328 { 329 const image_header_t *hdr = (const image_header_t *)ptr; 330 const char __maybe_unused *p; 331 332 p = IMAGE_INDENT_STRING; 333 printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr)); 334 if (IMAGE_ENABLE_TIMESTAMP) { 335 printf("%sCreated: ", p); 336 genimg_print_time((time_t)image_get_time(hdr)); 337 } 338 printf("%sImage Type: ", p); 339 image_print_type(hdr); 340 printf("%sData Size: ", p); 341 genimg_print_size(image_get_data_size(hdr)); 342 printf("%sLoad Address: %08x\n", p, image_get_load(hdr)); 343 printf("%sEntry Point: %08x\n", p, image_get_ep(hdr)); 344 345 if (image_check_type(hdr, IH_TYPE_MULTI) || 346 image_check_type(hdr, IH_TYPE_SCRIPT)) { 347 int i; 348 ulong data, len; 349 ulong count = image_multi_count(hdr); 350 351 printf("%sContents:\n", p); 352 for (i = 0; i < count; i++) { 353 image_multi_getimg(hdr, i, &data, &len); 354 355 printf("%s Image %d: ", p, i); 356 genimg_print_size(len); 357 358 if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) { 359 /* 360 * the user may need to know offsets 361 * if planning to do something with 362 * multiple files 363 */ 364 printf("%s Offset = 0x%08lx\n", p, data); 365 } 366 } 367 } 368 } 369 370 371 #ifndef USE_HOSTCC 372 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 373 /** 374 * image_get_ramdisk - get and verify ramdisk image 375 * @rd_addr: ramdisk image start address 376 * @arch: expected ramdisk architecture 377 * @verify: checksum verification flag 378 * 379 * image_get_ramdisk() returns a pointer to the verified ramdisk image 380 * header. Routine receives image start address and expected architecture 381 * flag. Verification done covers data and header integrity and os/type/arch 382 * fields checking. 383 * 384 * If dataflash support is enabled routine checks for dataflash addresses 385 * and handles required dataflash reads. 386 * 387 * returns: 388 * pointer to a ramdisk image header, if image was found and valid 389 * otherwise, return NULL 390 */ 391 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 392 int verify) 393 { 394 const image_header_t *rd_hdr = (const image_header_t *)rd_addr; 395 396 if (!image_check_magic(rd_hdr)) { 397 puts("Bad Magic Number\n"); 398 bootstage_error(BOOTSTAGE_ID_RD_MAGIC); 399 return NULL; 400 } 401 402 if (!image_check_hcrc(rd_hdr)) { 403 puts("Bad Header Checksum\n"); 404 bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 405 return NULL; 406 } 407 408 bootstage_mark(BOOTSTAGE_ID_RD_MAGIC); 409 image_print_contents(rd_hdr); 410 411 if (verify) { 412 puts(" Verifying Checksum ... "); 413 if (!image_check_dcrc(rd_hdr)) { 414 puts("Bad Data CRC\n"); 415 bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM); 416 return NULL; 417 } 418 puts("OK\n"); 419 } 420 421 bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 422 423 if (!image_check_os(rd_hdr, IH_OS_LINUX) || 424 !image_check_arch(rd_hdr, arch) || 425 !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) { 426 printf("No Linux %s Ramdisk Image\n", 427 genimg_get_arch_name(arch)); 428 bootstage_error(BOOTSTAGE_ID_RAMDISK); 429 return NULL; 430 } 431 432 return rd_hdr; 433 } 434 #endif 435 #endif /* !USE_HOSTCC */ 436 437 /*****************************************************************************/ 438 /* Shared dual-format routines */ 439 /*****************************************************************************/ 440 #ifndef USE_HOSTCC 441 ulong load_addr = CONFIG_SYS_LOAD_ADDR; /* Default Load Address */ 442 ulong save_addr; /* Default Save Address */ 443 ulong save_size; /* Default Save Size (in bytes) */ 444 445 static int on_loadaddr(const char *name, const char *value, enum env_op op, 446 int flags) 447 { 448 switch (op) { 449 case env_op_create: 450 case env_op_overwrite: 451 load_addr = simple_strtoul(value, NULL, 16); 452 break; 453 default: 454 break; 455 } 456 457 return 0; 458 } 459 U_BOOT_ENV_CALLBACK(loadaddr, on_loadaddr); 460 461 ulong getenv_bootm_low(void) 462 { 463 char *s = getenv("bootm_low"); 464 if (s) { 465 ulong tmp = simple_strtoul(s, NULL, 16); 466 return tmp; 467 } 468 469 #if defined(CONFIG_SYS_SDRAM_BASE) 470 return CONFIG_SYS_SDRAM_BASE; 471 #elif defined(CONFIG_ARM) 472 return gd->bd->bi_dram[0].start; 473 #else 474 return 0; 475 #endif 476 } 477 478 phys_size_t getenv_bootm_size(void) 479 { 480 phys_size_t tmp, size; 481 phys_addr_t start; 482 char *s = getenv("bootm_size"); 483 if (s) { 484 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 485 return tmp; 486 } 487 488 #if defined(CONFIG_ARM) && defined(CONFIG_NR_DRAM_BANKS) 489 start = gd->bd->bi_dram[0].start; 490 size = gd->bd->bi_dram[0].size; 491 #else 492 start = gd->bd->bi_memstart; 493 size = gd->bd->bi_memsize; 494 #endif 495 496 s = getenv("bootm_low"); 497 if (s) 498 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 499 else 500 tmp = start; 501 502 return size - (tmp - start); 503 } 504 505 phys_size_t getenv_bootm_mapsize(void) 506 { 507 phys_size_t tmp; 508 char *s = getenv("bootm_mapsize"); 509 if (s) { 510 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 511 return tmp; 512 } 513 514 #if defined(CONFIG_SYS_BOOTMAPSZ) 515 return CONFIG_SYS_BOOTMAPSZ; 516 #else 517 return getenv_bootm_size(); 518 #endif 519 } 520 521 void memmove_wd(void *to, void *from, size_t len, ulong chunksz) 522 { 523 if (to == from) 524 return; 525 526 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 527 if (to > from) { 528 from += len; 529 to += len; 530 } 531 while (len > 0) { 532 size_t tail = (len > chunksz) ? chunksz : len; 533 WATCHDOG_RESET(); 534 if (to > from) { 535 to -= tail; 536 from -= tail; 537 } 538 memmove(to, from, tail); 539 if (to < from) { 540 to += tail; 541 from += tail; 542 } 543 len -= tail; 544 } 545 #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */ 546 memmove(to, from, len); 547 #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */ 548 } 549 #endif /* !USE_HOSTCC */ 550 551 void genimg_print_size(uint32_t size) 552 { 553 #ifndef USE_HOSTCC 554 printf("%d Bytes = ", size); 555 print_size(size, "\n"); 556 #else 557 printf("%d Bytes = %.2f kB = %.2f MB\n", 558 size, (double)size / 1.024e3, 559 (double)size / 1.048576e6); 560 #endif 561 } 562 563 #if IMAGE_ENABLE_TIMESTAMP 564 void genimg_print_time(time_t timestamp) 565 { 566 #ifndef USE_HOSTCC 567 struct rtc_time tm; 568 569 rtc_to_tm(timestamp, &tm); 570 printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n", 571 tm.tm_year, tm.tm_mon, tm.tm_mday, 572 tm.tm_hour, tm.tm_min, tm.tm_sec); 573 #else 574 printf("%s", ctime(×tamp)); 575 #endif 576 } 577 #endif 578 579 const table_entry_t *get_table_entry(const table_entry_t *table, int id) 580 { 581 for (; table->id >= 0; ++table) { 582 if (table->id == id) 583 return table; 584 } 585 return NULL; 586 } 587 588 static const char *unknown_msg(enum ih_category category) 589 { 590 static char msg[30]; 591 592 strcpy(msg, "Unknown "); 593 strcat(msg, table_info[category].desc); 594 595 return msg; 596 } 597 598 /** 599 * get_cat_table_entry_name - translate entry id to long name 600 * @category: category to look up (enum ih_category) 601 * @id: entry id to be translated 602 * 603 * This will scan the translation table trying to find the entry that matches 604 * the given id. 605 * 606 * @retur long entry name if translation succeeds; error string on failure 607 */ 608 const char *genimg_get_cat_name(enum ih_category category, uint id) 609 { 610 const table_entry_t *entry; 611 612 entry = get_table_entry(table_info[category].table, id); 613 if (!entry) 614 return unknown_msg(category); 615 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 616 return entry->lname; 617 #else 618 return entry->lname + gd->reloc_off; 619 #endif 620 } 621 622 /** 623 * get_cat_table_entry_short_name - translate entry id to short name 624 * @category: category to look up (enum ih_category) 625 * @id: entry id to be translated 626 * 627 * This will scan the translation table trying to find the entry that matches 628 * the given id. 629 * 630 * @retur short entry name if translation succeeds; error string on failure 631 */ 632 const char *genimg_get_cat_short_name(enum ih_category category, uint id) 633 { 634 const table_entry_t *entry; 635 636 entry = get_table_entry(table_info[category].table, id); 637 if (!entry) 638 return unknown_msg(category); 639 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 640 return entry->sname; 641 #else 642 return entry->sname + gd->reloc_off; 643 #endif 644 } 645 646 int genimg_get_cat_count(enum ih_category category) 647 { 648 return table_info[category].count; 649 } 650 651 const char *genimg_get_cat_desc(enum ih_category category) 652 { 653 return table_info[category].desc; 654 } 655 656 /** 657 * get_table_entry_name - translate entry id to long name 658 * @table: pointer to a translation table for entries of a specific type 659 * @msg: message to be returned when translation fails 660 * @id: entry id to be translated 661 * 662 * get_table_entry_name() will go over translation table trying to find 663 * entry that matches given id. If matching entry is found, its long 664 * name is returned to the caller. 665 * 666 * returns: 667 * long entry name if translation succeeds 668 * msg otherwise 669 */ 670 char *get_table_entry_name(const table_entry_t *table, char *msg, int id) 671 { 672 table = get_table_entry(table, id); 673 if (!table) 674 return msg; 675 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 676 return table->lname; 677 #else 678 return table->lname + gd->reloc_off; 679 #endif 680 } 681 682 const char *genimg_get_os_name(uint8_t os) 683 { 684 return (get_table_entry_name(uimage_os, "Unknown OS", os)); 685 } 686 687 const char *genimg_get_arch_name(uint8_t arch) 688 { 689 return (get_table_entry_name(uimage_arch, "Unknown Architecture", 690 arch)); 691 } 692 693 const char *genimg_get_type_name(uint8_t type) 694 { 695 return (get_table_entry_name(uimage_type, "Unknown Image", type)); 696 } 697 698 static const char *genimg_get_short_name(const table_entry_t *table, int val) 699 { 700 table = get_table_entry(table, val); 701 if (!table) 702 return "unknown"; 703 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 704 return table->sname; 705 #else 706 return table->sname + gd->reloc_off; 707 #endif 708 } 709 710 const char *genimg_get_type_short_name(uint8_t type) 711 { 712 return genimg_get_short_name(uimage_type, type); 713 } 714 715 const char *genimg_get_comp_name(uint8_t comp) 716 { 717 return (get_table_entry_name(uimage_comp, "Unknown Compression", 718 comp)); 719 } 720 721 const char *genimg_get_comp_short_name(uint8_t comp) 722 { 723 return genimg_get_short_name(uimage_comp, comp); 724 } 725 726 const char *genimg_get_os_short_name(uint8_t os) 727 { 728 return genimg_get_short_name(uimage_os, os); 729 } 730 731 const char *genimg_get_arch_short_name(uint8_t arch) 732 { 733 return genimg_get_short_name(uimage_arch, arch); 734 } 735 736 /** 737 * get_table_entry_id - translate short entry name to id 738 * @table: pointer to a translation table for entries of a specific type 739 * @table_name: to be used in case of error 740 * @name: entry short name to be translated 741 * 742 * get_table_entry_id() will go over translation table trying to find 743 * entry that matches given short name. If matching entry is found, 744 * its id returned to the caller. 745 * 746 * returns: 747 * entry id if translation succeeds 748 * -1 otherwise 749 */ 750 int get_table_entry_id(const table_entry_t *table, 751 const char *table_name, const char *name) 752 { 753 const table_entry_t *t; 754 755 for (t = table; t->id >= 0; ++t) { 756 #ifdef CONFIG_NEEDS_MANUAL_RELOC 757 if (t->sname && strcasecmp(t->sname + gd->reloc_off, name) == 0) 758 #else 759 if (t->sname && strcasecmp(t->sname, name) == 0) 760 #endif 761 return (t->id); 762 } 763 debug("Invalid %s Type: %s\n", table_name, name); 764 765 return -1; 766 } 767 768 int genimg_get_os_id(const char *name) 769 { 770 return (get_table_entry_id(uimage_os, "OS", name)); 771 } 772 773 int genimg_get_arch_id(const char *name) 774 { 775 return (get_table_entry_id(uimage_arch, "CPU", name)); 776 } 777 778 int genimg_get_type_id(const char *name) 779 { 780 return (get_table_entry_id(uimage_type, "Image", name)); 781 } 782 783 int genimg_get_comp_id(const char *name) 784 { 785 return (get_table_entry_id(uimage_comp, "Compression", name)); 786 } 787 788 #ifndef USE_HOSTCC 789 /** 790 * genimg_get_kernel_addr_fit - get the real kernel address and return 2 791 * FIT strings 792 * @img_addr: a string might contain real image address 793 * @fit_uname_config: double pointer to a char, will hold pointer to a 794 * configuration unit name 795 * @fit_uname_kernel: double pointer to a char, will hold pointer to a subimage 796 * name 797 * 798 * genimg_get_kernel_addr_fit get the real kernel start address from a string 799 * which is normally the first argv of bootm/bootz 800 * 801 * returns: 802 * kernel start address 803 */ 804 ulong genimg_get_kernel_addr_fit(char * const img_addr, 805 const char **fit_uname_config, 806 const char **fit_uname_kernel) 807 { 808 ulong kernel_addr; 809 810 /* find out kernel image address */ 811 if (!img_addr) { 812 kernel_addr = load_addr; 813 debug("* kernel: default image load address = 0x%08lx\n", 814 load_addr); 815 #if CONFIG_IS_ENABLED(FIT) 816 } else if (fit_parse_conf(img_addr, load_addr, &kernel_addr, 817 fit_uname_config)) { 818 debug("* kernel: config '%s' from image at 0x%08lx\n", 819 *fit_uname_config, kernel_addr); 820 } else if (fit_parse_subimage(img_addr, load_addr, &kernel_addr, 821 fit_uname_kernel)) { 822 debug("* kernel: subimage '%s' from image at 0x%08lx\n", 823 *fit_uname_kernel, kernel_addr); 824 #endif 825 } else { 826 kernel_addr = simple_strtoul(img_addr, NULL, 16); 827 debug("* kernel: cmdline image address = 0x%08lx\n", 828 kernel_addr); 829 } 830 831 return kernel_addr; 832 } 833 834 /** 835 * genimg_get_kernel_addr() is the simple version of 836 * genimg_get_kernel_addr_fit(). It ignores those return FIT strings 837 */ 838 ulong genimg_get_kernel_addr(char * const img_addr) 839 { 840 const char *fit_uname_config = NULL; 841 const char *fit_uname_kernel = NULL; 842 843 return genimg_get_kernel_addr_fit(img_addr, &fit_uname_config, 844 &fit_uname_kernel); 845 } 846 847 /** 848 * genimg_get_format - get image format type 849 * @img_addr: image start address 850 * 851 * genimg_get_format() checks whether provided address points to a valid 852 * legacy or FIT image. 853 * 854 * New uImage format and FDT blob are based on a libfdt. FDT blob 855 * may be passed directly or embedded in a FIT image. In both situations 856 * genimg_get_format() must be able to dectect libfdt header. 857 * 858 * returns: 859 * image format type or IMAGE_FORMAT_INVALID if no image is present 860 */ 861 int genimg_get_format(const void *img_addr) 862 { 863 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 864 const image_header_t *hdr; 865 866 hdr = (const image_header_t *)img_addr; 867 if (image_check_magic(hdr)) 868 return IMAGE_FORMAT_LEGACY; 869 #endif 870 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT 871 if (fdt_check_header(img_addr) == 0) 872 return IMAGE_FORMAT_FIT; 873 #endif 874 #ifdef CONFIG_ANDROID_BOOT_IMAGE 875 if (android_image_check_header(img_addr) == 0) 876 return IMAGE_FORMAT_ANDROID; 877 #endif 878 879 return IMAGE_FORMAT_INVALID; 880 } 881 882 /** 883 * genimg_get_image - get image from special storage (if necessary) 884 * @img_addr: image start address 885 * 886 * genimg_get_image() checks if provided image start address is located 887 * in a dataflash storage. If so, image is moved to a system RAM memory. 888 * 889 * returns: 890 * image start address after possible relocation from special storage 891 */ 892 ulong genimg_get_image(ulong img_addr) 893 { 894 ulong ram_addr = img_addr; 895 896 #ifdef CONFIG_HAS_DATAFLASH 897 ulong h_size, d_size; 898 899 if (addr_dataflash(img_addr)) { 900 void *buf; 901 902 /* ger RAM address */ 903 ram_addr = CONFIG_SYS_LOAD_ADDR; 904 905 /* get header size */ 906 h_size = image_get_header_size(); 907 #if IMAGE_ENABLE_FIT 908 if (sizeof(struct fdt_header) > h_size) 909 h_size = sizeof(struct fdt_header); 910 #endif 911 912 /* read in header */ 913 debug(" Reading image header from dataflash address " 914 "%08lx to RAM address %08lx\n", img_addr, ram_addr); 915 916 buf = map_sysmem(ram_addr, 0); 917 read_dataflash(img_addr, h_size, buf); 918 919 /* get data size */ 920 switch (genimg_get_format(buf)) { 921 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 922 case IMAGE_FORMAT_LEGACY: 923 d_size = image_get_data_size(buf); 924 debug(" Legacy format image found at 0x%08lx, " 925 "size 0x%08lx\n", 926 ram_addr, d_size); 927 break; 928 #endif 929 #if IMAGE_ENABLE_FIT 930 case IMAGE_FORMAT_FIT: 931 d_size = fit_get_size(buf) - h_size; 932 debug(" FIT/FDT format image found at 0x%08lx, " 933 "size 0x%08lx\n", 934 ram_addr, d_size); 935 break; 936 #endif 937 default: 938 printf(" No valid image found at 0x%08lx\n", 939 img_addr); 940 return ram_addr; 941 } 942 943 /* read in image data */ 944 debug(" Reading image remaining data from dataflash address " 945 "%08lx to RAM address %08lx\n", img_addr + h_size, 946 ram_addr + h_size); 947 948 read_dataflash(img_addr + h_size, d_size, 949 (char *)(buf + h_size)); 950 951 } 952 #endif /* CONFIG_HAS_DATAFLASH */ 953 954 return ram_addr; 955 } 956 957 /** 958 * fit_has_config - check if there is a valid FIT configuration 959 * @images: pointer to the bootm command headers structure 960 * 961 * fit_has_config() checks if there is a FIT configuration in use 962 * (if FTI support is present). 963 * 964 * returns: 965 * 0, no FIT support or no configuration found 966 * 1, configuration found 967 */ 968 int genimg_has_config(bootm_headers_t *images) 969 { 970 #if IMAGE_ENABLE_FIT 971 if (images->fit_uname_cfg) 972 return 1; 973 #endif 974 return 0; 975 } 976 977 /** 978 * boot_get_ramdisk - main ramdisk handling routine 979 * @argc: command argument count 980 * @argv: command argument list 981 * @images: pointer to the bootm images structure 982 * @arch: expected ramdisk architecture 983 * @rd_start: pointer to a ulong variable, will hold ramdisk start address 984 * @rd_end: pointer to a ulong variable, will hold ramdisk end 985 * 986 * boot_get_ramdisk() is responsible for finding a valid ramdisk image. 987 * Curently supported are the following ramdisk sources: 988 * - multicomponent kernel/ramdisk image, 989 * - commandline provided address of decicated ramdisk image. 990 * 991 * returns: 992 * 0, if ramdisk image was found and valid, or skiped 993 * rd_start and rd_end are set to ramdisk start/end addresses if 994 * ramdisk image is found and valid 995 * 996 * 1, if ramdisk image is found but corrupted, or invalid 997 * rd_start and rd_end are set to 0 if no ramdisk exists 998 */ 999 int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images, 1000 uint8_t arch, ulong *rd_start, ulong *rd_end) 1001 { 1002 ulong rd_addr, rd_load; 1003 ulong rd_data, rd_len; 1004 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 1005 const image_header_t *rd_hdr; 1006 #endif 1007 void *buf; 1008 #ifdef CONFIG_SUPPORT_RAW_INITRD 1009 char *end; 1010 #endif 1011 #if IMAGE_ENABLE_FIT 1012 const char *fit_uname_config = images->fit_uname_cfg; 1013 const char *fit_uname_ramdisk = NULL; 1014 ulong default_addr; 1015 int rd_noffset; 1016 #endif 1017 const char *select = NULL; 1018 1019 *rd_start = 0; 1020 *rd_end = 0; 1021 1022 #ifdef CONFIG_ANDROID_BOOT_IMAGE 1023 /* 1024 * Look for an Android boot image. 1025 */ 1026 buf = map_sysmem(images->os.start, 0); 1027 if (buf && genimg_get_format(buf) == IMAGE_FORMAT_ANDROID) 1028 select = argv[0]; 1029 #endif 1030 1031 if (argc >= 2) 1032 select = argv[1]; 1033 1034 /* 1035 * Look for a '-' which indicates to ignore the 1036 * ramdisk argument 1037 */ 1038 if (select && strcmp(select, "-") == 0) { 1039 debug("## Skipping init Ramdisk\n"); 1040 rd_len = rd_data = 0; 1041 } else if (select || genimg_has_config(images)) { 1042 #if IMAGE_ENABLE_FIT 1043 if (select) { 1044 /* 1045 * If the init ramdisk comes from the FIT image and 1046 * the FIT image address is omitted in the command 1047 * line argument, try to use os FIT image address or 1048 * default load address. 1049 */ 1050 if (images->fit_uname_os) 1051 default_addr = (ulong)images->fit_hdr_os; 1052 else 1053 default_addr = load_addr; 1054 1055 if (fit_parse_conf(select, default_addr, 1056 &rd_addr, &fit_uname_config)) { 1057 debug("* ramdisk: config '%s' from image at " 1058 "0x%08lx\n", 1059 fit_uname_config, rd_addr); 1060 } else if (fit_parse_subimage(select, default_addr, 1061 &rd_addr, &fit_uname_ramdisk)) { 1062 debug("* ramdisk: subimage '%s' from image at " 1063 "0x%08lx\n", 1064 fit_uname_ramdisk, rd_addr); 1065 } else 1066 #endif 1067 { 1068 rd_addr = simple_strtoul(select, NULL, 16); 1069 debug("* ramdisk: cmdline image address = " 1070 "0x%08lx\n", 1071 rd_addr); 1072 } 1073 #if IMAGE_ENABLE_FIT 1074 } else { 1075 /* use FIT configuration provided in first bootm 1076 * command argument. If the property is not defined, 1077 * quit silently. 1078 */ 1079 rd_addr = map_to_sysmem(images->fit_hdr_os); 1080 rd_noffset = fit_get_node_from_config(images, 1081 FIT_RAMDISK_PROP, rd_addr); 1082 if (rd_noffset == -ENOENT) 1083 return 0; 1084 else if (rd_noffset < 0) 1085 return 1; 1086 } 1087 #endif 1088 1089 /* copy from dataflash if needed */ 1090 rd_addr = genimg_get_image(rd_addr); 1091 1092 /* 1093 * Check if there is an initrd image at the 1094 * address provided in the second bootm argument 1095 * check image type, for FIT images get FIT node. 1096 */ 1097 buf = map_sysmem(rd_addr, 0); 1098 switch (genimg_get_format(buf)) { 1099 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 1100 case IMAGE_FORMAT_LEGACY: 1101 printf("## Loading init Ramdisk from Legacy " 1102 "Image at %08lx ...\n", rd_addr); 1103 1104 bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK); 1105 rd_hdr = image_get_ramdisk(rd_addr, arch, 1106 images->verify); 1107 1108 if (rd_hdr == NULL) 1109 return 1; 1110 1111 rd_data = image_get_data(rd_hdr); 1112 rd_len = image_get_data_size(rd_hdr); 1113 rd_load = image_get_load(rd_hdr); 1114 break; 1115 #endif 1116 #if IMAGE_ENABLE_FIT 1117 case IMAGE_FORMAT_FIT: 1118 rd_noffset = fit_image_load(images, 1119 rd_addr, &fit_uname_ramdisk, 1120 &fit_uname_config, arch, 1121 IH_TYPE_RAMDISK, 1122 BOOTSTAGE_ID_FIT_RD_START, 1123 FIT_LOAD_OPTIONAL_NON_ZERO, 1124 &rd_data, &rd_len); 1125 if (rd_noffset < 0) 1126 return 1; 1127 1128 images->fit_hdr_rd = map_sysmem(rd_addr, 0); 1129 images->fit_uname_rd = fit_uname_ramdisk; 1130 images->fit_noffset_rd = rd_noffset; 1131 break; 1132 #endif 1133 #ifdef CONFIG_ANDROID_BOOT_IMAGE 1134 case IMAGE_FORMAT_ANDROID: 1135 android_image_get_ramdisk((void *)images->os.start, 1136 &rd_data, &rd_len); 1137 break; 1138 #endif 1139 default: 1140 #ifdef CONFIG_SUPPORT_RAW_INITRD 1141 end = NULL; 1142 if (select) 1143 end = strchr(select, ':'); 1144 if (end) { 1145 rd_len = simple_strtoul(++end, NULL, 16); 1146 rd_data = rd_addr; 1147 } else 1148 #endif 1149 { 1150 puts("Wrong Ramdisk Image Format\n"); 1151 rd_data = rd_len = rd_load = 0; 1152 return 1; 1153 } 1154 } 1155 } else if (images->legacy_hdr_valid && 1156 image_check_type(&images->legacy_hdr_os_copy, 1157 IH_TYPE_MULTI)) { 1158 1159 /* 1160 * Now check if we have a legacy mult-component image, 1161 * get second entry data start address and len. 1162 */ 1163 bootstage_mark(BOOTSTAGE_ID_RAMDISK); 1164 printf("## Loading init Ramdisk from multi component " 1165 "Legacy Image at %08lx ...\n", 1166 (ulong)images->legacy_hdr_os); 1167 1168 image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len); 1169 } else { 1170 /* 1171 * no initrd image 1172 */ 1173 bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK); 1174 rd_len = rd_data = 0; 1175 } 1176 1177 if (!rd_data) { 1178 debug("## No init Ramdisk\n"); 1179 } else { 1180 *rd_start = rd_data; 1181 *rd_end = rd_data + rd_len; 1182 } 1183 debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n", 1184 *rd_start, *rd_end); 1185 1186 return 0; 1187 } 1188 1189 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH 1190 /** 1191 * boot_ramdisk_high - relocate init ramdisk 1192 * @lmb: pointer to lmb handle, will be used for memory mgmt 1193 * @rd_data: ramdisk data start address 1194 * @rd_len: ramdisk data length 1195 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk 1196 * start address (after possible relocation) 1197 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk 1198 * end address (after possible relocation) 1199 * 1200 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environment 1201 * variable and if requested ramdisk data is moved to a specified location. 1202 * 1203 * Initrd_start and initrd_end are set to final (after relocation) ramdisk 1204 * start/end addresses if ramdisk image start and len were provided, 1205 * otherwise set initrd_start and initrd_end set to zeros. 1206 * 1207 * returns: 1208 * 0 - success 1209 * -1 - failure 1210 */ 1211 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len, 1212 ulong *initrd_start, ulong *initrd_end) 1213 { 1214 char *s; 1215 ulong initrd_high; 1216 int initrd_copy_to_ram = 1; 1217 1218 if ((s = getenv("initrd_high")) != NULL) { 1219 /* a value of "no" or a similar string will act like 0, 1220 * turning the "load high" feature off. This is intentional. 1221 */ 1222 initrd_high = simple_strtoul(s, NULL, 16); 1223 if (initrd_high == ~0) 1224 initrd_copy_to_ram = 0; 1225 } else { 1226 initrd_high = getenv_bootm_mapsize() + getenv_bootm_low(); 1227 } 1228 1229 1230 #ifdef CONFIG_LOGBUFFER 1231 /* Prevent initrd from overwriting logbuffer */ 1232 lmb_reserve(lmb, logbuffer_base() - LOGBUFF_OVERHEAD, LOGBUFF_RESERVE); 1233 #endif 1234 1235 debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n", 1236 initrd_high, initrd_copy_to_ram); 1237 1238 if (rd_data) { 1239 if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */ 1240 debug(" in-place initrd\n"); 1241 *initrd_start = rd_data; 1242 *initrd_end = rd_data + rd_len; 1243 lmb_reserve(lmb, rd_data, rd_len); 1244 } else { 1245 if (initrd_high) 1246 *initrd_start = (ulong)lmb_alloc_base(lmb, 1247 rd_len, 0x1000, initrd_high); 1248 else 1249 *initrd_start = (ulong)lmb_alloc(lmb, rd_len, 1250 0x1000); 1251 1252 if (*initrd_start == 0) { 1253 puts("ramdisk - allocation error\n"); 1254 goto error; 1255 } 1256 bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK); 1257 1258 *initrd_end = *initrd_start + rd_len; 1259 printf(" Loading Ramdisk to %08lx, end %08lx ... ", 1260 *initrd_start, *initrd_end); 1261 1262 memmove_wd((void *)*initrd_start, 1263 (void *)rd_data, rd_len, CHUNKSZ); 1264 1265 #ifdef CONFIG_MP 1266 /* 1267 * Ensure the image is flushed to memory to handle 1268 * AMP boot scenarios in which we might not be 1269 * HW cache coherent 1270 */ 1271 flush_cache((unsigned long)*initrd_start, rd_len); 1272 #endif 1273 puts("OK\n"); 1274 } 1275 } else { 1276 *initrd_start = 0; 1277 *initrd_end = 0; 1278 } 1279 debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n", 1280 *initrd_start, *initrd_end); 1281 1282 return 0; 1283 1284 error: 1285 return -1; 1286 } 1287 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */ 1288 1289 int boot_get_setup(bootm_headers_t *images, uint8_t arch, 1290 ulong *setup_start, ulong *setup_len) 1291 { 1292 #if IMAGE_ENABLE_FIT 1293 return boot_get_setup_fit(images, arch, setup_start, setup_len); 1294 #else 1295 return -ENOENT; 1296 #endif 1297 } 1298 1299 #if IMAGE_ENABLE_FIT 1300 #if defined(CONFIG_FPGA) && defined(CONFIG_FPGA_XILINX) 1301 int boot_get_fpga(int argc, char * const argv[], bootm_headers_t *images, 1302 uint8_t arch, const ulong *ld_start, ulong * const ld_len) 1303 { 1304 ulong tmp_img_addr, img_data, img_len; 1305 void *buf; 1306 int conf_noffset; 1307 int fit_img_result; 1308 char *uname, *name; 1309 int err; 1310 int devnum = 0; /* TODO support multi fpga platforms */ 1311 const fpga_desc * const desc = fpga_get_desc(devnum); 1312 xilinx_desc *desc_xilinx = desc->devdesc; 1313 1314 /* Check to see if the images struct has a FIT configuration */ 1315 if (!genimg_has_config(images)) { 1316 debug("## FIT configuration was not specified\n"); 1317 return 0; 1318 } 1319 1320 /* 1321 * Obtain the os FIT header from the images struct 1322 * copy from dataflash if needed 1323 */ 1324 tmp_img_addr = map_to_sysmem(images->fit_hdr_os); 1325 tmp_img_addr = genimg_get_image(tmp_img_addr); 1326 buf = map_sysmem(tmp_img_addr, 0); 1327 /* 1328 * Check image type. For FIT images get FIT node 1329 * and attempt to locate a generic binary. 1330 */ 1331 switch (genimg_get_format(buf)) { 1332 case IMAGE_FORMAT_FIT: 1333 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg); 1334 1335 err = fdt_get_string_index(buf, conf_noffset, FIT_FPGA_PROP, 0, 1336 (const char **)&uname); 1337 if (err < 0) { 1338 debug("## FPGA image is not specified\n"); 1339 return 0; 1340 } 1341 fit_img_result = fit_image_load(images, 1342 tmp_img_addr, 1343 (const char **)&uname, 1344 &(images->fit_uname_cfg), 1345 arch, 1346 IH_TYPE_FPGA, 1347 BOOTSTAGE_ID_FPGA_INIT, 1348 FIT_LOAD_OPTIONAL_NON_ZERO, 1349 &img_data, &img_len); 1350 1351 debug("FPGA image (%s) loaded to 0x%lx/size 0x%lx\n", 1352 uname, img_data, img_len); 1353 1354 if (fit_img_result < 0) { 1355 /* Something went wrong! */ 1356 return fit_img_result; 1357 } 1358 1359 if (img_len >= desc_xilinx->size) { 1360 name = "full"; 1361 err = fpga_loadbitstream(devnum, (char *)img_data, 1362 img_len, BIT_FULL); 1363 if (err) 1364 err = fpga_load(devnum, (const void *)img_data, 1365 img_len, BIT_FULL); 1366 } else { 1367 name = "partial"; 1368 err = fpga_loadbitstream(devnum, (char *)img_data, 1369 img_len, BIT_PARTIAL); 1370 if (err) 1371 err = fpga_load(devnum, (const void *)img_data, 1372 img_len, BIT_PARTIAL); 1373 } 1374 1375 printf(" Programming %s bitstream... ", name); 1376 if (err) 1377 printf("failed\n"); 1378 else 1379 printf("OK\n"); 1380 break; 1381 default: 1382 printf("The given image format is not supported (corrupt?)\n"); 1383 return 1; 1384 } 1385 1386 return 0; 1387 } 1388 #endif 1389 1390 int boot_get_loadable(int argc, char * const argv[], bootm_headers_t *images, 1391 uint8_t arch, const ulong *ld_start, ulong * const ld_len) 1392 { 1393 /* 1394 * These variables are used to hold the current image location 1395 * in system memory. 1396 */ 1397 ulong tmp_img_addr; 1398 /* 1399 * These two variables are requirements for fit_image_load, but 1400 * their values are not used 1401 */ 1402 ulong img_data, img_len; 1403 void *buf; 1404 int loadables_index; 1405 int conf_noffset; 1406 int fit_img_result; 1407 char *uname; 1408 1409 /* Check to see if the images struct has a FIT configuration */ 1410 if (!genimg_has_config(images)) { 1411 debug("## FIT configuration was not specified\n"); 1412 return 0; 1413 } 1414 1415 /* 1416 * Obtain the os FIT header from the images struct 1417 * copy from dataflash if needed 1418 */ 1419 tmp_img_addr = map_to_sysmem(images->fit_hdr_os); 1420 tmp_img_addr = genimg_get_image(tmp_img_addr); 1421 buf = map_sysmem(tmp_img_addr, 0); 1422 /* 1423 * Check image type. For FIT images get FIT node 1424 * and attempt to locate a generic binary. 1425 */ 1426 switch (genimg_get_format(buf)) { 1427 case IMAGE_FORMAT_FIT: 1428 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg); 1429 1430 for (loadables_index = 0; 1431 fdt_get_string_index(buf, conf_noffset, 1432 FIT_LOADABLE_PROP, 1433 loadables_index, 1434 (const char **)&uname) == 0; 1435 loadables_index++) 1436 { 1437 fit_img_result = fit_image_load(images, 1438 tmp_img_addr, 1439 (const char **)&uname, 1440 &(images->fit_uname_cfg), arch, 1441 IH_TYPE_LOADABLE, 1442 BOOTSTAGE_ID_FIT_LOADABLE_START, 1443 FIT_LOAD_OPTIONAL_NON_ZERO, 1444 &img_data, &img_len); 1445 if (fit_img_result < 0) { 1446 /* Something went wrong! */ 1447 return fit_img_result; 1448 } 1449 } 1450 break; 1451 default: 1452 printf("The given image format is not supported (corrupt?)\n"); 1453 return 1; 1454 } 1455 1456 return 0; 1457 } 1458 #endif 1459 1460 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE 1461 /** 1462 * boot_get_cmdline - allocate and initialize kernel cmdline 1463 * @lmb: pointer to lmb handle, will be used for memory mgmt 1464 * @cmd_start: pointer to a ulong variable, will hold cmdline start 1465 * @cmd_end: pointer to a ulong variable, will hold cmdline end 1466 * 1467 * boot_get_cmdline() allocates space for kernel command line below 1468 * BOOTMAPSZ + getenv_bootm_low() address. If "bootargs" U-Boot environemnt 1469 * variable is present its contents is copied to allocated kernel 1470 * command line. 1471 * 1472 * returns: 1473 * 0 - success 1474 * -1 - failure 1475 */ 1476 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end) 1477 { 1478 char *cmdline; 1479 char *s; 1480 1481 cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf, 1482 getenv_bootm_mapsize() + getenv_bootm_low()); 1483 1484 if (cmdline == NULL) 1485 return -1; 1486 1487 if ((s = getenv("bootargs")) == NULL) 1488 s = ""; 1489 1490 strcpy(cmdline, s); 1491 1492 *cmd_start = (ulong) & cmdline[0]; 1493 *cmd_end = *cmd_start + strlen(cmdline); 1494 1495 debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end); 1496 1497 return 0; 1498 } 1499 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */ 1500 1501 #ifdef CONFIG_SYS_BOOT_GET_KBD 1502 /** 1503 * boot_get_kbd - allocate and initialize kernel copy of board info 1504 * @lmb: pointer to lmb handle, will be used for memory mgmt 1505 * @kbd: double pointer to board info data 1506 * 1507 * boot_get_kbd() allocates space for kernel copy of board info data below 1508 * BOOTMAPSZ + getenv_bootm_low() address and kernel board info is initialized 1509 * with the current u-boot board info data. 1510 * 1511 * returns: 1512 * 0 - success 1513 * -1 - failure 1514 */ 1515 int boot_get_kbd(struct lmb *lmb, bd_t **kbd) 1516 { 1517 *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf, 1518 getenv_bootm_mapsize() + getenv_bootm_low()); 1519 if (*kbd == NULL) 1520 return -1; 1521 1522 **kbd = *(gd->bd); 1523 1524 debug("## kernel board info at 0x%08lx\n", (ulong)*kbd); 1525 1526 #if defined(DEBUG) && defined(CONFIG_CMD_BDI) 1527 do_bdinfo(NULL, 0, 0, NULL); 1528 #endif 1529 1530 return 0; 1531 } 1532 #endif /* CONFIG_SYS_BOOT_GET_KBD */ 1533 1534 #ifdef CONFIG_LMB 1535 int image_setup_linux(bootm_headers_t *images) 1536 { 1537 ulong of_size = images->ft_len; 1538 char **of_flat_tree = &images->ft_addr; 1539 ulong *initrd_start = &images->initrd_start; 1540 ulong *initrd_end = &images->initrd_end; 1541 struct lmb *lmb = &images->lmb; 1542 ulong rd_len; 1543 int ret; 1544 1545 if (IMAGE_ENABLE_OF_LIBFDT) 1546 boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree); 1547 1548 if (IMAGE_BOOT_GET_CMDLINE) { 1549 ret = boot_get_cmdline(lmb, &images->cmdline_start, 1550 &images->cmdline_end); 1551 if (ret) { 1552 puts("ERROR with allocation of cmdline\n"); 1553 return ret; 1554 } 1555 } 1556 if (IMAGE_ENABLE_RAMDISK_HIGH) { 1557 rd_len = images->rd_end - images->rd_start; 1558 ret = boot_ramdisk_high(lmb, images->rd_start, rd_len, 1559 initrd_start, initrd_end); 1560 if (ret) 1561 return ret; 1562 } 1563 1564 if (IMAGE_ENABLE_OF_LIBFDT) { 1565 ret = boot_relocate_fdt(lmb, of_flat_tree, &of_size); 1566 if (ret) 1567 return ret; 1568 } 1569 1570 if (IMAGE_ENABLE_OF_LIBFDT && of_size) { 1571 ret = image_setup_libfdt(images, *of_flat_tree, of_size, lmb); 1572 if (ret) 1573 return ret; 1574 } 1575 1576 return 0; 1577 } 1578 #endif /* CONFIG_LMB */ 1579 #endif /* !USE_HOSTCC */ 1580