xref: /openbmc/u-boot/common/image.c (revision d9b23e26)
1 /*
2  * (C) Copyright 2008 Semihalf
3  *
4  * (C) Copyright 2000-2006
5  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  */
9 
10 #ifndef USE_HOSTCC
11 #include <common.h>
12 #include <watchdog.h>
13 
14 #ifdef CONFIG_SHOW_BOOT_PROGRESS
15 #include <status_led.h>
16 #endif
17 
18 #ifdef CONFIG_HAS_DATAFLASH
19 #include <dataflash.h>
20 #endif
21 
22 #ifdef CONFIG_LOGBUFFER
23 #include <logbuff.h>
24 #endif
25 
26 #include <rtc.h>
27 
28 #include <environment.h>
29 #include <image.h>
30 #include <mapmem.h>
31 
32 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT
33 #include <libfdt.h>
34 #include <fdt_support.h>
35 #include <fpga.h>
36 #include <xilinx.h>
37 #endif
38 
39 #include <u-boot/md5.h>
40 #include <u-boot/sha1.h>
41 #include <linux/errno.h>
42 #include <asm/io.h>
43 
44 #ifdef CONFIG_CMD_BDI
45 extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]);
46 #endif
47 
48 DECLARE_GLOBAL_DATA_PTR;
49 
50 #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
51 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch,
52 						int verify);
53 #endif
54 #else
55 #include "mkimage.h"
56 #include <u-boot/md5.h>
57 #include <time.h>
58 #include <image.h>
59 
60 #ifndef __maybe_unused
61 # define __maybe_unused		/* unimplemented */
62 #endif
63 #endif /* !USE_HOSTCC*/
64 
65 #include <u-boot/crc.h>
66 
67 #ifndef CONFIG_SYS_BARGSIZE
68 #define CONFIG_SYS_BARGSIZE 512
69 #endif
70 
71 static const table_entry_t uimage_arch[] = {
72 	{	IH_ARCH_INVALID,	"invalid",	"Invalid ARCH",	},
73 	{	IH_ARCH_ALPHA,		"alpha",	"Alpha",	},
74 	{	IH_ARCH_ARM,		"arm",		"ARM",		},
75 	{	IH_ARCH_I386,		"x86",		"Intel x86",	},
76 	{	IH_ARCH_IA64,		"ia64",		"IA64",		},
77 	{	IH_ARCH_M68K,		"m68k",		"M68K",		},
78 	{	IH_ARCH_MICROBLAZE,	"microblaze",	"MicroBlaze",	},
79 	{	IH_ARCH_MIPS,		"mips",		"MIPS",		},
80 	{	IH_ARCH_MIPS64,		"mips64",	"MIPS 64 Bit",	},
81 	{	IH_ARCH_NIOS2,		"nios2",	"NIOS II",	},
82 	{	IH_ARCH_PPC,		"powerpc",	"PowerPC",	},
83 	{	IH_ARCH_PPC,		"ppc",		"PowerPC",	},
84 	{	IH_ARCH_S390,		"s390",		"IBM S390",	},
85 	{	IH_ARCH_SH,		"sh",		"SuperH",	},
86 	{	IH_ARCH_SPARC,		"sparc",	"SPARC",	},
87 	{	IH_ARCH_SPARC64,	"sparc64",	"SPARC 64 Bit",	},
88 	{	IH_ARCH_BLACKFIN,	"blackfin",	"Blackfin",	},
89 	{	IH_ARCH_AVR32,		"avr32",	"AVR32",	},
90 	{	IH_ARCH_NDS32,		"nds32",	"NDS32",	},
91 	{	IH_ARCH_OPENRISC,	"or1k",		"OpenRISC 1000",},
92 	{	IH_ARCH_SANDBOX,	"sandbox",	"Sandbox",	},
93 	{	IH_ARCH_ARM64,		"arm64",	"AArch64",	},
94 	{	IH_ARCH_ARC,		"arc",		"ARC",		},
95 	{	IH_ARCH_X86_64,		"x86_64",	"AMD x86_64",	},
96 	{	IH_ARCH_XTENSA,		"xtensa",	"Xtensa",	},
97 	{	-1,			"",		"",		},
98 };
99 
100 static const table_entry_t uimage_os[] = {
101 	{	IH_OS_INVALID,	"invalid",	"Invalid OS",		},
102 	{	IH_OS_LINUX,	"linux",	"Linux",		},
103 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC)
104 	{	IH_OS_LYNXOS,	"lynxos",	"LynxOS",		},
105 #endif
106 	{	IH_OS_NETBSD,	"netbsd",	"NetBSD",		},
107 	{	IH_OS_OSE,	"ose",		"Enea OSE",		},
108 	{	IH_OS_PLAN9,	"plan9",	"Plan 9",		},
109 	{	IH_OS_RTEMS,	"rtems",	"RTEMS",		},
110 	{	IH_OS_U_BOOT,	"u-boot",	"U-Boot",		},
111 	{	IH_OS_VXWORKS,	"vxworks",	"VxWorks",		},
112 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC)
113 	{	IH_OS_QNX,	"qnx",		"QNX",			},
114 #endif
115 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC)
116 	{	IH_OS_INTEGRITY,"integrity",	"INTEGRITY",		},
117 #endif
118 #ifdef USE_HOSTCC
119 	{	IH_OS_4_4BSD,	"4_4bsd",	"4_4BSD",		},
120 	{	IH_OS_DELL,	"dell",		"Dell",			},
121 	{	IH_OS_ESIX,	"esix",		"Esix",			},
122 	{	IH_OS_FREEBSD,	"freebsd",	"FreeBSD",		},
123 	{	IH_OS_IRIX,	"irix",		"Irix",			},
124 	{	IH_OS_NCR,	"ncr",		"NCR",			},
125 	{	IH_OS_OPENBSD,	"openbsd",	"OpenBSD",		},
126 	{	IH_OS_PSOS,	"psos",		"pSOS",			},
127 	{	IH_OS_SCO,	"sco",		"SCO",			},
128 	{	IH_OS_SOLARIS,	"solaris",	"Solaris",		},
129 	{	IH_OS_SVR4,	"svr4",		"SVR4",			},
130 #endif
131 #if defined(CONFIG_BOOTM_OPENRTOS) || defined(USE_HOSTCC)
132 	{	IH_OS_OPENRTOS,	"openrtos",	"OpenRTOS",		},
133 #endif
134 
135 	{	-1,		"",		"",			},
136 };
137 
138 static const table_entry_t uimage_type[] = {
139 	{	IH_TYPE_AISIMAGE,   "aisimage",   "Davinci AIS image",},
140 	{	IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image",	},
141 	{	IH_TYPE_FIRMWARE,   "firmware",	  "Firmware",		},
142 	{	IH_TYPE_FLATDT,     "flat_dt",    "Flat Device Tree",	},
143 	{	IH_TYPE_GPIMAGE,    "gpimage",    "TI Keystone SPL Image",},
144 	{	IH_TYPE_KERNEL,	    "kernel",	  "Kernel Image",	},
145 	{	IH_TYPE_KERNEL_NOLOAD, "kernel_noload",  "Kernel Image (no loading done)", },
146 	{	IH_TYPE_KWBIMAGE,   "kwbimage",   "Kirkwood Boot Image",},
147 	{	IH_TYPE_IMXIMAGE,   "imximage",   "Freescale i.MX Boot Image",},
148 	{	IH_TYPE_INVALID,    "invalid",	  "Invalid Image",	},
149 	{	IH_TYPE_MULTI,	    "multi",	  "Multi-File Image",	},
150 	{	IH_TYPE_OMAPIMAGE,  "omapimage",  "TI OMAP SPL With GP CH",},
151 	{	IH_TYPE_PBLIMAGE,   "pblimage",   "Freescale PBL Boot Image",},
152 	{	IH_TYPE_RAMDISK,    "ramdisk",	  "RAMDisk Image",	},
153 	{	IH_TYPE_SCRIPT,     "script",	  "Script",		},
154 	{	IH_TYPE_SOCFPGAIMAGE, "socfpgaimage", "Altera SOCFPGA preloader",},
155 	{	IH_TYPE_STANDALONE, "standalone", "Standalone Program", },
156 	{	IH_TYPE_UBLIMAGE,   "ublimage",   "Davinci UBL image",},
157 	{	IH_TYPE_MXSIMAGE,   "mxsimage",   "Freescale MXS Boot Image",},
158 	{	IH_TYPE_ATMELIMAGE, "atmelimage", "ATMEL ROM-Boot Image",},
159 	{	IH_TYPE_X86_SETUP,  "x86_setup",  "x86 setup.bin",    },
160 	{	IH_TYPE_LPC32XXIMAGE, "lpc32xximage",  "LPC32XX Boot Image", },
161 	{	IH_TYPE_RKIMAGE,    "rkimage",    "Rockchip Boot Image" },
162 	{	IH_TYPE_RKSD,       "rksd",       "Rockchip SD Boot Image" },
163 	{	IH_TYPE_RKSPI,      "rkspi",      "Rockchip SPI Boot Image" },
164 	{	IH_TYPE_VYBRIDIMAGE, "vybridimage",  "Vybrid Boot Image", },
165 	{	IH_TYPE_ZYNQIMAGE,  "zynqimage",  "Xilinx Zynq Boot Image" },
166 	{	IH_TYPE_ZYNQMPIMAGE, "zynqmpimage", "Xilinx ZynqMP Boot Image" },
167 	{	IH_TYPE_FPGA,       "fpga",       "FPGA Image" },
168 	{       IH_TYPE_TEE,        "tee",        "Trusted Execution Environment Image",},
169 	{	IH_TYPE_FIRMWARE_IVT, "firmware_ivt", "Firmware with HABv4 IVT" },
170 	{	-1,		    "",		  "",			},
171 };
172 
173 static const table_entry_t uimage_comp[] = {
174 	{	IH_COMP_NONE,	"none",		"uncompressed",		},
175 	{	IH_COMP_BZIP2,	"bzip2",	"bzip2 compressed",	},
176 	{	IH_COMP_GZIP,	"gzip",		"gzip compressed",	},
177 	{	IH_COMP_LZMA,	"lzma",		"lzma compressed",	},
178 	{	IH_COMP_LZO,	"lzo",		"lzo compressed",	},
179 	{	IH_COMP_LZ4,	"lz4",		"lz4 compressed",	},
180 	{	-1,		"",		"",			},
181 };
182 
183 struct table_info {
184 	const char *desc;
185 	int count;
186 	const table_entry_t *table;
187 };
188 
189 static const struct table_info table_info[IH_COUNT] = {
190 	{ "architecture", IH_ARCH_COUNT, uimage_arch },
191 	{ "compression", IH_COMP_COUNT, uimage_comp },
192 	{ "operating system", IH_OS_COUNT, uimage_os },
193 	{ "image type", IH_TYPE_COUNT, uimage_type },
194 };
195 
196 /*****************************************************************************/
197 /* Legacy format routines */
198 /*****************************************************************************/
199 int image_check_hcrc(const image_header_t *hdr)
200 {
201 	ulong hcrc;
202 	ulong len = image_get_header_size();
203 	image_header_t header;
204 
205 	/* Copy header so we can blank CRC field for re-calculation */
206 	memmove(&header, (char *)hdr, image_get_header_size());
207 	image_set_hcrc(&header, 0);
208 
209 	hcrc = crc32(0, (unsigned char *)&header, len);
210 
211 	return (hcrc == image_get_hcrc(hdr));
212 }
213 
214 int image_check_dcrc(const image_header_t *hdr)
215 {
216 	ulong data = image_get_data(hdr);
217 	ulong len = image_get_data_size(hdr);
218 	ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32);
219 
220 	return (dcrc == image_get_dcrc(hdr));
221 }
222 
223 /**
224  * image_multi_count - get component (sub-image) count
225  * @hdr: pointer to the header of the multi component image
226  *
227  * image_multi_count() returns number of components in a multi
228  * component image.
229  *
230  * Note: no checking of the image type is done, caller must pass
231  * a valid multi component image.
232  *
233  * returns:
234  *     number of components
235  */
236 ulong image_multi_count(const image_header_t *hdr)
237 {
238 	ulong i, count = 0;
239 	uint32_t *size;
240 
241 	/* get start of the image payload, which in case of multi
242 	 * component images that points to a table of component sizes */
243 	size = (uint32_t *)image_get_data(hdr);
244 
245 	/* count non empty slots */
246 	for (i = 0; size[i]; ++i)
247 		count++;
248 
249 	return count;
250 }
251 
252 /**
253  * image_multi_getimg - get component data address and size
254  * @hdr: pointer to the header of the multi component image
255  * @idx: index of the requested component
256  * @data: pointer to a ulong variable, will hold component data address
257  * @len: pointer to a ulong variable, will hold component size
258  *
259  * image_multi_getimg() returns size and data address for the requested
260  * component in a multi component image.
261  *
262  * Note: no checking of the image type is done, caller must pass
263  * a valid multi component image.
264  *
265  * returns:
266  *     data address and size of the component, if idx is valid
267  *     0 in data and len, if idx is out of range
268  */
269 void image_multi_getimg(const image_header_t *hdr, ulong idx,
270 			ulong *data, ulong *len)
271 {
272 	int i;
273 	uint32_t *size;
274 	ulong offset, count, img_data;
275 
276 	/* get number of component */
277 	count = image_multi_count(hdr);
278 
279 	/* get start of the image payload, which in case of multi
280 	 * component images that points to a table of component sizes */
281 	size = (uint32_t *)image_get_data(hdr);
282 
283 	/* get address of the proper component data start, which means
284 	 * skipping sizes table (add 1 for last, null entry) */
285 	img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t);
286 
287 	if (idx < count) {
288 		*len = uimage_to_cpu(size[idx]);
289 		offset = 0;
290 
291 		/* go over all indices preceding requested component idx */
292 		for (i = 0; i < idx; i++) {
293 			/* add up i-th component size, rounding up to 4 bytes */
294 			offset += (uimage_to_cpu(size[i]) + 3) & ~3 ;
295 		}
296 
297 		/* calculate idx-th component data address */
298 		*data = img_data + offset;
299 	} else {
300 		*len = 0;
301 		*data = 0;
302 	}
303 }
304 
305 static void image_print_type(const image_header_t *hdr)
306 {
307 	const char __maybe_unused *os, *arch, *type, *comp;
308 
309 	os = genimg_get_os_name(image_get_os(hdr));
310 	arch = genimg_get_arch_name(image_get_arch(hdr));
311 	type = genimg_get_type_name(image_get_type(hdr));
312 	comp = genimg_get_comp_name(image_get_comp(hdr));
313 
314 	printf("%s %s %s (%s)\n", arch, os, type, comp);
315 }
316 
317 /**
318  * image_print_contents - prints out the contents of the legacy format image
319  * @ptr: pointer to the legacy format image header
320  * @p: pointer to prefix string
321  *
322  * image_print_contents() formats a multi line legacy image contents description.
323  * The routine prints out all header fields followed by the size/offset data
324  * for MULTI/SCRIPT images.
325  *
326  * returns:
327  *     no returned results
328  */
329 void image_print_contents(const void *ptr)
330 {
331 	const image_header_t *hdr = (const image_header_t *)ptr;
332 	const char __maybe_unused *p;
333 
334 	p = IMAGE_INDENT_STRING;
335 	printf("%sImage Name:   %.*s\n", p, IH_NMLEN, image_get_name(hdr));
336 	if (IMAGE_ENABLE_TIMESTAMP) {
337 		printf("%sCreated:      ", p);
338 		genimg_print_time((time_t)image_get_time(hdr));
339 	}
340 	printf("%sImage Type:   ", p);
341 	image_print_type(hdr);
342 	printf("%sData Size:    ", p);
343 	genimg_print_size(image_get_data_size(hdr));
344 	printf("%sLoad Address: %08x\n", p, image_get_load(hdr));
345 	printf("%sEntry Point:  %08x\n", p, image_get_ep(hdr));
346 
347 	if (image_check_type(hdr, IH_TYPE_MULTI) ||
348 			image_check_type(hdr, IH_TYPE_SCRIPT)) {
349 		int i;
350 		ulong data, len;
351 		ulong count = image_multi_count(hdr);
352 
353 		printf("%sContents:\n", p);
354 		for (i = 0; i < count; i++) {
355 			image_multi_getimg(hdr, i, &data, &len);
356 
357 			printf("%s   Image %d: ", p, i);
358 			genimg_print_size(len);
359 
360 			if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) {
361 				/*
362 				 * the user may need to know offsets
363 				 * if planning to do something with
364 				 * multiple files
365 				 */
366 				printf("%s    Offset = 0x%08lx\n", p, data);
367 			}
368 		}
369 	} else if (image_check_type(hdr, IH_TYPE_FIRMWARE_IVT)) {
370 		printf("HAB Blocks:   0x%08x   0x0000   0x%08x\n",
371 				image_get_load(hdr) - image_get_header_size(),
372 				image_get_size(hdr) + image_get_header_size()
373 						- 0x1FE0);
374 	}
375 }
376 
377 
378 #ifndef USE_HOSTCC
379 #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
380 /**
381  * image_get_ramdisk - get and verify ramdisk image
382  * @rd_addr: ramdisk image start address
383  * @arch: expected ramdisk architecture
384  * @verify: checksum verification flag
385  *
386  * image_get_ramdisk() returns a pointer to the verified ramdisk image
387  * header. Routine receives image start address and expected architecture
388  * flag. Verification done covers data and header integrity and os/type/arch
389  * fields checking.
390  *
391  * If dataflash support is enabled routine checks for dataflash addresses
392  * and handles required dataflash reads.
393  *
394  * returns:
395  *     pointer to a ramdisk image header, if image was found and valid
396  *     otherwise, return NULL
397  */
398 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch,
399 						int verify)
400 {
401 	const image_header_t *rd_hdr = (const image_header_t *)rd_addr;
402 
403 	if (!image_check_magic(rd_hdr)) {
404 		puts("Bad Magic Number\n");
405 		bootstage_error(BOOTSTAGE_ID_RD_MAGIC);
406 		return NULL;
407 	}
408 
409 	if (!image_check_hcrc(rd_hdr)) {
410 		puts("Bad Header Checksum\n");
411 		bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM);
412 		return NULL;
413 	}
414 
415 	bootstage_mark(BOOTSTAGE_ID_RD_MAGIC);
416 	image_print_contents(rd_hdr);
417 
418 	if (verify) {
419 		puts("   Verifying Checksum ... ");
420 		if (!image_check_dcrc(rd_hdr)) {
421 			puts("Bad Data CRC\n");
422 			bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM);
423 			return NULL;
424 		}
425 		puts("OK\n");
426 	}
427 
428 	bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM);
429 
430 	if (!image_check_os(rd_hdr, IH_OS_LINUX) ||
431 	    !image_check_arch(rd_hdr, arch) ||
432 	    !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) {
433 		printf("No Linux %s Ramdisk Image\n",
434 				genimg_get_arch_name(arch));
435 		bootstage_error(BOOTSTAGE_ID_RAMDISK);
436 		return NULL;
437 	}
438 
439 	return rd_hdr;
440 }
441 #endif
442 #endif /* !USE_HOSTCC */
443 
444 /*****************************************************************************/
445 /* Shared dual-format routines */
446 /*****************************************************************************/
447 #ifndef USE_HOSTCC
448 ulong load_addr = CONFIG_SYS_LOAD_ADDR;	/* Default Load Address */
449 ulong save_addr;			/* Default Save Address */
450 ulong save_size;			/* Default Save Size (in bytes) */
451 
452 static int on_loadaddr(const char *name, const char *value, enum env_op op,
453 	int flags)
454 {
455 	switch (op) {
456 	case env_op_create:
457 	case env_op_overwrite:
458 		load_addr = simple_strtoul(value, NULL, 16);
459 		break;
460 	default:
461 		break;
462 	}
463 
464 	return 0;
465 }
466 U_BOOT_ENV_CALLBACK(loadaddr, on_loadaddr);
467 
468 ulong env_get_bootm_low(void)
469 {
470 	char *s = env_get("bootm_low");
471 	if (s) {
472 		ulong tmp = simple_strtoul(s, NULL, 16);
473 		return tmp;
474 	}
475 
476 #if defined(CONFIG_SYS_SDRAM_BASE)
477 	return CONFIG_SYS_SDRAM_BASE;
478 #elif defined(CONFIG_ARM)
479 	return gd->bd->bi_dram[0].start;
480 #else
481 	return 0;
482 #endif
483 }
484 
485 phys_size_t env_get_bootm_size(void)
486 {
487 	phys_size_t tmp, size;
488 	phys_addr_t start;
489 	char *s = env_get("bootm_size");
490 	if (s) {
491 		tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
492 		return tmp;
493 	}
494 
495 #if defined(CONFIG_ARM) && defined(CONFIG_NR_DRAM_BANKS)
496 	start = gd->bd->bi_dram[0].start;
497 	size = gd->bd->bi_dram[0].size;
498 #else
499 	start = gd->bd->bi_memstart;
500 	size = gd->bd->bi_memsize;
501 #endif
502 
503 	s = env_get("bootm_low");
504 	if (s)
505 		tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
506 	else
507 		tmp = start;
508 
509 	return size - (tmp - start);
510 }
511 
512 phys_size_t env_get_bootm_mapsize(void)
513 {
514 	phys_size_t tmp;
515 	char *s = env_get("bootm_mapsize");
516 	if (s) {
517 		tmp = (phys_size_t)simple_strtoull(s, NULL, 16);
518 		return tmp;
519 	}
520 
521 #if defined(CONFIG_SYS_BOOTMAPSZ)
522 	return CONFIG_SYS_BOOTMAPSZ;
523 #else
524 	return env_get_bootm_size();
525 #endif
526 }
527 
528 void memmove_wd(void *to, void *from, size_t len, ulong chunksz)
529 {
530 	if (to == from)
531 		return;
532 
533 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
534 	if (to > from) {
535 		from += len;
536 		to += len;
537 	}
538 	while (len > 0) {
539 		size_t tail = (len > chunksz) ? chunksz : len;
540 		WATCHDOG_RESET();
541 		if (to > from) {
542 			to -= tail;
543 			from -= tail;
544 		}
545 		memmove(to, from, tail);
546 		if (to < from) {
547 			to += tail;
548 			from += tail;
549 		}
550 		len -= tail;
551 	}
552 #else	/* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */
553 	memmove(to, from, len);
554 #endif	/* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */
555 }
556 #endif /* !USE_HOSTCC */
557 
558 void genimg_print_size(uint32_t size)
559 {
560 #ifndef USE_HOSTCC
561 	printf("%d Bytes = ", size);
562 	print_size(size, "\n");
563 #else
564 	printf("%d Bytes = %.2f KiB = %.2f MiB\n",
565 			size, (double)size / 1.024e3,
566 			(double)size / 1.048576e6);
567 #endif
568 }
569 
570 #if IMAGE_ENABLE_TIMESTAMP
571 void genimg_print_time(time_t timestamp)
572 {
573 #ifndef USE_HOSTCC
574 	struct rtc_time tm;
575 
576 	rtc_to_tm(timestamp, &tm);
577 	printf("%4d-%02d-%02d  %2d:%02d:%02d UTC\n",
578 			tm.tm_year, tm.tm_mon, tm.tm_mday,
579 			tm.tm_hour, tm.tm_min, tm.tm_sec);
580 #else
581 	printf("%s", ctime(&timestamp));
582 #endif
583 }
584 #endif
585 
586 const table_entry_t *get_table_entry(const table_entry_t *table, int id)
587 {
588 	for (; table->id >= 0; ++table) {
589 		if (table->id == id)
590 			return table;
591 	}
592 	return NULL;
593 }
594 
595 static const char *unknown_msg(enum ih_category category)
596 {
597 	static const char unknown_str[] = "Unknown ";
598 	static char msg[30];
599 
600 	strcpy(msg, unknown_str);
601 	strncat(msg, table_info[category].desc,
602 		sizeof(msg) - sizeof(unknown_str));
603 
604 	return msg;
605 }
606 
607 /**
608  * get_cat_table_entry_name - translate entry id to long name
609  * @category: category to look up (enum ih_category)
610  * @id: entry id to be translated
611  *
612  * This will scan the translation table trying to find the entry that matches
613  * the given id.
614  *
615  * @retur long entry name if translation succeeds; error string on failure
616  */
617 const char *genimg_get_cat_name(enum ih_category category, uint id)
618 {
619 	const table_entry_t *entry;
620 
621 	entry = get_table_entry(table_info[category].table, id);
622 	if (!entry)
623 		return unknown_msg(category);
624 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
625 	return entry->lname;
626 #else
627 	return entry->lname + gd->reloc_off;
628 #endif
629 }
630 
631 /**
632  * get_cat_table_entry_short_name - translate entry id to short name
633  * @category: category to look up (enum ih_category)
634  * @id: entry id to be translated
635  *
636  * This will scan the translation table trying to find the entry that matches
637  * the given id.
638  *
639  * @retur short entry name if translation succeeds; error string on failure
640  */
641 const char *genimg_get_cat_short_name(enum ih_category category, uint id)
642 {
643 	const table_entry_t *entry;
644 
645 	entry = get_table_entry(table_info[category].table, id);
646 	if (!entry)
647 		return unknown_msg(category);
648 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
649 	return entry->sname;
650 #else
651 	return entry->sname + gd->reloc_off;
652 #endif
653 }
654 
655 int genimg_get_cat_count(enum ih_category category)
656 {
657 	return table_info[category].count;
658 }
659 
660 const char *genimg_get_cat_desc(enum ih_category category)
661 {
662 	return table_info[category].desc;
663 }
664 
665 /**
666  * get_table_entry_name - translate entry id to long name
667  * @table: pointer to a translation table for entries of a specific type
668  * @msg: message to be returned when translation fails
669  * @id: entry id to be translated
670  *
671  * get_table_entry_name() will go over translation table trying to find
672  * entry that matches given id. If matching entry is found, its long
673  * name is returned to the caller.
674  *
675  * returns:
676  *     long entry name if translation succeeds
677  *     msg otherwise
678  */
679 char *get_table_entry_name(const table_entry_t *table, char *msg, int id)
680 {
681 	table = get_table_entry(table, id);
682 	if (!table)
683 		return msg;
684 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
685 	return table->lname;
686 #else
687 	return table->lname + gd->reloc_off;
688 #endif
689 }
690 
691 const char *genimg_get_os_name(uint8_t os)
692 {
693 	return (get_table_entry_name(uimage_os, "Unknown OS", os));
694 }
695 
696 const char *genimg_get_arch_name(uint8_t arch)
697 {
698 	return (get_table_entry_name(uimage_arch, "Unknown Architecture",
699 					arch));
700 }
701 
702 const char *genimg_get_type_name(uint8_t type)
703 {
704 	return (get_table_entry_name(uimage_type, "Unknown Image", type));
705 }
706 
707 static const char *genimg_get_short_name(const table_entry_t *table, int val)
708 {
709 	table = get_table_entry(table, val);
710 	if (!table)
711 		return "unknown";
712 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC)
713 	return table->sname;
714 #else
715 	return table->sname + gd->reloc_off;
716 #endif
717 }
718 
719 const char *genimg_get_type_short_name(uint8_t type)
720 {
721 	return genimg_get_short_name(uimage_type, type);
722 }
723 
724 const char *genimg_get_comp_name(uint8_t comp)
725 {
726 	return (get_table_entry_name(uimage_comp, "Unknown Compression",
727 					comp));
728 }
729 
730 const char *genimg_get_comp_short_name(uint8_t comp)
731 {
732 	return genimg_get_short_name(uimage_comp, comp);
733 }
734 
735 const char *genimg_get_os_short_name(uint8_t os)
736 {
737 	return genimg_get_short_name(uimage_os, os);
738 }
739 
740 const char *genimg_get_arch_short_name(uint8_t arch)
741 {
742 	return genimg_get_short_name(uimage_arch, arch);
743 }
744 
745 /**
746  * get_table_entry_id - translate short entry name to id
747  * @table: pointer to a translation table for entries of a specific type
748  * @table_name: to be used in case of error
749  * @name: entry short name to be translated
750  *
751  * get_table_entry_id() will go over translation table trying to find
752  * entry that matches given short name. If matching entry is found,
753  * its id returned to the caller.
754  *
755  * returns:
756  *     entry id if translation succeeds
757  *     -1 otherwise
758  */
759 int get_table_entry_id(const table_entry_t *table,
760 		const char *table_name, const char *name)
761 {
762 	const table_entry_t *t;
763 
764 	for (t = table; t->id >= 0; ++t) {
765 #ifdef CONFIG_NEEDS_MANUAL_RELOC
766 		if (t->sname && strcasecmp(t->sname + gd->reloc_off, name) == 0)
767 #else
768 		if (t->sname && strcasecmp(t->sname, name) == 0)
769 #endif
770 			return (t->id);
771 	}
772 	debug("Invalid %s Type: %s\n", table_name, name);
773 
774 	return -1;
775 }
776 
777 int genimg_get_os_id(const char *name)
778 {
779 	return (get_table_entry_id(uimage_os, "OS", name));
780 }
781 
782 int genimg_get_arch_id(const char *name)
783 {
784 	return (get_table_entry_id(uimage_arch, "CPU", name));
785 }
786 
787 int genimg_get_type_id(const char *name)
788 {
789 	return (get_table_entry_id(uimage_type, "Image", name));
790 }
791 
792 int genimg_get_comp_id(const char *name)
793 {
794 	return (get_table_entry_id(uimage_comp, "Compression", name));
795 }
796 
797 #ifndef USE_HOSTCC
798 /**
799  * genimg_get_kernel_addr_fit - get the real kernel address and return 2
800  *                              FIT strings
801  * @img_addr: a string might contain real image address
802  * @fit_uname_config: double pointer to a char, will hold pointer to a
803  *                    configuration unit name
804  * @fit_uname_kernel: double pointer to a char, will hold pointer to a subimage
805  *                    name
806  *
807  * genimg_get_kernel_addr_fit get the real kernel start address from a string
808  * which is normally the first argv of bootm/bootz
809  *
810  * returns:
811  *     kernel start address
812  */
813 ulong genimg_get_kernel_addr_fit(char * const img_addr,
814 			     const char **fit_uname_config,
815 			     const char **fit_uname_kernel)
816 {
817 	ulong kernel_addr;
818 
819 	/* find out kernel image address */
820 	if (!img_addr) {
821 		kernel_addr = load_addr;
822 		debug("*  kernel: default image load address = 0x%08lx\n",
823 		      load_addr);
824 #if CONFIG_IS_ENABLED(FIT)
825 	} else if (fit_parse_conf(img_addr, load_addr, &kernel_addr,
826 				  fit_uname_config)) {
827 		debug("*  kernel: config '%s' from image at 0x%08lx\n",
828 		      *fit_uname_config, kernel_addr);
829 	} else if (fit_parse_subimage(img_addr, load_addr, &kernel_addr,
830 				     fit_uname_kernel)) {
831 		debug("*  kernel: subimage '%s' from image at 0x%08lx\n",
832 		      *fit_uname_kernel, kernel_addr);
833 #endif
834 	} else {
835 		kernel_addr = simple_strtoul(img_addr, NULL, 16);
836 		debug("*  kernel: cmdline image address = 0x%08lx\n",
837 		      kernel_addr);
838 	}
839 
840 	return kernel_addr;
841 }
842 
843 /**
844  * genimg_get_kernel_addr() is the simple version of
845  * genimg_get_kernel_addr_fit(). It ignores those return FIT strings
846  */
847 ulong genimg_get_kernel_addr(char * const img_addr)
848 {
849 	const char *fit_uname_config = NULL;
850 	const char *fit_uname_kernel = NULL;
851 
852 	return genimg_get_kernel_addr_fit(img_addr, &fit_uname_config,
853 					  &fit_uname_kernel);
854 }
855 
856 /**
857  * genimg_get_format - get image format type
858  * @img_addr: image start address
859  *
860  * genimg_get_format() checks whether provided address points to a valid
861  * legacy or FIT image.
862  *
863  * New uImage format and FDT blob are based on a libfdt. FDT blob
864  * may be passed directly or embedded in a FIT image. In both situations
865  * genimg_get_format() must be able to dectect libfdt header.
866  *
867  * returns:
868  *     image format type or IMAGE_FORMAT_INVALID if no image is present
869  */
870 int genimg_get_format(const void *img_addr)
871 {
872 #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
873 	const image_header_t *hdr;
874 
875 	hdr = (const image_header_t *)img_addr;
876 	if (image_check_magic(hdr))
877 		return IMAGE_FORMAT_LEGACY;
878 #endif
879 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT
880 	if (fdt_check_header(img_addr) == 0)
881 		return IMAGE_FORMAT_FIT;
882 #endif
883 #ifdef CONFIG_ANDROID_BOOT_IMAGE
884 	if (android_image_check_header(img_addr) == 0)
885 		return IMAGE_FORMAT_ANDROID;
886 #endif
887 
888 	return IMAGE_FORMAT_INVALID;
889 }
890 
891 /**
892  * genimg_get_image - get image from special storage (if necessary)
893  * @img_addr: image start address
894  *
895  * genimg_get_image() checks if provided image start address is located
896  * in a dataflash storage. If so, image is moved to a system RAM memory.
897  *
898  * returns:
899  *     image start address after possible relocation from special storage
900  */
901 ulong genimg_get_image(ulong img_addr)
902 {
903 	ulong ram_addr = img_addr;
904 
905 #ifdef CONFIG_HAS_DATAFLASH
906 	ulong h_size, d_size;
907 
908 	if (addr_dataflash(img_addr)) {
909 		void *buf;
910 
911 		/* ger RAM address */
912 		ram_addr = CONFIG_SYS_LOAD_ADDR;
913 
914 		/* get header size */
915 		h_size = image_get_header_size();
916 #if IMAGE_ENABLE_FIT
917 		if (sizeof(struct fdt_header) > h_size)
918 			h_size = sizeof(struct fdt_header);
919 #endif
920 
921 		/* read in header */
922 		debug("   Reading image header from dataflash address "
923 			"%08lx to RAM address %08lx\n", img_addr, ram_addr);
924 
925 		buf = map_sysmem(ram_addr, 0);
926 		read_dataflash(img_addr, h_size, buf);
927 
928 		/* get data size */
929 		switch (genimg_get_format(buf)) {
930 #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
931 		case IMAGE_FORMAT_LEGACY:
932 			d_size = image_get_data_size(buf);
933 			debug("   Legacy format image found at 0x%08lx, "
934 					"size 0x%08lx\n",
935 					ram_addr, d_size);
936 			break;
937 #endif
938 #if IMAGE_ENABLE_FIT
939 		case IMAGE_FORMAT_FIT:
940 			d_size = fit_get_size(buf) - h_size;
941 			debug("   FIT/FDT format image found at 0x%08lx, "
942 					"size 0x%08lx\n",
943 					ram_addr, d_size);
944 			break;
945 #endif
946 		default:
947 			printf("   No valid image found at 0x%08lx\n",
948 				img_addr);
949 			return ram_addr;
950 		}
951 
952 		/* read in image data */
953 		debug("   Reading image remaining data from dataflash address "
954 			"%08lx to RAM address %08lx\n", img_addr + h_size,
955 			ram_addr + h_size);
956 
957 		read_dataflash(img_addr + h_size, d_size,
958 				(char *)(buf + h_size));
959 
960 	}
961 #endif /* CONFIG_HAS_DATAFLASH */
962 
963 	return ram_addr;
964 }
965 
966 /**
967  * fit_has_config - check if there is a valid FIT configuration
968  * @images: pointer to the bootm command headers structure
969  *
970  * fit_has_config() checks if there is a FIT configuration in use
971  * (if FTI support is present).
972  *
973  * returns:
974  *     0, no FIT support or no configuration found
975  *     1, configuration found
976  */
977 int genimg_has_config(bootm_headers_t *images)
978 {
979 #if IMAGE_ENABLE_FIT
980 	if (images->fit_uname_cfg)
981 		return 1;
982 #endif
983 	return 0;
984 }
985 
986 /**
987  * boot_get_ramdisk - main ramdisk handling routine
988  * @argc: command argument count
989  * @argv: command argument list
990  * @images: pointer to the bootm images structure
991  * @arch: expected ramdisk architecture
992  * @rd_start: pointer to a ulong variable, will hold ramdisk start address
993  * @rd_end: pointer to a ulong variable, will hold ramdisk end
994  *
995  * boot_get_ramdisk() is responsible for finding a valid ramdisk image.
996  * Curently supported are the following ramdisk sources:
997  *      - multicomponent kernel/ramdisk image,
998  *      - commandline provided address of decicated ramdisk image.
999  *
1000  * returns:
1001  *     0, if ramdisk image was found and valid, or skiped
1002  *     rd_start and rd_end are set to ramdisk start/end addresses if
1003  *     ramdisk image is found and valid
1004  *
1005  *     1, if ramdisk image is found but corrupted, or invalid
1006  *     rd_start and rd_end are set to 0 if no ramdisk exists
1007  */
1008 int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images,
1009 		uint8_t arch, ulong *rd_start, ulong *rd_end)
1010 {
1011 	ulong rd_addr, rd_load;
1012 	ulong rd_data, rd_len;
1013 #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
1014 	const image_header_t *rd_hdr;
1015 #endif
1016 	void *buf;
1017 #ifdef CONFIG_SUPPORT_RAW_INITRD
1018 	char *end;
1019 #endif
1020 #if IMAGE_ENABLE_FIT
1021 	const char	*fit_uname_config = images->fit_uname_cfg;
1022 	const char	*fit_uname_ramdisk = NULL;
1023 	ulong		default_addr;
1024 	int		rd_noffset;
1025 #endif
1026 	const char *select = NULL;
1027 
1028 	*rd_start = 0;
1029 	*rd_end = 0;
1030 
1031 #ifdef CONFIG_ANDROID_BOOT_IMAGE
1032 	/*
1033 	 * Look for an Android boot image.
1034 	 */
1035 	buf = map_sysmem(images->os.start, 0);
1036 	if (buf && genimg_get_format(buf) == IMAGE_FORMAT_ANDROID)
1037 		select = argv[0];
1038 #endif
1039 
1040 	if (argc >= 2)
1041 		select = argv[1];
1042 
1043 	/*
1044 	 * Look for a '-' which indicates to ignore the
1045 	 * ramdisk argument
1046 	 */
1047 	if (select && strcmp(select, "-") ==  0) {
1048 		debug("## Skipping init Ramdisk\n");
1049 		rd_len = rd_data = 0;
1050 	} else if (select || genimg_has_config(images)) {
1051 #if IMAGE_ENABLE_FIT
1052 		if (select) {
1053 			/*
1054 			 * If the init ramdisk comes from the FIT image and
1055 			 * the FIT image address is omitted in the command
1056 			 * line argument, try to use os FIT image address or
1057 			 * default load address.
1058 			 */
1059 			if (images->fit_uname_os)
1060 				default_addr = (ulong)images->fit_hdr_os;
1061 			else
1062 				default_addr = load_addr;
1063 
1064 			if (fit_parse_conf(select, default_addr,
1065 					   &rd_addr, &fit_uname_config)) {
1066 				debug("*  ramdisk: config '%s' from image at "
1067 						"0x%08lx\n",
1068 						fit_uname_config, rd_addr);
1069 			} else if (fit_parse_subimage(select, default_addr,
1070 						&rd_addr, &fit_uname_ramdisk)) {
1071 				debug("*  ramdisk: subimage '%s' from image at "
1072 						"0x%08lx\n",
1073 						fit_uname_ramdisk, rd_addr);
1074 			} else
1075 #endif
1076 			{
1077 				rd_addr = simple_strtoul(select, NULL, 16);
1078 				debug("*  ramdisk: cmdline image address = "
1079 						"0x%08lx\n",
1080 						rd_addr);
1081 			}
1082 #if IMAGE_ENABLE_FIT
1083 		} else {
1084 			/* use FIT configuration provided in first bootm
1085 			 * command argument. If the property is not defined,
1086 			 * quit silently.
1087 			 */
1088 			rd_addr = map_to_sysmem(images->fit_hdr_os);
1089 			rd_noffset = fit_get_node_from_config(images,
1090 					FIT_RAMDISK_PROP, rd_addr);
1091 			if (rd_noffset == -ENOENT)
1092 				return 0;
1093 			else if (rd_noffset < 0)
1094 				return 1;
1095 		}
1096 #endif
1097 
1098 		/* copy from dataflash if needed */
1099 		rd_addr = genimg_get_image(rd_addr);
1100 
1101 		/*
1102 		 * Check if there is an initrd image at the
1103 		 * address provided in the second bootm argument
1104 		 * check image type, for FIT images get FIT node.
1105 		 */
1106 		buf = map_sysmem(rd_addr, 0);
1107 		switch (genimg_get_format(buf)) {
1108 #if defined(CONFIG_IMAGE_FORMAT_LEGACY)
1109 		case IMAGE_FORMAT_LEGACY:
1110 			printf("## Loading init Ramdisk from Legacy "
1111 					"Image at %08lx ...\n", rd_addr);
1112 
1113 			bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK);
1114 			rd_hdr = image_get_ramdisk(rd_addr, arch,
1115 							images->verify);
1116 
1117 			if (rd_hdr == NULL)
1118 				return 1;
1119 
1120 			rd_data = image_get_data(rd_hdr);
1121 			rd_len = image_get_data_size(rd_hdr);
1122 			rd_load = image_get_load(rd_hdr);
1123 			break;
1124 #endif
1125 #if IMAGE_ENABLE_FIT
1126 		case IMAGE_FORMAT_FIT:
1127 			rd_noffset = fit_image_load(images,
1128 					rd_addr, &fit_uname_ramdisk,
1129 					&fit_uname_config, arch,
1130 					IH_TYPE_RAMDISK,
1131 					BOOTSTAGE_ID_FIT_RD_START,
1132 					FIT_LOAD_OPTIONAL_NON_ZERO,
1133 					&rd_data, &rd_len);
1134 			if (rd_noffset < 0)
1135 				return 1;
1136 
1137 			images->fit_hdr_rd = map_sysmem(rd_addr, 0);
1138 			images->fit_uname_rd = fit_uname_ramdisk;
1139 			images->fit_noffset_rd = rd_noffset;
1140 			break;
1141 #endif
1142 #ifdef CONFIG_ANDROID_BOOT_IMAGE
1143 		case IMAGE_FORMAT_ANDROID:
1144 			android_image_get_ramdisk((void *)images->os.start,
1145 				&rd_data, &rd_len);
1146 			break;
1147 #endif
1148 		default:
1149 #ifdef CONFIG_SUPPORT_RAW_INITRD
1150 			end = NULL;
1151 			if (select)
1152 				end = strchr(select, ':');
1153 			if (end) {
1154 				rd_len = simple_strtoul(++end, NULL, 16);
1155 				rd_data = rd_addr;
1156 			} else
1157 #endif
1158 			{
1159 				puts("Wrong Ramdisk Image Format\n");
1160 				rd_data = rd_len = rd_load = 0;
1161 				return 1;
1162 			}
1163 		}
1164 	} else if (images->legacy_hdr_valid &&
1165 			image_check_type(&images->legacy_hdr_os_copy,
1166 						IH_TYPE_MULTI)) {
1167 
1168 		/*
1169 		 * Now check if we have a legacy mult-component image,
1170 		 * get second entry data start address and len.
1171 		 */
1172 		bootstage_mark(BOOTSTAGE_ID_RAMDISK);
1173 		printf("## Loading init Ramdisk from multi component "
1174 				"Legacy Image at %08lx ...\n",
1175 				(ulong)images->legacy_hdr_os);
1176 
1177 		image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len);
1178 	} else {
1179 		/*
1180 		 * no initrd image
1181 		 */
1182 		bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK);
1183 		rd_len = rd_data = 0;
1184 	}
1185 
1186 	if (!rd_data) {
1187 		debug("## No init Ramdisk\n");
1188 	} else {
1189 		*rd_start = rd_data;
1190 		*rd_end = rd_data + rd_len;
1191 	}
1192 	debug("   ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n",
1193 			*rd_start, *rd_end);
1194 
1195 	return 0;
1196 }
1197 
1198 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
1199 /**
1200  * boot_ramdisk_high - relocate init ramdisk
1201  * @lmb: pointer to lmb handle, will be used for memory mgmt
1202  * @rd_data: ramdisk data start address
1203  * @rd_len: ramdisk data length
1204  * @initrd_start: pointer to a ulong variable, will hold final init ramdisk
1205  *      start address (after possible relocation)
1206  * @initrd_end: pointer to a ulong variable, will hold final init ramdisk
1207  *      end address (after possible relocation)
1208  *
1209  * boot_ramdisk_high() takes a relocation hint from "initrd_high" environment
1210  * variable and if requested ramdisk data is moved to a specified location.
1211  *
1212  * Initrd_start and initrd_end are set to final (after relocation) ramdisk
1213  * start/end addresses if ramdisk image start and len were provided,
1214  * otherwise set initrd_start and initrd_end set to zeros.
1215  *
1216  * returns:
1217  *      0 - success
1218  *     -1 - failure
1219  */
1220 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len,
1221 		  ulong *initrd_start, ulong *initrd_end)
1222 {
1223 	char	*s;
1224 	ulong	initrd_high;
1225 	int	initrd_copy_to_ram = 1;
1226 
1227 	s = env_get("initrd_high");
1228 	if (s) {
1229 		/* a value of "no" or a similar string will act like 0,
1230 		 * turning the "load high" feature off. This is intentional.
1231 		 */
1232 		initrd_high = simple_strtoul(s, NULL, 16);
1233 		if (initrd_high == ~0)
1234 			initrd_copy_to_ram = 0;
1235 	} else {
1236 		initrd_high = env_get_bootm_mapsize() + env_get_bootm_low();
1237 	}
1238 
1239 
1240 #ifdef CONFIG_LOGBUFFER
1241 	/* Prevent initrd from overwriting logbuffer */
1242 	lmb_reserve(lmb, logbuffer_base() - LOGBUFF_OVERHEAD, LOGBUFF_RESERVE);
1243 #endif
1244 
1245 	debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n",
1246 			initrd_high, initrd_copy_to_ram);
1247 
1248 	if (rd_data) {
1249 		if (!initrd_copy_to_ram) {	/* zero-copy ramdisk support */
1250 			debug("   in-place initrd\n");
1251 			*initrd_start = rd_data;
1252 			*initrd_end = rd_data + rd_len;
1253 			lmb_reserve(lmb, rd_data, rd_len);
1254 		} else {
1255 			if (initrd_high)
1256 				*initrd_start = (ulong)lmb_alloc_base(lmb,
1257 						rd_len, 0x1000, initrd_high);
1258 			else
1259 				*initrd_start = (ulong)lmb_alloc(lmb, rd_len,
1260 								 0x1000);
1261 
1262 			if (*initrd_start == 0) {
1263 				puts("ramdisk - allocation error\n");
1264 				goto error;
1265 			}
1266 			bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK);
1267 
1268 			*initrd_end = *initrd_start + rd_len;
1269 			printf("   Loading Ramdisk to %08lx, end %08lx ... ",
1270 					*initrd_start, *initrd_end);
1271 
1272 			memmove_wd((void *)*initrd_start,
1273 					(void *)rd_data, rd_len, CHUNKSZ);
1274 
1275 #ifdef CONFIG_MP
1276 			/*
1277 			 * Ensure the image is flushed to memory to handle
1278 			 * AMP boot scenarios in which we might not be
1279 			 * HW cache coherent
1280 			 */
1281 			flush_cache((unsigned long)*initrd_start, rd_len);
1282 #endif
1283 			puts("OK\n");
1284 		}
1285 	} else {
1286 		*initrd_start = 0;
1287 		*initrd_end = 0;
1288 	}
1289 	debug("   ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n",
1290 			*initrd_start, *initrd_end);
1291 
1292 	return 0;
1293 
1294 error:
1295 	return -1;
1296 }
1297 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */
1298 
1299 int boot_get_setup(bootm_headers_t *images, uint8_t arch,
1300 		   ulong *setup_start, ulong *setup_len)
1301 {
1302 #if IMAGE_ENABLE_FIT
1303 	return boot_get_setup_fit(images, arch, setup_start, setup_len);
1304 #else
1305 	return -ENOENT;
1306 #endif
1307 }
1308 
1309 #if IMAGE_ENABLE_FIT
1310 #if defined(CONFIG_FPGA) && defined(CONFIG_FPGA_XILINX)
1311 int boot_get_fpga(int argc, char * const argv[], bootm_headers_t *images,
1312 		  uint8_t arch, const ulong *ld_start, ulong * const ld_len)
1313 {
1314 	ulong tmp_img_addr, img_data, img_len;
1315 	void *buf;
1316 	int conf_noffset;
1317 	int fit_img_result;
1318 	const char *uname, *name;
1319 	int err;
1320 	int devnum = 0; /* TODO support multi fpga platforms */
1321 	const fpga_desc * const desc = fpga_get_desc(devnum);
1322 	xilinx_desc *desc_xilinx = desc->devdesc;
1323 
1324 	/* Check to see if the images struct has a FIT configuration */
1325 	if (!genimg_has_config(images)) {
1326 		debug("## FIT configuration was not specified\n");
1327 		return 0;
1328 	}
1329 
1330 	/*
1331 	 * Obtain the os FIT header from the images struct
1332 	 * copy from dataflash if needed
1333 	 */
1334 	tmp_img_addr = map_to_sysmem(images->fit_hdr_os);
1335 	tmp_img_addr = genimg_get_image(tmp_img_addr);
1336 	buf = map_sysmem(tmp_img_addr, 0);
1337 	/*
1338 	 * Check image type. For FIT images get FIT node
1339 	 * and attempt to locate a generic binary.
1340 	 */
1341 	switch (genimg_get_format(buf)) {
1342 	case IMAGE_FORMAT_FIT:
1343 		conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg);
1344 
1345 		uname = fdt_stringlist_get(buf, conf_noffset, FIT_FPGA_PROP, 0,
1346 					   NULL);
1347 		if (!uname) {
1348 			debug("## FPGA image is not specified\n");
1349 			return 0;
1350 		}
1351 		fit_img_result = fit_image_load(images,
1352 						tmp_img_addr,
1353 						(const char **)&uname,
1354 						&(images->fit_uname_cfg),
1355 						arch,
1356 						IH_TYPE_FPGA,
1357 						BOOTSTAGE_ID_FPGA_INIT,
1358 						FIT_LOAD_OPTIONAL_NON_ZERO,
1359 						&img_data, &img_len);
1360 
1361 		debug("FPGA image (%s) loaded to 0x%lx/size 0x%lx\n",
1362 		      uname, img_data, img_len);
1363 
1364 		if (fit_img_result < 0) {
1365 			/* Something went wrong! */
1366 			return fit_img_result;
1367 		}
1368 
1369 		if (img_len >= desc_xilinx->size) {
1370 			name = "full";
1371 			err = fpga_loadbitstream(devnum, (char *)img_data,
1372 						 img_len, BIT_FULL);
1373 			if (err)
1374 				err = fpga_load(devnum, (const void *)img_data,
1375 						img_len, BIT_FULL);
1376 		} else {
1377 			name = "partial";
1378 			err = fpga_loadbitstream(devnum, (char *)img_data,
1379 						 img_len, BIT_PARTIAL);
1380 			if (err)
1381 				err = fpga_load(devnum, (const void *)img_data,
1382 						img_len, BIT_PARTIAL);
1383 		}
1384 
1385 		if (err)
1386 			return err;
1387 
1388 		printf("   Programming %s bitstream... OK\n", name);
1389 		break;
1390 	default:
1391 		printf("The given image format is not supported (corrupt?)\n");
1392 		return 1;
1393 	}
1394 
1395 	return 0;
1396 }
1397 #endif
1398 
1399 static void fit_loadable_process(uint8_t img_type,
1400 				 ulong img_data,
1401 				 ulong img_len)
1402 {
1403 	int i;
1404 	const unsigned int count =
1405 			ll_entry_count(struct fit_loadable_tbl, fit_loadable);
1406 	struct fit_loadable_tbl *fit_loadable_handler =
1407 			ll_entry_start(struct fit_loadable_tbl, fit_loadable);
1408 	/* For each loadable handler */
1409 	for (i = 0; i < count; i++, fit_loadable_handler++)
1410 		/* matching this type */
1411 		if (fit_loadable_handler->type == img_type)
1412 			/* call that handler with this image data */
1413 			fit_loadable_handler->handler(img_data, img_len);
1414 }
1415 
1416 int boot_get_loadable(int argc, char * const argv[], bootm_headers_t *images,
1417 		uint8_t arch, const ulong *ld_start, ulong * const ld_len)
1418 {
1419 	/*
1420 	 * These variables are used to hold the current image location
1421 	 * in system memory.
1422 	 */
1423 	ulong tmp_img_addr;
1424 	/*
1425 	 * These two variables are requirements for fit_image_load, but
1426 	 * their values are not used
1427 	 */
1428 	ulong img_data, img_len;
1429 	void *buf;
1430 	int loadables_index;
1431 	int conf_noffset;
1432 	int fit_img_result;
1433 	const char *uname;
1434 	uint8_t img_type;
1435 
1436 	/* Check to see if the images struct has a FIT configuration */
1437 	if (!genimg_has_config(images)) {
1438 		debug("## FIT configuration was not specified\n");
1439 		return 0;
1440 	}
1441 
1442 	/*
1443 	 * Obtain the os FIT header from the images struct
1444 	 * copy from dataflash if needed
1445 	 */
1446 	tmp_img_addr = map_to_sysmem(images->fit_hdr_os);
1447 	tmp_img_addr = genimg_get_image(tmp_img_addr);
1448 	buf = map_sysmem(tmp_img_addr, 0);
1449 	/*
1450 	 * Check image type. For FIT images get FIT node
1451 	 * and attempt to locate a generic binary.
1452 	 */
1453 	switch (genimg_get_format(buf)) {
1454 	case IMAGE_FORMAT_FIT:
1455 		conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg);
1456 
1457 		for (loadables_index = 0;
1458 		     uname = fdt_stringlist_get(buf, conf_noffset,
1459 					FIT_LOADABLE_PROP, loadables_index,
1460 					NULL), uname;
1461 		     loadables_index++)
1462 		{
1463 			fit_img_result = fit_image_load(images,
1464 				tmp_img_addr,
1465 				&uname,
1466 				&(images->fit_uname_cfg), arch,
1467 				IH_TYPE_LOADABLE,
1468 				BOOTSTAGE_ID_FIT_LOADABLE_START,
1469 				FIT_LOAD_OPTIONAL_NON_ZERO,
1470 				&img_data, &img_len);
1471 			if (fit_img_result < 0) {
1472 				/* Something went wrong! */
1473 				return fit_img_result;
1474 			}
1475 
1476 			fit_img_result = fit_image_get_node(buf, uname);
1477 			if (fit_img_result < 0) {
1478 				/* Something went wrong! */
1479 				return fit_img_result;
1480 			}
1481 			fit_img_result = fit_image_get_type(buf,
1482 							    fit_img_result,
1483 							    &img_type);
1484 			if (fit_img_result < 0) {
1485 				/* Something went wrong! */
1486 				return fit_img_result;
1487 			}
1488 
1489 			fit_loadable_process(img_type, img_data, img_len);
1490 		}
1491 		break;
1492 	default:
1493 		printf("The given image format is not supported (corrupt?)\n");
1494 		return 1;
1495 	}
1496 
1497 	return 0;
1498 }
1499 #endif
1500 
1501 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE
1502 /**
1503  * boot_get_cmdline - allocate and initialize kernel cmdline
1504  * @lmb: pointer to lmb handle, will be used for memory mgmt
1505  * @cmd_start: pointer to a ulong variable, will hold cmdline start
1506  * @cmd_end: pointer to a ulong variable, will hold cmdline end
1507  *
1508  * boot_get_cmdline() allocates space for kernel command line below
1509  * BOOTMAPSZ + env_get_bootm_low() address. If "bootargs" U-Boot environemnt
1510  * variable is present its contents is copied to allocated kernel
1511  * command line.
1512  *
1513  * returns:
1514  *      0 - success
1515  *     -1 - failure
1516  */
1517 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end)
1518 {
1519 	char *cmdline;
1520 	char *s;
1521 
1522 	cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf,
1523 				env_get_bootm_mapsize() + env_get_bootm_low());
1524 
1525 	if (cmdline == NULL)
1526 		return -1;
1527 
1528 	s = env_get("bootargs");
1529 	if (!s)
1530 		s = "";
1531 
1532 	strcpy(cmdline, s);
1533 
1534 	*cmd_start = (ulong) & cmdline[0];
1535 	*cmd_end = *cmd_start + strlen(cmdline);
1536 
1537 	debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end);
1538 
1539 	return 0;
1540 }
1541 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */
1542 
1543 #ifdef CONFIG_SYS_BOOT_GET_KBD
1544 /**
1545  * boot_get_kbd - allocate and initialize kernel copy of board info
1546  * @lmb: pointer to lmb handle, will be used for memory mgmt
1547  * @kbd: double pointer to board info data
1548  *
1549  * boot_get_kbd() allocates space for kernel copy of board info data below
1550  * BOOTMAPSZ + env_get_bootm_low() address and kernel board info is initialized
1551  * with the current u-boot board info data.
1552  *
1553  * returns:
1554  *      0 - success
1555  *     -1 - failure
1556  */
1557 int boot_get_kbd(struct lmb *lmb, bd_t **kbd)
1558 {
1559 	*kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf,
1560 				env_get_bootm_mapsize() + env_get_bootm_low());
1561 	if (*kbd == NULL)
1562 		return -1;
1563 
1564 	**kbd = *(gd->bd);
1565 
1566 	debug("## kernel board info at 0x%08lx\n", (ulong)*kbd);
1567 
1568 #if defined(DEBUG) && defined(CONFIG_CMD_BDI)
1569 	do_bdinfo(NULL, 0, 0, NULL);
1570 #endif
1571 
1572 	return 0;
1573 }
1574 #endif /* CONFIG_SYS_BOOT_GET_KBD */
1575 
1576 #ifdef CONFIG_LMB
1577 int image_setup_linux(bootm_headers_t *images)
1578 {
1579 	ulong of_size = images->ft_len;
1580 	char **of_flat_tree = &images->ft_addr;
1581 	struct lmb *lmb = &images->lmb;
1582 	int ret;
1583 
1584 	if (IMAGE_ENABLE_OF_LIBFDT)
1585 		boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree);
1586 
1587 	if (IMAGE_BOOT_GET_CMDLINE) {
1588 		ret = boot_get_cmdline(lmb, &images->cmdline_start,
1589 				&images->cmdline_end);
1590 		if (ret) {
1591 			puts("ERROR with allocation of cmdline\n");
1592 			return ret;
1593 		}
1594 	}
1595 
1596 	if (IMAGE_ENABLE_OF_LIBFDT) {
1597 		ret = boot_relocate_fdt(lmb, of_flat_tree, &of_size);
1598 		if (ret)
1599 			return ret;
1600 	}
1601 
1602 	if (IMAGE_ENABLE_OF_LIBFDT && of_size) {
1603 		ret = image_setup_libfdt(images, *of_flat_tree, of_size, lmb);
1604 		if (ret)
1605 			return ret;
1606 	}
1607 
1608 	return 0;
1609 }
1610 #endif /* CONFIG_LMB */
1611 #endif /* !USE_HOSTCC */
1612