1 /* 2 * (C) Copyright 2008 Semihalf 3 * 4 * (C) Copyright 2000-2006 5 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 6 * 7 * See file CREDITS for list of people who contributed to this 8 * project. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of 13 * the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, 23 * MA 02111-1307 USA 24 */ 25 26 #ifndef USE_HOSTCC 27 #include <common.h> 28 #include <watchdog.h> 29 30 #ifdef CONFIG_SHOW_BOOT_PROGRESS 31 #include <status_led.h> 32 #endif 33 34 #ifdef CONFIG_HAS_DATAFLASH 35 #include <dataflash.h> 36 #endif 37 38 #ifdef CONFIG_LOGBUFFER 39 #include <logbuff.h> 40 #endif 41 42 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) 43 #include <rtc.h> 44 #endif 45 46 #include <image.h> 47 48 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT) 49 #include <fdt.h> 50 #include <libfdt.h> 51 #include <fdt_support.h> 52 #endif 53 54 #if defined(CONFIG_FIT) 55 #include <u-boot/md5.h> 56 #include <sha1.h> 57 58 static int fit_check_ramdisk(const void *fit, int os_noffset, 59 uint8_t arch, int verify); 60 #endif 61 62 #ifdef CONFIG_CMD_BDI 63 extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); 64 #endif 65 66 DECLARE_GLOBAL_DATA_PTR; 67 68 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 69 int verify); 70 #else 71 #include "mkimage.h" 72 #include <u-boot/md5.h> 73 #include <time.h> 74 #include <image.h> 75 #endif /* !USE_HOSTCC*/ 76 77 static const table_entry_t uimage_arch[] = { 78 { IH_ARCH_INVALID, NULL, "Invalid ARCH", }, 79 { IH_ARCH_ALPHA, "alpha", "Alpha", }, 80 { IH_ARCH_ARM, "arm", "ARM", }, 81 { IH_ARCH_I386, "x86", "Intel x86", }, 82 { IH_ARCH_IA64, "ia64", "IA64", }, 83 { IH_ARCH_M68K, "m68k", "M68K", }, 84 { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", }, 85 { IH_ARCH_MIPS, "mips", "MIPS", }, 86 { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", }, 87 { IH_ARCH_NIOS2, "nios2", "NIOS II", }, 88 { IH_ARCH_PPC, "powerpc", "PowerPC", }, 89 { IH_ARCH_PPC, "ppc", "PowerPC", }, 90 { IH_ARCH_S390, "s390", "IBM S390", }, 91 { IH_ARCH_SH, "sh", "SuperH", }, 92 { IH_ARCH_SPARC, "sparc", "SPARC", }, 93 { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", }, 94 { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", }, 95 { IH_ARCH_AVR32, "avr32", "AVR32", }, 96 { IH_ARCH_NDS32, "nds32", "NDS32", }, 97 { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",}, 98 { -1, "", "", }, 99 }; 100 101 static const table_entry_t uimage_os[] = { 102 { IH_OS_INVALID, NULL, "Invalid OS", }, 103 { IH_OS_LINUX, "linux", "Linux", }, 104 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC) 105 { IH_OS_LYNXOS, "lynxos", "LynxOS", }, 106 #endif 107 { IH_OS_NETBSD, "netbsd", "NetBSD", }, 108 { IH_OS_OSE, "ose", "Enea OSE", }, 109 { IH_OS_RTEMS, "rtems", "RTEMS", }, 110 { IH_OS_U_BOOT, "u-boot", "U-Boot", }, 111 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC) 112 { IH_OS_QNX, "qnx", "QNX", }, 113 { IH_OS_VXWORKS, "vxworks", "VxWorks", }, 114 #endif 115 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC) 116 { IH_OS_INTEGRITY,"integrity", "INTEGRITY", }, 117 #endif 118 #ifdef USE_HOSTCC 119 { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", }, 120 { IH_OS_DELL, "dell", "Dell", }, 121 { IH_OS_ESIX, "esix", "Esix", }, 122 { IH_OS_FREEBSD, "freebsd", "FreeBSD", }, 123 { IH_OS_IRIX, "irix", "Irix", }, 124 { IH_OS_NCR, "ncr", "NCR", }, 125 { IH_OS_OPENBSD, "openbsd", "OpenBSD", }, 126 { IH_OS_PSOS, "psos", "pSOS", }, 127 { IH_OS_SCO, "sco", "SCO", }, 128 { IH_OS_SOLARIS, "solaris", "Solaris", }, 129 { IH_OS_SVR4, "svr4", "SVR4", }, 130 #endif 131 { -1, "", "", }, 132 }; 133 134 static const table_entry_t uimage_type[] = { 135 { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",}, 136 { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", }, 137 { IH_TYPE_FIRMWARE, "firmware", "Firmware", }, 138 { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", }, 139 { IH_TYPE_KERNEL, "kernel", "Kernel Image", }, 140 { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", }, 141 { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",}, 142 { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",}, 143 { IH_TYPE_INVALID, NULL, "Invalid Image", }, 144 { IH_TYPE_MULTI, "multi", "Multi-File Image", }, 145 { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",}, 146 { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", }, 147 { IH_TYPE_SCRIPT, "script", "Script", }, 148 { IH_TYPE_STANDALONE, "standalone", "Standalone Program", }, 149 { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",}, 150 { -1, "", "", }, 151 }; 152 153 static const table_entry_t uimage_comp[] = { 154 { IH_COMP_NONE, "none", "uncompressed", }, 155 { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", }, 156 { IH_COMP_GZIP, "gzip", "gzip compressed", }, 157 { IH_COMP_LZMA, "lzma", "lzma compressed", }, 158 { IH_COMP_LZO, "lzo", "lzo compressed", }, 159 { -1, "", "", }, 160 }; 161 162 uint32_t crc32(uint32_t, const unsigned char *, uint); 163 uint32_t crc32_wd(uint32_t, const unsigned char *, uint, uint); 164 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 165 static void genimg_print_time(time_t timestamp); 166 #endif 167 168 /*****************************************************************************/ 169 /* Legacy format routines */ 170 /*****************************************************************************/ 171 int image_check_hcrc(const image_header_t *hdr) 172 { 173 ulong hcrc; 174 ulong len = image_get_header_size(); 175 image_header_t header; 176 177 /* Copy header so we can blank CRC field for re-calculation */ 178 memmove(&header, (char *)hdr, image_get_header_size()); 179 image_set_hcrc(&header, 0); 180 181 hcrc = crc32(0, (unsigned char *)&header, len); 182 183 return (hcrc == image_get_hcrc(hdr)); 184 } 185 186 int image_check_dcrc(const image_header_t *hdr) 187 { 188 ulong data = image_get_data(hdr); 189 ulong len = image_get_data_size(hdr); 190 ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32); 191 192 return (dcrc == image_get_dcrc(hdr)); 193 } 194 195 /** 196 * image_multi_count - get component (sub-image) count 197 * @hdr: pointer to the header of the multi component image 198 * 199 * image_multi_count() returns number of components in a multi 200 * component image. 201 * 202 * Note: no checking of the image type is done, caller must pass 203 * a valid multi component image. 204 * 205 * returns: 206 * number of components 207 */ 208 ulong image_multi_count(const image_header_t *hdr) 209 { 210 ulong i, count = 0; 211 uint32_t *size; 212 213 /* get start of the image payload, which in case of multi 214 * component images that points to a table of component sizes */ 215 size = (uint32_t *)image_get_data(hdr); 216 217 /* count non empty slots */ 218 for (i = 0; size[i]; ++i) 219 count++; 220 221 return count; 222 } 223 224 /** 225 * image_multi_getimg - get component data address and size 226 * @hdr: pointer to the header of the multi component image 227 * @idx: index of the requested component 228 * @data: pointer to a ulong variable, will hold component data address 229 * @len: pointer to a ulong variable, will hold component size 230 * 231 * image_multi_getimg() returns size and data address for the requested 232 * component in a multi component image. 233 * 234 * Note: no checking of the image type is done, caller must pass 235 * a valid multi component image. 236 * 237 * returns: 238 * data address and size of the component, if idx is valid 239 * 0 in data and len, if idx is out of range 240 */ 241 void image_multi_getimg(const image_header_t *hdr, ulong idx, 242 ulong *data, ulong *len) 243 { 244 int i; 245 uint32_t *size; 246 ulong offset, count, img_data; 247 248 /* get number of component */ 249 count = image_multi_count(hdr); 250 251 /* get start of the image payload, which in case of multi 252 * component images that points to a table of component sizes */ 253 size = (uint32_t *)image_get_data(hdr); 254 255 /* get address of the proper component data start, which means 256 * skipping sizes table (add 1 for last, null entry) */ 257 img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t); 258 259 if (idx < count) { 260 *len = uimage_to_cpu(size[idx]); 261 offset = 0; 262 263 /* go over all indices preceding requested component idx */ 264 for (i = 0; i < idx; i++) { 265 /* add up i-th component size, rounding up to 4 bytes */ 266 offset += (uimage_to_cpu(size[i]) + 3) & ~3 ; 267 } 268 269 /* calculate idx-th component data address */ 270 *data = img_data + offset; 271 } else { 272 *len = 0; 273 *data = 0; 274 } 275 } 276 277 static void image_print_type(const image_header_t *hdr) 278 { 279 const char *os, *arch, *type, *comp; 280 281 os = genimg_get_os_name(image_get_os(hdr)); 282 arch = genimg_get_arch_name(image_get_arch(hdr)); 283 type = genimg_get_type_name(image_get_type(hdr)); 284 comp = genimg_get_comp_name(image_get_comp(hdr)); 285 286 printf("%s %s %s (%s)\n", arch, os, type, comp); 287 } 288 289 /** 290 * image_print_contents - prints out the contents of the legacy format image 291 * @ptr: pointer to the legacy format image header 292 * @p: pointer to prefix string 293 * 294 * image_print_contents() formats a multi line legacy image contents description. 295 * The routine prints out all header fields followed by the size/offset data 296 * for MULTI/SCRIPT images. 297 * 298 * returns: 299 * no returned results 300 */ 301 void image_print_contents(const void *ptr) 302 { 303 const image_header_t *hdr = (const image_header_t *)ptr; 304 const char *p; 305 306 #ifdef USE_HOSTCC 307 p = ""; 308 #else 309 p = " "; 310 #endif 311 312 printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr)); 313 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 314 printf("%sCreated: ", p); 315 genimg_print_time((time_t)image_get_time(hdr)); 316 #endif 317 printf("%sImage Type: ", p); 318 image_print_type(hdr); 319 printf("%sData Size: ", p); 320 genimg_print_size(image_get_data_size(hdr)); 321 printf("%sLoad Address: %08x\n", p, image_get_load(hdr)); 322 printf("%sEntry Point: %08x\n", p, image_get_ep(hdr)); 323 324 if (image_check_type(hdr, IH_TYPE_MULTI) || 325 image_check_type(hdr, IH_TYPE_SCRIPT)) { 326 int i; 327 ulong data, len; 328 ulong count = image_multi_count(hdr); 329 330 printf("%sContents:\n", p); 331 for (i = 0; i < count; i++) { 332 image_multi_getimg(hdr, i, &data, &len); 333 334 printf("%s Image %d: ", p, i); 335 genimg_print_size(len); 336 337 if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) { 338 /* 339 * the user may need to know offsets 340 * if planning to do something with 341 * multiple files 342 */ 343 printf("%s Offset = 0x%08lx\n", p, data); 344 } 345 } 346 } 347 } 348 349 350 #ifndef USE_HOSTCC 351 /** 352 * image_get_ramdisk - get and verify ramdisk image 353 * @rd_addr: ramdisk image start address 354 * @arch: expected ramdisk architecture 355 * @verify: checksum verification flag 356 * 357 * image_get_ramdisk() returns a pointer to the verified ramdisk image 358 * header. Routine receives image start address and expected architecture 359 * flag. Verification done covers data and header integrity and os/type/arch 360 * fields checking. 361 * 362 * If dataflash support is enabled routine checks for dataflash addresses 363 * and handles required dataflash reads. 364 * 365 * returns: 366 * pointer to a ramdisk image header, if image was found and valid 367 * otherwise, return NULL 368 */ 369 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 370 int verify) 371 { 372 const image_header_t *rd_hdr = (const image_header_t *)rd_addr; 373 374 if (!image_check_magic(rd_hdr)) { 375 puts("Bad Magic Number\n"); 376 bootstage_error(BOOTSTAGE_ID_RD_MAGIC); 377 return NULL; 378 } 379 380 if (!image_check_hcrc(rd_hdr)) { 381 puts("Bad Header Checksum\n"); 382 bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 383 return NULL; 384 } 385 386 bootstage_mark(BOOTSTAGE_ID_RD_MAGIC); 387 image_print_contents(rd_hdr); 388 389 if (verify) { 390 puts(" Verifying Checksum ... "); 391 if (!image_check_dcrc(rd_hdr)) { 392 puts("Bad Data CRC\n"); 393 bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM); 394 return NULL; 395 } 396 puts("OK\n"); 397 } 398 399 bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 400 401 if (!image_check_os(rd_hdr, IH_OS_LINUX) || 402 !image_check_arch(rd_hdr, arch) || 403 !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) { 404 printf("No Linux %s Ramdisk Image\n", 405 genimg_get_arch_name(arch)); 406 bootstage_error(BOOTSTAGE_ID_RAMDISK); 407 return NULL; 408 } 409 410 return rd_hdr; 411 } 412 #endif /* !USE_HOSTCC */ 413 414 /*****************************************************************************/ 415 /* Shared dual-format routines */ 416 /*****************************************************************************/ 417 #ifndef USE_HOSTCC 418 int getenv_yesno(char *var) 419 { 420 char *s = getenv(var); 421 return (s && (*s == 'n')) ? 0 : 1; 422 } 423 424 ulong getenv_bootm_low(void) 425 { 426 char *s = getenv("bootm_low"); 427 if (s) { 428 ulong tmp = simple_strtoul(s, NULL, 16); 429 return tmp; 430 } 431 432 #if defined(CONFIG_SYS_SDRAM_BASE) 433 return CONFIG_SYS_SDRAM_BASE; 434 #elif defined(CONFIG_ARM) 435 return gd->bd->bi_dram[0].start; 436 #else 437 return 0; 438 #endif 439 } 440 441 phys_size_t getenv_bootm_size(void) 442 { 443 phys_size_t tmp; 444 char *s = getenv("bootm_size"); 445 if (s) { 446 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 447 return tmp; 448 } 449 s = getenv("bootm_low"); 450 if (s) 451 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 452 else 453 tmp = 0; 454 455 456 #if defined(CONFIG_ARM) 457 return gd->bd->bi_dram[0].size - tmp; 458 #else 459 return gd->bd->bi_memsize - tmp; 460 #endif 461 } 462 463 phys_size_t getenv_bootm_mapsize(void) 464 { 465 phys_size_t tmp; 466 char *s = getenv("bootm_mapsize"); 467 if (s) { 468 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 469 return tmp; 470 } 471 472 #if defined(CONFIG_SYS_BOOTMAPSZ) 473 return CONFIG_SYS_BOOTMAPSZ; 474 #else 475 return getenv_bootm_size(); 476 #endif 477 } 478 479 void memmove_wd(void *to, void *from, size_t len, ulong chunksz) 480 { 481 if (to == from) 482 return; 483 484 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 485 while (len > 0) { 486 size_t tail = (len > chunksz) ? chunksz : len; 487 WATCHDOG_RESET(); 488 memmove(to, from, tail); 489 to += tail; 490 from += tail; 491 len -= tail; 492 } 493 #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */ 494 memmove(to, from, len); 495 #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */ 496 } 497 #endif /* !USE_HOSTCC */ 498 499 void genimg_print_size(uint32_t size) 500 { 501 #ifndef USE_HOSTCC 502 printf("%d Bytes = ", size); 503 print_size(size, "\n"); 504 #else 505 printf("%d Bytes = %.2f kB = %.2f MB\n", 506 size, (double)size / 1.024e3, 507 (double)size / 1.048576e6); 508 #endif 509 } 510 511 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 512 static void genimg_print_time(time_t timestamp) 513 { 514 #ifndef USE_HOSTCC 515 struct rtc_time tm; 516 517 to_tm(timestamp, &tm); 518 printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n", 519 tm.tm_year, tm.tm_mon, tm.tm_mday, 520 tm.tm_hour, tm.tm_min, tm.tm_sec); 521 #else 522 printf("%s", ctime(×tamp)); 523 #endif 524 } 525 #endif /* CONFIG_TIMESTAMP || CONFIG_CMD_DATE || USE_HOSTCC */ 526 527 /** 528 * get_table_entry_name - translate entry id to long name 529 * @table: pointer to a translation table for entries of a specific type 530 * @msg: message to be returned when translation fails 531 * @id: entry id to be translated 532 * 533 * get_table_entry_name() will go over translation table trying to find 534 * entry that matches given id. If matching entry is found, its long 535 * name is returned to the caller. 536 * 537 * returns: 538 * long entry name if translation succeeds 539 * msg otherwise 540 */ 541 char *get_table_entry_name(const table_entry_t *table, char *msg, int id) 542 { 543 for (; table->id >= 0; ++table) { 544 if (table->id == id) 545 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 546 return table->lname; 547 #else 548 return table->lname + gd->reloc_off; 549 #endif 550 } 551 return (msg); 552 } 553 554 const char *genimg_get_os_name(uint8_t os) 555 { 556 return (get_table_entry_name(uimage_os, "Unknown OS", os)); 557 } 558 559 const char *genimg_get_arch_name(uint8_t arch) 560 { 561 return (get_table_entry_name(uimage_arch, "Unknown Architecture", 562 arch)); 563 } 564 565 const char *genimg_get_type_name(uint8_t type) 566 { 567 return (get_table_entry_name(uimage_type, "Unknown Image", type)); 568 } 569 570 const char *genimg_get_comp_name(uint8_t comp) 571 { 572 return (get_table_entry_name(uimage_comp, "Unknown Compression", 573 comp)); 574 } 575 576 /** 577 * get_table_entry_id - translate short entry name to id 578 * @table: pointer to a translation table for entries of a specific type 579 * @table_name: to be used in case of error 580 * @name: entry short name to be translated 581 * 582 * get_table_entry_id() will go over translation table trying to find 583 * entry that matches given short name. If matching entry is found, 584 * its id returned to the caller. 585 * 586 * returns: 587 * entry id if translation succeeds 588 * -1 otherwise 589 */ 590 int get_table_entry_id(const table_entry_t *table, 591 const char *table_name, const char *name) 592 { 593 const table_entry_t *t; 594 #ifdef USE_HOSTCC 595 int first = 1; 596 597 for (t = table; t->id >= 0; ++t) { 598 if (t->sname && strcasecmp(t->sname, name) == 0) 599 return(t->id); 600 } 601 602 fprintf(stderr, "\nInvalid %s Type - valid names are", table_name); 603 for (t = table; t->id >= 0; ++t) { 604 if (t->sname == NULL) 605 continue; 606 fprintf(stderr, "%c %s", (first) ? ':' : ',', t->sname); 607 first = 0; 608 } 609 fprintf(stderr, "\n"); 610 #else 611 for (t = table; t->id >= 0; ++t) { 612 #ifdef CONFIG_NEEDS_MANUAL_RELOC 613 if (t->sname && strcmp(t->sname + gd->reloc_off, name) == 0) 614 #else 615 if (t->sname && strcmp(t->sname, name) == 0) 616 #endif 617 return (t->id); 618 } 619 debug("Invalid %s Type: %s\n", table_name, name); 620 #endif /* USE_HOSTCC */ 621 return (-1); 622 } 623 624 int genimg_get_os_id(const char *name) 625 { 626 return (get_table_entry_id(uimage_os, "OS", name)); 627 } 628 629 int genimg_get_arch_id(const char *name) 630 { 631 return (get_table_entry_id(uimage_arch, "CPU", name)); 632 } 633 634 int genimg_get_type_id(const char *name) 635 { 636 return (get_table_entry_id(uimage_type, "Image", name)); 637 } 638 639 int genimg_get_comp_id(const char *name) 640 { 641 return (get_table_entry_id(uimage_comp, "Compression", name)); 642 } 643 644 #ifndef USE_HOSTCC 645 /** 646 * genimg_get_format - get image format type 647 * @img_addr: image start address 648 * 649 * genimg_get_format() checks whether provided address points to a valid 650 * legacy or FIT image. 651 * 652 * New uImage format and FDT blob are based on a libfdt. FDT blob 653 * may be passed directly or embedded in a FIT image. In both situations 654 * genimg_get_format() must be able to dectect libfdt header. 655 * 656 * returns: 657 * image format type or IMAGE_FORMAT_INVALID if no image is present 658 */ 659 int genimg_get_format(void *img_addr) 660 { 661 ulong format = IMAGE_FORMAT_INVALID; 662 const image_header_t *hdr; 663 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT) 664 char *fit_hdr; 665 #endif 666 667 hdr = (const image_header_t *)img_addr; 668 if (image_check_magic(hdr)) 669 format = IMAGE_FORMAT_LEGACY; 670 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT) 671 else { 672 fit_hdr = (char *)img_addr; 673 if (fdt_check_header(fit_hdr) == 0) 674 format = IMAGE_FORMAT_FIT; 675 } 676 #endif 677 678 return format; 679 } 680 681 /** 682 * genimg_get_image - get image from special storage (if necessary) 683 * @img_addr: image start address 684 * 685 * genimg_get_image() checks if provided image start adddress is located 686 * in a dataflash storage. If so, image is moved to a system RAM memory. 687 * 688 * returns: 689 * image start address after possible relocation from special storage 690 */ 691 ulong genimg_get_image(ulong img_addr) 692 { 693 ulong ram_addr = img_addr; 694 695 #ifdef CONFIG_HAS_DATAFLASH 696 ulong h_size, d_size; 697 698 if (addr_dataflash(img_addr)) { 699 /* ger RAM address */ 700 ram_addr = CONFIG_SYS_LOAD_ADDR; 701 702 /* get header size */ 703 h_size = image_get_header_size(); 704 #if defined(CONFIG_FIT) 705 if (sizeof(struct fdt_header) > h_size) 706 h_size = sizeof(struct fdt_header); 707 #endif 708 709 /* read in header */ 710 debug(" Reading image header from dataflash address " 711 "%08lx to RAM address %08lx\n", img_addr, ram_addr); 712 713 read_dataflash(img_addr, h_size, (char *)ram_addr); 714 715 /* get data size */ 716 switch (genimg_get_format((void *)ram_addr)) { 717 case IMAGE_FORMAT_LEGACY: 718 d_size = image_get_data_size( 719 (const image_header_t *)ram_addr); 720 debug(" Legacy format image found at 0x%08lx, " 721 "size 0x%08lx\n", 722 ram_addr, d_size); 723 break; 724 #if defined(CONFIG_FIT) 725 case IMAGE_FORMAT_FIT: 726 d_size = fit_get_size((const void *)ram_addr) - h_size; 727 debug(" FIT/FDT format image found at 0x%08lx, " 728 "size 0x%08lx\n", 729 ram_addr, d_size); 730 break; 731 #endif 732 default: 733 printf(" No valid image found at 0x%08lx\n", 734 img_addr); 735 return ram_addr; 736 } 737 738 /* read in image data */ 739 debug(" Reading image remaining data from dataflash address " 740 "%08lx to RAM address %08lx\n", img_addr + h_size, 741 ram_addr + h_size); 742 743 read_dataflash(img_addr + h_size, d_size, 744 (char *)(ram_addr + h_size)); 745 746 } 747 #endif /* CONFIG_HAS_DATAFLASH */ 748 749 return ram_addr; 750 } 751 752 /** 753 * fit_has_config - check if there is a valid FIT configuration 754 * @images: pointer to the bootm command headers structure 755 * 756 * fit_has_config() checks if there is a FIT configuration in use 757 * (if FTI support is present). 758 * 759 * returns: 760 * 0, no FIT support or no configuration found 761 * 1, configuration found 762 */ 763 int genimg_has_config(bootm_headers_t *images) 764 { 765 #if defined(CONFIG_FIT) 766 if (images->fit_uname_cfg) 767 return 1; 768 #endif 769 return 0; 770 } 771 772 /** 773 * boot_get_ramdisk - main ramdisk handling routine 774 * @argc: command argument count 775 * @argv: command argument list 776 * @images: pointer to the bootm images structure 777 * @arch: expected ramdisk architecture 778 * @rd_start: pointer to a ulong variable, will hold ramdisk start address 779 * @rd_end: pointer to a ulong variable, will hold ramdisk end 780 * 781 * boot_get_ramdisk() is responsible for finding a valid ramdisk image. 782 * Curently supported are the following ramdisk sources: 783 * - multicomponent kernel/ramdisk image, 784 * - commandline provided address of decicated ramdisk image. 785 * 786 * returns: 787 * 0, if ramdisk image was found and valid, or skiped 788 * rd_start and rd_end are set to ramdisk start/end addresses if 789 * ramdisk image is found and valid 790 * 791 * 1, if ramdisk image is found but corrupted, or invalid 792 * rd_start and rd_end are set to 0 if no ramdisk exists 793 */ 794 int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images, 795 uint8_t arch, ulong *rd_start, ulong *rd_end) 796 { 797 ulong rd_addr, rd_load; 798 ulong rd_data, rd_len; 799 const image_header_t *rd_hdr; 800 #ifdef CONFIG_SUPPORT_RAW_INITRD 801 char *end; 802 #endif 803 #if defined(CONFIG_FIT) 804 void *fit_hdr; 805 const char *fit_uname_config = NULL; 806 const char *fit_uname_ramdisk = NULL; 807 ulong default_addr; 808 int rd_noffset; 809 int cfg_noffset; 810 const void *data; 811 size_t size; 812 #endif 813 814 *rd_start = 0; 815 *rd_end = 0; 816 817 /* 818 * Look for a '-' which indicates to ignore the 819 * ramdisk argument 820 */ 821 if ((argc >= 3) && (strcmp(argv[2], "-") == 0)) { 822 debug("## Skipping init Ramdisk\n"); 823 rd_len = rd_data = 0; 824 } else if (argc >= 3 || genimg_has_config(images)) { 825 #if defined(CONFIG_FIT) 826 if (argc >= 3) { 827 /* 828 * If the init ramdisk comes from the FIT image and 829 * the FIT image address is omitted in the command 830 * line argument, try to use os FIT image address or 831 * default load address. 832 */ 833 if (images->fit_uname_os) 834 default_addr = (ulong)images->fit_hdr_os; 835 else 836 default_addr = load_addr; 837 838 if (fit_parse_conf(argv[2], default_addr, 839 &rd_addr, &fit_uname_config)) { 840 debug("* ramdisk: config '%s' from image at " 841 "0x%08lx\n", 842 fit_uname_config, rd_addr); 843 } else if (fit_parse_subimage(argv[2], default_addr, 844 &rd_addr, &fit_uname_ramdisk)) { 845 debug("* ramdisk: subimage '%s' from image at " 846 "0x%08lx\n", 847 fit_uname_ramdisk, rd_addr); 848 } else 849 #endif 850 { 851 rd_addr = simple_strtoul(argv[2], NULL, 16); 852 debug("* ramdisk: cmdline image address = " 853 "0x%08lx\n", 854 rd_addr); 855 } 856 #if defined(CONFIG_FIT) 857 } else { 858 /* use FIT configuration provided in first bootm 859 * command argument 860 */ 861 rd_addr = (ulong)images->fit_hdr_os; 862 fit_uname_config = images->fit_uname_cfg; 863 debug("* ramdisk: using config '%s' from image " 864 "at 0x%08lx\n", 865 fit_uname_config, rd_addr); 866 867 /* 868 * Check whether configuration has ramdisk defined, 869 * if not, don't try to use it, quit silently. 870 */ 871 fit_hdr = (void *)rd_addr; 872 cfg_noffset = fit_conf_get_node(fit_hdr, 873 fit_uname_config); 874 if (cfg_noffset < 0) { 875 debug("* ramdisk: no such config\n"); 876 return 1; 877 } 878 879 rd_noffset = fit_conf_get_ramdisk_node(fit_hdr, 880 cfg_noffset); 881 if (rd_noffset < 0) { 882 debug("* ramdisk: no ramdisk in config\n"); 883 return 0; 884 } 885 } 886 #endif 887 888 /* copy from dataflash if needed */ 889 rd_addr = genimg_get_image(rd_addr); 890 891 /* 892 * Check if there is an initrd image at the 893 * address provided in the second bootm argument 894 * check image type, for FIT images get FIT node. 895 */ 896 switch (genimg_get_format((void *)rd_addr)) { 897 case IMAGE_FORMAT_LEGACY: 898 printf("## Loading init Ramdisk from Legacy " 899 "Image at %08lx ...\n", rd_addr); 900 901 bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK); 902 rd_hdr = image_get_ramdisk(rd_addr, arch, 903 images->verify); 904 905 if (rd_hdr == NULL) 906 return 1; 907 908 rd_data = image_get_data(rd_hdr); 909 rd_len = image_get_data_size(rd_hdr); 910 rd_load = image_get_load(rd_hdr); 911 break; 912 #if defined(CONFIG_FIT) 913 case IMAGE_FORMAT_FIT: 914 fit_hdr = (void *)rd_addr; 915 printf("## Loading init Ramdisk from FIT " 916 "Image at %08lx ...\n", rd_addr); 917 918 bootstage_mark(BOOTSTAGE_ID_FIT_RD_FORMAT); 919 if (!fit_check_format(fit_hdr)) { 920 puts("Bad FIT ramdisk image format!\n"); 921 bootstage_error( 922 BOOTSTAGE_ID_FIT_RD_FORMAT); 923 return 1; 924 } 925 bootstage_mark(BOOTSTAGE_ID_FIT_RD_FORMAT_OK); 926 927 if (!fit_uname_ramdisk) { 928 /* 929 * no ramdisk image node unit name, try to get config 930 * node first. If config unit node name is NULL 931 * fit_conf_get_node() will try to find default config node 932 */ 933 bootstage_mark( 934 BOOTSTAGE_ID_FIT_RD_NO_UNIT_NAME); 935 cfg_noffset = fit_conf_get_node(fit_hdr, 936 fit_uname_config); 937 if (cfg_noffset < 0) { 938 puts("Could not find configuration " 939 "node\n"); 940 bootstage_error( 941 BOOTSTAGE_ID_FIT_RD_NO_UNIT_NAME); 942 return 1; 943 } 944 fit_uname_config = fdt_get_name(fit_hdr, 945 cfg_noffset, NULL); 946 printf(" Using '%s' configuration\n", 947 fit_uname_config); 948 949 rd_noffset = fit_conf_get_ramdisk_node(fit_hdr, 950 cfg_noffset); 951 fit_uname_ramdisk = fit_get_name(fit_hdr, 952 rd_noffset, NULL); 953 } else { 954 /* get ramdisk component image node offset */ 955 bootstage_mark( 956 BOOTSTAGE_ID_FIT_RD_UNIT_NAME); 957 rd_noffset = fit_image_get_node(fit_hdr, 958 fit_uname_ramdisk); 959 } 960 if (rd_noffset < 0) { 961 puts("Could not find subimage node\n"); 962 bootstage_error(BOOTSTAGE_ID_FIT_RD_SUBNODE); 963 return 1; 964 } 965 966 printf(" Trying '%s' ramdisk subimage\n", 967 fit_uname_ramdisk); 968 969 bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK); 970 if (!fit_check_ramdisk(fit_hdr, rd_noffset, arch, 971 images->verify)) 972 return 1; 973 974 /* get ramdisk image data address and length */ 975 if (fit_image_get_data(fit_hdr, rd_noffset, &data, 976 &size)) { 977 puts("Could not find ramdisk subimage data!\n"); 978 bootstage_error(BOOTSTAGE_ID_FIT_RD_GET_DATA); 979 return 1; 980 } 981 bootstage_mark(BOOTSTAGE_ID_FIT_RD_GET_DATA_OK); 982 983 rd_data = (ulong)data; 984 rd_len = size; 985 986 if (fit_image_get_load(fit_hdr, rd_noffset, &rd_load)) { 987 puts("Can't get ramdisk subimage load " 988 "address!\n"); 989 bootstage_error(BOOTSTAGE_ID_FIT_RD_LOAD); 990 return 1; 991 } 992 bootstage_mark(BOOTSTAGE_ID_FIT_RD_LOAD); 993 994 images->fit_hdr_rd = fit_hdr; 995 images->fit_uname_rd = fit_uname_ramdisk; 996 images->fit_noffset_rd = rd_noffset; 997 break; 998 #endif 999 default: 1000 #ifdef CONFIG_SUPPORT_RAW_INITRD 1001 if (argc >= 3 && (end = strchr(argv[2], ':'))) { 1002 rd_len = simple_strtoul(++end, NULL, 16); 1003 rd_data = rd_addr; 1004 } else 1005 #endif 1006 { 1007 puts("Wrong Ramdisk Image Format\n"); 1008 rd_data = rd_len = rd_load = 0; 1009 return 1; 1010 } 1011 } 1012 } else if (images->legacy_hdr_valid && 1013 image_check_type(&images->legacy_hdr_os_copy, 1014 IH_TYPE_MULTI)) { 1015 1016 /* 1017 * Now check if we have a legacy mult-component image, 1018 * get second entry data start address and len. 1019 */ 1020 bootstage_mark(BOOTSTAGE_ID_RAMDISK); 1021 printf("## Loading init Ramdisk from multi component " 1022 "Legacy Image at %08lx ...\n", 1023 (ulong)images->legacy_hdr_os); 1024 1025 image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len); 1026 } else { 1027 /* 1028 * no initrd image 1029 */ 1030 bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK); 1031 rd_len = rd_data = 0; 1032 } 1033 1034 if (!rd_data) { 1035 debug("## No init Ramdisk\n"); 1036 } else { 1037 *rd_start = rd_data; 1038 *rd_end = rd_data + rd_len; 1039 } 1040 debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n", 1041 *rd_start, *rd_end); 1042 1043 return 0; 1044 } 1045 1046 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH 1047 /** 1048 * boot_ramdisk_high - relocate init ramdisk 1049 * @lmb: pointer to lmb handle, will be used for memory mgmt 1050 * @rd_data: ramdisk data start address 1051 * @rd_len: ramdisk data length 1052 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk 1053 * start address (after possible relocation) 1054 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk 1055 * end address (after possible relocation) 1056 * 1057 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environement 1058 * variable and if requested ramdisk data is moved to a specified location. 1059 * 1060 * Initrd_start and initrd_end are set to final (after relocation) ramdisk 1061 * start/end addresses if ramdisk image start and len were provided, 1062 * otherwise set initrd_start and initrd_end set to zeros. 1063 * 1064 * returns: 1065 * 0 - success 1066 * -1 - failure 1067 */ 1068 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len, 1069 ulong *initrd_start, ulong *initrd_end) 1070 { 1071 char *s; 1072 ulong initrd_high; 1073 int initrd_copy_to_ram = 1; 1074 1075 if ((s = getenv("initrd_high")) != NULL) { 1076 /* a value of "no" or a similar string will act like 0, 1077 * turning the "load high" feature off. This is intentional. 1078 */ 1079 initrd_high = simple_strtoul(s, NULL, 16); 1080 if (initrd_high == ~0) 1081 initrd_copy_to_ram = 0; 1082 } else { 1083 /* not set, no restrictions to load high */ 1084 initrd_high = ~0; 1085 } 1086 1087 1088 #ifdef CONFIG_LOGBUFFER 1089 /* Prevent initrd from overwriting logbuffer */ 1090 lmb_reserve(lmb, logbuffer_base() - LOGBUFF_OVERHEAD, LOGBUFF_RESERVE); 1091 #endif 1092 1093 debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n", 1094 initrd_high, initrd_copy_to_ram); 1095 1096 if (rd_data) { 1097 if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */ 1098 debug(" in-place initrd\n"); 1099 *initrd_start = rd_data; 1100 *initrd_end = rd_data + rd_len; 1101 lmb_reserve(lmb, rd_data, rd_len); 1102 } else { 1103 if (initrd_high) 1104 *initrd_start = (ulong)lmb_alloc_base(lmb, 1105 rd_len, 0x1000, initrd_high); 1106 else 1107 *initrd_start = (ulong)lmb_alloc(lmb, rd_len, 1108 0x1000); 1109 1110 if (*initrd_start == 0) { 1111 puts("ramdisk - allocation error\n"); 1112 goto error; 1113 } 1114 bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK); 1115 1116 *initrd_end = *initrd_start + rd_len; 1117 printf(" Loading Ramdisk to %08lx, end %08lx ... ", 1118 *initrd_start, *initrd_end); 1119 1120 memmove_wd((void *)*initrd_start, 1121 (void *)rd_data, rd_len, CHUNKSZ); 1122 1123 #ifdef CONFIG_MP 1124 /* 1125 * Ensure the image is flushed to memory to handle 1126 * AMP boot scenarios in which we might not be 1127 * HW cache coherent 1128 */ 1129 flush_cache((unsigned long)*initrd_start, rd_len); 1130 #endif 1131 puts("OK\n"); 1132 } 1133 } else { 1134 *initrd_start = 0; 1135 *initrd_end = 0; 1136 } 1137 debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n", 1138 *initrd_start, *initrd_end); 1139 1140 return 0; 1141 1142 error: 1143 return -1; 1144 } 1145 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */ 1146 1147 #ifdef CONFIG_OF_LIBFDT 1148 static void fdt_error(const char *msg) 1149 { 1150 puts("ERROR: "); 1151 puts(msg); 1152 puts(" - must RESET the board to recover.\n"); 1153 } 1154 1155 static const image_header_t *image_get_fdt(ulong fdt_addr) 1156 { 1157 const image_header_t *fdt_hdr = (const image_header_t *)fdt_addr; 1158 1159 image_print_contents(fdt_hdr); 1160 1161 puts(" Verifying Checksum ... "); 1162 if (!image_check_hcrc(fdt_hdr)) { 1163 fdt_error("fdt header checksum invalid"); 1164 return NULL; 1165 } 1166 1167 if (!image_check_dcrc(fdt_hdr)) { 1168 fdt_error("fdt checksum invalid"); 1169 return NULL; 1170 } 1171 puts("OK\n"); 1172 1173 if (!image_check_type(fdt_hdr, IH_TYPE_FLATDT)) { 1174 fdt_error("uImage is not a fdt"); 1175 return NULL; 1176 } 1177 if (image_get_comp(fdt_hdr) != IH_COMP_NONE) { 1178 fdt_error("uImage is compressed"); 1179 return NULL; 1180 } 1181 if (fdt_check_header((char *)image_get_data(fdt_hdr)) != 0) { 1182 fdt_error("uImage data is not a fdt"); 1183 return NULL; 1184 } 1185 return fdt_hdr; 1186 } 1187 1188 /** 1189 * fit_check_fdt - verify FIT format FDT subimage 1190 * @fit_hdr: pointer to the FIT header 1191 * fdt_noffset: FDT subimage node offset within FIT image 1192 * @verify: data CRC verification flag 1193 * 1194 * fit_check_fdt() verifies integrity of the FDT subimage and from 1195 * specified FIT image. 1196 * 1197 * returns: 1198 * 1, on success 1199 * 0, on failure 1200 */ 1201 #if defined(CONFIG_FIT) 1202 static int fit_check_fdt(const void *fit, int fdt_noffset, int verify) 1203 { 1204 fit_image_print(fit, fdt_noffset, " "); 1205 1206 if (verify) { 1207 puts(" Verifying Hash Integrity ... "); 1208 if (!fit_image_check_hashes(fit, fdt_noffset)) { 1209 fdt_error("Bad Data Hash"); 1210 return 0; 1211 } 1212 puts("OK\n"); 1213 } 1214 1215 if (!fit_image_check_type(fit, fdt_noffset, IH_TYPE_FLATDT)) { 1216 fdt_error("Not a FDT image"); 1217 return 0; 1218 } 1219 1220 if (!fit_image_check_comp(fit, fdt_noffset, IH_COMP_NONE)) { 1221 fdt_error("FDT image is compressed"); 1222 return 0; 1223 } 1224 1225 return 1; 1226 } 1227 #endif /* CONFIG_FIT */ 1228 1229 #ifndef CONFIG_SYS_FDT_PAD 1230 #define CONFIG_SYS_FDT_PAD 0x3000 1231 #endif 1232 1233 #if defined(CONFIG_OF_LIBFDT) 1234 /** 1235 * boot_fdt_add_mem_rsv_regions - Mark the memreserve sections as unusable 1236 * @lmb: pointer to lmb handle, will be used for memory mgmt 1237 * @fdt_blob: pointer to fdt blob base address 1238 * 1239 * Adds the memreserve regions in the dtb to the lmb block. Adding the 1240 * memreserve regions prevents u-boot from using them to store the initrd 1241 * or the fdt blob. 1242 */ 1243 void boot_fdt_add_mem_rsv_regions(struct lmb *lmb, void *fdt_blob) 1244 { 1245 uint64_t addr, size; 1246 int i, total; 1247 1248 if (fdt_check_header(fdt_blob) != 0) 1249 return; 1250 1251 total = fdt_num_mem_rsv(fdt_blob); 1252 for (i = 0; i < total; i++) { 1253 if (fdt_get_mem_rsv(fdt_blob, i, &addr, &size) != 0) 1254 continue; 1255 printf(" reserving fdt memory region: addr=%llx size=%llx\n", 1256 (unsigned long long)addr, (unsigned long long)size); 1257 lmb_reserve(lmb, addr, size); 1258 } 1259 } 1260 1261 /** 1262 * boot_relocate_fdt - relocate flat device tree 1263 * @lmb: pointer to lmb handle, will be used for memory mgmt 1264 * @of_flat_tree: pointer to a char* variable, will hold fdt start address 1265 * @of_size: pointer to a ulong variable, will hold fdt length 1266 * 1267 * boot_relocate_fdt() allocates a region of memory within the bootmap and 1268 * relocates the of_flat_tree into that region, even if the fdt is already in 1269 * the bootmap. It also expands the size of the fdt by CONFIG_SYS_FDT_PAD 1270 * bytes. 1271 * 1272 * of_flat_tree and of_size are set to final (after relocation) values 1273 * 1274 * returns: 1275 * 0 - success 1276 * 1 - failure 1277 */ 1278 int boot_relocate_fdt(struct lmb *lmb, char **of_flat_tree, ulong *of_size) 1279 { 1280 void *fdt_blob = *of_flat_tree; 1281 void *of_start = 0; 1282 char *fdt_high; 1283 ulong of_len = 0; 1284 int err; 1285 int disable_relocation = 0; 1286 1287 /* nothing to do */ 1288 if (*of_size == 0) 1289 return 0; 1290 1291 if (fdt_check_header(fdt_blob) != 0) { 1292 fdt_error("image is not a fdt"); 1293 goto error; 1294 } 1295 1296 /* position on a 4K boundary before the alloc_current */ 1297 /* Pad the FDT by a specified amount */ 1298 of_len = *of_size + CONFIG_SYS_FDT_PAD; 1299 1300 /* If fdt_high is set use it to select the relocation address */ 1301 fdt_high = getenv("fdt_high"); 1302 if (fdt_high) { 1303 void *desired_addr = (void *)simple_strtoul(fdt_high, NULL, 16); 1304 1305 if (((ulong) desired_addr) == ~0UL) { 1306 /* All ones means use fdt in place */ 1307 of_start = fdt_blob; 1308 lmb_reserve(lmb, (ulong)of_start, of_len); 1309 disable_relocation = 1; 1310 } else if (desired_addr) { 1311 of_start = 1312 (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000, 1313 (ulong)desired_addr); 1314 if (of_start == 0) { 1315 puts("Failed using fdt_high value for Device Tree"); 1316 goto error; 1317 } 1318 } else { 1319 of_start = 1320 (void *)(ulong) lmb_alloc(lmb, of_len, 0x1000); 1321 } 1322 } else { 1323 of_start = 1324 (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000, 1325 getenv_bootm_mapsize() 1326 + getenv_bootm_low()); 1327 } 1328 1329 if (of_start == 0) { 1330 puts("device tree - allocation error\n"); 1331 goto error; 1332 } 1333 1334 if (disable_relocation) { 1335 /* We assume there is space after the existing fdt to use for padding */ 1336 fdt_set_totalsize(of_start, of_len); 1337 printf(" Using Device Tree in place at %p, end %p\n", 1338 of_start, of_start + of_len - 1); 1339 } else { 1340 debug("## device tree at %p ... %p (len=%ld [0x%lX])\n", 1341 fdt_blob, fdt_blob + *of_size - 1, of_len, of_len); 1342 1343 printf(" Loading Device Tree to %p, end %p ... ", 1344 of_start, of_start + of_len - 1); 1345 1346 err = fdt_open_into(fdt_blob, of_start, of_len); 1347 if (err != 0) { 1348 fdt_error("fdt move failed"); 1349 goto error; 1350 } 1351 puts("OK\n"); 1352 } 1353 1354 *of_flat_tree = of_start; 1355 *of_size = of_len; 1356 1357 set_working_fdt_addr(*of_flat_tree); 1358 return 0; 1359 1360 error: 1361 return 1; 1362 } 1363 #endif /* CONFIG_OF_LIBFDT */ 1364 1365 /** 1366 * boot_get_fdt - main fdt handling routine 1367 * @argc: command argument count 1368 * @argv: command argument list 1369 * @images: pointer to the bootm images structure 1370 * @of_flat_tree: pointer to a char* variable, will hold fdt start address 1371 * @of_size: pointer to a ulong variable, will hold fdt length 1372 * 1373 * boot_get_fdt() is responsible for finding a valid flat device tree image. 1374 * Curently supported are the following ramdisk sources: 1375 * - multicomponent kernel/ramdisk image, 1376 * - commandline provided address of decicated ramdisk image. 1377 * 1378 * returns: 1379 * 0, if fdt image was found and valid, or skipped 1380 * of_flat_tree and of_size are set to fdt start address and length if 1381 * fdt image is found and valid 1382 * 1383 * 1, if fdt image is found but corrupted 1384 * of_flat_tree and of_size are set to 0 if no fdt exists 1385 */ 1386 int boot_get_fdt(int flag, int argc, char * const argv[], 1387 bootm_headers_t *images, char **of_flat_tree, ulong *of_size) 1388 { 1389 const image_header_t *fdt_hdr; 1390 ulong fdt_addr; 1391 char *fdt_blob = NULL; 1392 ulong image_start, image_data, image_end; 1393 ulong load_start, load_end; 1394 #if defined(CONFIG_FIT) 1395 void *fit_hdr; 1396 const char *fit_uname_config = NULL; 1397 const char *fit_uname_fdt = NULL; 1398 ulong default_addr; 1399 int cfg_noffset; 1400 int fdt_noffset; 1401 const void *data; 1402 size_t size; 1403 #endif 1404 1405 *of_flat_tree = NULL; 1406 *of_size = 0; 1407 1408 if (argc > 3 || genimg_has_config(images)) { 1409 #if defined(CONFIG_FIT) 1410 if (argc > 3) { 1411 /* 1412 * If the FDT blob comes from the FIT image and the 1413 * FIT image address is omitted in the command line 1414 * argument, try to use ramdisk or os FIT image 1415 * address or default load address. 1416 */ 1417 if (images->fit_uname_rd) 1418 default_addr = (ulong)images->fit_hdr_rd; 1419 else if (images->fit_uname_os) 1420 default_addr = (ulong)images->fit_hdr_os; 1421 else 1422 default_addr = load_addr; 1423 1424 if (fit_parse_conf(argv[3], default_addr, 1425 &fdt_addr, &fit_uname_config)) { 1426 debug("* fdt: config '%s' from image at " 1427 "0x%08lx\n", 1428 fit_uname_config, fdt_addr); 1429 } else if (fit_parse_subimage(argv[3], default_addr, 1430 &fdt_addr, &fit_uname_fdt)) { 1431 debug("* fdt: subimage '%s' from image at " 1432 "0x%08lx\n", 1433 fit_uname_fdt, fdt_addr); 1434 } else 1435 #endif 1436 { 1437 fdt_addr = simple_strtoul(argv[3], NULL, 16); 1438 debug("* fdt: cmdline image address = " 1439 "0x%08lx\n", 1440 fdt_addr); 1441 } 1442 #if defined(CONFIG_FIT) 1443 } else { 1444 /* use FIT configuration provided in first bootm 1445 * command argument 1446 */ 1447 fdt_addr = (ulong)images->fit_hdr_os; 1448 fit_uname_config = images->fit_uname_cfg; 1449 debug("* fdt: using config '%s' from image " 1450 "at 0x%08lx\n", 1451 fit_uname_config, fdt_addr); 1452 1453 /* 1454 * Check whether configuration has FDT blob defined, 1455 * if not quit silently. 1456 */ 1457 fit_hdr = (void *)fdt_addr; 1458 cfg_noffset = fit_conf_get_node(fit_hdr, 1459 fit_uname_config); 1460 if (cfg_noffset < 0) { 1461 debug("* fdt: no such config\n"); 1462 return 0; 1463 } 1464 1465 fdt_noffset = fit_conf_get_fdt_node(fit_hdr, 1466 cfg_noffset); 1467 if (fdt_noffset < 0) { 1468 debug("* fdt: no fdt in config\n"); 1469 return 0; 1470 } 1471 } 1472 #endif 1473 1474 debug("## Checking for 'FDT'/'FDT Image' at %08lx\n", 1475 fdt_addr); 1476 1477 /* copy from dataflash if needed */ 1478 fdt_addr = genimg_get_image(fdt_addr); 1479 1480 /* 1481 * Check if there is an FDT image at the 1482 * address provided in the second bootm argument 1483 * check image type, for FIT images get a FIT node. 1484 */ 1485 switch (genimg_get_format((void *)fdt_addr)) { 1486 case IMAGE_FORMAT_LEGACY: 1487 /* verify fdt_addr points to a valid image header */ 1488 printf("## Flattened Device Tree from Legacy Image " 1489 "at %08lx\n", 1490 fdt_addr); 1491 fdt_hdr = image_get_fdt(fdt_addr); 1492 if (!fdt_hdr) 1493 goto error; 1494 1495 /* 1496 * move image data to the load address, 1497 * make sure we don't overwrite initial image 1498 */ 1499 image_start = (ulong)fdt_hdr; 1500 image_data = (ulong)image_get_data(fdt_hdr); 1501 image_end = image_get_image_end(fdt_hdr); 1502 1503 load_start = image_get_load(fdt_hdr); 1504 load_end = load_start + image_get_data_size(fdt_hdr); 1505 1506 if (load_start == image_start || 1507 load_start == image_data) { 1508 fdt_blob = (char *)image_data; 1509 break; 1510 } 1511 1512 if ((load_start < image_end) && (load_end > image_start)) { 1513 fdt_error("fdt overwritten"); 1514 goto error; 1515 } 1516 1517 debug(" Loading FDT from 0x%08lx to 0x%08lx\n", 1518 image_data, load_start); 1519 1520 memmove((void *)load_start, 1521 (void *)image_data, 1522 image_get_data_size(fdt_hdr)); 1523 1524 fdt_blob = (char *)load_start; 1525 break; 1526 case IMAGE_FORMAT_FIT: 1527 /* 1528 * This case will catch both: new uImage format 1529 * (libfdt based) and raw FDT blob (also libfdt 1530 * based). 1531 */ 1532 #if defined(CONFIG_FIT) 1533 /* check FDT blob vs FIT blob */ 1534 if (fit_check_format((const void *)fdt_addr)) { 1535 /* 1536 * FIT image 1537 */ 1538 fit_hdr = (void *)fdt_addr; 1539 printf("## Flattened Device Tree from FIT " 1540 "Image at %08lx\n", 1541 fdt_addr); 1542 1543 if (!fit_uname_fdt) { 1544 /* 1545 * no FDT blob image node unit name, 1546 * try to get config node first. If 1547 * config unit node name is NULL 1548 * fit_conf_get_node() will try to 1549 * find default config node 1550 */ 1551 cfg_noffset = fit_conf_get_node(fit_hdr, 1552 fit_uname_config); 1553 1554 if (cfg_noffset < 0) { 1555 fdt_error("Could not find " 1556 "configuration " 1557 "node\n"); 1558 goto error; 1559 } 1560 1561 fit_uname_config = fdt_get_name(fit_hdr, 1562 cfg_noffset, NULL); 1563 printf(" Using '%s' configuration\n", 1564 fit_uname_config); 1565 1566 fdt_noffset = fit_conf_get_fdt_node( 1567 fit_hdr, 1568 cfg_noffset); 1569 fit_uname_fdt = fit_get_name(fit_hdr, 1570 fdt_noffset, NULL); 1571 } else { 1572 /* get FDT component image node offset */ 1573 fdt_noffset = fit_image_get_node( 1574 fit_hdr, 1575 fit_uname_fdt); 1576 } 1577 if (fdt_noffset < 0) { 1578 fdt_error("Could not find subimage " 1579 "node\n"); 1580 goto error; 1581 } 1582 1583 printf(" Trying '%s' FDT blob subimage\n", 1584 fit_uname_fdt); 1585 1586 if (!fit_check_fdt(fit_hdr, fdt_noffset, 1587 images->verify)) 1588 goto error; 1589 1590 /* get ramdisk image data address and length */ 1591 if (fit_image_get_data(fit_hdr, fdt_noffset, 1592 &data, &size)) { 1593 fdt_error("Could not find FDT " 1594 "subimage data"); 1595 goto error; 1596 } 1597 1598 /* verift that image data is a proper FDT blob */ 1599 if (fdt_check_header((char *)data) != 0) { 1600 fdt_error("Subimage data is not a FTD"); 1601 goto error; 1602 } 1603 1604 /* 1605 * move image data to the load address, 1606 * make sure we don't overwrite initial image 1607 */ 1608 image_start = (ulong)fit_hdr; 1609 image_end = fit_get_end(fit_hdr); 1610 1611 if (fit_image_get_load(fit_hdr, fdt_noffset, 1612 &load_start) == 0) { 1613 load_end = load_start + size; 1614 1615 if ((load_start < image_end) && 1616 (load_end > image_start)) { 1617 fdt_error("FDT overwritten"); 1618 goto error; 1619 } 1620 1621 printf(" Loading FDT from 0x%08lx " 1622 "to 0x%08lx\n", 1623 (ulong)data, 1624 load_start); 1625 1626 memmove((void *)load_start, 1627 (void *)data, size); 1628 1629 fdt_blob = (char *)load_start; 1630 } else { 1631 fdt_blob = (char *)data; 1632 } 1633 1634 images->fit_hdr_fdt = fit_hdr; 1635 images->fit_uname_fdt = fit_uname_fdt; 1636 images->fit_noffset_fdt = fdt_noffset; 1637 break; 1638 } else 1639 #endif 1640 { 1641 /* 1642 * FDT blob 1643 */ 1644 fdt_blob = (char *)fdt_addr; 1645 debug("* fdt: raw FDT blob\n"); 1646 printf("## Flattened Device Tree blob at " 1647 "%08lx\n", (long)fdt_blob); 1648 } 1649 break; 1650 default: 1651 puts("ERROR: Did not find a cmdline Flattened Device " 1652 "Tree\n"); 1653 goto error; 1654 } 1655 1656 printf(" Booting using the fdt blob at 0x%p\n", fdt_blob); 1657 1658 } else if (images->legacy_hdr_valid && 1659 image_check_type(&images->legacy_hdr_os_copy, 1660 IH_TYPE_MULTI)) { 1661 1662 ulong fdt_data, fdt_len; 1663 1664 /* 1665 * Now check if we have a legacy multi-component image, 1666 * get second entry data start address and len. 1667 */ 1668 printf("## Flattened Device Tree from multi " 1669 "component Image at %08lX\n", 1670 (ulong)images->legacy_hdr_os); 1671 1672 image_multi_getimg(images->legacy_hdr_os, 2, &fdt_data, 1673 &fdt_len); 1674 if (fdt_len) { 1675 1676 fdt_blob = (char *)fdt_data; 1677 printf(" Booting using the fdt at 0x%p\n", fdt_blob); 1678 1679 if (fdt_check_header(fdt_blob) != 0) { 1680 fdt_error("image is not a fdt"); 1681 goto error; 1682 } 1683 1684 if (fdt_totalsize(fdt_blob) != fdt_len) { 1685 fdt_error("fdt size != image size"); 1686 goto error; 1687 } 1688 } else { 1689 debug("## No Flattened Device Tree\n"); 1690 return 0; 1691 } 1692 } else { 1693 debug("## No Flattened Device Tree\n"); 1694 return 0; 1695 } 1696 1697 *of_flat_tree = fdt_blob; 1698 *of_size = fdt_totalsize(fdt_blob); 1699 debug(" of_flat_tree at 0x%08lx size 0x%08lx\n", 1700 (ulong)*of_flat_tree, *of_size); 1701 1702 return 0; 1703 1704 error: 1705 *of_flat_tree = 0; 1706 *of_size = 0; 1707 return 1; 1708 } 1709 #endif /* CONFIG_OF_LIBFDT */ 1710 1711 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE 1712 /** 1713 * boot_get_cmdline - allocate and initialize kernel cmdline 1714 * @lmb: pointer to lmb handle, will be used for memory mgmt 1715 * @cmd_start: pointer to a ulong variable, will hold cmdline start 1716 * @cmd_end: pointer to a ulong variable, will hold cmdline end 1717 * 1718 * boot_get_cmdline() allocates space for kernel command line below 1719 * BOOTMAPSZ + getenv_bootm_low() address. If "bootargs" U-boot environemnt 1720 * variable is present its contents is copied to allocated kernel 1721 * command line. 1722 * 1723 * returns: 1724 * 0 - success 1725 * -1 - failure 1726 */ 1727 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end) 1728 { 1729 char *cmdline; 1730 char *s; 1731 1732 cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf, 1733 getenv_bootm_mapsize() + getenv_bootm_low()); 1734 1735 if (cmdline == NULL) 1736 return -1; 1737 1738 if ((s = getenv("bootargs")) == NULL) 1739 s = ""; 1740 1741 strcpy(cmdline, s); 1742 1743 *cmd_start = (ulong) & cmdline[0]; 1744 *cmd_end = *cmd_start + strlen(cmdline); 1745 1746 debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end); 1747 1748 return 0; 1749 } 1750 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */ 1751 1752 #ifdef CONFIG_SYS_BOOT_GET_KBD 1753 /** 1754 * boot_get_kbd - allocate and initialize kernel copy of board info 1755 * @lmb: pointer to lmb handle, will be used for memory mgmt 1756 * @kbd: double pointer to board info data 1757 * 1758 * boot_get_kbd() allocates space for kernel copy of board info data below 1759 * BOOTMAPSZ + getenv_bootm_low() address and kernel board info is initialized 1760 * with the current u-boot board info data. 1761 * 1762 * returns: 1763 * 0 - success 1764 * -1 - failure 1765 */ 1766 int boot_get_kbd(struct lmb *lmb, bd_t **kbd) 1767 { 1768 *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf, 1769 getenv_bootm_mapsize() + getenv_bootm_low()); 1770 if (*kbd == NULL) 1771 return -1; 1772 1773 **kbd = *(gd->bd); 1774 1775 debug("## kernel board info at 0x%08lx\n", (ulong)*kbd); 1776 1777 #if defined(DEBUG) && defined(CONFIG_CMD_BDI) 1778 do_bdinfo(NULL, 0, 0, NULL); 1779 #endif 1780 1781 return 0; 1782 } 1783 #endif /* CONFIG_SYS_BOOT_GET_KBD */ 1784 #endif /* !USE_HOSTCC */ 1785 1786 #if defined(CONFIG_FIT) 1787 /*****************************************************************************/ 1788 /* New uImage format routines */ 1789 /*****************************************************************************/ 1790 #ifndef USE_HOSTCC 1791 static int fit_parse_spec(const char *spec, char sepc, ulong addr_curr, 1792 ulong *addr, const char **name) 1793 { 1794 const char *sep; 1795 1796 *addr = addr_curr; 1797 *name = NULL; 1798 1799 sep = strchr(spec, sepc); 1800 if (sep) { 1801 if (sep - spec > 0) 1802 *addr = simple_strtoul(spec, NULL, 16); 1803 1804 *name = sep + 1; 1805 return 1; 1806 } 1807 1808 return 0; 1809 } 1810 1811 /** 1812 * fit_parse_conf - parse FIT configuration spec 1813 * @spec: input string, containing configuration spec 1814 * @add_curr: current image address (to be used as a possible default) 1815 * @addr: pointer to a ulong variable, will hold FIT image address of a given 1816 * configuration 1817 * @conf_name double pointer to a char, will hold pointer to a configuration 1818 * unit name 1819 * 1820 * fit_parse_conf() expects configuration spec in the for of [<addr>]#<conf>, 1821 * where <addr> is a FIT image address that contains configuration 1822 * with a <conf> unit name. 1823 * 1824 * Address part is optional, and if omitted default add_curr will 1825 * be used instead. 1826 * 1827 * returns: 1828 * 1 if spec is a valid configuration string, 1829 * addr and conf_name are set accordingly 1830 * 0 otherwise 1831 */ 1832 int fit_parse_conf(const char *spec, ulong addr_curr, 1833 ulong *addr, const char **conf_name) 1834 { 1835 return fit_parse_spec(spec, '#', addr_curr, addr, conf_name); 1836 } 1837 1838 /** 1839 * fit_parse_subimage - parse FIT subimage spec 1840 * @spec: input string, containing subimage spec 1841 * @add_curr: current image address (to be used as a possible default) 1842 * @addr: pointer to a ulong variable, will hold FIT image address of a given 1843 * subimage 1844 * @image_name: double pointer to a char, will hold pointer to a subimage name 1845 * 1846 * fit_parse_subimage() expects subimage spec in the for of 1847 * [<addr>]:<subimage>, where <addr> is a FIT image address that contains 1848 * subimage with a <subimg> unit name. 1849 * 1850 * Address part is optional, and if omitted default add_curr will 1851 * be used instead. 1852 * 1853 * returns: 1854 * 1 if spec is a valid subimage string, 1855 * addr and image_name are set accordingly 1856 * 0 otherwise 1857 */ 1858 int fit_parse_subimage(const char *spec, ulong addr_curr, 1859 ulong *addr, const char **image_name) 1860 { 1861 return fit_parse_spec(spec, ':', addr_curr, addr, image_name); 1862 } 1863 #endif /* !USE_HOSTCC */ 1864 1865 static void fit_get_debug(const void *fit, int noffset, 1866 char *prop_name, int err) 1867 { 1868 debug("Can't get '%s' property from FIT 0x%08lx, " 1869 "node: offset %d, name %s (%s)\n", 1870 prop_name, (ulong)fit, noffset, 1871 fit_get_name(fit, noffset, NULL), 1872 fdt_strerror(err)); 1873 } 1874 1875 /** 1876 * fit_print_contents - prints out the contents of the FIT format image 1877 * @fit: pointer to the FIT format image header 1878 * @p: pointer to prefix string 1879 * 1880 * fit_print_contents() formats a multi line FIT image contents description. 1881 * The routine prints out FIT image properties (root node level) follwed by 1882 * the details of each component image. 1883 * 1884 * returns: 1885 * no returned results 1886 */ 1887 void fit_print_contents(const void *fit) 1888 { 1889 char *desc; 1890 char *uname; 1891 int images_noffset; 1892 int confs_noffset; 1893 int noffset; 1894 int ndepth; 1895 int count = 0; 1896 int ret; 1897 const char *p; 1898 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 1899 time_t timestamp; 1900 #endif 1901 1902 #ifdef USE_HOSTCC 1903 p = ""; 1904 #else 1905 p = " "; 1906 #endif 1907 1908 /* Root node properties */ 1909 ret = fit_get_desc(fit, 0, &desc); 1910 printf("%sFIT description: ", p); 1911 if (ret) 1912 printf("unavailable\n"); 1913 else 1914 printf("%s\n", desc); 1915 1916 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 1917 ret = fit_get_timestamp(fit, 0, ×tamp); 1918 printf("%sCreated: ", p); 1919 if (ret) 1920 printf("unavailable\n"); 1921 else 1922 genimg_print_time(timestamp); 1923 #endif 1924 1925 /* Find images parent node offset */ 1926 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 1927 if (images_noffset < 0) { 1928 printf("Can't find images parent node '%s' (%s)\n", 1929 FIT_IMAGES_PATH, fdt_strerror(images_noffset)); 1930 return; 1931 } 1932 1933 /* Process its subnodes, print out component images details */ 1934 for (ndepth = 0, count = 0, 1935 noffset = fdt_next_node(fit, images_noffset, &ndepth); 1936 (noffset >= 0) && (ndepth > 0); 1937 noffset = fdt_next_node(fit, noffset, &ndepth)) { 1938 if (ndepth == 1) { 1939 /* 1940 * Direct child node of the images parent node, 1941 * i.e. component image node. 1942 */ 1943 printf("%s Image %u (%s)\n", p, count++, 1944 fit_get_name(fit, noffset, NULL)); 1945 1946 fit_image_print(fit, noffset, p); 1947 } 1948 } 1949 1950 /* Find configurations parent node offset */ 1951 confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH); 1952 if (confs_noffset < 0) { 1953 debug("Can't get configurations parent node '%s' (%s)\n", 1954 FIT_CONFS_PATH, fdt_strerror(confs_noffset)); 1955 return; 1956 } 1957 1958 /* get default configuration unit name from default property */ 1959 uname = (char *)fdt_getprop(fit, noffset, FIT_DEFAULT_PROP, NULL); 1960 if (uname) 1961 printf("%s Default Configuration: '%s'\n", p, uname); 1962 1963 /* Process its subnodes, print out configurations details */ 1964 for (ndepth = 0, count = 0, 1965 noffset = fdt_next_node(fit, confs_noffset, &ndepth); 1966 (noffset >= 0) && (ndepth > 0); 1967 noffset = fdt_next_node(fit, noffset, &ndepth)) { 1968 if (ndepth == 1) { 1969 /* 1970 * Direct child node of the configurations parent node, 1971 * i.e. configuration node. 1972 */ 1973 printf("%s Configuration %u (%s)\n", p, count++, 1974 fit_get_name(fit, noffset, NULL)); 1975 1976 fit_conf_print(fit, noffset, p); 1977 } 1978 } 1979 } 1980 1981 /** 1982 * fit_image_print - prints out the FIT component image details 1983 * @fit: pointer to the FIT format image header 1984 * @image_noffset: offset of the component image node 1985 * @p: pointer to prefix string 1986 * 1987 * fit_image_print() lists all mandatory properies for the processed component 1988 * image. If present, hash nodes are printed out as well. Load 1989 * address for images of type firmware is also printed out. Since the load 1990 * address is not mandatory for firmware images, it will be output as 1991 * "unavailable" when not present. 1992 * 1993 * returns: 1994 * no returned results 1995 */ 1996 void fit_image_print(const void *fit, int image_noffset, const char *p) 1997 { 1998 char *desc; 1999 uint8_t type, arch, os, comp; 2000 size_t size; 2001 ulong load, entry; 2002 const void *data; 2003 int noffset; 2004 int ndepth; 2005 int ret; 2006 2007 /* Mandatory properties */ 2008 ret = fit_get_desc(fit, image_noffset, &desc); 2009 printf("%s Description: ", p); 2010 if (ret) 2011 printf("unavailable\n"); 2012 else 2013 printf("%s\n", desc); 2014 2015 fit_image_get_type(fit, image_noffset, &type); 2016 printf("%s Type: %s\n", p, genimg_get_type_name(type)); 2017 2018 fit_image_get_comp(fit, image_noffset, &comp); 2019 printf("%s Compression: %s\n", p, genimg_get_comp_name(comp)); 2020 2021 ret = fit_image_get_data(fit, image_noffset, &data, &size); 2022 2023 #ifndef USE_HOSTCC 2024 printf("%s Data Start: ", p); 2025 if (ret) 2026 printf("unavailable\n"); 2027 else 2028 printf("0x%08lx\n", (ulong)data); 2029 #endif 2030 2031 printf("%s Data Size: ", p); 2032 if (ret) 2033 printf("unavailable\n"); 2034 else 2035 genimg_print_size(size); 2036 2037 /* Remaining, type dependent properties */ 2038 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) || 2039 (type == IH_TYPE_RAMDISK) || (type == IH_TYPE_FIRMWARE) || 2040 (type == IH_TYPE_FLATDT)) { 2041 fit_image_get_arch(fit, image_noffset, &arch); 2042 printf("%s Architecture: %s\n", p, genimg_get_arch_name(arch)); 2043 } 2044 2045 if (type == IH_TYPE_KERNEL) { 2046 fit_image_get_os(fit, image_noffset, &os); 2047 printf("%s OS: %s\n", p, genimg_get_os_name(os)); 2048 } 2049 2050 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) || 2051 (type == IH_TYPE_FIRMWARE)) { 2052 ret = fit_image_get_load(fit, image_noffset, &load); 2053 printf("%s Load Address: ", p); 2054 if (ret) 2055 printf("unavailable\n"); 2056 else 2057 printf("0x%08lx\n", load); 2058 } 2059 2060 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE)) { 2061 fit_image_get_entry(fit, image_noffset, &entry); 2062 printf("%s Entry Point: ", p); 2063 if (ret) 2064 printf("unavailable\n"); 2065 else 2066 printf("0x%08lx\n", entry); 2067 } 2068 2069 /* Process all hash subnodes of the component image node */ 2070 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth); 2071 (noffset >= 0) && (ndepth > 0); 2072 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2073 if (ndepth == 1) { 2074 /* Direct child node of the component image node */ 2075 fit_image_print_hash(fit, noffset, p); 2076 } 2077 } 2078 } 2079 2080 /** 2081 * fit_image_print_hash - prints out the hash node details 2082 * @fit: pointer to the FIT format image header 2083 * @noffset: offset of the hash node 2084 * @p: pointer to prefix string 2085 * 2086 * fit_image_print_hash() lists properies for the processed hash node 2087 * 2088 * returns: 2089 * no returned results 2090 */ 2091 void fit_image_print_hash(const void *fit, int noffset, const char *p) 2092 { 2093 char *algo; 2094 uint8_t *value; 2095 int value_len; 2096 int i, ret; 2097 2098 /* 2099 * Check subnode name, must be equal to "hash". 2100 * Multiple hash nodes require unique unit node 2101 * names, e.g. hash@1, hash@2, etc. 2102 */ 2103 if (strncmp(fit_get_name(fit, noffset, NULL), 2104 FIT_HASH_NODENAME, 2105 strlen(FIT_HASH_NODENAME)) != 0) 2106 return; 2107 2108 debug("%s Hash node: '%s'\n", p, 2109 fit_get_name(fit, noffset, NULL)); 2110 2111 printf("%s Hash algo: ", p); 2112 if (fit_image_hash_get_algo(fit, noffset, &algo)) { 2113 printf("invalid/unsupported\n"); 2114 return; 2115 } 2116 printf("%s\n", algo); 2117 2118 ret = fit_image_hash_get_value(fit, noffset, &value, 2119 &value_len); 2120 printf("%s Hash value: ", p); 2121 if (ret) { 2122 printf("unavailable\n"); 2123 } else { 2124 for (i = 0; i < value_len; i++) 2125 printf("%02x", value[i]); 2126 printf("\n"); 2127 } 2128 2129 debug("%s Hash len: %d\n", p, value_len); 2130 } 2131 2132 /** 2133 * fit_get_desc - get node description property 2134 * @fit: pointer to the FIT format image header 2135 * @noffset: node offset 2136 * @desc: double pointer to the char, will hold pointer to the descrption 2137 * 2138 * fit_get_desc() reads description property from a given node, if 2139 * description is found pointer to it is returened in third call argument. 2140 * 2141 * returns: 2142 * 0, on success 2143 * -1, on failure 2144 */ 2145 int fit_get_desc(const void *fit, int noffset, char **desc) 2146 { 2147 int len; 2148 2149 *desc = (char *)fdt_getprop(fit, noffset, FIT_DESC_PROP, &len); 2150 if (*desc == NULL) { 2151 fit_get_debug(fit, noffset, FIT_DESC_PROP, len); 2152 return -1; 2153 } 2154 2155 return 0; 2156 } 2157 2158 /** 2159 * fit_get_timestamp - get node timestamp property 2160 * @fit: pointer to the FIT format image header 2161 * @noffset: node offset 2162 * @timestamp: pointer to the time_t, will hold read timestamp 2163 * 2164 * fit_get_timestamp() reads timestamp poperty from given node, if timestamp 2165 * is found and has a correct size its value is retured in third call 2166 * argument. 2167 * 2168 * returns: 2169 * 0, on success 2170 * -1, on property read failure 2171 * -2, on wrong timestamp size 2172 */ 2173 int fit_get_timestamp(const void *fit, int noffset, time_t *timestamp) 2174 { 2175 int len; 2176 const void *data; 2177 2178 data = fdt_getprop(fit, noffset, FIT_TIMESTAMP_PROP, &len); 2179 if (data == NULL) { 2180 fit_get_debug(fit, noffset, FIT_TIMESTAMP_PROP, len); 2181 return -1; 2182 } 2183 if (len != sizeof(uint32_t)) { 2184 debug("FIT timestamp with incorrect size of (%u)\n", len); 2185 return -2; 2186 } 2187 2188 *timestamp = uimage_to_cpu(*((uint32_t *)data)); 2189 return 0; 2190 } 2191 2192 /** 2193 * fit_image_get_node - get node offset for component image of a given unit name 2194 * @fit: pointer to the FIT format image header 2195 * @image_uname: component image node unit name 2196 * 2197 * fit_image_get_node() finds a component image (withing the '/images' 2198 * node) of a provided unit name. If image is found its node offset is 2199 * returned to the caller. 2200 * 2201 * returns: 2202 * image node offset when found (>=0) 2203 * negative number on failure (FDT_ERR_* code) 2204 */ 2205 int fit_image_get_node(const void *fit, const char *image_uname) 2206 { 2207 int noffset, images_noffset; 2208 2209 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 2210 if (images_noffset < 0) { 2211 debug("Can't find images parent node '%s' (%s)\n", 2212 FIT_IMAGES_PATH, fdt_strerror(images_noffset)); 2213 return images_noffset; 2214 } 2215 2216 noffset = fdt_subnode_offset(fit, images_noffset, image_uname); 2217 if (noffset < 0) { 2218 debug("Can't get node offset for image unit name: '%s' (%s)\n", 2219 image_uname, fdt_strerror(noffset)); 2220 } 2221 2222 return noffset; 2223 } 2224 2225 /** 2226 * fit_image_get_os - get os id for a given component image node 2227 * @fit: pointer to the FIT format image header 2228 * @noffset: component image node offset 2229 * @os: pointer to the uint8_t, will hold os numeric id 2230 * 2231 * fit_image_get_os() finds os property in a given component image node. 2232 * If the property is found, its (string) value is translated to the numeric 2233 * id which is returned to the caller. 2234 * 2235 * returns: 2236 * 0, on success 2237 * -1, on failure 2238 */ 2239 int fit_image_get_os(const void *fit, int noffset, uint8_t *os) 2240 { 2241 int len; 2242 const void *data; 2243 2244 /* Get OS name from property data */ 2245 data = fdt_getprop(fit, noffset, FIT_OS_PROP, &len); 2246 if (data == NULL) { 2247 fit_get_debug(fit, noffset, FIT_OS_PROP, len); 2248 *os = -1; 2249 return -1; 2250 } 2251 2252 /* Translate OS name to id */ 2253 *os = genimg_get_os_id(data); 2254 return 0; 2255 } 2256 2257 /** 2258 * fit_image_get_arch - get arch id for a given component image node 2259 * @fit: pointer to the FIT format image header 2260 * @noffset: component image node offset 2261 * @arch: pointer to the uint8_t, will hold arch numeric id 2262 * 2263 * fit_image_get_arch() finds arch property in a given component image node. 2264 * If the property is found, its (string) value is translated to the numeric 2265 * id which is returned to the caller. 2266 * 2267 * returns: 2268 * 0, on success 2269 * -1, on failure 2270 */ 2271 int fit_image_get_arch(const void *fit, int noffset, uint8_t *arch) 2272 { 2273 int len; 2274 const void *data; 2275 2276 /* Get architecture name from property data */ 2277 data = fdt_getprop(fit, noffset, FIT_ARCH_PROP, &len); 2278 if (data == NULL) { 2279 fit_get_debug(fit, noffset, FIT_ARCH_PROP, len); 2280 *arch = -1; 2281 return -1; 2282 } 2283 2284 /* Translate architecture name to id */ 2285 *arch = genimg_get_arch_id(data); 2286 return 0; 2287 } 2288 2289 /** 2290 * fit_image_get_type - get type id for a given component image node 2291 * @fit: pointer to the FIT format image header 2292 * @noffset: component image node offset 2293 * @type: pointer to the uint8_t, will hold type numeric id 2294 * 2295 * fit_image_get_type() finds type property in a given component image node. 2296 * If the property is found, its (string) value is translated to the numeric 2297 * id which is returned to the caller. 2298 * 2299 * returns: 2300 * 0, on success 2301 * -1, on failure 2302 */ 2303 int fit_image_get_type(const void *fit, int noffset, uint8_t *type) 2304 { 2305 int len; 2306 const void *data; 2307 2308 /* Get image type name from property data */ 2309 data = fdt_getprop(fit, noffset, FIT_TYPE_PROP, &len); 2310 if (data == NULL) { 2311 fit_get_debug(fit, noffset, FIT_TYPE_PROP, len); 2312 *type = -1; 2313 return -1; 2314 } 2315 2316 /* Translate image type name to id */ 2317 *type = genimg_get_type_id(data); 2318 return 0; 2319 } 2320 2321 /** 2322 * fit_image_get_comp - get comp id for a given component image node 2323 * @fit: pointer to the FIT format image header 2324 * @noffset: component image node offset 2325 * @comp: pointer to the uint8_t, will hold comp numeric id 2326 * 2327 * fit_image_get_comp() finds comp property in a given component image node. 2328 * If the property is found, its (string) value is translated to the numeric 2329 * id which is returned to the caller. 2330 * 2331 * returns: 2332 * 0, on success 2333 * -1, on failure 2334 */ 2335 int fit_image_get_comp(const void *fit, int noffset, uint8_t *comp) 2336 { 2337 int len; 2338 const void *data; 2339 2340 /* Get compression name from property data */ 2341 data = fdt_getprop(fit, noffset, FIT_COMP_PROP, &len); 2342 if (data == NULL) { 2343 fit_get_debug(fit, noffset, FIT_COMP_PROP, len); 2344 *comp = -1; 2345 return -1; 2346 } 2347 2348 /* Translate compression name to id */ 2349 *comp = genimg_get_comp_id(data); 2350 return 0; 2351 } 2352 2353 /** 2354 * fit_image_get_load - get load address property for a given component image node 2355 * @fit: pointer to the FIT format image header 2356 * @noffset: component image node offset 2357 * @load: pointer to the uint32_t, will hold load address 2358 * 2359 * fit_image_get_load() finds load address property in a given component image node. 2360 * If the property is found, its value is returned to the caller. 2361 * 2362 * returns: 2363 * 0, on success 2364 * -1, on failure 2365 */ 2366 int fit_image_get_load(const void *fit, int noffset, ulong *load) 2367 { 2368 int len; 2369 const uint32_t *data; 2370 2371 data = fdt_getprop(fit, noffset, FIT_LOAD_PROP, &len); 2372 if (data == NULL) { 2373 fit_get_debug(fit, noffset, FIT_LOAD_PROP, len); 2374 return -1; 2375 } 2376 2377 *load = uimage_to_cpu(*data); 2378 return 0; 2379 } 2380 2381 /** 2382 * fit_image_get_entry - get entry point address property for a given component image node 2383 * @fit: pointer to the FIT format image header 2384 * @noffset: component image node offset 2385 * @entry: pointer to the uint32_t, will hold entry point address 2386 * 2387 * fit_image_get_entry() finds entry point address property in a given component image node. 2388 * If the property is found, its value is returned to the caller. 2389 * 2390 * returns: 2391 * 0, on success 2392 * -1, on failure 2393 */ 2394 int fit_image_get_entry(const void *fit, int noffset, ulong *entry) 2395 { 2396 int len; 2397 const uint32_t *data; 2398 2399 data = fdt_getprop(fit, noffset, FIT_ENTRY_PROP, &len); 2400 if (data == NULL) { 2401 fit_get_debug(fit, noffset, FIT_ENTRY_PROP, len); 2402 return -1; 2403 } 2404 2405 *entry = uimage_to_cpu(*data); 2406 return 0; 2407 } 2408 2409 /** 2410 * fit_image_get_data - get data property and its size for a given component image node 2411 * @fit: pointer to the FIT format image header 2412 * @noffset: component image node offset 2413 * @data: double pointer to void, will hold data property's data address 2414 * @size: pointer to size_t, will hold data property's data size 2415 * 2416 * fit_image_get_data() finds data property in a given component image node. 2417 * If the property is found its data start address and size are returned to 2418 * the caller. 2419 * 2420 * returns: 2421 * 0, on success 2422 * -1, on failure 2423 */ 2424 int fit_image_get_data(const void *fit, int noffset, 2425 const void **data, size_t *size) 2426 { 2427 int len; 2428 2429 *data = fdt_getprop(fit, noffset, FIT_DATA_PROP, &len); 2430 if (*data == NULL) { 2431 fit_get_debug(fit, noffset, FIT_DATA_PROP, len); 2432 *size = 0; 2433 return -1; 2434 } 2435 2436 *size = len; 2437 return 0; 2438 } 2439 2440 /** 2441 * fit_image_hash_get_algo - get hash algorithm name 2442 * @fit: pointer to the FIT format image header 2443 * @noffset: hash node offset 2444 * @algo: double pointer to char, will hold pointer to the algorithm name 2445 * 2446 * fit_image_hash_get_algo() finds hash algorithm property in a given hash node. 2447 * If the property is found its data start address is returned to the caller. 2448 * 2449 * returns: 2450 * 0, on success 2451 * -1, on failure 2452 */ 2453 int fit_image_hash_get_algo(const void *fit, int noffset, char **algo) 2454 { 2455 int len; 2456 2457 *algo = (char *)fdt_getprop(fit, noffset, FIT_ALGO_PROP, &len); 2458 if (*algo == NULL) { 2459 fit_get_debug(fit, noffset, FIT_ALGO_PROP, len); 2460 return -1; 2461 } 2462 2463 return 0; 2464 } 2465 2466 /** 2467 * fit_image_hash_get_value - get hash value and length 2468 * @fit: pointer to the FIT format image header 2469 * @noffset: hash node offset 2470 * @value: double pointer to uint8_t, will hold address of a hash value data 2471 * @value_len: pointer to an int, will hold hash data length 2472 * 2473 * fit_image_hash_get_value() finds hash value property in a given hash node. 2474 * If the property is found its data start address and size are returned to 2475 * the caller. 2476 * 2477 * returns: 2478 * 0, on success 2479 * -1, on failure 2480 */ 2481 int fit_image_hash_get_value(const void *fit, int noffset, uint8_t **value, 2482 int *value_len) 2483 { 2484 int len; 2485 2486 *value = (uint8_t *)fdt_getprop(fit, noffset, FIT_VALUE_PROP, &len); 2487 if (*value == NULL) { 2488 fit_get_debug(fit, noffset, FIT_VALUE_PROP, len); 2489 *value_len = 0; 2490 return -1; 2491 } 2492 2493 *value_len = len; 2494 return 0; 2495 } 2496 2497 /** 2498 * fit_set_timestamp - set node timestamp property 2499 * @fit: pointer to the FIT format image header 2500 * @noffset: node offset 2501 * @timestamp: timestamp value to be set 2502 * 2503 * fit_set_timestamp() attempts to set timestamp property in the requested 2504 * node and returns operation status to the caller. 2505 * 2506 * returns: 2507 * 0, on success 2508 * -1, on property read failure 2509 */ 2510 int fit_set_timestamp(void *fit, int noffset, time_t timestamp) 2511 { 2512 uint32_t t; 2513 int ret; 2514 2515 t = cpu_to_uimage(timestamp); 2516 ret = fdt_setprop(fit, noffset, FIT_TIMESTAMP_PROP, &t, 2517 sizeof(uint32_t)); 2518 if (ret) { 2519 printf("Can't set '%s' property for '%s' node (%s)\n", 2520 FIT_TIMESTAMP_PROP, fit_get_name(fit, noffset, NULL), 2521 fdt_strerror(ret)); 2522 return -1; 2523 } 2524 2525 return 0; 2526 } 2527 2528 /** 2529 * calculate_hash - calculate and return hash for provided input data 2530 * @data: pointer to the input data 2531 * @data_len: data length 2532 * @algo: requested hash algorithm 2533 * @value: pointer to the char, will hold hash value data (caller must 2534 * allocate enough free space) 2535 * value_len: length of the calculated hash 2536 * 2537 * calculate_hash() computes input data hash according to the requested algorithm. 2538 * Resulting hash value is placed in caller provided 'value' buffer, length 2539 * of the calculated hash is returned via value_len pointer argument. 2540 * 2541 * returns: 2542 * 0, on success 2543 * -1, when algo is unsupported 2544 */ 2545 static int calculate_hash(const void *data, int data_len, const char *algo, 2546 uint8_t *value, int *value_len) 2547 { 2548 if (strcmp(algo, "crc32") == 0) { 2549 *((uint32_t *)value) = crc32_wd(0, data, data_len, 2550 CHUNKSZ_CRC32); 2551 *((uint32_t *)value) = cpu_to_uimage(*((uint32_t *)value)); 2552 *value_len = 4; 2553 } else if (strcmp(algo, "sha1") == 0) { 2554 sha1_csum_wd((unsigned char *) data, data_len, 2555 (unsigned char *) value, CHUNKSZ_SHA1); 2556 *value_len = 20; 2557 } else if (strcmp(algo, "md5") == 0) { 2558 md5_wd((unsigned char *)data, data_len, value, CHUNKSZ_MD5); 2559 *value_len = 16; 2560 } else { 2561 debug("Unsupported hash alogrithm\n"); 2562 return -1; 2563 } 2564 return 0; 2565 } 2566 2567 #ifdef USE_HOSTCC 2568 /** 2569 * fit_set_hashes - process FIT component image nodes and calculate hashes 2570 * @fit: pointer to the FIT format image header 2571 * 2572 * fit_set_hashes() adds hash values for all component images in the FIT blob. 2573 * Hashes are calculated for all component images which have hash subnodes 2574 * with algorithm property set to one of the supported hash algorithms. 2575 * 2576 * returns 2577 * 0, on success 2578 * libfdt error code, on failure 2579 */ 2580 int fit_set_hashes(void *fit) 2581 { 2582 int images_noffset; 2583 int noffset; 2584 int ndepth; 2585 int ret; 2586 2587 /* Find images parent node offset */ 2588 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 2589 if (images_noffset < 0) { 2590 printf("Can't find images parent node '%s' (%s)\n", 2591 FIT_IMAGES_PATH, fdt_strerror(images_noffset)); 2592 return images_noffset; 2593 } 2594 2595 /* Process its subnodes, print out component images details */ 2596 for (ndepth = 0, noffset = fdt_next_node(fit, images_noffset, &ndepth); 2597 (noffset >= 0) && (ndepth > 0); 2598 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2599 if (ndepth == 1) { 2600 /* 2601 * Direct child node of the images parent node, 2602 * i.e. component image node. 2603 */ 2604 ret = fit_image_set_hashes(fit, noffset); 2605 if (ret) 2606 return ret; 2607 } 2608 } 2609 2610 return 0; 2611 } 2612 2613 /** 2614 * fit_image_set_hashes - calculate/set hashes for given component image node 2615 * @fit: pointer to the FIT format image header 2616 * @image_noffset: requested component image node 2617 * 2618 * fit_image_set_hashes() adds hash values for an component image node. All 2619 * existing hash subnodes are checked, if algorithm property is set to one of 2620 * the supported hash algorithms, hash value is computed and corresponding 2621 * hash node property is set, for example: 2622 * 2623 * Input component image node structure: 2624 * 2625 * o image@1 (at image_noffset) 2626 * | - data = [binary data] 2627 * o hash@1 2628 * |- algo = "sha1" 2629 * 2630 * Output component image node structure: 2631 * 2632 * o image@1 (at image_noffset) 2633 * | - data = [binary data] 2634 * o hash@1 2635 * |- algo = "sha1" 2636 * |- value = sha1(data) 2637 * 2638 * returns: 2639 * 0 on sucess 2640 * <0 on failure 2641 */ 2642 int fit_image_set_hashes(void *fit, int image_noffset) 2643 { 2644 const void *data; 2645 size_t size; 2646 char *algo; 2647 uint8_t value[FIT_MAX_HASH_LEN]; 2648 int value_len; 2649 int noffset; 2650 int ndepth; 2651 2652 /* Get image data and data length */ 2653 if (fit_image_get_data(fit, image_noffset, &data, &size)) { 2654 printf("Can't get image data/size\n"); 2655 return -1; 2656 } 2657 2658 /* Process all hash subnodes of the component image node */ 2659 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth); 2660 (noffset >= 0) && (ndepth > 0); 2661 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2662 if (ndepth == 1) { 2663 /* Direct child node of the component image node */ 2664 2665 /* 2666 * Check subnode name, must be equal to "hash". 2667 * Multiple hash nodes require unique unit node 2668 * names, e.g. hash@1, hash@2, etc. 2669 */ 2670 if (strncmp(fit_get_name(fit, noffset, NULL), 2671 FIT_HASH_NODENAME, 2672 strlen(FIT_HASH_NODENAME)) != 0) { 2673 /* Not a hash subnode, skip it */ 2674 continue; 2675 } 2676 2677 if (fit_image_hash_get_algo(fit, noffset, &algo)) { 2678 printf("Can't get hash algo property for " 2679 "'%s' hash node in '%s' image node\n", 2680 fit_get_name(fit, noffset, NULL), 2681 fit_get_name(fit, image_noffset, NULL)); 2682 return -1; 2683 } 2684 2685 if (calculate_hash(data, size, algo, value, 2686 &value_len)) { 2687 printf("Unsupported hash algorithm (%s) for " 2688 "'%s' hash node in '%s' image node\n", 2689 algo, fit_get_name(fit, noffset, NULL), 2690 fit_get_name(fit, image_noffset, 2691 NULL)); 2692 return -1; 2693 } 2694 2695 if (fit_image_hash_set_value(fit, noffset, value, 2696 value_len)) { 2697 printf("Can't set hash value for " 2698 "'%s' hash node in '%s' image node\n", 2699 fit_get_name(fit, noffset, NULL), 2700 fit_get_name(fit, image_noffset, NULL)); 2701 return -1; 2702 } 2703 } 2704 } 2705 2706 return 0; 2707 } 2708 2709 /** 2710 * fit_image_hash_set_value - set hash value in requested has node 2711 * @fit: pointer to the FIT format image header 2712 * @noffset: hash node offset 2713 * @value: hash value to be set 2714 * @value_len: hash value length 2715 * 2716 * fit_image_hash_set_value() attempts to set hash value in a node at offset 2717 * given and returns operation status to the caller. 2718 * 2719 * returns 2720 * 0, on success 2721 * -1, on failure 2722 */ 2723 int fit_image_hash_set_value(void *fit, int noffset, uint8_t *value, 2724 int value_len) 2725 { 2726 int ret; 2727 2728 ret = fdt_setprop(fit, noffset, FIT_VALUE_PROP, value, value_len); 2729 if (ret) { 2730 printf("Can't set hash '%s' property for '%s' node(%s)\n", 2731 FIT_VALUE_PROP, fit_get_name(fit, noffset, NULL), 2732 fdt_strerror(ret)); 2733 return -1; 2734 } 2735 2736 return 0; 2737 } 2738 #endif /* USE_HOSTCC */ 2739 2740 /** 2741 * fit_image_check_hashes - verify data intergity 2742 * @fit: pointer to the FIT format image header 2743 * @image_noffset: component image node offset 2744 * 2745 * fit_image_check_hashes() goes over component image hash nodes, 2746 * re-calculates each data hash and compares with the value stored in hash 2747 * node. 2748 * 2749 * returns: 2750 * 1, if all hashes are valid 2751 * 0, otherwise (or on error) 2752 */ 2753 int fit_image_check_hashes(const void *fit, int image_noffset) 2754 { 2755 const void *data; 2756 size_t size; 2757 char *algo; 2758 uint8_t *fit_value; 2759 int fit_value_len; 2760 uint8_t value[FIT_MAX_HASH_LEN]; 2761 int value_len; 2762 int noffset; 2763 int ndepth; 2764 char *err_msg = ""; 2765 2766 /* Get image data and data length */ 2767 if (fit_image_get_data(fit, image_noffset, &data, &size)) { 2768 printf("Can't get image data/size\n"); 2769 return 0; 2770 } 2771 2772 /* Process all hash subnodes of the component image node */ 2773 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth); 2774 (noffset >= 0) && (ndepth > 0); 2775 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2776 if (ndepth == 1) { 2777 /* Direct child node of the component image node */ 2778 2779 /* 2780 * Check subnode name, must be equal to "hash". 2781 * Multiple hash nodes require unique unit node 2782 * names, e.g. hash@1, hash@2, etc. 2783 */ 2784 if (strncmp(fit_get_name(fit, noffset, NULL), 2785 FIT_HASH_NODENAME, 2786 strlen(FIT_HASH_NODENAME)) != 0) 2787 continue; 2788 2789 if (fit_image_hash_get_algo(fit, noffset, &algo)) { 2790 err_msg = " error!\nCan't get hash algo " 2791 "property"; 2792 goto error; 2793 } 2794 printf("%s", algo); 2795 2796 if (fit_image_hash_get_value(fit, noffset, &fit_value, 2797 &fit_value_len)) { 2798 err_msg = " error!\nCan't get hash value " 2799 "property"; 2800 goto error; 2801 } 2802 2803 if (calculate_hash(data, size, algo, value, 2804 &value_len)) { 2805 err_msg = " error!\n" 2806 "Unsupported hash algorithm"; 2807 goto error; 2808 } 2809 2810 if (value_len != fit_value_len) { 2811 err_msg = " error !\nBad hash value len"; 2812 goto error; 2813 } else if (memcmp(value, fit_value, value_len) != 0) { 2814 err_msg = " error!\nBad hash value"; 2815 goto error; 2816 } 2817 printf("+ "); 2818 } 2819 } 2820 2821 return 1; 2822 2823 error: 2824 printf("%s for '%s' hash node in '%s' image node\n", 2825 err_msg, fit_get_name(fit, noffset, NULL), 2826 fit_get_name(fit, image_noffset, NULL)); 2827 return 0; 2828 } 2829 2830 /** 2831 * fit_all_image_check_hashes - verify data intergity for all images 2832 * @fit: pointer to the FIT format image header 2833 * 2834 * fit_all_image_check_hashes() goes over all images in the FIT and 2835 * for every images checks if all it's hashes are valid. 2836 * 2837 * returns: 2838 * 1, if all hashes of all images are valid 2839 * 0, otherwise (or on error) 2840 */ 2841 int fit_all_image_check_hashes(const void *fit) 2842 { 2843 int images_noffset; 2844 int noffset; 2845 int ndepth; 2846 int count; 2847 2848 /* Find images parent node offset */ 2849 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 2850 if (images_noffset < 0) { 2851 printf("Can't find images parent node '%s' (%s)\n", 2852 FIT_IMAGES_PATH, fdt_strerror(images_noffset)); 2853 return 0; 2854 } 2855 2856 /* Process all image subnodes, check hashes for each */ 2857 printf("## Checking hash(es) for FIT Image at %08lx ...\n", 2858 (ulong)fit); 2859 for (ndepth = 0, count = 0, 2860 noffset = fdt_next_node(fit, images_noffset, &ndepth); 2861 (noffset >= 0) && (ndepth > 0); 2862 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2863 if (ndepth == 1) { 2864 /* 2865 * Direct child node of the images parent node, 2866 * i.e. component image node. 2867 */ 2868 printf(" Hash(es) for Image %u (%s): ", count++, 2869 fit_get_name(fit, noffset, NULL)); 2870 2871 if (!fit_image_check_hashes(fit, noffset)) 2872 return 0; 2873 printf("\n"); 2874 } 2875 } 2876 return 1; 2877 } 2878 2879 /** 2880 * fit_image_check_os - check whether image node is of a given os type 2881 * @fit: pointer to the FIT format image header 2882 * @noffset: component image node offset 2883 * @os: requested image os 2884 * 2885 * fit_image_check_os() reads image os property and compares its numeric 2886 * id with the requested os. Comparison result is returned to the caller. 2887 * 2888 * returns: 2889 * 1 if image is of given os type 2890 * 0 otherwise (or on error) 2891 */ 2892 int fit_image_check_os(const void *fit, int noffset, uint8_t os) 2893 { 2894 uint8_t image_os; 2895 2896 if (fit_image_get_os(fit, noffset, &image_os)) 2897 return 0; 2898 return (os == image_os); 2899 } 2900 2901 /** 2902 * fit_image_check_arch - check whether image node is of a given arch 2903 * @fit: pointer to the FIT format image header 2904 * @noffset: component image node offset 2905 * @arch: requested imagearch 2906 * 2907 * fit_image_check_arch() reads image arch property and compares its numeric 2908 * id with the requested arch. Comparison result is returned to the caller. 2909 * 2910 * returns: 2911 * 1 if image is of given arch 2912 * 0 otherwise (or on error) 2913 */ 2914 int fit_image_check_arch(const void *fit, int noffset, uint8_t arch) 2915 { 2916 uint8_t image_arch; 2917 2918 if (fit_image_get_arch(fit, noffset, &image_arch)) 2919 return 0; 2920 return (arch == image_arch); 2921 } 2922 2923 /** 2924 * fit_image_check_type - check whether image node is of a given type 2925 * @fit: pointer to the FIT format image header 2926 * @noffset: component image node offset 2927 * @type: requested image type 2928 * 2929 * fit_image_check_type() reads image type property and compares its numeric 2930 * id with the requested type. Comparison result is returned to the caller. 2931 * 2932 * returns: 2933 * 1 if image is of given type 2934 * 0 otherwise (or on error) 2935 */ 2936 int fit_image_check_type(const void *fit, int noffset, uint8_t type) 2937 { 2938 uint8_t image_type; 2939 2940 if (fit_image_get_type(fit, noffset, &image_type)) 2941 return 0; 2942 return (type == image_type); 2943 } 2944 2945 /** 2946 * fit_image_check_comp - check whether image node uses given compression 2947 * @fit: pointer to the FIT format image header 2948 * @noffset: component image node offset 2949 * @comp: requested image compression type 2950 * 2951 * fit_image_check_comp() reads image compression property and compares its 2952 * numeric id with the requested compression type. Comparison result is 2953 * returned to the caller. 2954 * 2955 * returns: 2956 * 1 if image uses requested compression 2957 * 0 otherwise (or on error) 2958 */ 2959 int fit_image_check_comp(const void *fit, int noffset, uint8_t comp) 2960 { 2961 uint8_t image_comp; 2962 2963 if (fit_image_get_comp(fit, noffset, &image_comp)) 2964 return 0; 2965 return (comp == image_comp); 2966 } 2967 2968 /** 2969 * fit_check_format - sanity check FIT image format 2970 * @fit: pointer to the FIT format image header 2971 * 2972 * fit_check_format() runs a basic sanity FIT image verification. 2973 * Routine checks for mandatory properties, nodes, etc. 2974 * 2975 * returns: 2976 * 1, on success 2977 * 0, on failure 2978 */ 2979 int fit_check_format(const void *fit) 2980 { 2981 /* mandatory / node 'description' property */ 2982 if (fdt_getprop(fit, 0, FIT_DESC_PROP, NULL) == NULL) { 2983 debug("Wrong FIT format: no description\n"); 2984 return 0; 2985 } 2986 2987 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 2988 /* mandatory / node 'timestamp' property */ 2989 if (fdt_getprop(fit, 0, FIT_TIMESTAMP_PROP, NULL) == NULL) { 2990 debug("Wrong FIT format: no timestamp\n"); 2991 return 0; 2992 } 2993 #endif 2994 2995 /* mandatory subimages parent '/images' node */ 2996 if (fdt_path_offset(fit, FIT_IMAGES_PATH) < 0) { 2997 debug("Wrong FIT format: no images parent node\n"); 2998 return 0; 2999 } 3000 3001 return 1; 3002 } 3003 3004 /** 3005 * fit_conf_get_node - get node offset for configuration of a given unit name 3006 * @fit: pointer to the FIT format image header 3007 * @conf_uname: configuration node unit name 3008 * 3009 * fit_conf_get_node() finds a configuration (withing the '/configurations' 3010 * parant node) of a provided unit name. If configuration is found its node offset 3011 * is returned to the caller. 3012 * 3013 * When NULL is provided in second argument fit_conf_get_node() will search 3014 * for a default configuration node instead. Default configuration node unit name 3015 * is retrived from FIT_DEFAULT_PROP property of the '/configurations' node. 3016 * 3017 * returns: 3018 * configuration node offset when found (>=0) 3019 * negative number on failure (FDT_ERR_* code) 3020 */ 3021 int fit_conf_get_node(const void *fit, const char *conf_uname) 3022 { 3023 int noffset, confs_noffset; 3024 int len; 3025 3026 confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH); 3027 if (confs_noffset < 0) { 3028 debug("Can't find configurations parent node '%s' (%s)\n", 3029 FIT_CONFS_PATH, fdt_strerror(confs_noffset)); 3030 return confs_noffset; 3031 } 3032 3033 if (conf_uname == NULL) { 3034 /* get configuration unit name from the default property */ 3035 debug("No configuration specified, trying default...\n"); 3036 conf_uname = (char *)fdt_getprop(fit, confs_noffset, 3037 FIT_DEFAULT_PROP, &len); 3038 if (conf_uname == NULL) { 3039 fit_get_debug(fit, confs_noffset, FIT_DEFAULT_PROP, 3040 len); 3041 return len; 3042 } 3043 debug("Found default configuration: '%s'\n", conf_uname); 3044 } 3045 3046 noffset = fdt_subnode_offset(fit, confs_noffset, conf_uname); 3047 if (noffset < 0) { 3048 debug("Can't get node offset for configuration unit name: " 3049 "'%s' (%s)\n", 3050 conf_uname, fdt_strerror(noffset)); 3051 } 3052 3053 return noffset; 3054 } 3055 3056 static int __fit_conf_get_prop_node(const void *fit, int noffset, 3057 const char *prop_name) 3058 { 3059 char *uname; 3060 int len; 3061 3062 /* get kernel image unit name from configuration kernel property */ 3063 uname = (char *)fdt_getprop(fit, noffset, prop_name, &len); 3064 if (uname == NULL) 3065 return len; 3066 3067 return fit_image_get_node(fit, uname); 3068 } 3069 3070 /** 3071 * fit_conf_get_kernel_node - get kernel image node offset that corresponds to 3072 * a given configuration 3073 * @fit: pointer to the FIT format image header 3074 * @noffset: configuration node offset 3075 * 3076 * fit_conf_get_kernel_node() retrives kernel image node unit name from 3077 * configuration FIT_KERNEL_PROP property and translates it to the node 3078 * offset. 3079 * 3080 * returns: 3081 * image node offset when found (>=0) 3082 * negative number on failure (FDT_ERR_* code) 3083 */ 3084 int fit_conf_get_kernel_node(const void *fit, int noffset) 3085 { 3086 return __fit_conf_get_prop_node(fit, noffset, FIT_KERNEL_PROP); 3087 } 3088 3089 /** 3090 * fit_conf_get_ramdisk_node - get ramdisk image node offset that corresponds to 3091 * a given configuration 3092 * @fit: pointer to the FIT format image header 3093 * @noffset: configuration node offset 3094 * 3095 * fit_conf_get_ramdisk_node() retrives ramdisk image node unit name from 3096 * configuration FIT_KERNEL_PROP property and translates it to the node 3097 * offset. 3098 * 3099 * returns: 3100 * image node offset when found (>=0) 3101 * negative number on failure (FDT_ERR_* code) 3102 */ 3103 int fit_conf_get_ramdisk_node(const void *fit, int noffset) 3104 { 3105 return __fit_conf_get_prop_node(fit, noffset, FIT_RAMDISK_PROP); 3106 } 3107 3108 /** 3109 * fit_conf_get_fdt_node - get fdt image node offset that corresponds to 3110 * a given configuration 3111 * @fit: pointer to the FIT format image header 3112 * @noffset: configuration node offset 3113 * 3114 * fit_conf_get_fdt_node() retrives fdt image node unit name from 3115 * configuration FIT_KERNEL_PROP property and translates it to the node 3116 * offset. 3117 * 3118 * returns: 3119 * image node offset when found (>=0) 3120 * negative number on failure (FDT_ERR_* code) 3121 */ 3122 int fit_conf_get_fdt_node(const void *fit, int noffset) 3123 { 3124 return __fit_conf_get_prop_node(fit, noffset, FIT_FDT_PROP); 3125 } 3126 3127 /** 3128 * fit_conf_print - prints out the FIT configuration details 3129 * @fit: pointer to the FIT format image header 3130 * @noffset: offset of the configuration node 3131 * @p: pointer to prefix string 3132 * 3133 * fit_conf_print() lists all mandatory properies for the processed 3134 * configuration node. 3135 * 3136 * returns: 3137 * no returned results 3138 */ 3139 void fit_conf_print(const void *fit, int noffset, const char *p) 3140 { 3141 char *desc; 3142 char *uname; 3143 int ret; 3144 3145 /* Mandatory properties */ 3146 ret = fit_get_desc(fit, noffset, &desc); 3147 printf("%s Description: ", p); 3148 if (ret) 3149 printf("unavailable\n"); 3150 else 3151 printf("%s\n", desc); 3152 3153 uname = (char *)fdt_getprop(fit, noffset, FIT_KERNEL_PROP, NULL); 3154 printf("%s Kernel: ", p); 3155 if (uname == NULL) 3156 printf("unavailable\n"); 3157 else 3158 printf("%s\n", uname); 3159 3160 /* Optional properties */ 3161 uname = (char *)fdt_getprop(fit, noffset, FIT_RAMDISK_PROP, NULL); 3162 if (uname) 3163 printf("%s Init Ramdisk: %s\n", p, uname); 3164 3165 uname = (char *)fdt_getprop(fit, noffset, FIT_FDT_PROP, NULL); 3166 if (uname) 3167 printf("%s FDT: %s\n", p, uname); 3168 } 3169 3170 /** 3171 * fit_check_ramdisk - verify FIT format ramdisk subimage 3172 * @fit_hdr: pointer to the FIT ramdisk header 3173 * @rd_noffset: ramdisk subimage node offset within FIT image 3174 * @arch: requested ramdisk image architecture type 3175 * @verify: data CRC verification flag 3176 * 3177 * fit_check_ramdisk() verifies integrity of the ramdisk subimage and from 3178 * specified FIT image. 3179 * 3180 * returns: 3181 * 1, on success 3182 * 0, on failure 3183 */ 3184 #ifndef USE_HOSTCC 3185 static int fit_check_ramdisk(const void *fit, int rd_noffset, uint8_t arch, 3186 int verify) 3187 { 3188 fit_image_print(fit, rd_noffset, " "); 3189 3190 if (verify) { 3191 puts(" Verifying Hash Integrity ... "); 3192 if (!fit_image_check_hashes(fit, rd_noffset)) { 3193 puts("Bad Data Hash\n"); 3194 bootstage_error(BOOTSTAGE_ID_FIT_RD_HASH); 3195 return 0; 3196 } 3197 puts("OK\n"); 3198 } 3199 3200 bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK_ALL); 3201 if (!fit_image_check_os(fit, rd_noffset, IH_OS_LINUX) || 3202 !fit_image_check_arch(fit, rd_noffset, arch) || 3203 !fit_image_check_type(fit, rd_noffset, IH_TYPE_RAMDISK)) { 3204 printf("No Linux %s Ramdisk Image\n", 3205 genimg_get_arch_name(arch)); 3206 bootstage_error(BOOTSTAGE_ID_FIT_RD_CHECK_ALL); 3207 return 0; 3208 } 3209 3210 bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK_ALL_OK); 3211 return 1; 3212 } 3213 #endif /* USE_HOSTCC */ 3214 #endif /* CONFIG_FIT */ 3215