1 /* 2 * (C) Copyright 2008 Semihalf 3 * 4 * (C) Copyright 2000-2006 5 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 6 * 7 * See file CREDITS for list of people who contributed to this 8 * project. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of 13 * the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, 23 * MA 02111-1307 USA 24 */ 25 26 #ifndef USE_HOSTCC 27 #include <common.h> 28 #include <watchdog.h> 29 30 #ifdef CONFIG_SHOW_BOOT_PROGRESS 31 #include <status_led.h> 32 #endif 33 34 #ifdef CONFIG_HAS_DATAFLASH 35 #include <dataflash.h> 36 #endif 37 38 #ifdef CONFIG_LOGBUFFER 39 #include <logbuff.h> 40 #endif 41 42 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) 43 #include <rtc.h> 44 #endif 45 46 #include <environment.h> 47 #include <image.h> 48 49 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT) 50 #include <fdt.h> 51 #include <libfdt.h> 52 #include <fdt_support.h> 53 #endif 54 55 #if defined(CONFIG_FIT) 56 #include <u-boot/md5.h> 57 #include <sha1.h> 58 59 static int fit_check_ramdisk(const void *fit, int os_noffset, 60 uint8_t arch, int verify); 61 #endif 62 63 #ifdef CONFIG_CMD_BDI 64 extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); 65 #endif 66 67 DECLARE_GLOBAL_DATA_PTR; 68 69 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 70 int verify); 71 #else 72 #include "mkimage.h" 73 #include <u-boot/md5.h> 74 #include <time.h> 75 #include <image.h> 76 #endif /* !USE_HOSTCC*/ 77 78 static const table_entry_t uimage_arch[] = { 79 { IH_ARCH_INVALID, NULL, "Invalid ARCH", }, 80 { IH_ARCH_ALPHA, "alpha", "Alpha", }, 81 { IH_ARCH_ARM, "arm", "ARM", }, 82 { IH_ARCH_I386, "x86", "Intel x86", }, 83 { IH_ARCH_IA64, "ia64", "IA64", }, 84 { IH_ARCH_M68K, "m68k", "M68K", }, 85 { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", }, 86 { IH_ARCH_MIPS, "mips", "MIPS", }, 87 { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", }, 88 { IH_ARCH_NIOS2, "nios2", "NIOS II", }, 89 { IH_ARCH_PPC, "powerpc", "PowerPC", }, 90 { IH_ARCH_PPC, "ppc", "PowerPC", }, 91 { IH_ARCH_S390, "s390", "IBM S390", }, 92 { IH_ARCH_SH, "sh", "SuperH", }, 93 { IH_ARCH_SPARC, "sparc", "SPARC", }, 94 { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", }, 95 { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", }, 96 { IH_ARCH_AVR32, "avr32", "AVR32", }, 97 { IH_ARCH_NDS32, "nds32", "NDS32", }, 98 { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",}, 99 { -1, "", "", }, 100 }; 101 102 static const table_entry_t uimage_os[] = { 103 { IH_OS_INVALID, NULL, "Invalid OS", }, 104 { IH_OS_LINUX, "linux", "Linux", }, 105 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC) 106 { IH_OS_LYNXOS, "lynxos", "LynxOS", }, 107 #endif 108 { IH_OS_NETBSD, "netbsd", "NetBSD", }, 109 { IH_OS_OSE, "ose", "Enea OSE", }, 110 { IH_OS_RTEMS, "rtems", "RTEMS", }, 111 { IH_OS_U_BOOT, "u-boot", "U-Boot", }, 112 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC) 113 { IH_OS_QNX, "qnx", "QNX", }, 114 { IH_OS_VXWORKS, "vxworks", "VxWorks", }, 115 #endif 116 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC) 117 { IH_OS_INTEGRITY,"integrity", "INTEGRITY", }, 118 #endif 119 #ifdef USE_HOSTCC 120 { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", }, 121 { IH_OS_DELL, "dell", "Dell", }, 122 { IH_OS_ESIX, "esix", "Esix", }, 123 { IH_OS_FREEBSD, "freebsd", "FreeBSD", }, 124 { IH_OS_IRIX, "irix", "Irix", }, 125 { IH_OS_NCR, "ncr", "NCR", }, 126 { IH_OS_OPENBSD, "openbsd", "OpenBSD", }, 127 { IH_OS_PSOS, "psos", "pSOS", }, 128 { IH_OS_SCO, "sco", "SCO", }, 129 { IH_OS_SOLARIS, "solaris", "Solaris", }, 130 { IH_OS_SVR4, "svr4", "SVR4", }, 131 #endif 132 { -1, "", "", }, 133 }; 134 135 static const table_entry_t uimage_type[] = { 136 { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",}, 137 { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", }, 138 { IH_TYPE_FIRMWARE, "firmware", "Firmware", }, 139 { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", }, 140 { IH_TYPE_KERNEL, "kernel", "Kernel Image", }, 141 { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", }, 142 { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",}, 143 { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",}, 144 { IH_TYPE_INVALID, NULL, "Invalid Image", }, 145 { IH_TYPE_MULTI, "multi", "Multi-File Image", }, 146 { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",}, 147 { IH_TYPE_PBLIMAGE, "pblimage", "Freescale PBL Boot Image",}, 148 { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", }, 149 { IH_TYPE_SCRIPT, "script", "Script", }, 150 { IH_TYPE_STANDALONE, "standalone", "Standalone Program", }, 151 { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",}, 152 { -1, "", "", }, 153 }; 154 155 static const table_entry_t uimage_comp[] = { 156 { IH_COMP_NONE, "none", "uncompressed", }, 157 { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", }, 158 { IH_COMP_GZIP, "gzip", "gzip compressed", }, 159 { IH_COMP_LZMA, "lzma", "lzma compressed", }, 160 { IH_COMP_LZO, "lzo", "lzo compressed", }, 161 { -1, "", "", }, 162 }; 163 164 uint32_t crc32(uint32_t, const unsigned char *, uint); 165 uint32_t crc32_wd(uint32_t, const unsigned char *, uint, uint); 166 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 167 static void genimg_print_time(time_t timestamp); 168 #endif 169 170 /*****************************************************************************/ 171 /* Legacy format routines */ 172 /*****************************************************************************/ 173 int image_check_hcrc(const image_header_t *hdr) 174 { 175 ulong hcrc; 176 ulong len = image_get_header_size(); 177 image_header_t header; 178 179 /* Copy header so we can blank CRC field for re-calculation */ 180 memmove(&header, (char *)hdr, image_get_header_size()); 181 image_set_hcrc(&header, 0); 182 183 hcrc = crc32(0, (unsigned char *)&header, len); 184 185 return (hcrc == image_get_hcrc(hdr)); 186 } 187 188 int image_check_dcrc(const image_header_t *hdr) 189 { 190 ulong data = image_get_data(hdr); 191 ulong len = image_get_data_size(hdr); 192 ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32); 193 194 return (dcrc == image_get_dcrc(hdr)); 195 } 196 197 /** 198 * image_multi_count - get component (sub-image) count 199 * @hdr: pointer to the header of the multi component image 200 * 201 * image_multi_count() returns number of components in a multi 202 * component image. 203 * 204 * Note: no checking of the image type is done, caller must pass 205 * a valid multi component image. 206 * 207 * returns: 208 * number of components 209 */ 210 ulong image_multi_count(const image_header_t *hdr) 211 { 212 ulong i, count = 0; 213 uint32_t *size; 214 215 /* get start of the image payload, which in case of multi 216 * component images that points to a table of component sizes */ 217 size = (uint32_t *)image_get_data(hdr); 218 219 /* count non empty slots */ 220 for (i = 0; size[i]; ++i) 221 count++; 222 223 return count; 224 } 225 226 /** 227 * image_multi_getimg - get component data address and size 228 * @hdr: pointer to the header of the multi component image 229 * @idx: index of the requested component 230 * @data: pointer to a ulong variable, will hold component data address 231 * @len: pointer to a ulong variable, will hold component size 232 * 233 * image_multi_getimg() returns size and data address for the requested 234 * component in a multi component image. 235 * 236 * Note: no checking of the image type is done, caller must pass 237 * a valid multi component image. 238 * 239 * returns: 240 * data address and size of the component, if idx is valid 241 * 0 in data and len, if idx is out of range 242 */ 243 void image_multi_getimg(const image_header_t *hdr, ulong idx, 244 ulong *data, ulong *len) 245 { 246 int i; 247 uint32_t *size; 248 ulong offset, count, img_data; 249 250 /* get number of component */ 251 count = image_multi_count(hdr); 252 253 /* get start of the image payload, which in case of multi 254 * component images that points to a table of component sizes */ 255 size = (uint32_t *)image_get_data(hdr); 256 257 /* get address of the proper component data start, which means 258 * skipping sizes table (add 1 for last, null entry) */ 259 img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t); 260 261 if (idx < count) { 262 *len = uimage_to_cpu(size[idx]); 263 offset = 0; 264 265 /* go over all indices preceding requested component idx */ 266 for (i = 0; i < idx; i++) { 267 /* add up i-th component size, rounding up to 4 bytes */ 268 offset += (uimage_to_cpu(size[i]) + 3) & ~3 ; 269 } 270 271 /* calculate idx-th component data address */ 272 *data = img_data + offset; 273 } else { 274 *len = 0; 275 *data = 0; 276 } 277 } 278 279 static void image_print_type(const image_header_t *hdr) 280 { 281 const char *os, *arch, *type, *comp; 282 283 os = genimg_get_os_name(image_get_os(hdr)); 284 arch = genimg_get_arch_name(image_get_arch(hdr)); 285 type = genimg_get_type_name(image_get_type(hdr)); 286 comp = genimg_get_comp_name(image_get_comp(hdr)); 287 288 printf("%s %s %s (%s)\n", arch, os, type, comp); 289 } 290 291 /** 292 * image_print_contents - prints out the contents of the legacy format image 293 * @ptr: pointer to the legacy format image header 294 * @p: pointer to prefix string 295 * 296 * image_print_contents() formats a multi line legacy image contents description. 297 * The routine prints out all header fields followed by the size/offset data 298 * for MULTI/SCRIPT images. 299 * 300 * returns: 301 * no returned results 302 */ 303 void image_print_contents(const void *ptr) 304 { 305 const image_header_t *hdr = (const image_header_t *)ptr; 306 const char *p; 307 308 #ifdef USE_HOSTCC 309 p = ""; 310 #else 311 p = " "; 312 #endif 313 314 printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr)); 315 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 316 printf("%sCreated: ", p); 317 genimg_print_time((time_t)image_get_time(hdr)); 318 #endif 319 printf("%sImage Type: ", p); 320 image_print_type(hdr); 321 printf("%sData Size: ", p); 322 genimg_print_size(image_get_data_size(hdr)); 323 printf("%sLoad Address: %08x\n", p, image_get_load(hdr)); 324 printf("%sEntry Point: %08x\n", p, image_get_ep(hdr)); 325 326 if (image_check_type(hdr, IH_TYPE_MULTI) || 327 image_check_type(hdr, IH_TYPE_SCRIPT)) { 328 int i; 329 ulong data, len; 330 ulong count = image_multi_count(hdr); 331 332 printf("%sContents:\n", p); 333 for (i = 0; i < count; i++) { 334 image_multi_getimg(hdr, i, &data, &len); 335 336 printf("%s Image %d: ", p, i); 337 genimg_print_size(len); 338 339 if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) { 340 /* 341 * the user may need to know offsets 342 * if planning to do something with 343 * multiple files 344 */ 345 printf("%s Offset = 0x%08lx\n", p, data); 346 } 347 } 348 } 349 } 350 351 352 #ifndef USE_HOSTCC 353 /** 354 * image_get_ramdisk - get and verify ramdisk image 355 * @rd_addr: ramdisk image start address 356 * @arch: expected ramdisk architecture 357 * @verify: checksum verification flag 358 * 359 * image_get_ramdisk() returns a pointer to the verified ramdisk image 360 * header. Routine receives image start address and expected architecture 361 * flag. Verification done covers data and header integrity and os/type/arch 362 * fields checking. 363 * 364 * If dataflash support is enabled routine checks for dataflash addresses 365 * and handles required dataflash reads. 366 * 367 * returns: 368 * pointer to a ramdisk image header, if image was found and valid 369 * otherwise, return NULL 370 */ 371 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 372 int verify) 373 { 374 const image_header_t *rd_hdr = (const image_header_t *)rd_addr; 375 376 if (!image_check_magic(rd_hdr)) { 377 puts("Bad Magic Number\n"); 378 bootstage_error(BOOTSTAGE_ID_RD_MAGIC); 379 return NULL; 380 } 381 382 if (!image_check_hcrc(rd_hdr)) { 383 puts("Bad Header Checksum\n"); 384 bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 385 return NULL; 386 } 387 388 bootstage_mark(BOOTSTAGE_ID_RD_MAGIC); 389 image_print_contents(rd_hdr); 390 391 if (verify) { 392 puts(" Verifying Checksum ... "); 393 if (!image_check_dcrc(rd_hdr)) { 394 puts("Bad Data CRC\n"); 395 bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM); 396 return NULL; 397 } 398 puts("OK\n"); 399 } 400 401 bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 402 403 if (!image_check_os(rd_hdr, IH_OS_LINUX) || 404 !image_check_arch(rd_hdr, arch) || 405 !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) { 406 printf("No Linux %s Ramdisk Image\n", 407 genimg_get_arch_name(arch)); 408 bootstage_error(BOOTSTAGE_ID_RAMDISK); 409 return NULL; 410 } 411 412 return rd_hdr; 413 } 414 #endif /* !USE_HOSTCC */ 415 416 /*****************************************************************************/ 417 /* Shared dual-format routines */ 418 /*****************************************************************************/ 419 #ifndef USE_HOSTCC 420 ulong load_addr = CONFIG_SYS_LOAD_ADDR; /* Default Load Address */ 421 ulong save_addr; /* Default Save Address */ 422 ulong save_size; /* Default Save Size (in bytes) */ 423 424 static int on_loadaddr(const char *name, const char *value, enum env_op op, 425 int flags) 426 { 427 switch (op) { 428 case env_op_create: 429 case env_op_overwrite: 430 load_addr = simple_strtoul(value, NULL, 16); 431 break; 432 default: 433 break; 434 } 435 436 return 0; 437 } 438 U_BOOT_ENV_CALLBACK(loadaddr, on_loadaddr); 439 440 ulong getenv_bootm_low(void) 441 { 442 char *s = getenv("bootm_low"); 443 if (s) { 444 ulong tmp = simple_strtoul(s, NULL, 16); 445 return tmp; 446 } 447 448 #if defined(CONFIG_SYS_SDRAM_BASE) 449 return CONFIG_SYS_SDRAM_BASE; 450 #elif defined(CONFIG_ARM) 451 return gd->bd->bi_dram[0].start; 452 #else 453 return 0; 454 #endif 455 } 456 457 phys_size_t getenv_bootm_size(void) 458 { 459 phys_size_t tmp; 460 char *s = getenv("bootm_size"); 461 if (s) { 462 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 463 return tmp; 464 } 465 s = getenv("bootm_low"); 466 if (s) 467 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 468 else 469 tmp = 0; 470 471 472 #if defined(CONFIG_ARM) 473 return gd->bd->bi_dram[0].size - tmp; 474 #else 475 return gd->bd->bi_memsize - tmp; 476 #endif 477 } 478 479 phys_size_t getenv_bootm_mapsize(void) 480 { 481 phys_size_t tmp; 482 char *s = getenv("bootm_mapsize"); 483 if (s) { 484 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 485 return tmp; 486 } 487 488 #if defined(CONFIG_SYS_BOOTMAPSZ) 489 return CONFIG_SYS_BOOTMAPSZ; 490 #else 491 return getenv_bootm_size(); 492 #endif 493 } 494 495 void memmove_wd(void *to, void *from, size_t len, ulong chunksz) 496 { 497 if (to == from) 498 return; 499 500 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 501 while (len > 0) { 502 size_t tail = (len > chunksz) ? chunksz : len; 503 WATCHDOG_RESET(); 504 memmove(to, from, tail); 505 to += tail; 506 from += tail; 507 len -= tail; 508 } 509 #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */ 510 memmove(to, from, len); 511 #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */ 512 } 513 #endif /* !USE_HOSTCC */ 514 515 void genimg_print_size(uint32_t size) 516 { 517 #ifndef USE_HOSTCC 518 printf("%d Bytes = ", size); 519 print_size(size, "\n"); 520 #else 521 printf("%d Bytes = %.2f kB = %.2f MB\n", 522 size, (double)size / 1.024e3, 523 (double)size / 1.048576e6); 524 #endif 525 } 526 527 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 528 static void genimg_print_time(time_t timestamp) 529 { 530 #ifndef USE_HOSTCC 531 struct rtc_time tm; 532 533 to_tm(timestamp, &tm); 534 printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n", 535 tm.tm_year, tm.tm_mon, tm.tm_mday, 536 tm.tm_hour, tm.tm_min, tm.tm_sec); 537 #else 538 printf("%s", ctime(×tamp)); 539 #endif 540 } 541 #endif /* CONFIG_TIMESTAMP || CONFIG_CMD_DATE || USE_HOSTCC */ 542 543 /** 544 * get_table_entry_name - translate entry id to long name 545 * @table: pointer to a translation table for entries of a specific type 546 * @msg: message to be returned when translation fails 547 * @id: entry id to be translated 548 * 549 * get_table_entry_name() will go over translation table trying to find 550 * entry that matches given id. If matching entry is found, its long 551 * name is returned to the caller. 552 * 553 * returns: 554 * long entry name if translation succeeds 555 * msg otherwise 556 */ 557 char *get_table_entry_name(const table_entry_t *table, char *msg, int id) 558 { 559 for (; table->id >= 0; ++table) { 560 if (table->id == id) 561 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 562 return table->lname; 563 #else 564 return table->lname + gd->reloc_off; 565 #endif 566 } 567 return (msg); 568 } 569 570 const char *genimg_get_os_name(uint8_t os) 571 { 572 return (get_table_entry_name(uimage_os, "Unknown OS", os)); 573 } 574 575 const char *genimg_get_arch_name(uint8_t arch) 576 { 577 return (get_table_entry_name(uimage_arch, "Unknown Architecture", 578 arch)); 579 } 580 581 const char *genimg_get_type_name(uint8_t type) 582 { 583 return (get_table_entry_name(uimage_type, "Unknown Image", type)); 584 } 585 586 const char *genimg_get_comp_name(uint8_t comp) 587 { 588 return (get_table_entry_name(uimage_comp, "Unknown Compression", 589 comp)); 590 } 591 592 /** 593 * get_table_entry_id - translate short entry name to id 594 * @table: pointer to a translation table for entries of a specific type 595 * @table_name: to be used in case of error 596 * @name: entry short name to be translated 597 * 598 * get_table_entry_id() will go over translation table trying to find 599 * entry that matches given short name. If matching entry is found, 600 * its id returned to the caller. 601 * 602 * returns: 603 * entry id if translation succeeds 604 * -1 otherwise 605 */ 606 int get_table_entry_id(const table_entry_t *table, 607 const char *table_name, const char *name) 608 { 609 const table_entry_t *t; 610 #ifdef USE_HOSTCC 611 int first = 1; 612 613 for (t = table; t->id >= 0; ++t) { 614 if (t->sname && strcasecmp(t->sname, name) == 0) 615 return(t->id); 616 } 617 618 fprintf(stderr, "\nInvalid %s Type - valid names are", table_name); 619 for (t = table; t->id >= 0; ++t) { 620 if (t->sname == NULL) 621 continue; 622 fprintf(stderr, "%c %s", (first) ? ':' : ',', t->sname); 623 first = 0; 624 } 625 fprintf(stderr, "\n"); 626 #else 627 for (t = table; t->id >= 0; ++t) { 628 #ifdef CONFIG_NEEDS_MANUAL_RELOC 629 if (t->sname && strcmp(t->sname + gd->reloc_off, name) == 0) 630 #else 631 if (t->sname && strcmp(t->sname, name) == 0) 632 #endif 633 return (t->id); 634 } 635 debug("Invalid %s Type: %s\n", table_name, name); 636 #endif /* USE_HOSTCC */ 637 return (-1); 638 } 639 640 int genimg_get_os_id(const char *name) 641 { 642 return (get_table_entry_id(uimage_os, "OS", name)); 643 } 644 645 int genimg_get_arch_id(const char *name) 646 { 647 return (get_table_entry_id(uimage_arch, "CPU", name)); 648 } 649 650 int genimg_get_type_id(const char *name) 651 { 652 return (get_table_entry_id(uimage_type, "Image", name)); 653 } 654 655 int genimg_get_comp_id(const char *name) 656 { 657 return (get_table_entry_id(uimage_comp, "Compression", name)); 658 } 659 660 #ifndef USE_HOSTCC 661 /** 662 * genimg_get_format - get image format type 663 * @img_addr: image start address 664 * 665 * genimg_get_format() checks whether provided address points to a valid 666 * legacy or FIT image. 667 * 668 * New uImage format and FDT blob are based on a libfdt. FDT blob 669 * may be passed directly or embedded in a FIT image. In both situations 670 * genimg_get_format() must be able to dectect libfdt header. 671 * 672 * returns: 673 * image format type or IMAGE_FORMAT_INVALID if no image is present 674 */ 675 int genimg_get_format(void *img_addr) 676 { 677 ulong format = IMAGE_FORMAT_INVALID; 678 const image_header_t *hdr; 679 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT) 680 char *fit_hdr; 681 #endif 682 683 hdr = (const image_header_t *)img_addr; 684 if (image_check_magic(hdr)) 685 format = IMAGE_FORMAT_LEGACY; 686 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT) 687 else { 688 fit_hdr = (char *)img_addr; 689 if (fdt_check_header(fit_hdr) == 0) 690 format = IMAGE_FORMAT_FIT; 691 } 692 #endif 693 694 return format; 695 } 696 697 /** 698 * genimg_get_image - get image from special storage (if necessary) 699 * @img_addr: image start address 700 * 701 * genimg_get_image() checks if provided image start adddress is located 702 * in a dataflash storage. If so, image is moved to a system RAM memory. 703 * 704 * returns: 705 * image start address after possible relocation from special storage 706 */ 707 ulong genimg_get_image(ulong img_addr) 708 { 709 ulong ram_addr = img_addr; 710 711 #ifdef CONFIG_HAS_DATAFLASH 712 ulong h_size, d_size; 713 714 if (addr_dataflash(img_addr)) { 715 /* ger RAM address */ 716 ram_addr = CONFIG_SYS_LOAD_ADDR; 717 718 /* get header size */ 719 h_size = image_get_header_size(); 720 #if defined(CONFIG_FIT) 721 if (sizeof(struct fdt_header) > h_size) 722 h_size = sizeof(struct fdt_header); 723 #endif 724 725 /* read in header */ 726 debug(" Reading image header from dataflash address " 727 "%08lx to RAM address %08lx\n", img_addr, ram_addr); 728 729 read_dataflash(img_addr, h_size, (char *)ram_addr); 730 731 /* get data size */ 732 switch (genimg_get_format((void *)ram_addr)) { 733 case IMAGE_FORMAT_LEGACY: 734 d_size = image_get_data_size( 735 (const image_header_t *)ram_addr); 736 debug(" Legacy format image found at 0x%08lx, " 737 "size 0x%08lx\n", 738 ram_addr, d_size); 739 break; 740 #if defined(CONFIG_FIT) 741 case IMAGE_FORMAT_FIT: 742 d_size = fit_get_size((const void *)ram_addr) - h_size; 743 debug(" FIT/FDT format image found at 0x%08lx, " 744 "size 0x%08lx\n", 745 ram_addr, d_size); 746 break; 747 #endif 748 default: 749 printf(" No valid image found at 0x%08lx\n", 750 img_addr); 751 return ram_addr; 752 } 753 754 /* read in image data */ 755 debug(" Reading image remaining data from dataflash address " 756 "%08lx to RAM address %08lx\n", img_addr + h_size, 757 ram_addr + h_size); 758 759 read_dataflash(img_addr + h_size, d_size, 760 (char *)(ram_addr + h_size)); 761 762 } 763 #endif /* CONFIG_HAS_DATAFLASH */ 764 765 return ram_addr; 766 } 767 768 /** 769 * fit_has_config - check if there is a valid FIT configuration 770 * @images: pointer to the bootm command headers structure 771 * 772 * fit_has_config() checks if there is a FIT configuration in use 773 * (if FTI support is present). 774 * 775 * returns: 776 * 0, no FIT support or no configuration found 777 * 1, configuration found 778 */ 779 int genimg_has_config(bootm_headers_t *images) 780 { 781 #if defined(CONFIG_FIT) 782 if (images->fit_uname_cfg) 783 return 1; 784 #endif 785 return 0; 786 } 787 788 /** 789 * boot_get_ramdisk - main ramdisk handling routine 790 * @argc: command argument count 791 * @argv: command argument list 792 * @images: pointer to the bootm images structure 793 * @arch: expected ramdisk architecture 794 * @rd_start: pointer to a ulong variable, will hold ramdisk start address 795 * @rd_end: pointer to a ulong variable, will hold ramdisk end 796 * 797 * boot_get_ramdisk() is responsible for finding a valid ramdisk image. 798 * Curently supported are the following ramdisk sources: 799 * - multicomponent kernel/ramdisk image, 800 * - commandline provided address of decicated ramdisk image. 801 * 802 * returns: 803 * 0, if ramdisk image was found and valid, or skiped 804 * rd_start and rd_end are set to ramdisk start/end addresses if 805 * ramdisk image is found and valid 806 * 807 * 1, if ramdisk image is found but corrupted, or invalid 808 * rd_start and rd_end are set to 0 if no ramdisk exists 809 */ 810 int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images, 811 uint8_t arch, ulong *rd_start, ulong *rd_end) 812 { 813 ulong rd_addr, rd_load; 814 ulong rd_data, rd_len; 815 const image_header_t *rd_hdr; 816 #ifdef CONFIG_SUPPORT_RAW_INITRD 817 char *end; 818 #endif 819 #if defined(CONFIG_FIT) 820 void *fit_hdr; 821 const char *fit_uname_config = NULL; 822 const char *fit_uname_ramdisk = NULL; 823 ulong default_addr; 824 int rd_noffset; 825 int cfg_noffset; 826 const void *data; 827 size_t size; 828 #endif 829 830 *rd_start = 0; 831 *rd_end = 0; 832 833 /* 834 * Look for a '-' which indicates to ignore the 835 * ramdisk argument 836 */ 837 if ((argc >= 3) && (strcmp(argv[2], "-") == 0)) { 838 debug("## Skipping init Ramdisk\n"); 839 rd_len = rd_data = 0; 840 } else if (argc >= 3 || genimg_has_config(images)) { 841 #if defined(CONFIG_FIT) 842 if (argc >= 3) { 843 /* 844 * If the init ramdisk comes from the FIT image and 845 * the FIT image address is omitted in the command 846 * line argument, try to use os FIT image address or 847 * default load address. 848 */ 849 if (images->fit_uname_os) 850 default_addr = (ulong)images->fit_hdr_os; 851 else 852 default_addr = load_addr; 853 854 if (fit_parse_conf(argv[2], default_addr, 855 &rd_addr, &fit_uname_config)) { 856 debug("* ramdisk: config '%s' from image at " 857 "0x%08lx\n", 858 fit_uname_config, rd_addr); 859 } else if (fit_parse_subimage(argv[2], default_addr, 860 &rd_addr, &fit_uname_ramdisk)) { 861 debug("* ramdisk: subimage '%s' from image at " 862 "0x%08lx\n", 863 fit_uname_ramdisk, rd_addr); 864 } else 865 #endif 866 { 867 rd_addr = simple_strtoul(argv[2], NULL, 16); 868 debug("* ramdisk: cmdline image address = " 869 "0x%08lx\n", 870 rd_addr); 871 } 872 #if defined(CONFIG_FIT) 873 } else { 874 /* use FIT configuration provided in first bootm 875 * command argument 876 */ 877 rd_addr = (ulong)images->fit_hdr_os; 878 fit_uname_config = images->fit_uname_cfg; 879 debug("* ramdisk: using config '%s' from image " 880 "at 0x%08lx\n", 881 fit_uname_config, rd_addr); 882 883 /* 884 * Check whether configuration has ramdisk defined, 885 * if not, don't try to use it, quit silently. 886 */ 887 fit_hdr = (void *)rd_addr; 888 cfg_noffset = fit_conf_get_node(fit_hdr, 889 fit_uname_config); 890 if (cfg_noffset < 0) { 891 debug("* ramdisk: no such config\n"); 892 return 1; 893 } 894 895 rd_noffset = fit_conf_get_ramdisk_node(fit_hdr, 896 cfg_noffset); 897 if (rd_noffset < 0) { 898 debug("* ramdisk: no ramdisk in config\n"); 899 return 0; 900 } 901 } 902 #endif 903 904 /* copy from dataflash if needed */ 905 rd_addr = genimg_get_image(rd_addr); 906 907 /* 908 * Check if there is an initrd image at the 909 * address provided in the second bootm argument 910 * check image type, for FIT images get FIT node. 911 */ 912 switch (genimg_get_format((void *)rd_addr)) { 913 case IMAGE_FORMAT_LEGACY: 914 printf("## Loading init Ramdisk from Legacy " 915 "Image at %08lx ...\n", rd_addr); 916 917 bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK); 918 rd_hdr = image_get_ramdisk(rd_addr, arch, 919 images->verify); 920 921 if (rd_hdr == NULL) 922 return 1; 923 924 rd_data = image_get_data(rd_hdr); 925 rd_len = image_get_data_size(rd_hdr); 926 rd_load = image_get_load(rd_hdr); 927 break; 928 #if defined(CONFIG_FIT) 929 case IMAGE_FORMAT_FIT: 930 fit_hdr = (void *)rd_addr; 931 printf("## Loading init Ramdisk from FIT " 932 "Image at %08lx ...\n", rd_addr); 933 934 bootstage_mark(BOOTSTAGE_ID_FIT_RD_FORMAT); 935 if (!fit_check_format(fit_hdr)) { 936 puts("Bad FIT ramdisk image format!\n"); 937 bootstage_error( 938 BOOTSTAGE_ID_FIT_RD_FORMAT); 939 return 1; 940 } 941 bootstage_mark(BOOTSTAGE_ID_FIT_RD_FORMAT_OK); 942 943 if (!fit_uname_ramdisk) { 944 /* 945 * no ramdisk image node unit name, try to get config 946 * node first. If config unit node name is NULL 947 * fit_conf_get_node() will try to find default config node 948 */ 949 bootstage_mark( 950 BOOTSTAGE_ID_FIT_RD_NO_UNIT_NAME); 951 cfg_noffset = fit_conf_get_node(fit_hdr, 952 fit_uname_config); 953 if (cfg_noffset < 0) { 954 puts("Could not find configuration " 955 "node\n"); 956 bootstage_error( 957 BOOTSTAGE_ID_FIT_RD_NO_UNIT_NAME); 958 return 1; 959 } 960 fit_uname_config = fdt_get_name(fit_hdr, 961 cfg_noffset, NULL); 962 printf(" Using '%s' configuration\n", 963 fit_uname_config); 964 965 rd_noffset = fit_conf_get_ramdisk_node(fit_hdr, 966 cfg_noffset); 967 fit_uname_ramdisk = fit_get_name(fit_hdr, 968 rd_noffset, NULL); 969 } else { 970 /* get ramdisk component image node offset */ 971 bootstage_mark( 972 BOOTSTAGE_ID_FIT_RD_UNIT_NAME); 973 rd_noffset = fit_image_get_node(fit_hdr, 974 fit_uname_ramdisk); 975 } 976 if (rd_noffset < 0) { 977 puts("Could not find subimage node\n"); 978 bootstage_error(BOOTSTAGE_ID_FIT_RD_SUBNODE); 979 return 1; 980 } 981 982 printf(" Trying '%s' ramdisk subimage\n", 983 fit_uname_ramdisk); 984 985 bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK); 986 if (!fit_check_ramdisk(fit_hdr, rd_noffset, arch, 987 images->verify)) 988 return 1; 989 990 /* get ramdisk image data address and length */ 991 if (fit_image_get_data(fit_hdr, rd_noffset, &data, 992 &size)) { 993 puts("Could not find ramdisk subimage data!\n"); 994 bootstage_error(BOOTSTAGE_ID_FIT_RD_GET_DATA); 995 return 1; 996 } 997 bootstage_mark(BOOTSTAGE_ID_FIT_RD_GET_DATA_OK); 998 999 rd_data = (ulong)data; 1000 rd_len = size; 1001 1002 if (fit_image_get_load(fit_hdr, rd_noffset, &rd_load)) { 1003 puts("Can't get ramdisk subimage load " 1004 "address!\n"); 1005 bootstage_error(BOOTSTAGE_ID_FIT_RD_LOAD); 1006 return 1; 1007 } 1008 bootstage_mark(BOOTSTAGE_ID_FIT_RD_LOAD); 1009 1010 images->fit_hdr_rd = fit_hdr; 1011 images->fit_uname_rd = fit_uname_ramdisk; 1012 images->fit_noffset_rd = rd_noffset; 1013 break; 1014 #endif 1015 default: 1016 #ifdef CONFIG_SUPPORT_RAW_INITRD 1017 if (argc >= 3 && (end = strchr(argv[2], ':'))) { 1018 rd_len = simple_strtoul(++end, NULL, 16); 1019 rd_data = rd_addr; 1020 } else 1021 #endif 1022 { 1023 puts("Wrong Ramdisk Image Format\n"); 1024 rd_data = rd_len = rd_load = 0; 1025 return 1; 1026 } 1027 } 1028 } else if (images->legacy_hdr_valid && 1029 image_check_type(&images->legacy_hdr_os_copy, 1030 IH_TYPE_MULTI)) { 1031 1032 /* 1033 * Now check if we have a legacy mult-component image, 1034 * get second entry data start address and len. 1035 */ 1036 bootstage_mark(BOOTSTAGE_ID_RAMDISK); 1037 printf("## Loading init Ramdisk from multi component " 1038 "Legacy Image at %08lx ...\n", 1039 (ulong)images->legacy_hdr_os); 1040 1041 image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len); 1042 } else { 1043 /* 1044 * no initrd image 1045 */ 1046 bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK); 1047 rd_len = rd_data = 0; 1048 } 1049 1050 if (!rd_data) { 1051 debug("## No init Ramdisk\n"); 1052 } else { 1053 *rd_start = rd_data; 1054 *rd_end = rd_data + rd_len; 1055 } 1056 debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n", 1057 *rd_start, *rd_end); 1058 1059 return 0; 1060 } 1061 1062 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH 1063 /** 1064 * boot_ramdisk_high - relocate init ramdisk 1065 * @lmb: pointer to lmb handle, will be used for memory mgmt 1066 * @rd_data: ramdisk data start address 1067 * @rd_len: ramdisk data length 1068 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk 1069 * start address (after possible relocation) 1070 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk 1071 * end address (after possible relocation) 1072 * 1073 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environement 1074 * variable and if requested ramdisk data is moved to a specified location. 1075 * 1076 * Initrd_start and initrd_end are set to final (after relocation) ramdisk 1077 * start/end addresses if ramdisk image start and len were provided, 1078 * otherwise set initrd_start and initrd_end set to zeros. 1079 * 1080 * returns: 1081 * 0 - success 1082 * -1 - failure 1083 */ 1084 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len, 1085 ulong *initrd_start, ulong *initrd_end) 1086 { 1087 char *s; 1088 ulong initrd_high; 1089 int initrd_copy_to_ram = 1; 1090 1091 if ((s = getenv("initrd_high")) != NULL) { 1092 /* a value of "no" or a similar string will act like 0, 1093 * turning the "load high" feature off. This is intentional. 1094 */ 1095 initrd_high = simple_strtoul(s, NULL, 16); 1096 if (initrd_high == ~0) 1097 initrd_copy_to_ram = 0; 1098 } else { 1099 /* not set, no restrictions to load high */ 1100 initrd_high = ~0; 1101 } 1102 1103 1104 #ifdef CONFIG_LOGBUFFER 1105 /* Prevent initrd from overwriting logbuffer */ 1106 lmb_reserve(lmb, logbuffer_base() - LOGBUFF_OVERHEAD, LOGBUFF_RESERVE); 1107 #endif 1108 1109 debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n", 1110 initrd_high, initrd_copy_to_ram); 1111 1112 if (rd_data) { 1113 if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */ 1114 debug(" in-place initrd\n"); 1115 *initrd_start = rd_data; 1116 *initrd_end = rd_data + rd_len; 1117 lmb_reserve(lmb, rd_data, rd_len); 1118 } else { 1119 if (initrd_high) 1120 *initrd_start = (ulong)lmb_alloc_base(lmb, 1121 rd_len, 0x1000, initrd_high); 1122 else 1123 *initrd_start = (ulong)lmb_alloc(lmb, rd_len, 1124 0x1000); 1125 1126 if (*initrd_start == 0) { 1127 puts("ramdisk - allocation error\n"); 1128 goto error; 1129 } 1130 bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK); 1131 1132 *initrd_end = *initrd_start + rd_len; 1133 printf(" Loading Ramdisk to %08lx, end %08lx ... ", 1134 *initrd_start, *initrd_end); 1135 1136 memmove_wd((void *)*initrd_start, 1137 (void *)rd_data, rd_len, CHUNKSZ); 1138 1139 #ifdef CONFIG_MP 1140 /* 1141 * Ensure the image is flushed to memory to handle 1142 * AMP boot scenarios in which we might not be 1143 * HW cache coherent 1144 */ 1145 flush_cache((unsigned long)*initrd_start, rd_len); 1146 #endif 1147 puts("OK\n"); 1148 } 1149 } else { 1150 *initrd_start = 0; 1151 *initrd_end = 0; 1152 } 1153 debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n", 1154 *initrd_start, *initrd_end); 1155 1156 return 0; 1157 1158 error: 1159 return -1; 1160 } 1161 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */ 1162 1163 #ifdef CONFIG_OF_LIBFDT 1164 static void fdt_error(const char *msg) 1165 { 1166 puts("ERROR: "); 1167 puts(msg); 1168 puts(" - must RESET the board to recover.\n"); 1169 } 1170 1171 static const image_header_t *image_get_fdt(ulong fdt_addr) 1172 { 1173 const image_header_t *fdt_hdr = (const image_header_t *)fdt_addr; 1174 1175 image_print_contents(fdt_hdr); 1176 1177 puts(" Verifying Checksum ... "); 1178 if (!image_check_hcrc(fdt_hdr)) { 1179 fdt_error("fdt header checksum invalid"); 1180 return NULL; 1181 } 1182 1183 if (!image_check_dcrc(fdt_hdr)) { 1184 fdt_error("fdt checksum invalid"); 1185 return NULL; 1186 } 1187 puts("OK\n"); 1188 1189 if (!image_check_type(fdt_hdr, IH_TYPE_FLATDT)) { 1190 fdt_error("uImage is not a fdt"); 1191 return NULL; 1192 } 1193 if (image_get_comp(fdt_hdr) != IH_COMP_NONE) { 1194 fdt_error("uImage is compressed"); 1195 return NULL; 1196 } 1197 if (fdt_check_header((char *)image_get_data(fdt_hdr)) != 0) { 1198 fdt_error("uImage data is not a fdt"); 1199 return NULL; 1200 } 1201 return fdt_hdr; 1202 } 1203 1204 /** 1205 * fit_check_fdt - verify FIT format FDT subimage 1206 * @fit_hdr: pointer to the FIT header 1207 * fdt_noffset: FDT subimage node offset within FIT image 1208 * @verify: data CRC verification flag 1209 * 1210 * fit_check_fdt() verifies integrity of the FDT subimage and from 1211 * specified FIT image. 1212 * 1213 * returns: 1214 * 1, on success 1215 * 0, on failure 1216 */ 1217 #if defined(CONFIG_FIT) 1218 static int fit_check_fdt(const void *fit, int fdt_noffset, int verify) 1219 { 1220 fit_image_print(fit, fdt_noffset, " "); 1221 1222 if (verify) { 1223 puts(" Verifying Hash Integrity ... "); 1224 if (!fit_image_check_hashes(fit, fdt_noffset)) { 1225 fdt_error("Bad Data Hash"); 1226 return 0; 1227 } 1228 puts("OK\n"); 1229 } 1230 1231 if (!fit_image_check_type(fit, fdt_noffset, IH_TYPE_FLATDT)) { 1232 fdt_error("Not a FDT image"); 1233 return 0; 1234 } 1235 1236 if (!fit_image_check_comp(fit, fdt_noffset, IH_COMP_NONE)) { 1237 fdt_error("FDT image is compressed"); 1238 return 0; 1239 } 1240 1241 return 1; 1242 } 1243 #endif /* CONFIG_FIT */ 1244 1245 #ifndef CONFIG_SYS_FDT_PAD 1246 #define CONFIG_SYS_FDT_PAD 0x3000 1247 #endif 1248 1249 #if defined(CONFIG_OF_LIBFDT) 1250 /** 1251 * boot_fdt_add_mem_rsv_regions - Mark the memreserve sections as unusable 1252 * @lmb: pointer to lmb handle, will be used for memory mgmt 1253 * @fdt_blob: pointer to fdt blob base address 1254 * 1255 * Adds the memreserve regions in the dtb to the lmb block. Adding the 1256 * memreserve regions prevents u-boot from using them to store the initrd 1257 * or the fdt blob. 1258 */ 1259 void boot_fdt_add_mem_rsv_regions(struct lmb *lmb, void *fdt_blob) 1260 { 1261 uint64_t addr, size; 1262 int i, total; 1263 1264 if (fdt_check_header(fdt_blob) != 0) 1265 return; 1266 1267 total = fdt_num_mem_rsv(fdt_blob); 1268 for (i = 0; i < total; i++) { 1269 if (fdt_get_mem_rsv(fdt_blob, i, &addr, &size) != 0) 1270 continue; 1271 printf(" reserving fdt memory region: addr=%llx size=%llx\n", 1272 (unsigned long long)addr, (unsigned long long)size); 1273 lmb_reserve(lmb, addr, size); 1274 } 1275 } 1276 1277 /** 1278 * boot_relocate_fdt - relocate flat device tree 1279 * @lmb: pointer to lmb handle, will be used for memory mgmt 1280 * @of_flat_tree: pointer to a char* variable, will hold fdt start address 1281 * @of_size: pointer to a ulong variable, will hold fdt length 1282 * 1283 * boot_relocate_fdt() allocates a region of memory within the bootmap and 1284 * relocates the of_flat_tree into that region, even if the fdt is already in 1285 * the bootmap. It also expands the size of the fdt by CONFIG_SYS_FDT_PAD 1286 * bytes. 1287 * 1288 * of_flat_tree and of_size are set to final (after relocation) values 1289 * 1290 * returns: 1291 * 0 - success 1292 * 1 - failure 1293 */ 1294 int boot_relocate_fdt(struct lmb *lmb, char **of_flat_tree, ulong *of_size) 1295 { 1296 void *fdt_blob = *of_flat_tree; 1297 void *of_start = NULL; 1298 char *fdt_high; 1299 ulong of_len = 0; 1300 int err; 1301 int disable_relocation = 0; 1302 1303 /* nothing to do */ 1304 if (*of_size == 0) 1305 return 0; 1306 1307 if (fdt_check_header(fdt_blob) != 0) { 1308 fdt_error("image is not a fdt"); 1309 goto error; 1310 } 1311 1312 /* position on a 4K boundary before the alloc_current */ 1313 /* Pad the FDT by a specified amount */ 1314 of_len = *of_size + CONFIG_SYS_FDT_PAD; 1315 1316 /* If fdt_high is set use it to select the relocation address */ 1317 fdt_high = getenv("fdt_high"); 1318 if (fdt_high) { 1319 void *desired_addr = (void *)simple_strtoul(fdt_high, NULL, 16); 1320 1321 if (((ulong) desired_addr) == ~0UL) { 1322 /* All ones means use fdt in place */ 1323 of_start = fdt_blob; 1324 lmb_reserve(lmb, (ulong)of_start, of_len); 1325 disable_relocation = 1; 1326 } else if (desired_addr) { 1327 of_start = 1328 (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000, 1329 (ulong)desired_addr); 1330 if (of_start == NULL) { 1331 puts("Failed using fdt_high value for Device Tree"); 1332 goto error; 1333 } 1334 } else { 1335 of_start = 1336 (void *)(ulong) lmb_alloc(lmb, of_len, 0x1000); 1337 } 1338 } else { 1339 of_start = 1340 (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000, 1341 getenv_bootm_mapsize() 1342 + getenv_bootm_low()); 1343 } 1344 1345 if (of_start == NULL) { 1346 puts("device tree - allocation error\n"); 1347 goto error; 1348 } 1349 1350 if (disable_relocation) { 1351 /* We assume there is space after the existing fdt to use for padding */ 1352 fdt_set_totalsize(of_start, of_len); 1353 printf(" Using Device Tree in place at %p, end %p\n", 1354 of_start, of_start + of_len - 1); 1355 } else { 1356 debug("## device tree at %p ... %p (len=%ld [0x%lX])\n", 1357 fdt_blob, fdt_blob + *of_size - 1, of_len, of_len); 1358 1359 printf(" Loading Device Tree to %p, end %p ... ", 1360 of_start, of_start + of_len - 1); 1361 1362 err = fdt_open_into(fdt_blob, of_start, of_len); 1363 if (err != 0) { 1364 fdt_error("fdt move failed"); 1365 goto error; 1366 } 1367 puts("OK\n"); 1368 } 1369 1370 *of_flat_tree = of_start; 1371 *of_size = of_len; 1372 1373 set_working_fdt_addr(*of_flat_tree); 1374 return 0; 1375 1376 error: 1377 return 1; 1378 } 1379 #endif /* CONFIG_OF_LIBFDT */ 1380 1381 /** 1382 * boot_get_fdt - main fdt handling routine 1383 * @argc: command argument count 1384 * @argv: command argument list 1385 * @images: pointer to the bootm images structure 1386 * @of_flat_tree: pointer to a char* variable, will hold fdt start address 1387 * @of_size: pointer to a ulong variable, will hold fdt length 1388 * 1389 * boot_get_fdt() is responsible for finding a valid flat device tree image. 1390 * Curently supported are the following ramdisk sources: 1391 * - multicomponent kernel/ramdisk image, 1392 * - commandline provided address of decicated ramdisk image. 1393 * 1394 * returns: 1395 * 0, if fdt image was found and valid, or skipped 1396 * of_flat_tree and of_size are set to fdt start address and length if 1397 * fdt image is found and valid 1398 * 1399 * 1, if fdt image is found but corrupted 1400 * of_flat_tree and of_size are set to 0 if no fdt exists 1401 */ 1402 int boot_get_fdt(int flag, int argc, char * const argv[], 1403 bootm_headers_t *images, char **of_flat_tree, ulong *of_size) 1404 { 1405 const image_header_t *fdt_hdr; 1406 ulong fdt_addr; 1407 char *fdt_blob = NULL; 1408 ulong image_start, image_data, image_end; 1409 ulong load_start, load_end; 1410 #if defined(CONFIG_FIT) 1411 void *fit_hdr; 1412 const char *fit_uname_config = NULL; 1413 const char *fit_uname_fdt = NULL; 1414 ulong default_addr; 1415 int cfg_noffset; 1416 int fdt_noffset; 1417 const void *data; 1418 size_t size; 1419 #endif 1420 1421 *of_flat_tree = NULL; 1422 *of_size = 0; 1423 1424 if (argc > 3 || genimg_has_config(images)) { 1425 #if defined(CONFIG_FIT) 1426 if (argc > 3) { 1427 /* 1428 * If the FDT blob comes from the FIT image and the 1429 * FIT image address is omitted in the command line 1430 * argument, try to use ramdisk or os FIT image 1431 * address or default load address. 1432 */ 1433 if (images->fit_uname_rd) 1434 default_addr = (ulong)images->fit_hdr_rd; 1435 else if (images->fit_uname_os) 1436 default_addr = (ulong)images->fit_hdr_os; 1437 else 1438 default_addr = load_addr; 1439 1440 if (fit_parse_conf(argv[3], default_addr, 1441 &fdt_addr, &fit_uname_config)) { 1442 debug("* fdt: config '%s' from image at " 1443 "0x%08lx\n", 1444 fit_uname_config, fdt_addr); 1445 } else if (fit_parse_subimage(argv[3], default_addr, 1446 &fdt_addr, &fit_uname_fdt)) { 1447 debug("* fdt: subimage '%s' from image at " 1448 "0x%08lx\n", 1449 fit_uname_fdt, fdt_addr); 1450 } else 1451 #endif 1452 { 1453 fdt_addr = simple_strtoul(argv[3], NULL, 16); 1454 debug("* fdt: cmdline image address = " 1455 "0x%08lx\n", 1456 fdt_addr); 1457 } 1458 #if defined(CONFIG_FIT) 1459 } else { 1460 /* use FIT configuration provided in first bootm 1461 * command argument 1462 */ 1463 fdt_addr = (ulong)images->fit_hdr_os; 1464 fit_uname_config = images->fit_uname_cfg; 1465 debug("* fdt: using config '%s' from image " 1466 "at 0x%08lx\n", 1467 fit_uname_config, fdt_addr); 1468 1469 /* 1470 * Check whether configuration has FDT blob defined, 1471 * if not quit silently. 1472 */ 1473 fit_hdr = (void *)fdt_addr; 1474 cfg_noffset = fit_conf_get_node(fit_hdr, 1475 fit_uname_config); 1476 if (cfg_noffset < 0) { 1477 debug("* fdt: no such config\n"); 1478 return 0; 1479 } 1480 1481 fdt_noffset = fit_conf_get_fdt_node(fit_hdr, 1482 cfg_noffset); 1483 if (fdt_noffset < 0) { 1484 debug("* fdt: no fdt in config\n"); 1485 return 0; 1486 } 1487 } 1488 #endif 1489 1490 debug("## Checking for 'FDT'/'FDT Image' at %08lx\n", 1491 fdt_addr); 1492 1493 /* copy from dataflash if needed */ 1494 fdt_addr = genimg_get_image(fdt_addr); 1495 1496 /* 1497 * Check if there is an FDT image at the 1498 * address provided in the second bootm argument 1499 * check image type, for FIT images get a FIT node. 1500 */ 1501 switch (genimg_get_format((void *)fdt_addr)) { 1502 case IMAGE_FORMAT_LEGACY: 1503 /* verify fdt_addr points to a valid image header */ 1504 printf("## Flattened Device Tree from Legacy Image " 1505 "at %08lx\n", 1506 fdt_addr); 1507 fdt_hdr = image_get_fdt(fdt_addr); 1508 if (!fdt_hdr) 1509 goto error; 1510 1511 /* 1512 * move image data to the load address, 1513 * make sure we don't overwrite initial image 1514 */ 1515 image_start = (ulong)fdt_hdr; 1516 image_data = (ulong)image_get_data(fdt_hdr); 1517 image_end = image_get_image_end(fdt_hdr); 1518 1519 load_start = image_get_load(fdt_hdr); 1520 load_end = load_start + image_get_data_size(fdt_hdr); 1521 1522 if (load_start == image_start || 1523 load_start == image_data) { 1524 fdt_blob = (char *)image_data; 1525 break; 1526 } 1527 1528 if ((load_start < image_end) && (load_end > image_start)) { 1529 fdt_error("fdt overwritten"); 1530 goto error; 1531 } 1532 1533 debug(" Loading FDT from 0x%08lx to 0x%08lx\n", 1534 image_data, load_start); 1535 1536 memmove((void *)load_start, 1537 (void *)image_data, 1538 image_get_data_size(fdt_hdr)); 1539 1540 fdt_blob = (char *)load_start; 1541 break; 1542 case IMAGE_FORMAT_FIT: 1543 /* 1544 * This case will catch both: new uImage format 1545 * (libfdt based) and raw FDT blob (also libfdt 1546 * based). 1547 */ 1548 #if defined(CONFIG_FIT) 1549 /* check FDT blob vs FIT blob */ 1550 if (fit_check_format((const void *)fdt_addr)) { 1551 /* 1552 * FIT image 1553 */ 1554 fit_hdr = (void *)fdt_addr; 1555 printf("## Flattened Device Tree from FIT " 1556 "Image at %08lx\n", 1557 fdt_addr); 1558 1559 if (!fit_uname_fdt) { 1560 /* 1561 * no FDT blob image node unit name, 1562 * try to get config node first. If 1563 * config unit node name is NULL 1564 * fit_conf_get_node() will try to 1565 * find default config node 1566 */ 1567 cfg_noffset = fit_conf_get_node(fit_hdr, 1568 fit_uname_config); 1569 1570 if (cfg_noffset < 0) { 1571 fdt_error("Could not find " 1572 "configuration " 1573 "node\n"); 1574 goto error; 1575 } 1576 1577 fit_uname_config = fdt_get_name(fit_hdr, 1578 cfg_noffset, NULL); 1579 printf(" Using '%s' configuration\n", 1580 fit_uname_config); 1581 1582 fdt_noffset = fit_conf_get_fdt_node( 1583 fit_hdr, 1584 cfg_noffset); 1585 fit_uname_fdt = fit_get_name(fit_hdr, 1586 fdt_noffset, NULL); 1587 } else { 1588 /* get FDT component image node offset */ 1589 fdt_noffset = fit_image_get_node( 1590 fit_hdr, 1591 fit_uname_fdt); 1592 } 1593 if (fdt_noffset < 0) { 1594 fdt_error("Could not find subimage " 1595 "node\n"); 1596 goto error; 1597 } 1598 1599 printf(" Trying '%s' FDT blob subimage\n", 1600 fit_uname_fdt); 1601 1602 if (!fit_check_fdt(fit_hdr, fdt_noffset, 1603 images->verify)) 1604 goto error; 1605 1606 /* get ramdisk image data address and length */ 1607 if (fit_image_get_data(fit_hdr, fdt_noffset, 1608 &data, &size)) { 1609 fdt_error("Could not find FDT " 1610 "subimage data"); 1611 goto error; 1612 } 1613 1614 /* verift that image data is a proper FDT blob */ 1615 if (fdt_check_header((char *)data) != 0) { 1616 fdt_error("Subimage data is not a FTD"); 1617 goto error; 1618 } 1619 1620 /* 1621 * move image data to the load address, 1622 * make sure we don't overwrite initial image 1623 */ 1624 image_start = (ulong)fit_hdr; 1625 image_end = fit_get_end(fit_hdr); 1626 1627 if (fit_image_get_load(fit_hdr, fdt_noffset, 1628 &load_start) == 0) { 1629 load_end = load_start + size; 1630 1631 if ((load_start < image_end) && 1632 (load_end > image_start)) { 1633 fdt_error("FDT overwritten"); 1634 goto error; 1635 } 1636 1637 printf(" Loading FDT from 0x%08lx " 1638 "to 0x%08lx\n", 1639 (ulong)data, 1640 load_start); 1641 1642 memmove((void *)load_start, 1643 (void *)data, size); 1644 1645 fdt_blob = (char *)load_start; 1646 } else { 1647 fdt_blob = (char *)data; 1648 } 1649 1650 images->fit_hdr_fdt = fit_hdr; 1651 images->fit_uname_fdt = fit_uname_fdt; 1652 images->fit_noffset_fdt = fdt_noffset; 1653 break; 1654 } else 1655 #endif 1656 { 1657 /* 1658 * FDT blob 1659 */ 1660 fdt_blob = (char *)fdt_addr; 1661 debug("* fdt: raw FDT blob\n"); 1662 printf("## Flattened Device Tree blob at " 1663 "%08lx\n", (long)fdt_blob); 1664 } 1665 break; 1666 default: 1667 puts("ERROR: Did not find a cmdline Flattened Device " 1668 "Tree\n"); 1669 goto error; 1670 } 1671 1672 printf(" Booting using the fdt blob at 0x%p\n", fdt_blob); 1673 1674 } else if (images->legacy_hdr_valid && 1675 image_check_type(&images->legacy_hdr_os_copy, 1676 IH_TYPE_MULTI)) { 1677 1678 ulong fdt_data, fdt_len; 1679 1680 /* 1681 * Now check if we have a legacy multi-component image, 1682 * get second entry data start address and len. 1683 */ 1684 printf("## Flattened Device Tree from multi " 1685 "component Image at %08lX\n", 1686 (ulong)images->legacy_hdr_os); 1687 1688 image_multi_getimg(images->legacy_hdr_os, 2, &fdt_data, 1689 &fdt_len); 1690 if (fdt_len) { 1691 1692 fdt_blob = (char *)fdt_data; 1693 printf(" Booting using the fdt at 0x%p\n", fdt_blob); 1694 1695 if (fdt_check_header(fdt_blob) != 0) { 1696 fdt_error("image is not a fdt"); 1697 goto error; 1698 } 1699 1700 if (fdt_totalsize(fdt_blob) != fdt_len) { 1701 fdt_error("fdt size != image size"); 1702 goto error; 1703 } 1704 } else { 1705 debug("## No Flattened Device Tree\n"); 1706 return 0; 1707 } 1708 } else { 1709 debug("## No Flattened Device Tree\n"); 1710 return 0; 1711 } 1712 1713 *of_flat_tree = fdt_blob; 1714 *of_size = fdt_totalsize(fdt_blob); 1715 debug(" of_flat_tree at 0x%08lx size 0x%08lx\n", 1716 (ulong)*of_flat_tree, *of_size); 1717 1718 return 0; 1719 1720 error: 1721 *of_flat_tree = NULL; 1722 *of_size = 0; 1723 return 1; 1724 } 1725 #endif /* CONFIG_OF_LIBFDT */ 1726 1727 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE 1728 /** 1729 * boot_get_cmdline - allocate and initialize kernel cmdline 1730 * @lmb: pointer to lmb handle, will be used for memory mgmt 1731 * @cmd_start: pointer to a ulong variable, will hold cmdline start 1732 * @cmd_end: pointer to a ulong variable, will hold cmdline end 1733 * 1734 * boot_get_cmdline() allocates space for kernel command line below 1735 * BOOTMAPSZ + getenv_bootm_low() address. If "bootargs" U-boot environemnt 1736 * variable is present its contents is copied to allocated kernel 1737 * command line. 1738 * 1739 * returns: 1740 * 0 - success 1741 * -1 - failure 1742 */ 1743 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end) 1744 { 1745 char *cmdline; 1746 char *s; 1747 1748 cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf, 1749 getenv_bootm_mapsize() + getenv_bootm_low()); 1750 1751 if (cmdline == NULL) 1752 return -1; 1753 1754 if ((s = getenv("bootargs")) == NULL) 1755 s = ""; 1756 1757 strcpy(cmdline, s); 1758 1759 *cmd_start = (ulong) & cmdline[0]; 1760 *cmd_end = *cmd_start + strlen(cmdline); 1761 1762 debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end); 1763 1764 return 0; 1765 } 1766 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */ 1767 1768 #ifdef CONFIG_SYS_BOOT_GET_KBD 1769 /** 1770 * boot_get_kbd - allocate and initialize kernel copy of board info 1771 * @lmb: pointer to lmb handle, will be used for memory mgmt 1772 * @kbd: double pointer to board info data 1773 * 1774 * boot_get_kbd() allocates space for kernel copy of board info data below 1775 * BOOTMAPSZ + getenv_bootm_low() address and kernel board info is initialized 1776 * with the current u-boot board info data. 1777 * 1778 * returns: 1779 * 0 - success 1780 * -1 - failure 1781 */ 1782 int boot_get_kbd(struct lmb *lmb, bd_t **kbd) 1783 { 1784 *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf, 1785 getenv_bootm_mapsize() + getenv_bootm_low()); 1786 if (*kbd == NULL) 1787 return -1; 1788 1789 **kbd = *(gd->bd); 1790 1791 debug("## kernel board info at 0x%08lx\n", (ulong)*kbd); 1792 1793 #if defined(DEBUG) && defined(CONFIG_CMD_BDI) 1794 do_bdinfo(NULL, 0, 0, NULL); 1795 #endif 1796 1797 return 0; 1798 } 1799 #endif /* CONFIG_SYS_BOOT_GET_KBD */ 1800 #endif /* !USE_HOSTCC */ 1801 1802 #if defined(CONFIG_FIT) 1803 /*****************************************************************************/ 1804 /* New uImage format routines */ 1805 /*****************************************************************************/ 1806 #ifndef USE_HOSTCC 1807 static int fit_parse_spec(const char *spec, char sepc, ulong addr_curr, 1808 ulong *addr, const char **name) 1809 { 1810 const char *sep; 1811 1812 *addr = addr_curr; 1813 *name = NULL; 1814 1815 sep = strchr(spec, sepc); 1816 if (sep) { 1817 if (sep - spec > 0) 1818 *addr = simple_strtoul(spec, NULL, 16); 1819 1820 *name = sep + 1; 1821 return 1; 1822 } 1823 1824 return 0; 1825 } 1826 1827 /** 1828 * fit_parse_conf - parse FIT configuration spec 1829 * @spec: input string, containing configuration spec 1830 * @add_curr: current image address (to be used as a possible default) 1831 * @addr: pointer to a ulong variable, will hold FIT image address of a given 1832 * configuration 1833 * @conf_name double pointer to a char, will hold pointer to a configuration 1834 * unit name 1835 * 1836 * fit_parse_conf() expects configuration spec in the for of [<addr>]#<conf>, 1837 * where <addr> is a FIT image address that contains configuration 1838 * with a <conf> unit name. 1839 * 1840 * Address part is optional, and if omitted default add_curr will 1841 * be used instead. 1842 * 1843 * returns: 1844 * 1 if spec is a valid configuration string, 1845 * addr and conf_name are set accordingly 1846 * 0 otherwise 1847 */ 1848 int fit_parse_conf(const char *spec, ulong addr_curr, 1849 ulong *addr, const char **conf_name) 1850 { 1851 return fit_parse_spec(spec, '#', addr_curr, addr, conf_name); 1852 } 1853 1854 /** 1855 * fit_parse_subimage - parse FIT subimage spec 1856 * @spec: input string, containing subimage spec 1857 * @add_curr: current image address (to be used as a possible default) 1858 * @addr: pointer to a ulong variable, will hold FIT image address of a given 1859 * subimage 1860 * @image_name: double pointer to a char, will hold pointer to a subimage name 1861 * 1862 * fit_parse_subimage() expects subimage spec in the for of 1863 * [<addr>]:<subimage>, where <addr> is a FIT image address that contains 1864 * subimage with a <subimg> unit name. 1865 * 1866 * Address part is optional, and if omitted default add_curr will 1867 * be used instead. 1868 * 1869 * returns: 1870 * 1 if spec is a valid subimage string, 1871 * addr and image_name are set accordingly 1872 * 0 otherwise 1873 */ 1874 int fit_parse_subimage(const char *spec, ulong addr_curr, 1875 ulong *addr, const char **image_name) 1876 { 1877 return fit_parse_spec(spec, ':', addr_curr, addr, image_name); 1878 } 1879 #endif /* !USE_HOSTCC */ 1880 1881 static void fit_get_debug(const void *fit, int noffset, 1882 char *prop_name, int err) 1883 { 1884 debug("Can't get '%s' property from FIT 0x%08lx, " 1885 "node: offset %d, name %s (%s)\n", 1886 prop_name, (ulong)fit, noffset, 1887 fit_get_name(fit, noffset, NULL), 1888 fdt_strerror(err)); 1889 } 1890 1891 /** 1892 * fit_print_contents - prints out the contents of the FIT format image 1893 * @fit: pointer to the FIT format image header 1894 * @p: pointer to prefix string 1895 * 1896 * fit_print_contents() formats a multi line FIT image contents description. 1897 * The routine prints out FIT image properties (root node level) follwed by 1898 * the details of each component image. 1899 * 1900 * returns: 1901 * no returned results 1902 */ 1903 void fit_print_contents(const void *fit) 1904 { 1905 char *desc; 1906 char *uname; 1907 int images_noffset; 1908 int confs_noffset; 1909 int noffset; 1910 int ndepth; 1911 int count = 0; 1912 int ret; 1913 const char *p; 1914 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 1915 time_t timestamp; 1916 #endif 1917 1918 #ifdef USE_HOSTCC 1919 p = ""; 1920 #else 1921 p = " "; 1922 #endif 1923 1924 /* Root node properties */ 1925 ret = fit_get_desc(fit, 0, &desc); 1926 printf("%sFIT description: ", p); 1927 if (ret) 1928 printf("unavailable\n"); 1929 else 1930 printf("%s\n", desc); 1931 1932 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 1933 ret = fit_get_timestamp(fit, 0, ×tamp); 1934 printf("%sCreated: ", p); 1935 if (ret) 1936 printf("unavailable\n"); 1937 else 1938 genimg_print_time(timestamp); 1939 #endif 1940 1941 /* Find images parent node offset */ 1942 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 1943 if (images_noffset < 0) { 1944 printf("Can't find images parent node '%s' (%s)\n", 1945 FIT_IMAGES_PATH, fdt_strerror(images_noffset)); 1946 return; 1947 } 1948 1949 /* Process its subnodes, print out component images details */ 1950 for (ndepth = 0, count = 0, 1951 noffset = fdt_next_node(fit, images_noffset, &ndepth); 1952 (noffset >= 0) && (ndepth > 0); 1953 noffset = fdt_next_node(fit, noffset, &ndepth)) { 1954 if (ndepth == 1) { 1955 /* 1956 * Direct child node of the images parent node, 1957 * i.e. component image node. 1958 */ 1959 printf("%s Image %u (%s)\n", p, count++, 1960 fit_get_name(fit, noffset, NULL)); 1961 1962 fit_image_print(fit, noffset, p); 1963 } 1964 } 1965 1966 /* Find configurations parent node offset */ 1967 confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH); 1968 if (confs_noffset < 0) { 1969 debug("Can't get configurations parent node '%s' (%s)\n", 1970 FIT_CONFS_PATH, fdt_strerror(confs_noffset)); 1971 return; 1972 } 1973 1974 /* get default configuration unit name from default property */ 1975 uname = (char *)fdt_getprop(fit, noffset, FIT_DEFAULT_PROP, NULL); 1976 if (uname) 1977 printf("%s Default Configuration: '%s'\n", p, uname); 1978 1979 /* Process its subnodes, print out configurations details */ 1980 for (ndepth = 0, count = 0, 1981 noffset = fdt_next_node(fit, confs_noffset, &ndepth); 1982 (noffset >= 0) && (ndepth > 0); 1983 noffset = fdt_next_node(fit, noffset, &ndepth)) { 1984 if (ndepth == 1) { 1985 /* 1986 * Direct child node of the configurations parent node, 1987 * i.e. configuration node. 1988 */ 1989 printf("%s Configuration %u (%s)\n", p, count++, 1990 fit_get_name(fit, noffset, NULL)); 1991 1992 fit_conf_print(fit, noffset, p); 1993 } 1994 } 1995 } 1996 1997 /** 1998 * fit_image_print - prints out the FIT component image details 1999 * @fit: pointer to the FIT format image header 2000 * @image_noffset: offset of the component image node 2001 * @p: pointer to prefix string 2002 * 2003 * fit_image_print() lists all mandatory properies for the processed component 2004 * image. If present, hash nodes are printed out as well. Load 2005 * address for images of type firmware is also printed out. Since the load 2006 * address is not mandatory for firmware images, it will be output as 2007 * "unavailable" when not present. 2008 * 2009 * returns: 2010 * no returned results 2011 */ 2012 void fit_image_print(const void *fit, int image_noffset, const char *p) 2013 { 2014 char *desc; 2015 uint8_t type, arch, os, comp; 2016 size_t size; 2017 ulong load, entry; 2018 const void *data; 2019 int noffset; 2020 int ndepth; 2021 int ret; 2022 2023 /* Mandatory properties */ 2024 ret = fit_get_desc(fit, image_noffset, &desc); 2025 printf("%s Description: ", p); 2026 if (ret) 2027 printf("unavailable\n"); 2028 else 2029 printf("%s\n", desc); 2030 2031 fit_image_get_type(fit, image_noffset, &type); 2032 printf("%s Type: %s\n", p, genimg_get_type_name(type)); 2033 2034 fit_image_get_comp(fit, image_noffset, &comp); 2035 printf("%s Compression: %s\n", p, genimg_get_comp_name(comp)); 2036 2037 ret = fit_image_get_data(fit, image_noffset, &data, &size); 2038 2039 #ifndef USE_HOSTCC 2040 printf("%s Data Start: ", p); 2041 if (ret) 2042 printf("unavailable\n"); 2043 else 2044 printf("0x%08lx\n", (ulong)data); 2045 #endif 2046 2047 printf("%s Data Size: ", p); 2048 if (ret) 2049 printf("unavailable\n"); 2050 else 2051 genimg_print_size(size); 2052 2053 /* Remaining, type dependent properties */ 2054 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) || 2055 (type == IH_TYPE_RAMDISK) || (type == IH_TYPE_FIRMWARE) || 2056 (type == IH_TYPE_FLATDT)) { 2057 fit_image_get_arch(fit, image_noffset, &arch); 2058 printf("%s Architecture: %s\n", p, genimg_get_arch_name(arch)); 2059 } 2060 2061 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_RAMDISK)) { 2062 fit_image_get_os(fit, image_noffset, &os); 2063 printf("%s OS: %s\n", p, genimg_get_os_name(os)); 2064 } 2065 2066 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) || 2067 (type == IH_TYPE_FIRMWARE) || (type == IH_TYPE_RAMDISK)) { 2068 ret = fit_image_get_load(fit, image_noffset, &load); 2069 printf("%s Load Address: ", p); 2070 if (ret) 2071 printf("unavailable\n"); 2072 else 2073 printf("0x%08lx\n", load); 2074 } 2075 2076 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) || 2077 (type == IH_TYPE_RAMDISK)) { 2078 fit_image_get_entry(fit, image_noffset, &entry); 2079 printf("%s Entry Point: ", p); 2080 if (ret) 2081 printf("unavailable\n"); 2082 else 2083 printf("0x%08lx\n", entry); 2084 } 2085 2086 /* Process all hash subnodes of the component image node */ 2087 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth); 2088 (noffset >= 0) && (ndepth > 0); 2089 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2090 if (ndepth == 1) { 2091 /* Direct child node of the component image node */ 2092 fit_image_print_hash(fit, noffset, p); 2093 } 2094 } 2095 } 2096 2097 /** 2098 * fit_image_print_hash - prints out the hash node details 2099 * @fit: pointer to the FIT format image header 2100 * @noffset: offset of the hash node 2101 * @p: pointer to prefix string 2102 * 2103 * fit_image_print_hash() lists properies for the processed hash node 2104 * 2105 * returns: 2106 * no returned results 2107 */ 2108 void fit_image_print_hash(const void *fit, int noffset, const char *p) 2109 { 2110 char *algo; 2111 uint8_t *value; 2112 int value_len; 2113 int i, ret; 2114 2115 /* 2116 * Check subnode name, must be equal to "hash". 2117 * Multiple hash nodes require unique unit node 2118 * names, e.g. hash@1, hash@2, etc. 2119 */ 2120 if (strncmp(fit_get_name(fit, noffset, NULL), 2121 FIT_HASH_NODENAME, 2122 strlen(FIT_HASH_NODENAME)) != 0) 2123 return; 2124 2125 debug("%s Hash node: '%s'\n", p, 2126 fit_get_name(fit, noffset, NULL)); 2127 2128 printf("%s Hash algo: ", p); 2129 if (fit_image_hash_get_algo(fit, noffset, &algo)) { 2130 printf("invalid/unsupported\n"); 2131 return; 2132 } 2133 printf("%s\n", algo); 2134 2135 ret = fit_image_hash_get_value(fit, noffset, &value, 2136 &value_len); 2137 printf("%s Hash value: ", p); 2138 if (ret) { 2139 printf("unavailable\n"); 2140 } else { 2141 for (i = 0; i < value_len; i++) 2142 printf("%02x", value[i]); 2143 printf("\n"); 2144 } 2145 2146 debug("%s Hash len: %d\n", p, value_len); 2147 } 2148 2149 /** 2150 * fit_get_desc - get node description property 2151 * @fit: pointer to the FIT format image header 2152 * @noffset: node offset 2153 * @desc: double pointer to the char, will hold pointer to the descrption 2154 * 2155 * fit_get_desc() reads description property from a given node, if 2156 * description is found pointer to it is returened in third call argument. 2157 * 2158 * returns: 2159 * 0, on success 2160 * -1, on failure 2161 */ 2162 int fit_get_desc(const void *fit, int noffset, char **desc) 2163 { 2164 int len; 2165 2166 *desc = (char *)fdt_getprop(fit, noffset, FIT_DESC_PROP, &len); 2167 if (*desc == NULL) { 2168 fit_get_debug(fit, noffset, FIT_DESC_PROP, len); 2169 return -1; 2170 } 2171 2172 return 0; 2173 } 2174 2175 /** 2176 * fit_get_timestamp - get node timestamp property 2177 * @fit: pointer to the FIT format image header 2178 * @noffset: node offset 2179 * @timestamp: pointer to the time_t, will hold read timestamp 2180 * 2181 * fit_get_timestamp() reads timestamp poperty from given node, if timestamp 2182 * is found and has a correct size its value is retured in third call 2183 * argument. 2184 * 2185 * returns: 2186 * 0, on success 2187 * -1, on property read failure 2188 * -2, on wrong timestamp size 2189 */ 2190 int fit_get_timestamp(const void *fit, int noffset, time_t *timestamp) 2191 { 2192 int len; 2193 const void *data; 2194 2195 data = fdt_getprop(fit, noffset, FIT_TIMESTAMP_PROP, &len); 2196 if (data == NULL) { 2197 fit_get_debug(fit, noffset, FIT_TIMESTAMP_PROP, len); 2198 return -1; 2199 } 2200 if (len != sizeof(uint32_t)) { 2201 debug("FIT timestamp with incorrect size of (%u)\n", len); 2202 return -2; 2203 } 2204 2205 *timestamp = uimage_to_cpu(*((uint32_t *)data)); 2206 return 0; 2207 } 2208 2209 /** 2210 * fit_image_get_node - get node offset for component image of a given unit name 2211 * @fit: pointer to the FIT format image header 2212 * @image_uname: component image node unit name 2213 * 2214 * fit_image_get_node() finds a component image (withing the '/images' 2215 * node) of a provided unit name. If image is found its node offset is 2216 * returned to the caller. 2217 * 2218 * returns: 2219 * image node offset when found (>=0) 2220 * negative number on failure (FDT_ERR_* code) 2221 */ 2222 int fit_image_get_node(const void *fit, const char *image_uname) 2223 { 2224 int noffset, images_noffset; 2225 2226 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 2227 if (images_noffset < 0) { 2228 debug("Can't find images parent node '%s' (%s)\n", 2229 FIT_IMAGES_PATH, fdt_strerror(images_noffset)); 2230 return images_noffset; 2231 } 2232 2233 noffset = fdt_subnode_offset(fit, images_noffset, image_uname); 2234 if (noffset < 0) { 2235 debug("Can't get node offset for image unit name: '%s' (%s)\n", 2236 image_uname, fdt_strerror(noffset)); 2237 } 2238 2239 return noffset; 2240 } 2241 2242 /** 2243 * fit_image_get_os - get os id for a given component image node 2244 * @fit: pointer to the FIT format image header 2245 * @noffset: component image node offset 2246 * @os: pointer to the uint8_t, will hold os numeric id 2247 * 2248 * fit_image_get_os() finds os property in a given component image node. 2249 * If the property is found, its (string) value is translated to the numeric 2250 * id which is returned to the caller. 2251 * 2252 * returns: 2253 * 0, on success 2254 * -1, on failure 2255 */ 2256 int fit_image_get_os(const void *fit, int noffset, uint8_t *os) 2257 { 2258 int len; 2259 const void *data; 2260 2261 /* Get OS name from property data */ 2262 data = fdt_getprop(fit, noffset, FIT_OS_PROP, &len); 2263 if (data == NULL) { 2264 fit_get_debug(fit, noffset, FIT_OS_PROP, len); 2265 *os = -1; 2266 return -1; 2267 } 2268 2269 /* Translate OS name to id */ 2270 *os = genimg_get_os_id(data); 2271 return 0; 2272 } 2273 2274 /** 2275 * fit_image_get_arch - get arch id for a given component image node 2276 * @fit: pointer to the FIT format image header 2277 * @noffset: component image node offset 2278 * @arch: pointer to the uint8_t, will hold arch numeric id 2279 * 2280 * fit_image_get_arch() finds arch property in a given component image node. 2281 * If the property is found, its (string) value is translated to the numeric 2282 * id which is returned to the caller. 2283 * 2284 * returns: 2285 * 0, on success 2286 * -1, on failure 2287 */ 2288 int fit_image_get_arch(const void *fit, int noffset, uint8_t *arch) 2289 { 2290 int len; 2291 const void *data; 2292 2293 /* Get architecture name from property data */ 2294 data = fdt_getprop(fit, noffset, FIT_ARCH_PROP, &len); 2295 if (data == NULL) { 2296 fit_get_debug(fit, noffset, FIT_ARCH_PROP, len); 2297 *arch = -1; 2298 return -1; 2299 } 2300 2301 /* Translate architecture name to id */ 2302 *arch = genimg_get_arch_id(data); 2303 return 0; 2304 } 2305 2306 /** 2307 * fit_image_get_type - get type id for a given component image node 2308 * @fit: pointer to the FIT format image header 2309 * @noffset: component image node offset 2310 * @type: pointer to the uint8_t, will hold type numeric id 2311 * 2312 * fit_image_get_type() finds type property in a given component image node. 2313 * If the property is found, its (string) value is translated to the numeric 2314 * id which is returned to the caller. 2315 * 2316 * returns: 2317 * 0, on success 2318 * -1, on failure 2319 */ 2320 int fit_image_get_type(const void *fit, int noffset, uint8_t *type) 2321 { 2322 int len; 2323 const void *data; 2324 2325 /* Get image type name from property data */ 2326 data = fdt_getprop(fit, noffset, FIT_TYPE_PROP, &len); 2327 if (data == NULL) { 2328 fit_get_debug(fit, noffset, FIT_TYPE_PROP, len); 2329 *type = -1; 2330 return -1; 2331 } 2332 2333 /* Translate image type name to id */ 2334 *type = genimg_get_type_id(data); 2335 return 0; 2336 } 2337 2338 /** 2339 * fit_image_get_comp - get comp id for a given component image node 2340 * @fit: pointer to the FIT format image header 2341 * @noffset: component image node offset 2342 * @comp: pointer to the uint8_t, will hold comp numeric id 2343 * 2344 * fit_image_get_comp() finds comp property in a given component image node. 2345 * If the property is found, its (string) value is translated to the numeric 2346 * id which is returned to the caller. 2347 * 2348 * returns: 2349 * 0, on success 2350 * -1, on failure 2351 */ 2352 int fit_image_get_comp(const void *fit, int noffset, uint8_t *comp) 2353 { 2354 int len; 2355 const void *data; 2356 2357 /* Get compression name from property data */ 2358 data = fdt_getprop(fit, noffset, FIT_COMP_PROP, &len); 2359 if (data == NULL) { 2360 fit_get_debug(fit, noffset, FIT_COMP_PROP, len); 2361 *comp = -1; 2362 return -1; 2363 } 2364 2365 /* Translate compression name to id */ 2366 *comp = genimg_get_comp_id(data); 2367 return 0; 2368 } 2369 2370 /** 2371 * fit_image_get_load - get load address property for a given component image node 2372 * @fit: pointer to the FIT format image header 2373 * @noffset: component image node offset 2374 * @load: pointer to the uint32_t, will hold load address 2375 * 2376 * fit_image_get_load() finds load address property in a given component image node. 2377 * If the property is found, its value is returned to the caller. 2378 * 2379 * returns: 2380 * 0, on success 2381 * -1, on failure 2382 */ 2383 int fit_image_get_load(const void *fit, int noffset, ulong *load) 2384 { 2385 int len; 2386 const uint32_t *data; 2387 2388 data = fdt_getprop(fit, noffset, FIT_LOAD_PROP, &len); 2389 if (data == NULL) { 2390 fit_get_debug(fit, noffset, FIT_LOAD_PROP, len); 2391 return -1; 2392 } 2393 2394 *load = uimage_to_cpu(*data); 2395 return 0; 2396 } 2397 2398 /** 2399 * fit_image_get_entry - get entry point address property for a given component image node 2400 * @fit: pointer to the FIT format image header 2401 * @noffset: component image node offset 2402 * @entry: pointer to the uint32_t, will hold entry point address 2403 * 2404 * fit_image_get_entry() finds entry point address property in a given component image node. 2405 * If the property is found, its value is returned to the caller. 2406 * 2407 * returns: 2408 * 0, on success 2409 * -1, on failure 2410 */ 2411 int fit_image_get_entry(const void *fit, int noffset, ulong *entry) 2412 { 2413 int len; 2414 const uint32_t *data; 2415 2416 data = fdt_getprop(fit, noffset, FIT_ENTRY_PROP, &len); 2417 if (data == NULL) { 2418 fit_get_debug(fit, noffset, FIT_ENTRY_PROP, len); 2419 return -1; 2420 } 2421 2422 *entry = uimage_to_cpu(*data); 2423 return 0; 2424 } 2425 2426 /** 2427 * fit_image_get_data - get data property and its size for a given component image node 2428 * @fit: pointer to the FIT format image header 2429 * @noffset: component image node offset 2430 * @data: double pointer to void, will hold data property's data address 2431 * @size: pointer to size_t, will hold data property's data size 2432 * 2433 * fit_image_get_data() finds data property in a given component image node. 2434 * If the property is found its data start address and size are returned to 2435 * the caller. 2436 * 2437 * returns: 2438 * 0, on success 2439 * -1, on failure 2440 */ 2441 int fit_image_get_data(const void *fit, int noffset, 2442 const void **data, size_t *size) 2443 { 2444 int len; 2445 2446 *data = fdt_getprop(fit, noffset, FIT_DATA_PROP, &len); 2447 if (*data == NULL) { 2448 fit_get_debug(fit, noffset, FIT_DATA_PROP, len); 2449 *size = 0; 2450 return -1; 2451 } 2452 2453 *size = len; 2454 return 0; 2455 } 2456 2457 /** 2458 * fit_image_hash_get_algo - get hash algorithm name 2459 * @fit: pointer to the FIT format image header 2460 * @noffset: hash node offset 2461 * @algo: double pointer to char, will hold pointer to the algorithm name 2462 * 2463 * fit_image_hash_get_algo() finds hash algorithm property in a given hash node. 2464 * If the property is found its data start address is returned to the caller. 2465 * 2466 * returns: 2467 * 0, on success 2468 * -1, on failure 2469 */ 2470 int fit_image_hash_get_algo(const void *fit, int noffset, char **algo) 2471 { 2472 int len; 2473 2474 *algo = (char *)fdt_getprop(fit, noffset, FIT_ALGO_PROP, &len); 2475 if (*algo == NULL) { 2476 fit_get_debug(fit, noffset, FIT_ALGO_PROP, len); 2477 return -1; 2478 } 2479 2480 return 0; 2481 } 2482 2483 /** 2484 * fit_image_hash_get_value - get hash value and length 2485 * @fit: pointer to the FIT format image header 2486 * @noffset: hash node offset 2487 * @value: double pointer to uint8_t, will hold address of a hash value data 2488 * @value_len: pointer to an int, will hold hash data length 2489 * 2490 * fit_image_hash_get_value() finds hash value property in a given hash node. 2491 * If the property is found its data start address and size are returned to 2492 * the caller. 2493 * 2494 * returns: 2495 * 0, on success 2496 * -1, on failure 2497 */ 2498 int fit_image_hash_get_value(const void *fit, int noffset, uint8_t **value, 2499 int *value_len) 2500 { 2501 int len; 2502 2503 *value = (uint8_t *)fdt_getprop(fit, noffset, FIT_VALUE_PROP, &len); 2504 if (*value == NULL) { 2505 fit_get_debug(fit, noffset, FIT_VALUE_PROP, len); 2506 *value_len = 0; 2507 return -1; 2508 } 2509 2510 *value_len = len; 2511 return 0; 2512 } 2513 2514 #ifndef USE_HOSTCC 2515 /** 2516 * fit_image_hash_get_ignore - get hash ignore flag 2517 * @fit: pointer to the FIT format image header 2518 * @noffset: hash node offset 2519 * @ignore: pointer to an int, will hold hash ignore flag 2520 * 2521 * fit_image_hash_get_ignore() finds hash ignore property in a given hash node. 2522 * If the property is found and non-zero, the hash algorithm is not verified by 2523 * u-boot automatically. 2524 * 2525 * returns: 2526 * 0, on ignore not found 2527 * value, on ignore found 2528 */ 2529 int fit_image_hash_get_ignore(const void *fit, int noffset, int *ignore) 2530 { 2531 int len; 2532 int *value; 2533 2534 value = (int *)fdt_getprop(fit, noffset, FIT_IGNORE_PROP, &len); 2535 if (value == NULL || len != sizeof(int)) 2536 *ignore = 0; 2537 else 2538 *ignore = *value; 2539 2540 return 0; 2541 } 2542 #endif 2543 2544 /** 2545 * fit_set_timestamp - set node timestamp property 2546 * @fit: pointer to the FIT format image header 2547 * @noffset: node offset 2548 * @timestamp: timestamp value to be set 2549 * 2550 * fit_set_timestamp() attempts to set timestamp property in the requested 2551 * node and returns operation status to the caller. 2552 * 2553 * returns: 2554 * 0, on success 2555 * -1, on property read failure 2556 */ 2557 int fit_set_timestamp(void *fit, int noffset, time_t timestamp) 2558 { 2559 uint32_t t; 2560 int ret; 2561 2562 t = cpu_to_uimage(timestamp); 2563 ret = fdt_setprop(fit, noffset, FIT_TIMESTAMP_PROP, &t, 2564 sizeof(uint32_t)); 2565 if (ret) { 2566 printf("Can't set '%s' property for '%s' node (%s)\n", 2567 FIT_TIMESTAMP_PROP, fit_get_name(fit, noffset, NULL), 2568 fdt_strerror(ret)); 2569 return -1; 2570 } 2571 2572 return 0; 2573 } 2574 2575 /** 2576 * calculate_hash - calculate and return hash for provided input data 2577 * @data: pointer to the input data 2578 * @data_len: data length 2579 * @algo: requested hash algorithm 2580 * @value: pointer to the char, will hold hash value data (caller must 2581 * allocate enough free space) 2582 * value_len: length of the calculated hash 2583 * 2584 * calculate_hash() computes input data hash according to the requested algorithm. 2585 * Resulting hash value is placed in caller provided 'value' buffer, length 2586 * of the calculated hash is returned via value_len pointer argument. 2587 * 2588 * returns: 2589 * 0, on success 2590 * -1, when algo is unsupported 2591 */ 2592 static int calculate_hash(const void *data, int data_len, const char *algo, 2593 uint8_t *value, int *value_len) 2594 { 2595 if (strcmp(algo, "crc32") == 0) { 2596 *((uint32_t *)value) = crc32_wd(0, data, data_len, 2597 CHUNKSZ_CRC32); 2598 *((uint32_t *)value) = cpu_to_uimage(*((uint32_t *)value)); 2599 *value_len = 4; 2600 } else if (strcmp(algo, "sha1") == 0) { 2601 sha1_csum_wd((unsigned char *) data, data_len, 2602 (unsigned char *) value, CHUNKSZ_SHA1); 2603 *value_len = 20; 2604 } else if (strcmp(algo, "md5") == 0) { 2605 md5_wd((unsigned char *)data, data_len, value, CHUNKSZ_MD5); 2606 *value_len = 16; 2607 } else { 2608 debug("Unsupported hash alogrithm\n"); 2609 return -1; 2610 } 2611 return 0; 2612 } 2613 2614 #ifdef USE_HOSTCC 2615 /** 2616 * fit_set_hashes - process FIT component image nodes and calculate hashes 2617 * @fit: pointer to the FIT format image header 2618 * 2619 * fit_set_hashes() adds hash values for all component images in the FIT blob. 2620 * Hashes are calculated for all component images which have hash subnodes 2621 * with algorithm property set to one of the supported hash algorithms. 2622 * 2623 * returns 2624 * 0, on success 2625 * libfdt error code, on failure 2626 */ 2627 int fit_set_hashes(void *fit) 2628 { 2629 int images_noffset; 2630 int noffset; 2631 int ndepth; 2632 int ret; 2633 2634 /* Find images parent node offset */ 2635 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 2636 if (images_noffset < 0) { 2637 printf("Can't find images parent node '%s' (%s)\n", 2638 FIT_IMAGES_PATH, fdt_strerror(images_noffset)); 2639 return images_noffset; 2640 } 2641 2642 /* Process its subnodes, print out component images details */ 2643 for (ndepth = 0, noffset = fdt_next_node(fit, images_noffset, &ndepth); 2644 (noffset >= 0) && (ndepth > 0); 2645 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2646 if (ndepth == 1) { 2647 /* 2648 * Direct child node of the images parent node, 2649 * i.e. component image node. 2650 */ 2651 ret = fit_image_set_hashes(fit, noffset); 2652 if (ret) 2653 return ret; 2654 } 2655 } 2656 2657 return 0; 2658 } 2659 2660 /** 2661 * fit_image_set_hashes - calculate/set hashes for given component image node 2662 * @fit: pointer to the FIT format image header 2663 * @image_noffset: requested component image node 2664 * 2665 * fit_image_set_hashes() adds hash values for an component image node. All 2666 * existing hash subnodes are checked, if algorithm property is set to one of 2667 * the supported hash algorithms, hash value is computed and corresponding 2668 * hash node property is set, for example: 2669 * 2670 * Input component image node structure: 2671 * 2672 * o image@1 (at image_noffset) 2673 * | - data = [binary data] 2674 * o hash@1 2675 * |- algo = "sha1" 2676 * 2677 * Output component image node structure: 2678 * 2679 * o image@1 (at image_noffset) 2680 * | - data = [binary data] 2681 * o hash@1 2682 * |- algo = "sha1" 2683 * |- value = sha1(data) 2684 * 2685 * returns: 2686 * 0 on sucess 2687 * <0 on failure 2688 */ 2689 int fit_image_set_hashes(void *fit, int image_noffset) 2690 { 2691 const void *data; 2692 size_t size; 2693 char *algo; 2694 uint8_t value[FIT_MAX_HASH_LEN]; 2695 int value_len; 2696 int noffset; 2697 int ndepth; 2698 2699 /* Get image data and data length */ 2700 if (fit_image_get_data(fit, image_noffset, &data, &size)) { 2701 printf("Can't get image data/size\n"); 2702 return -1; 2703 } 2704 2705 /* Process all hash subnodes of the component image node */ 2706 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth); 2707 (noffset >= 0) && (ndepth > 0); 2708 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2709 if (ndepth == 1) { 2710 /* Direct child node of the component image node */ 2711 2712 /* 2713 * Check subnode name, must be equal to "hash". 2714 * Multiple hash nodes require unique unit node 2715 * names, e.g. hash@1, hash@2, etc. 2716 */ 2717 if (strncmp(fit_get_name(fit, noffset, NULL), 2718 FIT_HASH_NODENAME, 2719 strlen(FIT_HASH_NODENAME)) != 0) { 2720 /* Not a hash subnode, skip it */ 2721 continue; 2722 } 2723 2724 if (fit_image_hash_get_algo(fit, noffset, &algo)) { 2725 printf("Can't get hash algo property for " 2726 "'%s' hash node in '%s' image node\n", 2727 fit_get_name(fit, noffset, NULL), 2728 fit_get_name(fit, image_noffset, NULL)); 2729 return -1; 2730 } 2731 2732 if (calculate_hash(data, size, algo, value, 2733 &value_len)) { 2734 printf("Unsupported hash algorithm (%s) for " 2735 "'%s' hash node in '%s' image node\n", 2736 algo, fit_get_name(fit, noffset, NULL), 2737 fit_get_name(fit, image_noffset, 2738 NULL)); 2739 return -1; 2740 } 2741 2742 if (fit_image_hash_set_value(fit, noffset, value, 2743 value_len)) { 2744 printf("Can't set hash value for " 2745 "'%s' hash node in '%s' image node\n", 2746 fit_get_name(fit, noffset, NULL), 2747 fit_get_name(fit, image_noffset, NULL)); 2748 return -1; 2749 } 2750 } 2751 } 2752 2753 return 0; 2754 } 2755 2756 /** 2757 * fit_image_hash_set_value - set hash value in requested has node 2758 * @fit: pointer to the FIT format image header 2759 * @noffset: hash node offset 2760 * @value: hash value to be set 2761 * @value_len: hash value length 2762 * 2763 * fit_image_hash_set_value() attempts to set hash value in a node at offset 2764 * given and returns operation status to the caller. 2765 * 2766 * returns 2767 * 0, on success 2768 * -1, on failure 2769 */ 2770 int fit_image_hash_set_value(void *fit, int noffset, uint8_t *value, 2771 int value_len) 2772 { 2773 int ret; 2774 2775 ret = fdt_setprop(fit, noffset, FIT_VALUE_PROP, value, value_len); 2776 if (ret) { 2777 printf("Can't set hash '%s' property for '%s' node(%s)\n", 2778 FIT_VALUE_PROP, fit_get_name(fit, noffset, NULL), 2779 fdt_strerror(ret)); 2780 return -1; 2781 } 2782 2783 return 0; 2784 } 2785 #endif /* USE_HOSTCC */ 2786 2787 /** 2788 * fit_image_check_hashes - verify data intergity 2789 * @fit: pointer to the FIT format image header 2790 * @image_noffset: component image node offset 2791 * 2792 * fit_image_check_hashes() goes over component image hash nodes, 2793 * re-calculates each data hash and compares with the value stored in hash 2794 * node. 2795 * 2796 * returns: 2797 * 1, if all hashes are valid 2798 * 0, otherwise (or on error) 2799 */ 2800 int fit_image_check_hashes(const void *fit, int image_noffset) 2801 { 2802 const void *data; 2803 size_t size; 2804 char *algo; 2805 uint8_t *fit_value; 2806 int fit_value_len; 2807 #ifndef USE_HOSTCC 2808 int ignore; 2809 #endif 2810 uint8_t value[FIT_MAX_HASH_LEN]; 2811 int value_len; 2812 int noffset; 2813 int ndepth; 2814 char *err_msg = ""; 2815 2816 /* Get image data and data length */ 2817 if (fit_image_get_data(fit, image_noffset, &data, &size)) { 2818 printf("Can't get image data/size\n"); 2819 return 0; 2820 } 2821 2822 /* Process all hash subnodes of the component image node */ 2823 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth); 2824 (noffset >= 0) && (ndepth > 0); 2825 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2826 if (ndepth == 1) { 2827 /* Direct child node of the component image node */ 2828 2829 /* 2830 * Check subnode name, must be equal to "hash". 2831 * Multiple hash nodes require unique unit node 2832 * names, e.g. hash@1, hash@2, etc. 2833 */ 2834 if (strncmp(fit_get_name(fit, noffset, NULL), 2835 FIT_HASH_NODENAME, 2836 strlen(FIT_HASH_NODENAME)) != 0) 2837 continue; 2838 2839 if (fit_image_hash_get_algo(fit, noffset, &algo)) { 2840 err_msg = " error!\nCan't get hash algo " 2841 "property"; 2842 goto error; 2843 } 2844 printf("%s", algo); 2845 2846 #ifndef USE_HOSTCC 2847 fit_image_hash_get_ignore(fit, noffset, &ignore); 2848 if (ignore) { 2849 printf("-skipped "); 2850 continue; 2851 } 2852 #endif 2853 2854 if (fit_image_hash_get_value(fit, noffset, &fit_value, 2855 &fit_value_len)) { 2856 err_msg = " error!\nCan't get hash value " 2857 "property"; 2858 goto error; 2859 } 2860 2861 if (calculate_hash(data, size, algo, value, 2862 &value_len)) { 2863 err_msg = " error!\n" 2864 "Unsupported hash algorithm"; 2865 goto error; 2866 } 2867 2868 if (value_len != fit_value_len) { 2869 err_msg = " error !\nBad hash value len"; 2870 goto error; 2871 } else if (memcmp(value, fit_value, value_len) != 0) { 2872 err_msg = " error!\nBad hash value"; 2873 goto error; 2874 } 2875 printf("+ "); 2876 } 2877 } 2878 2879 if (noffset == -FDT_ERR_TRUNCATED || noffset == -FDT_ERR_BADSTRUCTURE) { 2880 err_msg = " error!\nCorrupted or truncated tree"; 2881 goto error; 2882 } 2883 2884 return 1; 2885 2886 error: 2887 printf("%s for '%s' hash node in '%s' image node\n", 2888 err_msg, fit_get_name(fit, noffset, NULL), 2889 fit_get_name(fit, image_noffset, NULL)); 2890 return 0; 2891 } 2892 2893 /** 2894 * fit_all_image_check_hashes - verify data intergity for all images 2895 * @fit: pointer to the FIT format image header 2896 * 2897 * fit_all_image_check_hashes() goes over all images in the FIT and 2898 * for every images checks if all it's hashes are valid. 2899 * 2900 * returns: 2901 * 1, if all hashes of all images are valid 2902 * 0, otherwise (or on error) 2903 */ 2904 int fit_all_image_check_hashes(const void *fit) 2905 { 2906 int images_noffset; 2907 int noffset; 2908 int ndepth; 2909 int count; 2910 2911 /* Find images parent node offset */ 2912 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 2913 if (images_noffset < 0) { 2914 printf("Can't find images parent node '%s' (%s)\n", 2915 FIT_IMAGES_PATH, fdt_strerror(images_noffset)); 2916 return 0; 2917 } 2918 2919 /* Process all image subnodes, check hashes for each */ 2920 printf("## Checking hash(es) for FIT Image at %08lx ...\n", 2921 (ulong)fit); 2922 for (ndepth = 0, count = 0, 2923 noffset = fdt_next_node(fit, images_noffset, &ndepth); 2924 (noffset >= 0) && (ndepth > 0); 2925 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2926 if (ndepth == 1) { 2927 /* 2928 * Direct child node of the images parent node, 2929 * i.e. component image node. 2930 */ 2931 printf(" Hash(es) for Image %u (%s): ", count++, 2932 fit_get_name(fit, noffset, NULL)); 2933 2934 if (!fit_image_check_hashes(fit, noffset)) 2935 return 0; 2936 printf("\n"); 2937 } 2938 } 2939 return 1; 2940 } 2941 2942 /** 2943 * fit_image_check_os - check whether image node is of a given os type 2944 * @fit: pointer to the FIT format image header 2945 * @noffset: component image node offset 2946 * @os: requested image os 2947 * 2948 * fit_image_check_os() reads image os property and compares its numeric 2949 * id with the requested os. Comparison result is returned to the caller. 2950 * 2951 * returns: 2952 * 1 if image is of given os type 2953 * 0 otherwise (or on error) 2954 */ 2955 int fit_image_check_os(const void *fit, int noffset, uint8_t os) 2956 { 2957 uint8_t image_os; 2958 2959 if (fit_image_get_os(fit, noffset, &image_os)) 2960 return 0; 2961 return (os == image_os); 2962 } 2963 2964 /** 2965 * fit_image_check_arch - check whether image node is of a given arch 2966 * @fit: pointer to the FIT format image header 2967 * @noffset: component image node offset 2968 * @arch: requested imagearch 2969 * 2970 * fit_image_check_arch() reads image arch property and compares its numeric 2971 * id with the requested arch. Comparison result is returned to the caller. 2972 * 2973 * returns: 2974 * 1 if image is of given arch 2975 * 0 otherwise (or on error) 2976 */ 2977 int fit_image_check_arch(const void *fit, int noffset, uint8_t arch) 2978 { 2979 uint8_t image_arch; 2980 2981 if (fit_image_get_arch(fit, noffset, &image_arch)) 2982 return 0; 2983 return (arch == image_arch); 2984 } 2985 2986 /** 2987 * fit_image_check_type - check whether image node is of a given type 2988 * @fit: pointer to the FIT format image header 2989 * @noffset: component image node offset 2990 * @type: requested image type 2991 * 2992 * fit_image_check_type() reads image type property and compares its numeric 2993 * id with the requested type. Comparison result is returned to the caller. 2994 * 2995 * returns: 2996 * 1 if image is of given type 2997 * 0 otherwise (or on error) 2998 */ 2999 int fit_image_check_type(const void *fit, int noffset, uint8_t type) 3000 { 3001 uint8_t image_type; 3002 3003 if (fit_image_get_type(fit, noffset, &image_type)) 3004 return 0; 3005 return (type == image_type); 3006 } 3007 3008 /** 3009 * fit_image_check_comp - check whether image node uses given compression 3010 * @fit: pointer to the FIT format image header 3011 * @noffset: component image node offset 3012 * @comp: requested image compression type 3013 * 3014 * fit_image_check_comp() reads image compression property and compares its 3015 * numeric id with the requested compression type. Comparison result is 3016 * returned to the caller. 3017 * 3018 * returns: 3019 * 1 if image uses requested compression 3020 * 0 otherwise (or on error) 3021 */ 3022 int fit_image_check_comp(const void *fit, int noffset, uint8_t comp) 3023 { 3024 uint8_t image_comp; 3025 3026 if (fit_image_get_comp(fit, noffset, &image_comp)) 3027 return 0; 3028 return (comp == image_comp); 3029 } 3030 3031 /** 3032 * fit_check_format - sanity check FIT image format 3033 * @fit: pointer to the FIT format image header 3034 * 3035 * fit_check_format() runs a basic sanity FIT image verification. 3036 * Routine checks for mandatory properties, nodes, etc. 3037 * 3038 * returns: 3039 * 1, on success 3040 * 0, on failure 3041 */ 3042 int fit_check_format(const void *fit) 3043 { 3044 /* mandatory / node 'description' property */ 3045 if (fdt_getprop(fit, 0, FIT_DESC_PROP, NULL) == NULL) { 3046 debug("Wrong FIT format: no description\n"); 3047 return 0; 3048 } 3049 3050 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 3051 /* mandatory / node 'timestamp' property */ 3052 if (fdt_getprop(fit, 0, FIT_TIMESTAMP_PROP, NULL) == NULL) { 3053 debug("Wrong FIT format: no timestamp\n"); 3054 return 0; 3055 } 3056 #endif 3057 3058 /* mandatory subimages parent '/images' node */ 3059 if (fdt_path_offset(fit, FIT_IMAGES_PATH) < 0) { 3060 debug("Wrong FIT format: no images parent node\n"); 3061 return 0; 3062 } 3063 3064 return 1; 3065 } 3066 3067 3068 /** 3069 * fit_conf_find_compat 3070 * @fit: pointer to the FIT format image header 3071 * @fdt: pointer to the device tree to compare against 3072 * 3073 * fit_conf_find_compat() attempts to find the configuration whose fdt is the 3074 * most compatible with the passed in device tree. 3075 * 3076 * Example: 3077 * 3078 * / o image-tree 3079 * |-o images 3080 * | |-o fdt@1 3081 * | |-o fdt@2 3082 * | 3083 * |-o configurations 3084 * |-o config@1 3085 * | |-fdt = fdt@1 3086 * | 3087 * |-o config@2 3088 * |-fdt = fdt@2 3089 * 3090 * / o U-Boot fdt 3091 * |-compatible = "foo,bar", "bim,bam" 3092 * 3093 * / o kernel fdt1 3094 * |-compatible = "foo,bar", 3095 * 3096 * / o kernel fdt2 3097 * |-compatible = "bim,bam", "baz,biz" 3098 * 3099 * Configuration 1 would be picked because the first string in U-Boot's 3100 * compatible list, "foo,bar", matches a compatible string in the root of fdt1. 3101 * "bim,bam" in fdt2 matches the second string which isn't as good as fdt1. 3102 * 3103 * returns: 3104 * offset to the configuration to use if one was found 3105 * -1 otherwise 3106 */ 3107 int fit_conf_find_compat(const void *fit, const void *fdt) 3108 { 3109 int ndepth = 0; 3110 int noffset, confs_noffset, images_noffset; 3111 const void *fdt_compat; 3112 int fdt_compat_len; 3113 int best_match_offset = 0; 3114 int best_match_pos = 0; 3115 3116 confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH); 3117 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 3118 if (confs_noffset < 0 || images_noffset < 0) { 3119 debug("Can't find configurations or images nodes.\n"); 3120 return -1; 3121 } 3122 3123 fdt_compat = fdt_getprop(fdt, 0, "compatible", &fdt_compat_len); 3124 if (!fdt_compat) { 3125 debug("Fdt for comparison has no \"compatible\" property.\n"); 3126 return -1; 3127 } 3128 3129 /* 3130 * Loop over the configurations in the FIT image. 3131 */ 3132 for (noffset = fdt_next_node(fit, confs_noffset, &ndepth); 3133 (noffset >= 0) && (ndepth > 0); 3134 noffset = fdt_next_node(fit, noffset, &ndepth)) { 3135 const void *kfdt; 3136 const char *kfdt_name; 3137 int kfdt_noffset; 3138 const char *cur_fdt_compat; 3139 int len; 3140 size_t size; 3141 int i; 3142 3143 if (ndepth > 1) 3144 continue; 3145 3146 kfdt_name = fdt_getprop(fit, noffset, "fdt", &len); 3147 if (!kfdt_name) { 3148 debug("No fdt property found.\n"); 3149 continue; 3150 } 3151 kfdt_noffset = fdt_subnode_offset(fit, images_noffset, 3152 kfdt_name); 3153 if (kfdt_noffset < 0) { 3154 debug("No image node named \"%s\" found.\n", 3155 kfdt_name); 3156 continue; 3157 } 3158 /* 3159 * Get a pointer to this configuration's fdt. 3160 */ 3161 if (fit_image_get_data(fit, kfdt_noffset, &kfdt, &size)) { 3162 debug("Failed to get fdt \"%s\".\n", kfdt_name); 3163 continue; 3164 } 3165 3166 len = fdt_compat_len; 3167 cur_fdt_compat = fdt_compat; 3168 /* 3169 * Look for a match for each U-Boot compatibility string in 3170 * turn in this configuration's fdt. 3171 */ 3172 for (i = 0; len > 0 && 3173 (!best_match_offset || best_match_pos > i); i++) { 3174 int cur_len = strlen(cur_fdt_compat) + 1; 3175 3176 if (!fdt_node_check_compatible(kfdt, 0, 3177 cur_fdt_compat)) { 3178 best_match_offset = noffset; 3179 best_match_pos = i; 3180 break; 3181 } 3182 len -= cur_len; 3183 cur_fdt_compat += cur_len; 3184 } 3185 } 3186 if (!best_match_offset) { 3187 debug("No match found.\n"); 3188 return -1; 3189 } 3190 3191 return best_match_offset; 3192 } 3193 3194 /** 3195 * fit_conf_get_node - get node offset for configuration of a given unit name 3196 * @fit: pointer to the FIT format image header 3197 * @conf_uname: configuration node unit name 3198 * 3199 * fit_conf_get_node() finds a configuration (withing the '/configurations' 3200 * parant node) of a provided unit name. If configuration is found its node offset 3201 * is returned to the caller. 3202 * 3203 * When NULL is provided in second argument fit_conf_get_node() will search 3204 * for a default configuration node instead. Default configuration node unit name 3205 * is retrived from FIT_DEFAULT_PROP property of the '/configurations' node. 3206 * 3207 * returns: 3208 * configuration node offset when found (>=0) 3209 * negative number on failure (FDT_ERR_* code) 3210 */ 3211 int fit_conf_get_node(const void *fit, const char *conf_uname) 3212 { 3213 int noffset, confs_noffset; 3214 int len; 3215 3216 confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH); 3217 if (confs_noffset < 0) { 3218 debug("Can't find configurations parent node '%s' (%s)\n", 3219 FIT_CONFS_PATH, fdt_strerror(confs_noffset)); 3220 return confs_noffset; 3221 } 3222 3223 if (conf_uname == NULL) { 3224 /* get configuration unit name from the default property */ 3225 debug("No configuration specified, trying default...\n"); 3226 conf_uname = (char *)fdt_getprop(fit, confs_noffset, 3227 FIT_DEFAULT_PROP, &len); 3228 if (conf_uname == NULL) { 3229 fit_get_debug(fit, confs_noffset, FIT_DEFAULT_PROP, 3230 len); 3231 return len; 3232 } 3233 debug("Found default configuration: '%s'\n", conf_uname); 3234 } 3235 3236 noffset = fdt_subnode_offset(fit, confs_noffset, conf_uname); 3237 if (noffset < 0) { 3238 debug("Can't get node offset for configuration unit name: " 3239 "'%s' (%s)\n", 3240 conf_uname, fdt_strerror(noffset)); 3241 } 3242 3243 return noffset; 3244 } 3245 3246 static int __fit_conf_get_prop_node(const void *fit, int noffset, 3247 const char *prop_name) 3248 { 3249 char *uname; 3250 int len; 3251 3252 /* get kernel image unit name from configuration kernel property */ 3253 uname = (char *)fdt_getprop(fit, noffset, prop_name, &len); 3254 if (uname == NULL) 3255 return len; 3256 3257 return fit_image_get_node(fit, uname); 3258 } 3259 3260 /** 3261 * fit_conf_get_kernel_node - get kernel image node offset that corresponds to 3262 * a given configuration 3263 * @fit: pointer to the FIT format image header 3264 * @noffset: configuration node offset 3265 * 3266 * fit_conf_get_kernel_node() retrives kernel image node unit name from 3267 * configuration FIT_KERNEL_PROP property and translates it to the node 3268 * offset. 3269 * 3270 * returns: 3271 * image node offset when found (>=0) 3272 * negative number on failure (FDT_ERR_* code) 3273 */ 3274 int fit_conf_get_kernel_node(const void *fit, int noffset) 3275 { 3276 return __fit_conf_get_prop_node(fit, noffset, FIT_KERNEL_PROP); 3277 } 3278 3279 /** 3280 * fit_conf_get_ramdisk_node - get ramdisk image node offset that corresponds to 3281 * a given configuration 3282 * @fit: pointer to the FIT format image header 3283 * @noffset: configuration node offset 3284 * 3285 * fit_conf_get_ramdisk_node() retrives ramdisk image node unit name from 3286 * configuration FIT_KERNEL_PROP property and translates it to the node 3287 * offset. 3288 * 3289 * returns: 3290 * image node offset when found (>=0) 3291 * negative number on failure (FDT_ERR_* code) 3292 */ 3293 int fit_conf_get_ramdisk_node(const void *fit, int noffset) 3294 { 3295 return __fit_conf_get_prop_node(fit, noffset, FIT_RAMDISK_PROP); 3296 } 3297 3298 /** 3299 * fit_conf_get_fdt_node - get fdt image node offset that corresponds to 3300 * a given configuration 3301 * @fit: pointer to the FIT format image header 3302 * @noffset: configuration node offset 3303 * 3304 * fit_conf_get_fdt_node() retrives fdt image node unit name from 3305 * configuration FIT_KERNEL_PROP property and translates it to the node 3306 * offset. 3307 * 3308 * returns: 3309 * image node offset when found (>=0) 3310 * negative number on failure (FDT_ERR_* code) 3311 */ 3312 int fit_conf_get_fdt_node(const void *fit, int noffset) 3313 { 3314 return __fit_conf_get_prop_node(fit, noffset, FIT_FDT_PROP); 3315 } 3316 3317 /** 3318 * fit_conf_print - prints out the FIT configuration details 3319 * @fit: pointer to the FIT format image header 3320 * @noffset: offset of the configuration node 3321 * @p: pointer to prefix string 3322 * 3323 * fit_conf_print() lists all mandatory properies for the processed 3324 * configuration node. 3325 * 3326 * returns: 3327 * no returned results 3328 */ 3329 void fit_conf_print(const void *fit, int noffset, const char *p) 3330 { 3331 char *desc; 3332 char *uname; 3333 int ret; 3334 3335 /* Mandatory properties */ 3336 ret = fit_get_desc(fit, noffset, &desc); 3337 printf("%s Description: ", p); 3338 if (ret) 3339 printf("unavailable\n"); 3340 else 3341 printf("%s\n", desc); 3342 3343 uname = (char *)fdt_getprop(fit, noffset, FIT_KERNEL_PROP, NULL); 3344 printf("%s Kernel: ", p); 3345 if (uname == NULL) 3346 printf("unavailable\n"); 3347 else 3348 printf("%s\n", uname); 3349 3350 /* Optional properties */ 3351 uname = (char *)fdt_getprop(fit, noffset, FIT_RAMDISK_PROP, NULL); 3352 if (uname) 3353 printf("%s Init Ramdisk: %s\n", p, uname); 3354 3355 uname = (char *)fdt_getprop(fit, noffset, FIT_FDT_PROP, NULL); 3356 if (uname) 3357 printf("%s FDT: %s\n", p, uname); 3358 } 3359 3360 /** 3361 * fit_check_ramdisk - verify FIT format ramdisk subimage 3362 * @fit_hdr: pointer to the FIT ramdisk header 3363 * @rd_noffset: ramdisk subimage node offset within FIT image 3364 * @arch: requested ramdisk image architecture type 3365 * @verify: data CRC verification flag 3366 * 3367 * fit_check_ramdisk() verifies integrity of the ramdisk subimage and from 3368 * specified FIT image. 3369 * 3370 * returns: 3371 * 1, on success 3372 * 0, on failure 3373 */ 3374 #ifndef USE_HOSTCC 3375 static int fit_check_ramdisk(const void *fit, int rd_noffset, uint8_t arch, 3376 int verify) 3377 { 3378 fit_image_print(fit, rd_noffset, " "); 3379 3380 if (verify) { 3381 puts(" Verifying Hash Integrity ... "); 3382 if (!fit_image_check_hashes(fit, rd_noffset)) { 3383 puts("Bad Data Hash\n"); 3384 bootstage_error(BOOTSTAGE_ID_FIT_RD_HASH); 3385 return 0; 3386 } 3387 puts("OK\n"); 3388 } 3389 3390 bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK_ALL); 3391 if (!fit_image_check_os(fit, rd_noffset, IH_OS_LINUX) || 3392 !fit_image_check_arch(fit, rd_noffset, arch) || 3393 !fit_image_check_type(fit, rd_noffset, IH_TYPE_RAMDISK)) { 3394 printf("No Linux %s Ramdisk Image\n", 3395 genimg_get_arch_name(arch)); 3396 bootstage_error(BOOTSTAGE_ID_FIT_RD_CHECK_ALL); 3397 return 0; 3398 } 3399 3400 bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK_ALL_OK); 3401 return 1; 3402 } 3403 #endif /* USE_HOSTCC */ 3404 #endif /* CONFIG_FIT */ 3405