1 /* 2 * (C) Copyright 2008 Semihalf 3 * 4 * (C) Copyright 2000-2006 5 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 6 * 7 * SPDX-License-Identifier: GPL-2.0+ 8 */ 9 10 #ifndef USE_HOSTCC 11 #include <common.h> 12 #include <watchdog.h> 13 14 #ifdef CONFIG_SHOW_BOOT_PROGRESS 15 #include <status_led.h> 16 #endif 17 18 #include <rtc.h> 19 20 #include <environment.h> 21 #include <image.h> 22 #include <mapmem.h> 23 24 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT 25 #include <linux/libfdt.h> 26 #include <fdt_support.h> 27 #include <fpga.h> 28 #include <xilinx.h> 29 #endif 30 31 #include <u-boot/md5.h> 32 #include <u-boot/sha1.h> 33 #include <linux/errno.h> 34 #include <asm/io.h> 35 36 #ifdef CONFIG_CMD_BDI 37 extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); 38 #endif 39 40 DECLARE_GLOBAL_DATA_PTR; 41 42 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 43 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 44 int verify); 45 #endif 46 #else 47 #include "mkimage.h" 48 #include <u-boot/md5.h> 49 #include <time.h> 50 #include <image.h> 51 52 #ifndef __maybe_unused 53 # define __maybe_unused /* unimplemented */ 54 #endif 55 #endif /* !USE_HOSTCC*/ 56 57 #include <u-boot/crc.h> 58 59 #ifndef CONFIG_SYS_BARGSIZE 60 #define CONFIG_SYS_BARGSIZE 512 61 #endif 62 63 static const table_entry_t uimage_arch[] = { 64 { IH_ARCH_INVALID, "invalid", "Invalid ARCH", }, 65 { IH_ARCH_ALPHA, "alpha", "Alpha", }, 66 { IH_ARCH_ARM, "arm", "ARM", }, 67 { IH_ARCH_I386, "x86", "Intel x86", }, 68 { IH_ARCH_IA64, "ia64", "IA64", }, 69 { IH_ARCH_M68K, "m68k", "M68K", }, 70 { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", }, 71 { IH_ARCH_MIPS, "mips", "MIPS", }, 72 { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", }, 73 { IH_ARCH_NIOS2, "nios2", "NIOS II", }, 74 { IH_ARCH_PPC, "powerpc", "PowerPC", }, 75 { IH_ARCH_PPC, "ppc", "PowerPC", }, 76 { IH_ARCH_S390, "s390", "IBM S390", }, 77 { IH_ARCH_SH, "sh", "SuperH", }, 78 { IH_ARCH_SPARC, "sparc", "SPARC", }, 79 { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", }, 80 { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", }, 81 { IH_ARCH_AVR32, "avr32", "AVR32", }, 82 { IH_ARCH_NDS32, "nds32", "NDS32", }, 83 { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",}, 84 { IH_ARCH_SANDBOX, "sandbox", "Sandbox", }, 85 { IH_ARCH_ARM64, "arm64", "AArch64", }, 86 { IH_ARCH_ARC, "arc", "ARC", }, 87 { IH_ARCH_X86_64, "x86_64", "AMD x86_64", }, 88 { IH_ARCH_XTENSA, "xtensa", "Xtensa", }, 89 { -1, "", "", }, 90 }; 91 92 static const table_entry_t uimage_os[] = { 93 { IH_OS_INVALID, "invalid", "Invalid OS", }, 94 { IH_OS_ARM_TRUSTED_FIRMWARE, "arm-trusted-firmware", "ARM Trusted Firmware" }, 95 { IH_OS_LINUX, "linux", "Linux", }, 96 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC) 97 { IH_OS_LYNXOS, "lynxos", "LynxOS", }, 98 #endif 99 { IH_OS_NETBSD, "netbsd", "NetBSD", }, 100 { IH_OS_OSE, "ose", "Enea OSE", }, 101 { IH_OS_PLAN9, "plan9", "Plan 9", }, 102 { IH_OS_RTEMS, "rtems", "RTEMS", }, 103 { IH_OS_U_BOOT, "u-boot", "U-Boot", }, 104 { IH_OS_VXWORKS, "vxworks", "VxWorks", }, 105 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC) 106 { IH_OS_QNX, "qnx", "QNX", }, 107 #endif 108 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC) 109 { IH_OS_INTEGRITY,"integrity", "INTEGRITY", }, 110 #endif 111 #ifdef USE_HOSTCC 112 { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", }, 113 { IH_OS_DELL, "dell", "Dell", }, 114 { IH_OS_ESIX, "esix", "Esix", }, 115 { IH_OS_FREEBSD, "freebsd", "FreeBSD", }, 116 { IH_OS_IRIX, "irix", "Irix", }, 117 { IH_OS_NCR, "ncr", "NCR", }, 118 { IH_OS_OPENBSD, "openbsd", "OpenBSD", }, 119 { IH_OS_PSOS, "psos", "pSOS", }, 120 { IH_OS_SCO, "sco", "SCO", }, 121 { IH_OS_SOLARIS, "solaris", "Solaris", }, 122 { IH_OS_SVR4, "svr4", "SVR4", }, 123 #endif 124 #if defined(CONFIG_BOOTM_OPENRTOS) || defined(USE_HOSTCC) 125 { IH_OS_OPENRTOS, "openrtos", "OpenRTOS", }, 126 #endif 127 128 { -1, "", "", }, 129 }; 130 131 static const table_entry_t uimage_type[] = { 132 { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",}, 133 { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", }, 134 { IH_TYPE_FIRMWARE, "firmware", "Firmware", }, 135 { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", }, 136 { IH_TYPE_GPIMAGE, "gpimage", "TI Keystone SPL Image",}, 137 { IH_TYPE_KERNEL, "kernel", "Kernel Image", }, 138 { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", }, 139 { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",}, 140 { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",}, 141 { IH_TYPE_INVALID, "invalid", "Invalid Image", }, 142 { IH_TYPE_MULTI, "multi", "Multi-File Image", }, 143 { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",}, 144 { IH_TYPE_PBLIMAGE, "pblimage", "Freescale PBL Boot Image",}, 145 { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", }, 146 { IH_TYPE_SCRIPT, "script", "Script", }, 147 { IH_TYPE_SOCFPGAIMAGE, "socfpgaimage", "Altera SOCFPGA preloader",}, 148 { IH_TYPE_STANDALONE, "standalone", "Standalone Program", }, 149 { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",}, 150 { IH_TYPE_MXSIMAGE, "mxsimage", "Freescale MXS Boot Image",}, 151 { IH_TYPE_ATMELIMAGE, "atmelimage", "ATMEL ROM-Boot Image",}, 152 { IH_TYPE_X86_SETUP, "x86_setup", "x86 setup.bin", }, 153 { IH_TYPE_LPC32XXIMAGE, "lpc32xximage", "LPC32XX Boot Image", }, 154 { IH_TYPE_RKIMAGE, "rkimage", "Rockchip Boot Image" }, 155 { IH_TYPE_RKSD, "rksd", "Rockchip SD Boot Image" }, 156 { IH_TYPE_RKSPI, "rkspi", "Rockchip SPI Boot Image" }, 157 { IH_TYPE_VYBRIDIMAGE, "vybridimage", "Vybrid Boot Image", }, 158 { IH_TYPE_ZYNQIMAGE, "zynqimage", "Xilinx Zynq Boot Image" }, 159 { IH_TYPE_ZYNQMPIMAGE, "zynqmpimage", "Xilinx ZynqMP Boot Image" }, 160 { IH_TYPE_FPGA, "fpga", "FPGA Image" }, 161 { IH_TYPE_TEE, "tee", "Trusted Execution Environment Image",}, 162 { IH_TYPE_FIRMWARE_IVT, "firmware_ivt", "Firmware with HABv4 IVT" }, 163 { IH_TYPE_PMMC, "pmmc", "TI Power Management Micro-Controller Firmware",}, 164 { IH_TYPE_STM32IMAGE, "stm32image", "STMicroelectronics STM32 Image" }, 165 { -1, "", "", }, 166 }; 167 168 static const table_entry_t uimage_comp[] = { 169 { IH_COMP_NONE, "none", "uncompressed", }, 170 { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", }, 171 { IH_COMP_GZIP, "gzip", "gzip compressed", }, 172 { IH_COMP_LZMA, "lzma", "lzma compressed", }, 173 { IH_COMP_LZO, "lzo", "lzo compressed", }, 174 { IH_COMP_LZ4, "lz4", "lz4 compressed", }, 175 { -1, "", "", }, 176 }; 177 178 struct table_info { 179 const char *desc; 180 int count; 181 const table_entry_t *table; 182 }; 183 184 static const struct table_info table_info[IH_COUNT] = { 185 { "architecture", IH_ARCH_COUNT, uimage_arch }, 186 { "compression", IH_COMP_COUNT, uimage_comp }, 187 { "operating system", IH_OS_COUNT, uimage_os }, 188 { "image type", IH_TYPE_COUNT, uimage_type }, 189 }; 190 191 /*****************************************************************************/ 192 /* Legacy format routines */ 193 /*****************************************************************************/ 194 int image_check_hcrc(const image_header_t *hdr) 195 { 196 ulong hcrc; 197 ulong len = image_get_header_size(); 198 image_header_t header; 199 200 /* Copy header so we can blank CRC field for re-calculation */ 201 memmove(&header, (char *)hdr, image_get_header_size()); 202 image_set_hcrc(&header, 0); 203 204 hcrc = crc32(0, (unsigned char *)&header, len); 205 206 return (hcrc == image_get_hcrc(hdr)); 207 } 208 209 int image_check_dcrc(const image_header_t *hdr) 210 { 211 ulong data = image_get_data(hdr); 212 ulong len = image_get_data_size(hdr); 213 ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32); 214 215 return (dcrc == image_get_dcrc(hdr)); 216 } 217 218 /** 219 * image_multi_count - get component (sub-image) count 220 * @hdr: pointer to the header of the multi component image 221 * 222 * image_multi_count() returns number of components in a multi 223 * component image. 224 * 225 * Note: no checking of the image type is done, caller must pass 226 * a valid multi component image. 227 * 228 * returns: 229 * number of components 230 */ 231 ulong image_multi_count(const image_header_t *hdr) 232 { 233 ulong i, count = 0; 234 uint32_t *size; 235 236 /* get start of the image payload, which in case of multi 237 * component images that points to a table of component sizes */ 238 size = (uint32_t *)image_get_data(hdr); 239 240 /* count non empty slots */ 241 for (i = 0; size[i]; ++i) 242 count++; 243 244 return count; 245 } 246 247 /** 248 * image_multi_getimg - get component data address and size 249 * @hdr: pointer to the header of the multi component image 250 * @idx: index of the requested component 251 * @data: pointer to a ulong variable, will hold component data address 252 * @len: pointer to a ulong variable, will hold component size 253 * 254 * image_multi_getimg() returns size and data address for the requested 255 * component in a multi component image. 256 * 257 * Note: no checking of the image type is done, caller must pass 258 * a valid multi component image. 259 * 260 * returns: 261 * data address and size of the component, if idx is valid 262 * 0 in data and len, if idx is out of range 263 */ 264 void image_multi_getimg(const image_header_t *hdr, ulong idx, 265 ulong *data, ulong *len) 266 { 267 int i; 268 uint32_t *size; 269 ulong offset, count, img_data; 270 271 /* get number of component */ 272 count = image_multi_count(hdr); 273 274 /* get start of the image payload, which in case of multi 275 * component images that points to a table of component sizes */ 276 size = (uint32_t *)image_get_data(hdr); 277 278 /* get address of the proper component data start, which means 279 * skipping sizes table (add 1 for last, null entry) */ 280 img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t); 281 282 if (idx < count) { 283 *len = uimage_to_cpu(size[idx]); 284 offset = 0; 285 286 /* go over all indices preceding requested component idx */ 287 for (i = 0; i < idx; i++) { 288 /* add up i-th component size, rounding up to 4 bytes */ 289 offset += (uimage_to_cpu(size[i]) + 3) & ~3 ; 290 } 291 292 /* calculate idx-th component data address */ 293 *data = img_data + offset; 294 } else { 295 *len = 0; 296 *data = 0; 297 } 298 } 299 300 static void image_print_type(const image_header_t *hdr) 301 { 302 const char __maybe_unused *os, *arch, *type, *comp; 303 304 os = genimg_get_os_name(image_get_os(hdr)); 305 arch = genimg_get_arch_name(image_get_arch(hdr)); 306 type = genimg_get_type_name(image_get_type(hdr)); 307 comp = genimg_get_comp_name(image_get_comp(hdr)); 308 309 printf("%s %s %s (%s)\n", arch, os, type, comp); 310 } 311 312 /** 313 * image_print_contents - prints out the contents of the legacy format image 314 * @ptr: pointer to the legacy format image header 315 * @p: pointer to prefix string 316 * 317 * image_print_contents() formats a multi line legacy image contents description. 318 * The routine prints out all header fields followed by the size/offset data 319 * for MULTI/SCRIPT images. 320 * 321 * returns: 322 * no returned results 323 */ 324 void image_print_contents(const void *ptr) 325 { 326 const image_header_t *hdr = (const image_header_t *)ptr; 327 const char __maybe_unused *p; 328 329 p = IMAGE_INDENT_STRING; 330 printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr)); 331 if (IMAGE_ENABLE_TIMESTAMP) { 332 printf("%sCreated: ", p); 333 genimg_print_time((time_t)image_get_time(hdr)); 334 } 335 printf("%sImage Type: ", p); 336 image_print_type(hdr); 337 printf("%sData Size: ", p); 338 genimg_print_size(image_get_data_size(hdr)); 339 printf("%sLoad Address: %08x\n", p, image_get_load(hdr)); 340 printf("%sEntry Point: %08x\n", p, image_get_ep(hdr)); 341 342 if (image_check_type(hdr, IH_TYPE_MULTI) || 343 image_check_type(hdr, IH_TYPE_SCRIPT)) { 344 int i; 345 ulong data, len; 346 ulong count = image_multi_count(hdr); 347 348 printf("%sContents:\n", p); 349 for (i = 0; i < count; i++) { 350 image_multi_getimg(hdr, i, &data, &len); 351 352 printf("%s Image %d: ", p, i); 353 genimg_print_size(len); 354 355 if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) { 356 /* 357 * the user may need to know offsets 358 * if planning to do something with 359 * multiple files 360 */ 361 printf("%s Offset = 0x%08lx\n", p, data); 362 } 363 } 364 } else if (image_check_type(hdr, IH_TYPE_FIRMWARE_IVT)) { 365 printf("HAB Blocks: 0x%08x 0x0000 0x%08x\n", 366 image_get_load(hdr) - image_get_header_size(), 367 image_get_size(hdr) + image_get_header_size() 368 - 0x1FE0); 369 } 370 } 371 372 373 #ifndef USE_HOSTCC 374 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 375 /** 376 * image_get_ramdisk - get and verify ramdisk image 377 * @rd_addr: ramdisk image start address 378 * @arch: expected ramdisk architecture 379 * @verify: checksum verification flag 380 * 381 * image_get_ramdisk() returns a pointer to the verified ramdisk image 382 * header. Routine receives image start address and expected architecture 383 * flag. Verification done covers data and header integrity and os/type/arch 384 * fields checking. 385 * 386 * returns: 387 * pointer to a ramdisk image header, if image was found and valid 388 * otherwise, return NULL 389 */ 390 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 391 int verify) 392 { 393 const image_header_t *rd_hdr = (const image_header_t *)rd_addr; 394 395 if (!image_check_magic(rd_hdr)) { 396 puts("Bad Magic Number\n"); 397 bootstage_error(BOOTSTAGE_ID_RD_MAGIC); 398 return NULL; 399 } 400 401 if (!image_check_hcrc(rd_hdr)) { 402 puts("Bad Header Checksum\n"); 403 bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 404 return NULL; 405 } 406 407 bootstage_mark(BOOTSTAGE_ID_RD_MAGIC); 408 image_print_contents(rd_hdr); 409 410 if (verify) { 411 puts(" Verifying Checksum ... "); 412 if (!image_check_dcrc(rd_hdr)) { 413 puts("Bad Data CRC\n"); 414 bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM); 415 return NULL; 416 } 417 puts("OK\n"); 418 } 419 420 bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 421 422 if (!image_check_os(rd_hdr, IH_OS_LINUX) || 423 !image_check_arch(rd_hdr, arch) || 424 !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) { 425 printf("No Linux %s Ramdisk Image\n", 426 genimg_get_arch_name(arch)); 427 bootstage_error(BOOTSTAGE_ID_RAMDISK); 428 return NULL; 429 } 430 431 return rd_hdr; 432 } 433 #endif 434 #endif /* !USE_HOSTCC */ 435 436 /*****************************************************************************/ 437 /* Shared dual-format routines */ 438 /*****************************************************************************/ 439 #ifndef USE_HOSTCC 440 ulong load_addr = CONFIG_SYS_LOAD_ADDR; /* Default Load Address */ 441 ulong save_addr; /* Default Save Address */ 442 ulong save_size; /* Default Save Size (in bytes) */ 443 444 static int on_loadaddr(const char *name, const char *value, enum env_op op, 445 int flags) 446 { 447 switch (op) { 448 case env_op_create: 449 case env_op_overwrite: 450 load_addr = simple_strtoul(value, NULL, 16); 451 break; 452 default: 453 break; 454 } 455 456 return 0; 457 } 458 U_BOOT_ENV_CALLBACK(loadaddr, on_loadaddr); 459 460 ulong env_get_bootm_low(void) 461 { 462 char *s = env_get("bootm_low"); 463 if (s) { 464 ulong tmp = simple_strtoul(s, NULL, 16); 465 return tmp; 466 } 467 468 #if defined(CONFIG_SYS_SDRAM_BASE) 469 return CONFIG_SYS_SDRAM_BASE; 470 #elif defined(CONFIG_ARM) 471 return gd->bd->bi_dram[0].start; 472 #else 473 return 0; 474 #endif 475 } 476 477 phys_size_t env_get_bootm_size(void) 478 { 479 phys_size_t tmp, size; 480 phys_addr_t start; 481 char *s = env_get("bootm_size"); 482 if (s) { 483 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 484 return tmp; 485 } 486 487 #if defined(CONFIG_ARM) && defined(CONFIG_NR_DRAM_BANKS) 488 start = gd->bd->bi_dram[0].start; 489 size = gd->bd->bi_dram[0].size; 490 #else 491 start = gd->bd->bi_memstart; 492 size = gd->bd->bi_memsize; 493 #endif 494 495 s = env_get("bootm_low"); 496 if (s) 497 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 498 else 499 tmp = start; 500 501 return size - (tmp - start); 502 } 503 504 phys_size_t env_get_bootm_mapsize(void) 505 { 506 phys_size_t tmp; 507 char *s = env_get("bootm_mapsize"); 508 if (s) { 509 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 510 return tmp; 511 } 512 513 #if defined(CONFIG_SYS_BOOTMAPSZ) 514 return CONFIG_SYS_BOOTMAPSZ; 515 #else 516 return env_get_bootm_size(); 517 #endif 518 } 519 520 void memmove_wd(void *to, void *from, size_t len, ulong chunksz) 521 { 522 if (to == from) 523 return; 524 525 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 526 if (to > from) { 527 from += len; 528 to += len; 529 } 530 while (len > 0) { 531 size_t tail = (len > chunksz) ? chunksz : len; 532 WATCHDOG_RESET(); 533 if (to > from) { 534 to -= tail; 535 from -= tail; 536 } 537 memmove(to, from, tail); 538 if (to < from) { 539 to += tail; 540 from += tail; 541 } 542 len -= tail; 543 } 544 #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */ 545 memmove(to, from, len); 546 #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */ 547 } 548 #endif /* !USE_HOSTCC */ 549 550 void genimg_print_size(uint32_t size) 551 { 552 #ifndef USE_HOSTCC 553 printf("%d Bytes = ", size); 554 print_size(size, "\n"); 555 #else 556 printf("%d Bytes = %.2f KiB = %.2f MiB\n", 557 size, (double)size / 1.024e3, 558 (double)size / 1.048576e6); 559 #endif 560 } 561 562 #if IMAGE_ENABLE_TIMESTAMP 563 void genimg_print_time(time_t timestamp) 564 { 565 #ifndef USE_HOSTCC 566 struct rtc_time tm; 567 568 rtc_to_tm(timestamp, &tm); 569 printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n", 570 tm.tm_year, tm.tm_mon, tm.tm_mday, 571 tm.tm_hour, tm.tm_min, tm.tm_sec); 572 #else 573 printf("%s", ctime(×tamp)); 574 #endif 575 } 576 #endif 577 578 const table_entry_t *get_table_entry(const table_entry_t *table, int id) 579 { 580 for (; table->id >= 0; ++table) { 581 if (table->id == id) 582 return table; 583 } 584 return NULL; 585 } 586 587 static const char *unknown_msg(enum ih_category category) 588 { 589 static const char unknown_str[] = "Unknown "; 590 static char msg[30]; 591 592 strcpy(msg, unknown_str); 593 strncat(msg, table_info[category].desc, 594 sizeof(msg) - sizeof(unknown_str)); 595 596 return msg; 597 } 598 599 /** 600 * get_cat_table_entry_name - translate entry id to long name 601 * @category: category to look up (enum ih_category) 602 * @id: entry id to be translated 603 * 604 * This will scan the translation table trying to find the entry that matches 605 * the given id. 606 * 607 * @retur long entry name if translation succeeds; error string on failure 608 */ 609 const char *genimg_get_cat_name(enum ih_category category, uint id) 610 { 611 const table_entry_t *entry; 612 613 entry = get_table_entry(table_info[category].table, id); 614 if (!entry) 615 return unknown_msg(category); 616 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 617 return entry->lname; 618 #else 619 return entry->lname + gd->reloc_off; 620 #endif 621 } 622 623 /** 624 * get_cat_table_entry_short_name - translate entry id to short name 625 * @category: category to look up (enum ih_category) 626 * @id: entry id to be translated 627 * 628 * This will scan the translation table trying to find the entry that matches 629 * the given id. 630 * 631 * @retur short entry name if translation succeeds; error string on failure 632 */ 633 const char *genimg_get_cat_short_name(enum ih_category category, uint id) 634 { 635 const table_entry_t *entry; 636 637 entry = get_table_entry(table_info[category].table, id); 638 if (!entry) 639 return unknown_msg(category); 640 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 641 return entry->sname; 642 #else 643 return entry->sname + gd->reloc_off; 644 #endif 645 } 646 647 int genimg_get_cat_count(enum ih_category category) 648 { 649 return table_info[category].count; 650 } 651 652 const char *genimg_get_cat_desc(enum ih_category category) 653 { 654 return table_info[category].desc; 655 } 656 657 /** 658 * get_table_entry_name - translate entry id to long name 659 * @table: pointer to a translation table for entries of a specific type 660 * @msg: message to be returned when translation fails 661 * @id: entry id to be translated 662 * 663 * get_table_entry_name() will go over translation table trying to find 664 * entry that matches given id. If matching entry is found, its long 665 * name is returned to the caller. 666 * 667 * returns: 668 * long entry name if translation succeeds 669 * msg otherwise 670 */ 671 char *get_table_entry_name(const table_entry_t *table, char *msg, int id) 672 { 673 table = get_table_entry(table, id); 674 if (!table) 675 return msg; 676 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 677 return table->lname; 678 #else 679 return table->lname + gd->reloc_off; 680 #endif 681 } 682 683 const char *genimg_get_os_name(uint8_t os) 684 { 685 return (get_table_entry_name(uimage_os, "Unknown OS", os)); 686 } 687 688 const char *genimg_get_arch_name(uint8_t arch) 689 { 690 return (get_table_entry_name(uimage_arch, "Unknown Architecture", 691 arch)); 692 } 693 694 const char *genimg_get_type_name(uint8_t type) 695 { 696 return (get_table_entry_name(uimage_type, "Unknown Image", type)); 697 } 698 699 static const char *genimg_get_short_name(const table_entry_t *table, int val) 700 { 701 table = get_table_entry(table, val); 702 if (!table) 703 return "unknown"; 704 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 705 return table->sname; 706 #else 707 return table->sname + gd->reloc_off; 708 #endif 709 } 710 711 const char *genimg_get_type_short_name(uint8_t type) 712 { 713 return genimg_get_short_name(uimage_type, type); 714 } 715 716 const char *genimg_get_comp_name(uint8_t comp) 717 { 718 return (get_table_entry_name(uimage_comp, "Unknown Compression", 719 comp)); 720 } 721 722 const char *genimg_get_comp_short_name(uint8_t comp) 723 { 724 return genimg_get_short_name(uimage_comp, comp); 725 } 726 727 const char *genimg_get_os_short_name(uint8_t os) 728 { 729 return genimg_get_short_name(uimage_os, os); 730 } 731 732 const char *genimg_get_arch_short_name(uint8_t arch) 733 { 734 return genimg_get_short_name(uimage_arch, arch); 735 } 736 737 /** 738 * get_table_entry_id - translate short entry name to id 739 * @table: pointer to a translation table for entries of a specific type 740 * @table_name: to be used in case of error 741 * @name: entry short name to be translated 742 * 743 * get_table_entry_id() will go over translation table trying to find 744 * entry that matches given short name. If matching entry is found, 745 * its id returned to the caller. 746 * 747 * returns: 748 * entry id if translation succeeds 749 * -1 otherwise 750 */ 751 int get_table_entry_id(const table_entry_t *table, 752 const char *table_name, const char *name) 753 { 754 const table_entry_t *t; 755 756 for (t = table; t->id >= 0; ++t) { 757 #ifdef CONFIG_NEEDS_MANUAL_RELOC 758 if (t->sname && strcasecmp(t->sname + gd->reloc_off, name) == 0) 759 #else 760 if (t->sname && strcasecmp(t->sname, name) == 0) 761 #endif 762 return (t->id); 763 } 764 debug("Invalid %s Type: %s\n", table_name, name); 765 766 return -1; 767 } 768 769 int genimg_get_os_id(const char *name) 770 { 771 return (get_table_entry_id(uimage_os, "OS", name)); 772 } 773 774 int genimg_get_arch_id(const char *name) 775 { 776 return (get_table_entry_id(uimage_arch, "CPU", name)); 777 } 778 779 int genimg_get_type_id(const char *name) 780 { 781 return (get_table_entry_id(uimage_type, "Image", name)); 782 } 783 784 int genimg_get_comp_id(const char *name) 785 { 786 return (get_table_entry_id(uimage_comp, "Compression", name)); 787 } 788 789 #ifndef USE_HOSTCC 790 /** 791 * genimg_get_kernel_addr_fit - get the real kernel address and return 2 792 * FIT strings 793 * @img_addr: a string might contain real image address 794 * @fit_uname_config: double pointer to a char, will hold pointer to a 795 * configuration unit name 796 * @fit_uname_kernel: double pointer to a char, will hold pointer to a subimage 797 * name 798 * 799 * genimg_get_kernel_addr_fit get the real kernel start address from a string 800 * which is normally the first argv of bootm/bootz 801 * 802 * returns: 803 * kernel start address 804 */ 805 ulong genimg_get_kernel_addr_fit(char * const img_addr, 806 const char **fit_uname_config, 807 const char **fit_uname_kernel) 808 { 809 ulong kernel_addr; 810 811 /* find out kernel image address */ 812 if (!img_addr) { 813 kernel_addr = load_addr; 814 debug("* kernel: default image load address = 0x%08lx\n", 815 load_addr); 816 #if CONFIG_IS_ENABLED(FIT) 817 } else if (fit_parse_conf(img_addr, load_addr, &kernel_addr, 818 fit_uname_config)) { 819 debug("* kernel: config '%s' from image at 0x%08lx\n", 820 *fit_uname_config, kernel_addr); 821 } else if (fit_parse_subimage(img_addr, load_addr, &kernel_addr, 822 fit_uname_kernel)) { 823 debug("* kernel: subimage '%s' from image at 0x%08lx\n", 824 *fit_uname_kernel, kernel_addr); 825 #endif 826 } else { 827 kernel_addr = simple_strtoul(img_addr, NULL, 16); 828 debug("* kernel: cmdline image address = 0x%08lx\n", 829 kernel_addr); 830 } 831 832 return kernel_addr; 833 } 834 835 /** 836 * genimg_get_kernel_addr() is the simple version of 837 * genimg_get_kernel_addr_fit(). It ignores those return FIT strings 838 */ 839 ulong genimg_get_kernel_addr(char * const img_addr) 840 { 841 const char *fit_uname_config = NULL; 842 const char *fit_uname_kernel = NULL; 843 844 return genimg_get_kernel_addr_fit(img_addr, &fit_uname_config, 845 &fit_uname_kernel); 846 } 847 848 /** 849 * genimg_get_format - get image format type 850 * @img_addr: image start address 851 * 852 * genimg_get_format() checks whether provided address points to a valid 853 * legacy or FIT image. 854 * 855 * New uImage format and FDT blob are based on a libfdt. FDT blob 856 * may be passed directly or embedded in a FIT image. In both situations 857 * genimg_get_format() must be able to dectect libfdt header. 858 * 859 * returns: 860 * image format type or IMAGE_FORMAT_INVALID if no image is present 861 */ 862 int genimg_get_format(const void *img_addr) 863 { 864 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 865 const image_header_t *hdr; 866 867 hdr = (const image_header_t *)img_addr; 868 if (image_check_magic(hdr)) 869 return IMAGE_FORMAT_LEGACY; 870 #endif 871 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT 872 if (fdt_check_header(img_addr) == 0) 873 return IMAGE_FORMAT_FIT; 874 #endif 875 #ifdef CONFIG_ANDROID_BOOT_IMAGE 876 if (android_image_check_header(img_addr) == 0) 877 return IMAGE_FORMAT_ANDROID; 878 #endif 879 880 return IMAGE_FORMAT_INVALID; 881 } 882 883 /** 884 * fit_has_config - check if there is a valid FIT configuration 885 * @images: pointer to the bootm command headers structure 886 * 887 * fit_has_config() checks if there is a FIT configuration in use 888 * (if FTI support is present). 889 * 890 * returns: 891 * 0, no FIT support or no configuration found 892 * 1, configuration found 893 */ 894 int genimg_has_config(bootm_headers_t *images) 895 { 896 #if IMAGE_ENABLE_FIT 897 if (images->fit_uname_cfg) 898 return 1; 899 #endif 900 return 0; 901 } 902 903 /** 904 * boot_get_ramdisk - main ramdisk handling routine 905 * @argc: command argument count 906 * @argv: command argument list 907 * @images: pointer to the bootm images structure 908 * @arch: expected ramdisk architecture 909 * @rd_start: pointer to a ulong variable, will hold ramdisk start address 910 * @rd_end: pointer to a ulong variable, will hold ramdisk end 911 * 912 * boot_get_ramdisk() is responsible for finding a valid ramdisk image. 913 * Curently supported are the following ramdisk sources: 914 * - multicomponent kernel/ramdisk image, 915 * - commandline provided address of decicated ramdisk image. 916 * 917 * returns: 918 * 0, if ramdisk image was found and valid, or skiped 919 * rd_start and rd_end are set to ramdisk start/end addresses if 920 * ramdisk image is found and valid 921 * 922 * 1, if ramdisk image is found but corrupted, or invalid 923 * rd_start and rd_end are set to 0 if no ramdisk exists 924 */ 925 int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images, 926 uint8_t arch, ulong *rd_start, ulong *rd_end) 927 { 928 ulong rd_addr, rd_load; 929 ulong rd_data, rd_len; 930 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 931 const image_header_t *rd_hdr; 932 #endif 933 void *buf; 934 #ifdef CONFIG_SUPPORT_RAW_INITRD 935 char *end; 936 #endif 937 #if IMAGE_ENABLE_FIT 938 const char *fit_uname_config = images->fit_uname_cfg; 939 const char *fit_uname_ramdisk = NULL; 940 ulong default_addr; 941 int rd_noffset; 942 #endif 943 const char *select = NULL; 944 945 *rd_start = 0; 946 *rd_end = 0; 947 948 #ifdef CONFIG_ANDROID_BOOT_IMAGE 949 /* 950 * Look for an Android boot image. 951 */ 952 buf = map_sysmem(images->os.start, 0); 953 if (buf && genimg_get_format(buf) == IMAGE_FORMAT_ANDROID) 954 select = argv[0]; 955 #endif 956 957 if (argc >= 2) 958 select = argv[1]; 959 960 /* 961 * Look for a '-' which indicates to ignore the 962 * ramdisk argument 963 */ 964 if (select && strcmp(select, "-") == 0) { 965 debug("## Skipping init Ramdisk\n"); 966 rd_len = rd_data = 0; 967 } else if (select || genimg_has_config(images)) { 968 #if IMAGE_ENABLE_FIT 969 if (select) { 970 /* 971 * If the init ramdisk comes from the FIT image and 972 * the FIT image address is omitted in the command 973 * line argument, try to use os FIT image address or 974 * default load address. 975 */ 976 if (images->fit_uname_os) 977 default_addr = (ulong)images->fit_hdr_os; 978 else 979 default_addr = load_addr; 980 981 if (fit_parse_conf(select, default_addr, 982 &rd_addr, &fit_uname_config)) { 983 debug("* ramdisk: config '%s' from image at " 984 "0x%08lx\n", 985 fit_uname_config, rd_addr); 986 } else if (fit_parse_subimage(select, default_addr, 987 &rd_addr, &fit_uname_ramdisk)) { 988 debug("* ramdisk: subimage '%s' from image at " 989 "0x%08lx\n", 990 fit_uname_ramdisk, rd_addr); 991 } else 992 #endif 993 { 994 rd_addr = simple_strtoul(select, NULL, 16); 995 debug("* ramdisk: cmdline image address = " 996 "0x%08lx\n", 997 rd_addr); 998 } 999 #if IMAGE_ENABLE_FIT 1000 } else { 1001 /* use FIT configuration provided in first bootm 1002 * command argument. If the property is not defined, 1003 * quit silently. 1004 */ 1005 rd_addr = map_to_sysmem(images->fit_hdr_os); 1006 rd_noffset = fit_get_node_from_config(images, 1007 FIT_RAMDISK_PROP, rd_addr); 1008 if (rd_noffset == -ENOENT) 1009 return 0; 1010 else if (rd_noffset < 0) 1011 return 1; 1012 } 1013 #endif 1014 1015 /* 1016 * Check if there is an initrd image at the 1017 * address provided in the second bootm argument 1018 * check image type, for FIT images get FIT node. 1019 */ 1020 buf = map_sysmem(rd_addr, 0); 1021 switch (genimg_get_format(buf)) { 1022 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 1023 case IMAGE_FORMAT_LEGACY: 1024 printf("## Loading init Ramdisk from Legacy " 1025 "Image at %08lx ...\n", rd_addr); 1026 1027 bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK); 1028 rd_hdr = image_get_ramdisk(rd_addr, arch, 1029 images->verify); 1030 1031 if (rd_hdr == NULL) 1032 return 1; 1033 1034 rd_data = image_get_data(rd_hdr); 1035 rd_len = image_get_data_size(rd_hdr); 1036 rd_load = image_get_load(rd_hdr); 1037 break; 1038 #endif 1039 #if IMAGE_ENABLE_FIT 1040 case IMAGE_FORMAT_FIT: 1041 rd_noffset = fit_image_load(images, 1042 rd_addr, &fit_uname_ramdisk, 1043 &fit_uname_config, arch, 1044 IH_TYPE_RAMDISK, 1045 BOOTSTAGE_ID_FIT_RD_START, 1046 FIT_LOAD_OPTIONAL_NON_ZERO, 1047 &rd_data, &rd_len); 1048 if (rd_noffset < 0) 1049 return 1; 1050 1051 images->fit_hdr_rd = map_sysmem(rd_addr, 0); 1052 images->fit_uname_rd = fit_uname_ramdisk; 1053 images->fit_noffset_rd = rd_noffset; 1054 break; 1055 #endif 1056 #ifdef CONFIG_ANDROID_BOOT_IMAGE 1057 case IMAGE_FORMAT_ANDROID: 1058 android_image_get_ramdisk((void *)images->os.start, 1059 &rd_data, &rd_len); 1060 break; 1061 #endif 1062 default: 1063 #ifdef CONFIG_SUPPORT_RAW_INITRD 1064 end = NULL; 1065 if (select) 1066 end = strchr(select, ':'); 1067 if (end) { 1068 rd_len = simple_strtoul(++end, NULL, 16); 1069 rd_data = rd_addr; 1070 } else 1071 #endif 1072 { 1073 puts("Wrong Ramdisk Image Format\n"); 1074 rd_data = rd_len = rd_load = 0; 1075 return 1; 1076 } 1077 } 1078 } else if (images->legacy_hdr_valid && 1079 image_check_type(&images->legacy_hdr_os_copy, 1080 IH_TYPE_MULTI)) { 1081 1082 /* 1083 * Now check if we have a legacy mult-component image, 1084 * get second entry data start address and len. 1085 */ 1086 bootstage_mark(BOOTSTAGE_ID_RAMDISK); 1087 printf("## Loading init Ramdisk from multi component " 1088 "Legacy Image at %08lx ...\n", 1089 (ulong)images->legacy_hdr_os); 1090 1091 image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len); 1092 } else { 1093 /* 1094 * no initrd image 1095 */ 1096 bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK); 1097 rd_len = rd_data = 0; 1098 } 1099 1100 if (!rd_data) { 1101 debug("## No init Ramdisk\n"); 1102 } else { 1103 *rd_start = rd_data; 1104 *rd_end = rd_data + rd_len; 1105 } 1106 debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n", 1107 *rd_start, *rd_end); 1108 1109 return 0; 1110 } 1111 1112 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH 1113 /** 1114 * boot_ramdisk_high - relocate init ramdisk 1115 * @lmb: pointer to lmb handle, will be used for memory mgmt 1116 * @rd_data: ramdisk data start address 1117 * @rd_len: ramdisk data length 1118 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk 1119 * start address (after possible relocation) 1120 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk 1121 * end address (after possible relocation) 1122 * 1123 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environment 1124 * variable and if requested ramdisk data is moved to a specified location. 1125 * 1126 * Initrd_start and initrd_end are set to final (after relocation) ramdisk 1127 * start/end addresses if ramdisk image start and len were provided, 1128 * otherwise set initrd_start and initrd_end set to zeros. 1129 * 1130 * returns: 1131 * 0 - success 1132 * -1 - failure 1133 */ 1134 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len, 1135 ulong *initrd_start, ulong *initrd_end) 1136 { 1137 char *s; 1138 ulong initrd_high; 1139 int initrd_copy_to_ram = 1; 1140 1141 s = env_get("initrd_high"); 1142 if (s) { 1143 /* a value of "no" or a similar string will act like 0, 1144 * turning the "load high" feature off. This is intentional. 1145 */ 1146 initrd_high = simple_strtoul(s, NULL, 16); 1147 if (initrd_high == ~0) 1148 initrd_copy_to_ram = 0; 1149 } else { 1150 initrd_high = env_get_bootm_mapsize() + env_get_bootm_low(); 1151 } 1152 1153 1154 debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n", 1155 initrd_high, initrd_copy_to_ram); 1156 1157 if (rd_data) { 1158 if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */ 1159 debug(" in-place initrd\n"); 1160 *initrd_start = rd_data; 1161 *initrd_end = rd_data + rd_len; 1162 lmb_reserve(lmb, rd_data, rd_len); 1163 } else { 1164 if (initrd_high) 1165 *initrd_start = (ulong)lmb_alloc_base(lmb, 1166 rd_len, 0x1000, initrd_high); 1167 else 1168 *initrd_start = (ulong)lmb_alloc(lmb, rd_len, 1169 0x1000); 1170 1171 if (*initrd_start == 0) { 1172 puts("ramdisk - allocation error\n"); 1173 goto error; 1174 } 1175 bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK); 1176 1177 *initrd_end = *initrd_start + rd_len; 1178 printf(" Loading Ramdisk to %08lx, end %08lx ... ", 1179 *initrd_start, *initrd_end); 1180 1181 memmove_wd((void *)*initrd_start, 1182 (void *)rd_data, rd_len, CHUNKSZ); 1183 1184 #ifdef CONFIG_MP 1185 /* 1186 * Ensure the image is flushed to memory to handle 1187 * AMP boot scenarios in which we might not be 1188 * HW cache coherent 1189 */ 1190 flush_cache((unsigned long)*initrd_start, 1191 ALIGN(rd_len, ARCH_DMA_MINALIGN)); 1192 #endif 1193 puts("OK\n"); 1194 } 1195 } else { 1196 *initrd_start = 0; 1197 *initrd_end = 0; 1198 } 1199 debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n", 1200 *initrd_start, *initrd_end); 1201 1202 return 0; 1203 1204 error: 1205 return -1; 1206 } 1207 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */ 1208 1209 int boot_get_setup(bootm_headers_t *images, uint8_t arch, 1210 ulong *setup_start, ulong *setup_len) 1211 { 1212 #if IMAGE_ENABLE_FIT 1213 return boot_get_setup_fit(images, arch, setup_start, setup_len); 1214 #else 1215 return -ENOENT; 1216 #endif 1217 } 1218 1219 #if IMAGE_ENABLE_FIT 1220 #if defined(CONFIG_FPGA) 1221 int boot_get_fpga(int argc, char * const argv[], bootm_headers_t *images, 1222 uint8_t arch, const ulong *ld_start, ulong * const ld_len) 1223 { 1224 ulong tmp_img_addr, img_data, img_len; 1225 void *buf; 1226 int conf_noffset; 1227 int fit_img_result; 1228 const char *uname, *name; 1229 int err; 1230 int devnum = 0; /* TODO support multi fpga platforms */ 1231 1232 /* Check to see if the images struct has a FIT configuration */ 1233 if (!genimg_has_config(images)) { 1234 debug("## FIT configuration was not specified\n"); 1235 return 0; 1236 } 1237 1238 /* 1239 * Obtain the os FIT header from the images struct 1240 */ 1241 tmp_img_addr = map_to_sysmem(images->fit_hdr_os); 1242 buf = map_sysmem(tmp_img_addr, 0); 1243 /* 1244 * Check image type. For FIT images get FIT node 1245 * and attempt to locate a generic binary. 1246 */ 1247 switch (genimg_get_format(buf)) { 1248 case IMAGE_FORMAT_FIT: 1249 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg); 1250 1251 uname = fdt_stringlist_get(buf, conf_noffset, FIT_FPGA_PROP, 0, 1252 NULL); 1253 if (!uname) { 1254 debug("## FPGA image is not specified\n"); 1255 return 0; 1256 } 1257 fit_img_result = fit_image_load(images, 1258 tmp_img_addr, 1259 (const char **)&uname, 1260 &(images->fit_uname_cfg), 1261 arch, 1262 IH_TYPE_FPGA, 1263 BOOTSTAGE_ID_FPGA_INIT, 1264 FIT_LOAD_OPTIONAL_NON_ZERO, 1265 &img_data, &img_len); 1266 1267 debug("FPGA image (%s) loaded to 0x%lx/size 0x%lx\n", 1268 uname, img_data, img_len); 1269 1270 if (fit_img_result < 0) { 1271 /* Something went wrong! */ 1272 return fit_img_result; 1273 } 1274 1275 if (!fpga_is_partial_data(devnum, img_len)) { 1276 name = "full"; 1277 err = fpga_loadbitstream(devnum, (char *)img_data, 1278 img_len, BIT_FULL); 1279 if (err) 1280 err = fpga_load(devnum, (const void *)img_data, 1281 img_len, BIT_FULL); 1282 } else { 1283 name = "partial"; 1284 err = fpga_loadbitstream(devnum, (char *)img_data, 1285 img_len, BIT_PARTIAL); 1286 if (err) 1287 err = fpga_load(devnum, (const void *)img_data, 1288 img_len, BIT_PARTIAL); 1289 } 1290 1291 if (err) 1292 return err; 1293 1294 printf(" Programming %s bitstream... OK\n", name); 1295 break; 1296 default: 1297 printf("The given image format is not supported (corrupt?)\n"); 1298 return 1; 1299 } 1300 1301 return 0; 1302 } 1303 #endif 1304 1305 static void fit_loadable_process(uint8_t img_type, 1306 ulong img_data, 1307 ulong img_len) 1308 { 1309 int i; 1310 const unsigned int count = 1311 ll_entry_count(struct fit_loadable_tbl, fit_loadable); 1312 struct fit_loadable_tbl *fit_loadable_handler = 1313 ll_entry_start(struct fit_loadable_tbl, fit_loadable); 1314 /* For each loadable handler */ 1315 for (i = 0; i < count; i++, fit_loadable_handler++) 1316 /* matching this type */ 1317 if (fit_loadable_handler->type == img_type) 1318 /* call that handler with this image data */ 1319 fit_loadable_handler->handler(img_data, img_len); 1320 } 1321 1322 int boot_get_loadable(int argc, char * const argv[], bootm_headers_t *images, 1323 uint8_t arch, const ulong *ld_start, ulong * const ld_len) 1324 { 1325 /* 1326 * These variables are used to hold the current image location 1327 * in system memory. 1328 */ 1329 ulong tmp_img_addr; 1330 /* 1331 * These two variables are requirements for fit_image_load, but 1332 * their values are not used 1333 */ 1334 ulong img_data, img_len; 1335 void *buf; 1336 int loadables_index; 1337 int conf_noffset; 1338 int fit_img_result; 1339 const char *uname; 1340 uint8_t img_type; 1341 1342 /* Check to see if the images struct has a FIT configuration */ 1343 if (!genimg_has_config(images)) { 1344 debug("## FIT configuration was not specified\n"); 1345 return 0; 1346 } 1347 1348 /* 1349 * Obtain the os FIT header from the images struct 1350 */ 1351 tmp_img_addr = map_to_sysmem(images->fit_hdr_os); 1352 buf = map_sysmem(tmp_img_addr, 0); 1353 /* 1354 * Check image type. For FIT images get FIT node 1355 * and attempt to locate a generic binary. 1356 */ 1357 switch (genimg_get_format(buf)) { 1358 case IMAGE_FORMAT_FIT: 1359 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg); 1360 1361 for (loadables_index = 0; 1362 uname = fdt_stringlist_get(buf, conf_noffset, 1363 FIT_LOADABLE_PROP, loadables_index, 1364 NULL), uname; 1365 loadables_index++) 1366 { 1367 fit_img_result = fit_image_load(images, 1368 tmp_img_addr, 1369 &uname, 1370 &(images->fit_uname_cfg), arch, 1371 IH_TYPE_LOADABLE, 1372 BOOTSTAGE_ID_FIT_LOADABLE_START, 1373 FIT_LOAD_OPTIONAL_NON_ZERO, 1374 &img_data, &img_len); 1375 if (fit_img_result < 0) { 1376 /* Something went wrong! */ 1377 return fit_img_result; 1378 } 1379 1380 fit_img_result = fit_image_get_node(buf, uname); 1381 if (fit_img_result < 0) { 1382 /* Something went wrong! */ 1383 return fit_img_result; 1384 } 1385 fit_img_result = fit_image_get_type(buf, 1386 fit_img_result, 1387 &img_type); 1388 if (fit_img_result < 0) { 1389 /* Something went wrong! */ 1390 return fit_img_result; 1391 } 1392 1393 fit_loadable_process(img_type, img_data, img_len); 1394 } 1395 break; 1396 default: 1397 printf("The given image format is not supported (corrupt?)\n"); 1398 return 1; 1399 } 1400 1401 return 0; 1402 } 1403 #endif 1404 1405 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE 1406 /** 1407 * boot_get_cmdline - allocate and initialize kernel cmdline 1408 * @lmb: pointer to lmb handle, will be used for memory mgmt 1409 * @cmd_start: pointer to a ulong variable, will hold cmdline start 1410 * @cmd_end: pointer to a ulong variable, will hold cmdline end 1411 * 1412 * boot_get_cmdline() allocates space for kernel command line below 1413 * BOOTMAPSZ + env_get_bootm_low() address. If "bootargs" U-Boot environemnt 1414 * variable is present its contents is copied to allocated kernel 1415 * command line. 1416 * 1417 * returns: 1418 * 0 - success 1419 * -1 - failure 1420 */ 1421 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end) 1422 { 1423 char *cmdline; 1424 char *s; 1425 1426 cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf, 1427 env_get_bootm_mapsize() + env_get_bootm_low()); 1428 1429 if (cmdline == NULL) 1430 return -1; 1431 1432 s = env_get("bootargs"); 1433 if (!s) 1434 s = ""; 1435 1436 strcpy(cmdline, s); 1437 1438 *cmd_start = (ulong) & cmdline[0]; 1439 *cmd_end = *cmd_start + strlen(cmdline); 1440 1441 debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end); 1442 1443 return 0; 1444 } 1445 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */ 1446 1447 #ifdef CONFIG_SYS_BOOT_GET_KBD 1448 /** 1449 * boot_get_kbd - allocate and initialize kernel copy of board info 1450 * @lmb: pointer to lmb handle, will be used for memory mgmt 1451 * @kbd: double pointer to board info data 1452 * 1453 * boot_get_kbd() allocates space for kernel copy of board info data below 1454 * BOOTMAPSZ + env_get_bootm_low() address and kernel board info is initialized 1455 * with the current u-boot board info data. 1456 * 1457 * returns: 1458 * 0 - success 1459 * -1 - failure 1460 */ 1461 int boot_get_kbd(struct lmb *lmb, bd_t **kbd) 1462 { 1463 *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf, 1464 env_get_bootm_mapsize() + env_get_bootm_low()); 1465 if (*kbd == NULL) 1466 return -1; 1467 1468 **kbd = *(gd->bd); 1469 1470 debug("## kernel board info at 0x%08lx\n", (ulong)*kbd); 1471 1472 #if defined(DEBUG) && defined(CONFIG_CMD_BDI) 1473 do_bdinfo(NULL, 0, 0, NULL); 1474 #endif 1475 1476 return 0; 1477 } 1478 #endif /* CONFIG_SYS_BOOT_GET_KBD */ 1479 1480 #ifdef CONFIG_LMB 1481 int image_setup_linux(bootm_headers_t *images) 1482 { 1483 ulong of_size = images->ft_len; 1484 char **of_flat_tree = &images->ft_addr; 1485 struct lmb *lmb = &images->lmb; 1486 int ret; 1487 1488 if (IMAGE_ENABLE_OF_LIBFDT) 1489 boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree); 1490 1491 if (IMAGE_BOOT_GET_CMDLINE) { 1492 ret = boot_get_cmdline(lmb, &images->cmdline_start, 1493 &images->cmdline_end); 1494 if (ret) { 1495 puts("ERROR with allocation of cmdline\n"); 1496 return ret; 1497 } 1498 } 1499 1500 if (IMAGE_ENABLE_OF_LIBFDT) { 1501 ret = boot_relocate_fdt(lmb, of_flat_tree, &of_size); 1502 if (ret) 1503 return ret; 1504 } 1505 1506 if (IMAGE_ENABLE_OF_LIBFDT && of_size) { 1507 ret = image_setup_libfdt(images, *of_flat_tree, of_size, lmb); 1508 if (ret) 1509 return ret; 1510 } 1511 1512 return 0; 1513 } 1514 #endif /* CONFIG_LMB */ 1515 #endif /* !USE_HOSTCC */ 1516