1 /* 2 * (C) Copyright 2008 Semihalf 3 * 4 * (C) Copyright 2000-2006 5 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 6 * 7 * SPDX-License-Identifier: GPL-2.0+ 8 */ 9 10 #ifndef USE_HOSTCC 11 #include <common.h> 12 #include <watchdog.h> 13 14 #ifdef CONFIG_SHOW_BOOT_PROGRESS 15 #include <status_led.h> 16 #endif 17 18 #include <rtc.h> 19 20 #include <environment.h> 21 #include <image.h> 22 #include <mapmem.h> 23 24 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT 25 #include <linux/libfdt.h> 26 #include <fdt_support.h> 27 #include <fpga.h> 28 #include <xilinx.h> 29 #endif 30 31 #include <u-boot/md5.h> 32 #include <u-boot/sha1.h> 33 #include <linux/errno.h> 34 #include <asm/io.h> 35 36 #ifdef CONFIG_CMD_BDI 37 extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); 38 #endif 39 40 DECLARE_GLOBAL_DATA_PTR; 41 42 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 43 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 44 int verify); 45 #endif 46 #else 47 #include "mkimage.h" 48 #include <u-boot/md5.h> 49 #include <time.h> 50 #include <image.h> 51 52 #ifndef __maybe_unused 53 # define __maybe_unused /* unimplemented */ 54 #endif 55 #endif /* !USE_HOSTCC*/ 56 57 #include <u-boot/crc.h> 58 59 #ifndef CONFIG_SYS_BARGSIZE 60 #define CONFIG_SYS_BARGSIZE 512 61 #endif 62 63 static const table_entry_t uimage_arch[] = { 64 { IH_ARCH_INVALID, "invalid", "Invalid ARCH", }, 65 { IH_ARCH_ALPHA, "alpha", "Alpha", }, 66 { IH_ARCH_ARM, "arm", "ARM", }, 67 { IH_ARCH_I386, "x86", "Intel x86", }, 68 { IH_ARCH_IA64, "ia64", "IA64", }, 69 { IH_ARCH_M68K, "m68k", "M68K", }, 70 { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", }, 71 { IH_ARCH_MIPS, "mips", "MIPS", }, 72 { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", }, 73 { IH_ARCH_NIOS2, "nios2", "NIOS II", }, 74 { IH_ARCH_PPC, "powerpc", "PowerPC", }, 75 { IH_ARCH_PPC, "ppc", "PowerPC", }, 76 { IH_ARCH_S390, "s390", "IBM S390", }, 77 { IH_ARCH_SH, "sh", "SuperH", }, 78 { IH_ARCH_SPARC, "sparc", "SPARC", }, 79 { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", }, 80 { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", }, 81 { IH_ARCH_AVR32, "avr32", "AVR32", }, 82 { IH_ARCH_NDS32, "nds32", "NDS32", }, 83 { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",}, 84 { IH_ARCH_SANDBOX, "sandbox", "Sandbox", }, 85 { IH_ARCH_ARM64, "arm64", "AArch64", }, 86 { IH_ARCH_ARC, "arc", "ARC", }, 87 { IH_ARCH_X86_64, "x86_64", "AMD x86_64", }, 88 { IH_ARCH_XTENSA, "xtensa", "Xtensa", }, 89 { IH_ARCH_RISCV, "riscv", "RISC-V", }, 90 { -1, "", "", }, 91 }; 92 93 static const table_entry_t uimage_os[] = { 94 { IH_OS_INVALID, "invalid", "Invalid OS", }, 95 { IH_OS_ARM_TRUSTED_FIRMWARE, "arm-trusted-firmware", "ARM Trusted Firmware" }, 96 { IH_OS_LINUX, "linux", "Linux", }, 97 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC) 98 { IH_OS_LYNXOS, "lynxos", "LynxOS", }, 99 #endif 100 { IH_OS_NETBSD, "netbsd", "NetBSD", }, 101 { IH_OS_OSE, "ose", "Enea OSE", }, 102 { IH_OS_PLAN9, "plan9", "Plan 9", }, 103 { IH_OS_RTEMS, "rtems", "RTEMS", }, 104 { IH_OS_TEE, "tee", "Trusted Execution Environment" }, 105 { IH_OS_U_BOOT, "u-boot", "U-Boot", }, 106 { IH_OS_VXWORKS, "vxworks", "VxWorks", }, 107 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC) 108 { IH_OS_QNX, "qnx", "QNX", }, 109 #endif 110 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC) 111 { IH_OS_INTEGRITY,"integrity", "INTEGRITY", }, 112 #endif 113 #ifdef USE_HOSTCC 114 { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", }, 115 { IH_OS_DELL, "dell", "Dell", }, 116 { IH_OS_ESIX, "esix", "Esix", }, 117 { IH_OS_FREEBSD, "freebsd", "FreeBSD", }, 118 { IH_OS_IRIX, "irix", "Irix", }, 119 { IH_OS_NCR, "ncr", "NCR", }, 120 { IH_OS_OPENBSD, "openbsd", "OpenBSD", }, 121 { IH_OS_PSOS, "psos", "pSOS", }, 122 { IH_OS_SCO, "sco", "SCO", }, 123 { IH_OS_SOLARIS, "solaris", "Solaris", }, 124 { IH_OS_SVR4, "svr4", "SVR4", }, 125 #endif 126 #if defined(CONFIG_BOOTM_OPENRTOS) || defined(USE_HOSTCC) 127 { IH_OS_OPENRTOS, "openrtos", "OpenRTOS", }, 128 #endif 129 130 { -1, "", "", }, 131 }; 132 133 static const table_entry_t uimage_type[] = { 134 { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",}, 135 { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", }, 136 { IH_TYPE_FIRMWARE, "firmware", "Firmware", }, 137 { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", }, 138 { IH_TYPE_GPIMAGE, "gpimage", "TI Keystone SPL Image",}, 139 { IH_TYPE_KERNEL, "kernel", "Kernel Image", }, 140 { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", }, 141 { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",}, 142 { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",}, 143 { IH_TYPE_INVALID, "invalid", "Invalid Image", }, 144 { IH_TYPE_MULTI, "multi", "Multi-File Image", }, 145 { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",}, 146 { IH_TYPE_PBLIMAGE, "pblimage", "Freescale PBL Boot Image",}, 147 { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", }, 148 { IH_TYPE_SCRIPT, "script", "Script", }, 149 { IH_TYPE_SOCFPGAIMAGE, "socfpgaimage", "Altera SOCFPGA preloader",}, 150 { IH_TYPE_STANDALONE, "standalone", "Standalone Program", }, 151 { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",}, 152 { IH_TYPE_MXSIMAGE, "mxsimage", "Freescale MXS Boot Image",}, 153 { IH_TYPE_ATMELIMAGE, "atmelimage", "ATMEL ROM-Boot Image",}, 154 { IH_TYPE_X86_SETUP, "x86_setup", "x86 setup.bin", }, 155 { IH_TYPE_LPC32XXIMAGE, "lpc32xximage", "LPC32XX Boot Image", }, 156 { IH_TYPE_RKIMAGE, "rkimage", "Rockchip Boot Image" }, 157 { IH_TYPE_RKSD, "rksd", "Rockchip SD Boot Image" }, 158 { IH_TYPE_RKSPI, "rkspi", "Rockchip SPI Boot Image" }, 159 { IH_TYPE_VYBRIDIMAGE, "vybridimage", "Vybrid Boot Image", }, 160 { IH_TYPE_ZYNQIMAGE, "zynqimage", "Xilinx Zynq Boot Image" }, 161 { IH_TYPE_ZYNQMPIMAGE, "zynqmpimage", "Xilinx ZynqMP Boot Image" }, 162 { IH_TYPE_FPGA, "fpga", "FPGA Image" }, 163 { IH_TYPE_TEE, "tee", "Trusted Execution Environment Image",}, 164 { IH_TYPE_FIRMWARE_IVT, "firmware_ivt", "Firmware with HABv4 IVT" }, 165 { IH_TYPE_PMMC, "pmmc", "TI Power Management Micro-Controller Firmware",}, 166 { IH_TYPE_STM32IMAGE, "stm32image", "STMicroelectronics STM32 Image" }, 167 { -1, "", "", }, 168 }; 169 170 static const table_entry_t uimage_comp[] = { 171 { IH_COMP_NONE, "none", "uncompressed", }, 172 { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", }, 173 { IH_COMP_GZIP, "gzip", "gzip compressed", }, 174 { IH_COMP_LZMA, "lzma", "lzma compressed", }, 175 { IH_COMP_LZO, "lzo", "lzo compressed", }, 176 { IH_COMP_LZ4, "lz4", "lz4 compressed", }, 177 { -1, "", "", }, 178 }; 179 180 struct table_info { 181 const char *desc; 182 int count; 183 const table_entry_t *table; 184 }; 185 186 static const struct table_info table_info[IH_COUNT] = { 187 { "architecture", IH_ARCH_COUNT, uimage_arch }, 188 { "compression", IH_COMP_COUNT, uimage_comp }, 189 { "operating system", IH_OS_COUNT, uimage_os }, 190 { "image type", IH_TYPE_COUNT, uimage_type }, 191 }; 192 193 /*****************************************************************************/ 194 /* Legacy format routines */ 195 /*****************************************************************************/ 196 int image_check_hcrc(const image_header_t *hdr) 197 { 198 ulong hcrc; 199 ulong len = image_get_header_size(); 200 image_header_t header; 201 202 /* Copy header so we can blank CRC field for re-calculation */ 203 memmove(&header, (char *)hdr, image_get_header_size()); 204 image_set_hcrc(&header, 0); 205 206 hcrc = crc32(0, (unsigned char *)&header, len); 207 208 return (hcrc == image_get_hcrc(hdr)); 209 } 210 211 int image_check_dcrc(const image_header_t *hdr) 212 { 213 ulong data = image_get_data(hdr); 214 ulong len = image_get_data_size(hdr); 215 ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32); 216 217 return (dcrc == image_get_dcrc(hdr)); 218 } 219 220 /** 221 * image_multi_count - get component (sub-image) count 222 * @hdr: pointer to the header of the multi component image 223 * 224 * image_multi_count() returns number of components in a multi 225 * component image. 226 * 227 * Note: no checking of the image type is done, caller must pass 228 * a valid multi component image. 229 * 230 * returns: 231 * number of components 232 */ 233 ulong image_multi_count(const image_header_t *hdr) 234 { 235 ulong i, count = 0; 236 uint32_t *size; 237 238 /* get start of the image payload, which in case of multi 239 * component images that points to a table of component sizes */ 240 size = (uint32_t *)image_get_data(hdr); 241 242 /* count non empty slots */ 243 for (i = 0; size[i]; ++i) 244 count++; 245 246 return count; 247 } 248 249 /** 250 * image_multi_getimg - get component data address and size 251 * @hdr: pointer to the header of the multi component image 252 * @idx: index of the requested component 253 * @data: pointer to a ulong variable, will hold component data address 254 * @len: pointer to a ulong variable, will hold component size 255 * 256 * image_multi_getimg() returns size and data address for the requested 257 * component in a multi component image. 258 * 259 * Note: no checking of the image type is done, caller must pass 260 * a valid multi component image. 261 * 262 * returns: 263 * data address and size of the component, if idx is valid 264 * 0 in data and len, if idx is out of range 265 */ 266 void image_multi_getimg(const image_header_t *hdr, ulong idx, 267 ulong *data, ulong *len) 268 { 269 int i; 270 uint32_t *size; 271 ulong offset, count, img_data; 272 273 /* get number of component */ 274 count = image_multi_count(hdr); 275 276 /* get start of the image payload, which in case of multi 277 * component images that points to a table of component sizes */ 278 size = (uint32_t *)image_get_data(hdr); 279 280 /* get address of the proper component data start, which means 281 * skipping sizes table (add 1 for last, null entry) */ 282 img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t); 283 284 if (idx < count) { 285 *len = uimage_to_cpu(size[idx]); 286 offset = 0; 287 288 /* go over all indices preceding requested component idx */ 289 for (i = 0; i < idx; i++) { 290 /* add up i-th component size, rounding up to 4 bytes */ 291 offset += (uimage_to_cpu(size[i]) + 3) & ~3 ; 292 } 293 294 /* calculate idx-th component data address */ 295 *data = img_data + offset; 296 } else { 297 *len = 0; 298 *data = 0; 299 } 300 } 301 302 static void image_print_type(const image_header_t *hdr) 303 { 304 const char __maybe_unused *os, *arch, *type, *comp; 305 306 os = genimg_get_os_name(image_get_os(hdr)); 307 arch = genimg_get_arch_name(image_get_arch(hdr)); 308 type = genimg_get_type_name(image_get_type(hdr)); 309 comp = genimg_get_comp_name(image_get_comp(hdr)); 310 311 printf("%s %s %s (%s)\n", arch, os, type, comp); 312 } 313 314 /** 315 * image_print_contents - prints out the contents of the legacy format image 316 * @ptr: pointer to the legacy format image header 317 * @p: pointer to prefix string 318 * 319 * image_print_contents() formats a multi line legacy image contents description. 320 * The routine prints out all header fields followed by the size/offset data 321 * for MULTI/SCRIPT images. 322 * 323 * returns: 324 * no returned results 325 */ 326 void image_print_contents(const void *ptr) 327 { 328 const image_header_t *hdr = (const image_header_t *)ptr; 329 const char __maybe_unused *p; 330 331 p = IMAGE_INDENT_STRING; 332 printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr)); 333 if (IMAGE_ENABLE_TIMESTAMP) { 334 printf("%sCreated: ", p); 335 genimg_print_time((time_t)image_get_time(hdr)); 336 } 337 printf("%sImage Type: ", p); 338 image_print_type(hdr); 339 printf("%sData Size: ", p); 340 genimg_print_size(image_get_data_size(hdr)); 341 printf("%sLoad Address: %08x\n", p, image_get_load(hdr)); 342 printf("%sEntry Point: %08x\n", p, image_get_ep(hdr)); 343 344 if (image_check_type(hdr, IH_TYPE_MULTI) || 345 image_check_type(hdr, IH_TYPE_SCRIPT)) { 346 int i; 347 ulong data, len; 348 ulong count = image_multi_count(hdr); 349 350 printf("%sContents:\n", p); 351 for (i = 0; i < count; i++) { 352 image_multi_getimg(hdr, i, &data, &len); 353 354 printf("%s Image %d: ", p, i); 355 genimg_print_size(len); 356 357 if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) { 358 /* 359 * the user may need to know offsets 360 * if planning to do something with 361 * multiple files 362 */ 363 printf("%s Offset = 0x%08lx\n", p, data); 364 } 365 } 366 } else if (image_check_type(hdr, IH_TYPE_FIRMWARE_IVT)) { 367 printf("HAB Blocks: 0x%08x 0x0000 0x%08x\n", 368 image_get_load(hdr) - image_get_header_size(), 369 image_get_size(hdr) + image_get_header_size() 370 - 0x1FE0); 371 } 372 } 373 374 375 #ifndef USE_HOSTCC 376 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 377 /** 378 * image_get_ramdisk - get and verify ramdisk image 379 * @rd_addr: ramdisk image start address 380 * @arch: expected ramdisk architecture 381 * @verify: checksum verification flag 382 * 383 * image_get_ramdisk() returns a pointer to the verified ramdisk image 384 * header. Routine receives image start address and expected architecture 385 * flag. Verification done covers data and header integrity and os/type/arch 386 * fields checking. 387 * 388 * returns: 389 * pointer to a ramdisk image header, if image was found and valid 390 * otherwise, return NULL 391 */ 392 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 393 int verify) 394 { 395 const image_header_t *rd_hdr = (const image_header_t *)rd_addr; 396 397 if (!image_check_magic(rd_hdr)) { 398 puts("Bad Magic Number\n"); 399 bootstage_error(BOOTSTAGE_ID_RD_MAGIC); 400 return NULL; 401 } 402 403 if (!image_check_hcrc(rd_hdr)) { 404 puts("Bad Header Checksum\n"); 405 bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 406 return NULL; 407 } 408 409 bootstage_mark(BOOTSTAGE_ID_RD_MAGIC); 410 image_print_contents(rd_hdr); 411 412 if (verify) { 413 puts(" Verifying Checksum ... "); 414 if (!image_check_dcrc(rd_hdr)) { 415 puts("Bad Data CRC\n"); 416 bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM); 417 return NULL; 418 } 419 puts("OK\n"); 420 } 421 422 bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 423 424 if (!image_check_os(rd_hdr, IH_OS_LINUX) || 425 !image_check_arch(rd_hdr, arch) || 426 !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) { 427 printf("No Linux %s Ramdisk Image\n", 428 genimg_get_arch_name(arch)); 429 bootstage_error(BOOTSTAGE_ID_RAMDISK); 430 return NULL; 431 } 432 433 return rd_hdr; 434 } 435 #endif 436 #endif /* !USE_HOSTCC */ 437 438 /*****************************************************************************/ 439 /* Shared dual-format routines */ 440 /*****************************************************************************/ 441 #ifndef USE_HOSTCC 442 ulong load_addr = CONFIG_SYS_LOAD_ADDR; /* Default Load Address */ 443 ulong save_addr; /* Default Save Address */ 444 ulong save_size; /* Default Save Size (in bytes) */ 445 446 static int on_loadaddr(const char *name, const char *value, enum env_op op, 447 int flags) 448 { 449 switch (op) { 450 case env_op_create: 451 case env_op_overwrite: 452 load_addr = simple_strtoul(value, NULL, 16); 453 break; 454 default: 455 break; 456 } 457 458 return 0; 459 } 460 U_BOOT_ENV_CALLBACK(loadaddr, on_loadaddr); 461 462 ulong env_get_bootm_low(void) 463 { 464 char *s = env_get("bootm_low"); 465 if (s) { 466 ulong tmp = simple_strtoul(s, NULL, 16); 467 return tmp; 468 } 469 470 #if defined(CONFIG_SYS_SDRAM_BASE) 471 return CONFIG_SYS_SDRAM_BASE; 472 #elif defined(CONFIG_ARM) 473 return gd->bd->bi_dram[0].start; 474 #else 475 return 0; 476 #endif 477 } 478 479 phys_size_t env_get_bootm_size(void) 480 { 481 phys_size_t tmp, size; 482 phys_addr_t start; 483 char *s = env_get("bootm_size"); 484 if (s) { 485 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 486 return tmp; 487 } 488 489 #if defined(CONFIG_ARM) && defined(CONFIG_NR_DRAM_BANKS) 490 start = gd->bd->bi_dram[0].start; 491 size = gd->bd->bi_dram[0].size; 492 #else 493 start = gd->bd->bi_memstart; 494 size = gd->bd->bi_memsize; 495 #endif 496 497 s = env_get("bootm_low"); 498 if (s) 499 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 500 else 501 tmp = start; 502 503 return size - (tmp - start); 504 } 505 506 phys_size_t env_get_bootm_mapsize(void) 507 { 508 phys_size_t tmp; 509 char *s = env_get("bootm_mapsize"); 510 if (s) { 511 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 512 return tmp; 513 } 514 515 #if defined(CONFIG_SYS_BOOTMAPSZ) 516 return CONFIG_SYS_BOOTMAPSZ; 517 #else 518 return env_get_bootm_size(); 519 #endif 520 } 521 522 void memmove_wd(void *to, void *from, size_t len, ulong chunksz) 523 { 524 if (to == from) 525 return; 526 527 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 528 if (to > from) { 529 from += len; 530 to += len; 531 } 532 while (len > 0) { 533 size_t tail = (len > chunksz) ? chunksz : len; 534 WATCHDOG_RESET(); 535 if (to > from) { 536 to -= tail; 537 from -= tail; 538 } 539 memmove(to, from, tail); 540 if (to < from) { 541 to += tail; 542 from += tail; 543 } 544 len -= tail; 545 } 546 #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */ 547 memmove(to, from, len); 548 #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */ 549 } 550 #endif /* !USE_HOSTCC */ 551 552 void genimg_print_size(uint32_t size) 553 { 554 #ifndef USE_HOSTCC 555 printf("%d Bytes = ", size); 556 print_size(size, "\n"); 557 #else 558 printf("%d Bytes = %.2f KiB = %.2f MiB\n", 559 size, (double)size / 1.024e3, 560 (double)size / 1.048576e6); 561 #endif 562 } 563 564 #if IMAGE_ENABLE_TIMESTAMP 565 void genimg_print_time(time_t timestamp) 566 { 567 #ifndef USE_HOSTCC 568 struct rtc_time tm; 569 570 rtc_to_tm(timestamp, &tm); 571 printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n", 572 tm.tm_year, tm.tm_mon, tm.tm_mday, 573 tm.tm_hour, tm.tm_min, tm.tm_sec); 574 #else 575 printf("%s", ctime(×tamp)); 576 #endif 577 } 578 #endif 579 580 const table_entry_t *get_table_entry(const table_entry_t *table, int id) 581 { 582 for (; table->id >= 0; ++table) { 583 if (table->id == id) 584 return table; 585 } 586 return NULL; 587 } 588 589 static const char *unknown_msg(enum ih_category category) 590 { 591 static const char unknown_str[] = "Unknown "; 592 static char msg[30]; 593 594 strcpy(msg, unknown_str); 595 strncat(msg, table_info[category].desc, 596 sizeof(msg) - sizeof(unknown_str)); 597 598 return msg; 599 } 600 601 /** 602 * get_cat_table_entry_name - translate entry id to long name 603 * @category: category to look up (enum ih_category) 604 * @id: entry id to be translated 605 * 606 * This will scan the translation table trying to find the entry that matches 607 * the given id. 608 * 609 * @retur long entry name if translation succeeds; error string on failure 610 */ 611 const char *genimg_get_cat_name(enum ih_category category, uint id) 612 { 613 const table_entry_t *entry; 614 615 entry = get_table_entry(table_info[category].table, id); 616 if (!entry) 617 return unknown_msg(category); 618 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 619 return entry->lname; 620 #else 621 return entry->lname + gd->reloc_off; 622 #endif 623 } 624 625 /** 626 * get_cat_table_entry_short_name - translate entry id to short name 627 * @category: category to look up (enum ih_category) 628 * @id: entry id to be translated 629 * 630 * This will scan the translation table trying to find the entry that matches 631 * the given id. 632 * 633 * @retur short entry name if translation succeeds; error string on failure 634 */ 635 const char *genimg_get_cat_short_name(enum ih_category category, uint id) 636 { 637 const table_entry_t *entry; 638 639 entry = get_table_entry(table_info[category].table, id); 640 if (!entry) 641 return unknown_msg(category); 642 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 643 return entry->sname; 644 #else 645 return entry->sname + gd->reloc_off; 646 #endif 647 } 648 649 int genimg_get_cat_count(enum ih_category category) 650 { 651 return table_info[category].count; 652 } 653 654 const char *genimg_get_cat_desc(enum ih_category category) 655 { 656 return table_info[category].desc; 657 } 658 659 /** 660 * get_table_entry_name - translate entry id to long name 661 * @table: pointer to a translation table for entries of a specific type 662 * @msg: message to be returned when translation fails 663 * @id: entry id to be translated 664 * 665 * get_table_entry_name() will go over translation table trying to find 666 * entry that matches given id. If matching entry is found, its long 667 * name is returned to the caller. 668 * 669 * returns: 670 * long entry name if translation succeeds 671 * msg otherwise 672 */ 673 char *get_table_entry_name(const table_entry_t *table, char *msg, int id) 674 { 675 table = get_table_entry(table, id); 676 if (!table) 677 return msg; 678 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 679 return table->lname; 680 #else 681 return table->lname + gd->reloc_off; 682 #endif 683 } 684 685 const char *genimg_get_os_name(uint8_t os) 686 { 687 return (get_table_entry_name(uimage_os, "Unknown OS", os)); 688 } 689 690 const char *genimg_get_arch_name(uint8_t arch) 691 { 692 return (get_table_entry_name(uimage_arch, "Unknown Architecture", 693 arch)); 694 } 695 696 const char *genimg_get_type_name(uint8_t type) 697 { 698 return (get_table_entry_name(uimage_type, "Unknown Image", type)); 699 } 700 701 static const char *genimg_get_short_name(const table_entry_t *table, int val) 702 { 703 table = get_table_entry(table, val); 704 if (!table) 705 return "unknown"; 706 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 707 return table->sname; 708 #else 709 return table->sname + gd->reloc_off; 710 #endif 711 } 712 713 const char *genimg_get_type_short_name(uint8_t type) 714 { 715 return genimg_get_short_name(uimage_type, type); 716 } 717 718 const char *genimg_get_comp_name(uint8_t comp) 719 { 720 return (get_table_entry_name(uimage_comp, "Unknown Compression", 721 comp)); 722 } 723 724 const char *genimg_get_comp_short_name(uint8_t comp) 725 { 726 return genimg_get_short_name(uimage_comp, comp); 727 } 728 729 const char *genimg_get_os_short_name(uint8_t os) 730 { 731 return genimg_get_short_name(uimage_os, os); 732 } 733 734 const char *genimg_get_arch_short_name(uint8_t arch) 735 { 736 return genimg_get_short_name(uimage_arch, arch); 737 } 738 739 /** 740 * get_table_entry_id - translate short entry name to id 741 * @table: pointer to a translation table for entries of a specific type 742 * @table_name: to be used in case of error 743 * @name: entry short name to be translated 744 * 745 * get_table_entry_id() will go over translation table trying to find 746 * entry that matches given short name. If matching entry is found, 747 * its id returned to the caller. 748 * 749 * returns: 750 * entry id if translation succeeds 751 * -1 otherwise 752 */ 753 int get_table_entry_id(const table_entry_t *table, 754 const char *table_name, const char *name) 755 { 756 const table_entry_t *t; 757 758 for (t = table; t->id >= 0; ++t) { 759 #ifdef CONFIG_NEEDS_MANUAL_RELOC 760 if (t->sname && strcasecmp(t->sname + gd->reloc_off, name) == 0) 761 #else 762 if (t->sname && strcasecmp(t->sname, name) == 0) 763 #endif 764 return (t->id); 765 } 766 debug("Invalid %s Type: %s\n", table_name, name); 767 768 return -1; 769 } 770 771 int genimg_get_os_id(const char *name) 772 { 773 return (get_table_entry_id(uimage_os, "OS", name)); 774 } 775 776 int genimg_get_arch_id(const char *name) 777 { 778 return (get_table_entry_id(uimage_arch, "CPU", name)); 779 } 780 781 int genimg_get_type_id(const char *name) 782 { 783 return (get_table_entry_id(uimage_type, "Image", name)); 784 } 785 786 int genimg_get_comp_id(const char *name) 787 { 788 return (get_table_entry_id(uimage_comp, "Compression", name)); 789 } 790 791 #ifndef USE_HOSTCC 792 /** 793 * genimg_get_kernel_addr_fit - get the real kernel address and return 2 794 * FIT strings 795 * @img_addr: a string might contain real image address 796 * @fit_uname_config: double pointer to a char, will hold pointer to a 797 * configuration unit name 798 * @fit_uname_kernel: double pointer to a char, will hold pointer to a subimage 799 * name 800 * 801 * genimg_get_kernel_addr_fit get the real kernel start address from a string 802 * which is normally the first argv of bootm/bootz 803 * 804 * returns: 805 * kernel start address 806 */ 807 ulong genimg_get_kernel_addr_fit(char * const img_addr, 808 const char **fit_uname_config, 809 const char **fit_uname_kernel) 810 { 811 ulong kernel_addr; 812 813 /* find out kernel image address */ 814 if (!img_addr) { 815 kernel_addr = load_addr; 816 debug("* kernel: default image load address = 0x%08lx\n", 817 load_addr); 818 #if CONFIG_IS_ENABLED(FIT) 819 } else if (fit_parse_conf(img_addr, load_addr, &kernel_addr, 820 fit_uname_config)) { 821 debug("* kernel: config '%s' from image at 0x%08lx\n", 822 *fit_uname_config, kernel_addr); 823 } else if (fit_parse_subimage(img_addr, load_addr, &kernel_addr, 824 fit_uname_kernel)) { 825 debug("* kernel: subimage '%s' from image at 0x%08lx\n", 826 *fit_uname_kernel, kernel_addr); 827 #endif 828 } else { 829 kernel_addr = simple_strtoul(img_addr, NULL, 16); 830 debug("* kernel: cmdline image address = 0x%08lx\n", 831 kernel_addr); 832 } 833 834 return kernel_addr; 835 } 836 837 /** 838 * genimg_get_kernel_addr() is the simple version of 839 * genimg_get_kernel_addr_fit(). It ignores those return FIT strings 840 */ 841 ulong genimg_get_kernel_addr(char * const img_addr) 842 { 843 const char *fit_uname_config = NULL; 844 const char *fit_uname_kernel = NULL; 845 846 return genimg_get_kernel_addr_fit(img_addr, &fit_uname_config, 847 &fit_uname_kernel); 848 } 849 850 /** 851 * genimg_get_format - get image format type 852 * @img_addr: image start address 853 * 854 * genimg_get_format() checks whether provided address points to a valid 855 * legacy or FIT image. 856 * 857 * New uImage format and FDT blob are based on a libfdt. FDT blob 858 * may be passed directly or embedded in a FIT image. In both situations 859 * genimg_get_format() must be able to dectect libfdt header. 860 * 861 * returns: 862 * image format type or IMAGE_FORMAT_INVALID if no image is present 863 */ 864 int genimg_get_format(const void *img_addr) 865 { 866 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 867 const image_header_t *hdr; 868 869 hdr = (const image_header_t *)img_addr; 870 if (image_check_magic(hdr)) 871 return IMAGE_FORMAT_LEGACY; 872 #endif 873 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT 874 if (fdt_check_header(img_addr) == 0) 875 return IMAGE_FORMAT_FIT; 876 #endif 877 #ifdef CONFIG_ANDROID_BOOT_IMAGE 878 if (android_image_check_header(img_addr) == 0) 879 return IMAGE_FORMAT_ANDROID; 880 #endif 881 882 return IMAGE_FORMAT_INVALID; 883 } 884 885 /** 886 * fit_has_config - check if there is a valid FIT configuration 887 * @images: pointer to the bootm command headers structure 888 * 889 * fit_has_config() checks if there is a FIT configuration in use 890 * (if FTI support is present). 891 * 892 * returns: 893 * 0, no FIT support or no configuration found 894 * 1, configuration found 895 */ 896 int genimg_has_config(bootm_headers_t *images) 897 { 898 #if IMAGE_ENABLE_FIT 899 if (images->fit_uname_cfg) 900 return 1; 901 #endif 902 return 0; 903 } 904 905 /** 906 * boot_get_ramdisk - main ramdisk handling routine 907 * @argc: command argument count 908 * @argv: command argument list 909 * @images: pointer to the bootm images structure 910 * @arch: expected ramdisk architecture 911 * @rd_start: pointer to a ulong variable, will hold ramdisk start address 912 * @rd_end: pointer to a ulong variable, will hold ramdisk end 913 * 914 * boot_get_ramdisk() is responsible for finding a valid ramdisk image. 915 * Curently supported are the following ramdisk sources: 916 * - multicomponent kernel/ramdisk image, 917 * - commandline provided address of decicated ramdisk image. 918 * 919 * returns: 920 * 0, if ramdisk image was found and valid, or skiped 921 * rd_start and rd_end are set to ramdisk start/end addresses if 922 * ramdisk image is found and valid 923 * 924 * 1, if ramdisk image is found but corrupted, or invalid 925 * rd_start and rd_end are set to 0 if no ramdisk exists 926 */ 927 int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images, 928 uint8_t arch, ulong *rd_start, ulong *rd_end) 929 { 930 ulong rd_addr, rd_load; 931 ulong rd_data, rd_len; 932 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 933 const image_header_t *rd_hdr; 934 #endif 935 void *buf; 936 #ifdef CONFIG_SUPPORT_RAW_INITRD 937 char *end; 938 #endif 939 #if IMAGE_ENABLE_FIT 940 const char *fit_uname_config = images->fit_uname_cfg; 941 const char *fit_uname_ramdisk = NULL; 942 ulong default_addr; 943 int rd_noffset; 944 #endif 945 const char *select = NULL; 946 947 *rd_start = 0; 948 *rd_end = 0; 949 950 #ifdef CONFIG_ANDROID_BOOT_IMAGE 951 /* 952 * Look for an Android boot image. 953 */ 954 buf = map_sysmem(images->os.start, 0); 955 if (buf && genimg_get_format(buf) == IMAGE_FORMAT_ANDROID) 956 select = argv[0]; 957 #endif 958 959 if (argc >= 2) 960 select = argv[1]; 961 962 /* 963 * Look for a '-' which indicates to ignore the 964 * ramdisk argument 965 */ 966 if (select && strcmp(select, "-") == 0) { 967 debug("## Skipping init Ramdisk\n"); 968 rd_len = rd_data = 0; 969 } else if (select || genimg_has_config(images)) { 970 #if IMAGE_ENABLE_FIT 971 if (select) { 972 /* 973 * If the init ramdisk comes from the FIT image and 974 * the FIT image address is omitted in the command 975 * line argument, try to use os FIT image address or 976 * default load address. 977 */ 978 if (images->fit_uname_os) 979 default_addr = (ulong)images->fit_hdr_os; 980 else 981 default_addr = load_addr; 982 983 if (fit_parse_conf(select, default_addr, 984 &rd_addr, &fit_uname_config)) { 985 debug("* ramdisk: config '%s' from image at " 986 "0x%08lx\n", 987 fit_uname_config, rd_addr); 988 } else if (fit_parse_subimage(select, default_addr, 989 &rd_addr, &fit_uname_ramdisk)) { 990 debug("* ramdisk: subimage '%s' from image at " 991 "0x%08lx\n", 992 fit_uname_ramdisk, rd_addr); 993 } else 994 #endif 995 { 996 rd_addr = simple_strtoul(select, NULL, 16); 997 debug("* ramdisk: cmdline image address = " 998 "0x%08lx\n", 999 rd_addr); 1000 } 1001 #if IMAGE_ENABLE_FIT 1002 } else { 1003 /* use FIT configuration provided in first bootm 1004 * command argument. If the property is not defined, 1005 * quit silently. 1006 */ 1007 rd_addr = map_to_sysmem(images->fit_hdr_os); 1008 rd_noffset = fit_get_node_from_config(images, 1009 FIT_RAMDISK_PROP, rd_addr); 1010 if (rd_noffset == -ENOENT) 1011 return 0; 1012 else if (rd_noffset < 0) 1013 return 1; 1014 } 1015 #endif 1016 1017 /* 1018 * Check if there is an initrd image at the 1019 * address provided in the second bootm argument 1020 * check image type, for FIT images get FIT node. 1021 */ 1022 buf = map_sysmem(rd_addr, 0); 1023 switch (genimg_get_format(buf)) { 1024 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 1025 case IMAGE_FORMAT_LEGACY: 1026 printf("## Loading init Ramdisk from Legacy " 1027 "Image at %08lx ...\n", rd_addr); 1028 1029 bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK); 1030 rd_hdr = image_get_ramdisk(rd_addr, arch, 1031 images->verify); 1032 1033 if (rd_hdr == NULL) 1034 return 1; 1035 1036 rd_data = image_get_data(rd_hdr); 1037 rd_len = image_get_data_size(rd_hdr); 1038 rd_load = image_get_load(rd_hdr); 1039 break; 1040 #endif 1041 #if IMAGE_ENABLE_FIT 1042 case IMAGE_FORMAT_FIT: 1043 rd_noffset = fit_image_load(images, 1044 rd_addr, &fit_uname_ramdisk, 1045 &fit_uname_config, arch, 1046 IH_TYPE_RAMDISK, 1047 BOOTSTAGE_ID_FIT_RD_START, 1048 FIT_LOAD_OPTIONAL_NON_ZERO, 1049 &rd_data, &rd_len); 1050 if (rd_noffset < 0) 1051 return 1; 1052 1053 images->fit_hdr_rd = map_sysmem(rd_addr, 0); 1054 images->fit_uname_rd = fit_uname_ramdisk; 1055 images->fit_noffset_rd = rd_noffset; 1056 break; 1057 #endif 1058 #ifdef CONFIG_ANDROID_BOOT_IMAGE 1059 case IMAGE_FORMAT_ANDROID: 1060 android_image_get_ramdisk((void *)images->os.start, 1061 &rd_data, &rd_len); 1062 break; 1063 #endif 1064 default: 1065 #ifdef CONFIG_SUPPORT_RAW_INITRD 1066 end = NULL; 1067 if (select) 1068 end = strchr(select, ':'); 1069 if (end) { 1070 rd_len = simple_strtoul(++end, NULL, 16); 1071 rd_data = rd_addr; 1072 } else 1073 #endif 1074 { 1075 puts("Wrong Ramdisk Image Format\n"); 1076 rd_data = rd_len = rd_load = 0; 1077 return 1; 1078 } 1079 } 1080 } else if (images->legacy_hdr_valid && 1081 image_check_type(&images->legacy_hdr_os_copy, 1082 IH_TYPE_MULTI)) { 1083 1084 /* 1085 * Now check if we have a legacy mult-component image, 1086 * get second entry data start address and len. 1087 */ 1088 bootstage_mark(BOOTSTAGE_ID_RAMDISK); 1089 printf("## Loading init Ramdisk from multi component " 1090 "Legacy Image at %08lx ...\n", 1091 (ulong)images->legacy_hdr_os); 1092 1093 image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len); 1094 } else { 1095 /* 1096 * no initrd image 1097 */ 1098 bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK); 1099 rd_len = rd_data = 0; 1100 } 1101 1102 if (!rd_data) { 1103 debug("## No init Ramdisk\n"); 1104 } else { 1105 *rd_start = rd_data; 1106 *rd_end = rd_data + rd_len; 1107 } 1108 debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n", 1109 *rd_start, *rd_end); 1110 1111 return 0; 1112 } 1113 1114 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH 1115 /** 1116 * boot_ramdisk_high - relocate init ramdisk 1117 * @lmb: pointer to lmb handle, will be used for memory mgmt 1118 * @rd_data: ramdisk data start address 1119 * @rd_len: ramdisk data length 1120 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk 1121 * start address (after possible relocation) 1122 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk 1123 * end address (after possible relocation) 1124 * 1125 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environment 1126 * variable and if requested ramdisk data is moved to a specified location. 1127 * 1128 * Initrd_start and initrd_end are set to final (after relocation) ramdisk 1129 * start/end addresses if ramdisk image start and len were provided, 1130 * otherwise set initrd_start and initrd_end set to zeros. 1131 * 1132 * returns: 1133 * 0 - success 1134 * -1 - failure 1135 */ 1136 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len, 1137 ulong *initrd_start, ulong *initrd_end) 1138 { 1139 char *s; 1140 ulong initrd_high; 1141 int initrd_copy_to_ram = 1; 1142 1143 s = env_get("initrd_high"); 1144 if (s) { 1145 /* a value of "no" or a similar string will act like 0, 1146 * turning the "load high" feature off. This is intentional. 1147 */ 1148 initrd_high = simple_strtoul(s, NULL, 16); 1149 if (initrd_high == ~0) 1150 initrd_copy_to_ram = 0; 1151 } else { 1152 initrd_high = env_get_bootm_mapsize() + env_get_bootm_low(); 1153 } 1154 1155 1156 debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n", 1157 initrd_high, initrd_copy_to_ram); 1158 1159 if (rd_data) { 1160 if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */ 1161 debug(" in-place initrd\n"); 1162 *initrd_start = rd_data; 1163 *initrd_end = rd_data + rd_len; 1164 lmb_reserve(lmb, rd_data, rd_len); 1165 } else { 1166 if (initrd_high) 1167 *initrd_start = (ulong)lmb_alloc_base(lmb, 1168 rd_len, 0x1000, initrd_high); 1169 else 1170 *initrd_start = (ulong)lmb_alloc(lmb, rd_len, 1171 0x1000); 1172 1173 if (*initrd_start == 0) { 1174 puts("ramdisk - allocation error\n"); 1175 goto error; 1176 } 1177 bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK); 1178 1179 *initrd_end = *initrd_start + rd_len; 1180 printf(" Loading Ramdisk to %08lx, end %08lx ... ", 1181 *initrd_start, *initrd_end); 1182 1183 memmove_wd((void *)*initrd_start, 1184 (void *)rd_data, rd_len, CHUNKSZ); 1185 1186 #ifdef CONFIG_MP 1187 /* 1188 * Ensure the image is flushed to memory to handle 1189 * AMP boot scenarios in which we might not be 1190 * HW cache coherent 1191 */ 1192 flush_cache((unsigned long)*initrd_start, 1193 ALIGN(rd_len, ARCH_DMA_MINALIGN)); 1194 #endif 1195 puts("OK\n"); 1196 } 1197 } else { 1198 *initrd_start = 0; 1199 *initrd_end = 0; 1200 } 1201 debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n", 1202 *initrd_start, *initrd_end); 1203 1204 return 0; 1205 1206 error: 1207 return -1; 1208 } 1209 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */ 1210 1211 int boot_get_setup(bootm_headers_t *images, uint8_t arch, 1212 ulong *setup_start, ulong *setup_len) 1213 { 1214 #if IMAGE_ENABLE_FIT 1215 return boot_get_setup_fit(images, arch, setup_start, setup_len); 1216 #else 1217 return -ENOENT; 1218 #endif 1219 } 1220 1221 #if IMAGE_ENABLE_FIT 1222 #if defined(CONFIG_FPGA) 1223 int boot_get_fpga(int argc, char * const argv[], bootm_headers_t *images, 1224 uint8_t arch, const ulong *ld_start, ulong * const ld_len) 1225 { 1226 ulong tmp_img_addr, img_data, img_len; 1227 void *buf; 1228 int conf_noffset; 1229 int fit_img_result; 1230 const char *uname, *name; 1231 int err; 1232 int devnum = 0; /* TODO support multi fpga platforms */ 1233 1234 /* Check to see if the images struct has a FIT configuration */ 1235 if (!genimg_has_config(images)) { 1236 debug("## FIT configuration was not specified\n"); 1237 return 0; 1238 } 1239 1240 /* 1241 * Obtain the os FIT header from the images struct 1242 */ 1243 tmp_img_addr = map_to_sysmem(images->fit_hdr_os); 1244 buf = map_sysmem(tmp_img_addr, 0); 1245 /* 1246 * Check image type. For FIT images get FIT node 1247 * and attempt to locate a generic binary. 1248 */ 1249 switch (genimg_get_format(buf)) { 1250 case IMAGE_FORMAT_FIT: 1251 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg); 1252 1253 uname = fdt_stringlist_get(buf, conf_noffset, FIT_FPGA_PROP, 0, 1254 NULL); 1255 if (!uname) { 1256 debug("## FPGA image is not specified\n"); 1257 return 0; 1258 } 1259 fit_img_result = fit_image_load(images, 1260 tmp_img_addr, 1261 (const char **)&uname, 1262 &(images->fit_uname_cfg), 1263 arch, 1264 IH_TYPE_FPGA, 1265 BOOTSTAGE_ID_FPGA_INIT, 1266 FIT_LOAD_OPTIONAL_NON_ZERO, 1267 &img_data, &img_len); 1268 1269 debug("FPGA image (%s) loaded to 0x%lx/size 0x%lx\n", 1270 uname, img_data, img_len); 1271 1272 if (fit_img_result < 0) { 1273 /* Something went wrong! */ 1274 return fit_img_result; 1275 } 1276 1277 if (!fpga_is_partial_data(devnum, img_len)) { 1278 name = "full"; 1279 err = fpga_loadbitstream(devnum, (char *)img_data, 1280 img_len, BIT_FULL); 1281 if (err) 1282 err = fpga_load(devnum, (const void *)img_data, 1283 img_len, BIT_FULL); 1284 } else { 1285 name = "partial"; 1286 err = fpga_loadbitstream(devnum, (char *)img_data, 1287 img_len, BIT_PARTIAL); 1288 if (err) 1289 err = fpga_load(devnum, (const void *)img_data, 1290 img_len, BIT_PARTIAL); 1291 } 1292 1293 if (err) 1294 return err; 1295 1296 printf(" Programming %s bitstream... OK\n", name); 1297 break; 1298 default: 1299 printf("The given image format is not supported (corrupt?)\n"); 1300 return 1; 1301 } 1302 1303 return 0; 1304 } 1305 #endif 1306 1307 static void fit_loadable_process(uint8_t img_type, 1308 ulong img_data, 1309 ulong img_len) 1310 { 1311 int i; 1312 const unsigned int count = 1313 ll_entry_count(struct fit_loadable_tbl, fit_loadable); 1314 struct fit_loadable_tbl *fit_loadable_handler = 1315 ll_entry_start(struct fit_loadable_tbl, fit_loadable); 1316 /* For each loadable handler */ 1317 for (i = 0; i < count; i++, fit_loadable_handler++) 1318 /* matching this type */ 1319 if (fit_loadable_handler->type == img_type) 1320 /* call that handler with this image data */ 1321 fit_loadable_handler->handler(img_data, img_len); 1322 } 1323 1324 int boot_get_loadable(int argc, char * const argv[], bootm_headers_t *images, 1325 uint8_t arch, const ulong *ld_start, ulong * const ld_len) 1326 { 1327 /* 1328 * These variables are used to hold the current image location 1329 * in system memory. 1330 */ 1331 ulong tmp_img_addr; 1332 /* 1333 * These two variables are requirements for fit_image_load, but 1334 * their values are not used 1335 */ 1336 ulong img_data, img_len; 1337 void *buf; 1338 int loadables_index; 1339 int conf_noffset; 1340 int fit_img_result; 1341 const char *uname; 1342 uint8_t img_type; 1343 1344 /* Check to see if the images struct has a FIT configuration */ 1345 if (!genimg_has_config(images)) { 1346 debug("## FIT configuration was not specified\n"); 1347 return 0; 1348 } 1349 1350 /* 1351 * Obtain the os FIT header from the images struct 1352 */ 1353 tmp_img_addr = map_to_sysmem(images->fit_hdr_os); 1354 buf = map_sysmem(tmp_img_addr, 0); 1355 /* 1356 * Check image type. For FIT images get FIT node 1357 * and attempt to locate a generic binary. 1358 */ 1359 switch (genimg_get_format(buf)) { 1360 case IMAGE_FORMAT_FIT: 1361 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg); 1362 1363 for (loadables_index = 0; 1364 uname = fdt_stringlist_get(buf, conf_noffset, 1365 FIT_LOADABLE_PROP, loadables_index, 1366 NULL), uname; 1367 loadables_index++) 1368 { 1369 fit_img_result = fit_image_load(images, 1370 tmp_img_addr, 1371 &uname, 1372 &(images->fit_uname_cfg), arch, 1373 IH_TYPE_LOADABLE, 1374 BOOTSTAGE_ID_FIT_LOADABLE_START, 1375 FIT_LOAD_OPTIONAL_NON_ZERO, 1376 &img_data, &img_len); 1377 if (fit_img_result < 0) { 1378 /* Something went wrong! */ 1379 return fit_img_result; 1380 } 1381 1382 fit_img_result = fit_image_get_node(buf, uname); 1383 if (fit_img_result < 0) { 1384 /* Something went wrong! */ 1385 return fit_img_result; 1386 } 1387 fit_img_result = fit_image_get_type(buf, 1388 fit_img_result, 1389 &img_type); 1390 if (fit_img_result < 0) { 1391 /* Something went wrong! */ 1392 return fit_img_result; 1393 } 1394 1395 fit_loadable_process(img_type, img_data, img_len); 1396 } 1397 break; 1398 default: 1399 printf("The given image format is not supported (corrupt?)\n"); 1400 return 1; 1401 } 1402 1403 return 0; 1404 } 1405 #endif 1406 1407 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE 1408 /** 1409 * boot_get_cmdline - allocate and initialize kernel cmdline 1410 * @lmb: pointer to lmb handle, will be used for memory mgmt 1411 * @cmd_start: pointer to a ulong variable, will hold cmdline start 1412 * @cmd_end: pointer to a ulong variable, will hold cmdline end 1413 * 1414 * boot_get_cmdline() allocates space for kernel command line below 1415 * BOOTMAPSZ + env_get_bootm_low() address. If "bootargs" U-Boot environemnt 1416 * variable is present its contents is copied to allocated kernel 1417 * command line. 1418 * 1419 * returns: 1420 * 0 - success 1421 * -1 - failure 1422 */ 1423 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end) 1424 { 1425 char *cmdline; 1426 char *s; 1427 1428 cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf, 1429 env_get_bootm_mapsize() + env_get_bootm_low()); 1430 1431 if (cmdline == NULL) 1432 return -1; 1433 1434 s = env_get("bootargs"); 1435 if (!s) 1436 s = ""; 1437 1438 strcpy(cmdline, s); 1439 1440 *cmd_start = (ulong) & cmdline[0]; 1441 *cmd_end = *cmd_start + strlen(cmdline); 1442 1443 debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end); 1444 1445 return 0; 1446 } 1447 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */ 1448 1449 #ifdef CONFIG_SYS_BOOT_GET_KBD 1450 /** 1451 * boot_get_kbd - allocate and initialize kernel copy of board info 1452 * @lmb: pointer to lmb handle, will be used for memory mgmt 1453 * @kbd: double pointer to board info data 1454 * 1455 * boot_get_kbd() allocates space for kernel copy of board info data below 1456 * BOOTMAPSZ + env_get_bootm_low() address and kernel board info is initialized 1457 * with the current u-boot board info data. 1458 * 1459 * returns: 1460 * 0 - success 1461 * -1 - failure 1462 */ 1463 int boot_get_kbd(struct lmb *lmb, bd_t **kbd) 1464 { 1465 *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf, 1466 env_get_bootm_mapsize() + env_get_bootm_low()); 1467 if (*kbd == NULL) 1468 return -1; 1469 1470 **kbd = *(gd->bd); 1471 1472 debug("## kernel board info at 0x%08lx\n", (ulong)*kbd); 1473 1474 #if defined(DEBUG) && defined(CONFIG_CMD_BDI) 1475 do_bdinfo(NULL, 0, 0, NULL); 1476 #endif 1477 1478 return 0; 1479 } 1480 #endif /* CONFIG_SYS_BOOT_GET_KBD */ 1481 1482 #ifdef CONFIG_LMB 1483 int image_setup_linux(bootm_headers_t *images) 1484 { 1485 ulong of_size = images->ft_len; 1486 char **of_flat_tree = &images->ft_addr; 1487 struct lmb *lmb = &images->lmb; 1488 int ret; 1489 1490 if (IMAGE_ENABLE_OF_LIBFDT) 1491 boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree); 1492 1493 if (IMAGE_BOOT_GET_CMDLINE) { 1494 ret = boot_get_cmdline(lmb, &images->cmdline_start, 1495 &images->cmdline_end); 1496 if (ret) { 1497 puts("ERROR with allocation of cmdline\n"); 1498 return ret; 1499 } 1500 } 1501 1502 if (IMAGE_ENABLE_OF_LIBFDT) { 1503 ret = boot_relocate_fdt(lmb, of_flat_tree, &of_size); 1504 if (ret) 1505 return ret; 1506 } 1507 1508 if (IMAGE_ENABLE_OF_LIBFDT && of_size) { 1509 ret = image_setup_libfdt(images, *of_flat_tree, of_size, lmb); 1510 if (ret) 1511 return ret; 1512 } 1513 1514 return 0; 1515 } 1516 #endif /* CONFIG_LMB */ 1517 #endif /* !USE_HOSTCC */ 1518