1 /* 2 * (C) Copyright 2008 Semihalf 3 * 4 * (C) Copyright 2000-2006 5 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 6 * 7 * SPDX-License-Identifier: GPL-2.0+ 8 */ 9 10 #ifndef USE_HOSTCC 11 #include <common.h> 12 #include <watchdog.h> 13 14 #ifdef CONFIG_SHOW_BOOT_PROGRESS 15 #include <status_led.h> 16 #endif 17 18 #include <rtc.h> 19 20 #include <environment.h> 21 #include <image.h> 22 #include <mapmem.h> 23 24 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT 25 #include <libfdt.h> 26 #include <fdt_support.h> 27 #include <fpga.h> 28 #include <xilinx.h> 29 #endif 30 31 #include <u-boot/md5.h> 32 #include <u-boot/sha1.h> 33 #include <linux/errno.h> 34 #include <asm/io.h> 35 36 #ifdef CONFIG_CMD_BDI 37 extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); 38 #endif 39 40 DECLARE_GLOBAL_DATA_PTR; 41 42 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 43 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 44 int verify); 45 #endif 46 #else 47 #include "mkimage.h" 48 #include <u-boot/md5.h> 49 #include <time.h> 50 #include <image.h> 51 52 #ifndef __maybe_unused 53 # define __maybe_unused /* unimplemented */ 54 #endif 55 #endif /* !USE_HOSTCC*/ 56 57 #include <u-boot/crc.h> 58 59 #ifndef CONFIG_SYS_BARGSIZE 60 #define CONFIG_SYS_BARGSIZE 512 61 #endif 62 63 static const table_entry_t uimage_arch[] = { 64 { IH_ARCH_INVALID, "invalid", "Invalid ARCH", }, 65 { IH_ARCH_ALPHA, "alpha", "Alpha", }, 66 { IH_ARCH_ARM, "arm", "ARM", }, 67 { IH_ARCH_I386, "x86", "Intel x86", }, 68 { IH_ARCH_IA64, "ia64", "IA64", }, 69 { IH_ARCH_M68K, "m68k", "M68K", }, 70 { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", }, 71 { IH_ARCH_MIPS, "mips", "MIPS", }, 72 { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", }, 73 { IH_ARCH_NIOS2, "nios2", "NIOS II", }, 74 { IH_ARCH_PPC, "powerpc", "PowerPC", }, 75 { IH_ARCH_PPC, "ppc", "PowerPC", }, 76 { IH_ARCH_S390, "s390", "IBM S390", }, 77 { IH_ARCH_SH, "sh", "SuperH", }, 78 { IH_ARCH_SPARC, "sparc", "SPARC", }, 79 { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", }, 80 { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", }, 81 { IH_ARCH_AVR32, "avr32", "AVR32", }, 82 { IH_ARCH_NDS32, "nds32", "NDS32", }, 83 { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",}, 84 { IH_ARCH_SANDBOX, "sandbox", "Sandbox", }, 85 { IH_ARCH_ARM64, "arm64", "AArch64", }, 86 { IH_ARCH_ARC, "arc", "ARC", }, 87 { IH_ARCH_X86_64, "x86_64", "AMD x86_64", }, 88 { IH_ARCH_XTENSA, "xtensa", "Xtensa", }, 89 { -1, "", "", }, 90 }; 91 92 static const table_entry_t uimage_os[] = { 93 { IH_OS_INVALID, "invalid", "Invalid OS", }, 94 { IH_OS_ARM_TRUSTED_FIRMWARE, "arm-trusted-firmware", "ARM Trusted Firmware" }, 95 { IH_OS_LINUX, "linux", "Linux", }, 96 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC) 97 { IH_OS_LYNXOS, "lynxos", "LynxOS", }, 98 #endif 99 { IH_OS_NETBSD, "netbsd", "NetBSD", }, 100 { IH_OS_OSE, "ose", "Enea OSE", }, 101 { IH_OS_PLAN9, "plan9", "Plan 9", }, 102 { IH_OS_RTEMS, "rtems", "RTEMS", }, 103 { IH_OS_U_BOOT, "u-boot", "U-Boot", }, 104 { IH_OS_VXWORKS, "vxworks", "VxWorks", }, 105 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC) 106 { IH_OS_QNX, "qnx", "QNX", }, 107 #endif 108 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC) 109 { IH_OS_INTEGRITY,"integrity", "INTEGRITY", }, 110 #endif 111 #ifdef USE_HOSTCC 112 { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", }, 113 { IH_OS_DELL, "dell", "Dell", }, 114 { IH_OS_ESIX, "esix", "Esix", }, 115 { IH_OS_FREEBSD, "freebsd", "FreeBSD", }, 116 { IH_OS_IRIX, "irix", "Irix", }, 117 { IH_OS_NCR, "ncr", "NCR", }, 118 { IH_OS_OPENBSD, "openbsd", "OpenBSD", }, 119 { IH_OS_PSOS, "psos", "pSOS", }, 120 { IH_OS_SCO, "sco", "SCO", }, 121 { IH_OS_SOLARIS, "solaris", "Solaris", }, 122 { IH_OS_SVR4, "svr4", "SVR4", }, 123 #endif 124 #if defined(CONFIG_BOOTM_OPENRTOS) || defined(USE_HOSTCC) 125 { IH_OS_OPENRTOS, "openrtos", "OpenRTOS", }, 126 #endif 127 128 { -1, "", "", }, 129 }; 130 131 static const table_entry_t uimage_type[] = { 132 { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",}, 133 { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", }, 134 { IH_TYPE_FIRMWARE, "firmware", "Firmware", }, 135 { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", }, 136 { IH_TYPE_GPIMAGE, "gpimage", "TI Keystone SPL Image",}, 137 { IH_TYPE_KERNEL, "kernel", "Kernel Image", }, 138 { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", }, 139 { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",}, 140 { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",}, 141 { IH_TYPE_INVALID, "invalid", "Invalid Image", }, 142 { IH_TYPE_MULTI, "multi", "Multi-File Image", }, 143 { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",}, 144 { IH_TYPE_PBLIMAGE, "pblimage", "Freescale PBL Boot Image",}, 145 { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", }, 146 { IH_TYPE_SCRIPT, "script", "Script", }, 147 { IH_TYPE_SOCFPGAIMAGE, "socfpgaimage", "Altera SOCFPGA preloader",}, 148 { IH_TYPE_STANDALONE, "standalone", "Standalone Program", }, 149 { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",}, 150 { IH_TYPE_MXSIMAGE, "mxsimage", "Freescale MXS Boot Image",}, 151 { IH_TYPE_ATMELIMAGE, "atmelimage", "ATMEL ROM-Boot Image",}, 152 { IH_TYPE_X86_SETUP, "x86_setup", "x86 setup.bin", }, 153 { IH_TYPE_LPC32XXIMAGE, "lpc32xximage", "LPC32XX Boot Image", }, 154 { IH_TYPE_RKIMAGE, "rkimage", "Rockchip Boot Image" }, 155 { IH_TYPE_RKSD, "rksd", "Rockchip SD Boot Image" }, 156 { IH_TYPE_RKSPI, "rkspi", "Rockchip SPI Boot Image" }, 157 { IH_TYPE_VYBRIDIMAGE, "vybridimage", "Vybrid Boot Image", }, 158 { IH_TYPE_ZYNQIMAGE, "zynqimage", "Xilinx Zynq Boot Image" }, 159 { IH_TYPE_ZYNQMPIMAGE, "zynqmpimage", "Xilinx ZynqMP Boot Image" }, 160 { IH_TYPE_FPGA, "fpga", "FPGA Image" }, 161 { IH_TYPE_TEE, "tee", "Trusted Execution Environment Image",}, 162 { IH_TYPE_FIRMWARE_IVT, "firmware_ivt", "Firmware with HABv4 IVT" }, 163 { IH_TYPE_PMMC, "pmmc", "TI Power Management Micro-Controller Firmware",}, 164 { -1, "", "", }, 165 }; 166 167 static const table_entry_t uimage_comp[] = { 168 { IH_COMP_NONE, "none", "uncompressed", }, 169 { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", }, 170 { IH_COMP_GZIP, "gzip", "gzip compressed", }, 171 { IH_COMP_LZMA, "lzma", "lzma compressed", }, 172 { IH_COMP_LZO, "lzo", "lzo compressed", }, 173 { IH_COMP_LZ4, "lz4", "lz4 compressed", }, 174 { -1, "", "", }, 175 }; 176 177 struct table_info { 178 const char *desc; 179 int count; 180 const table_entry_t *table; 181 }; 182 183 static const struct table_info table_info[IH_COUNT] = { 184 { "architecture", IH_ARCH_COUNT, uimage_arch }, 185 { "compression", IH_COMP_COUNT, uimage_comp }, 186 { "operating system", IH_OS_COUNT, uimage_os }, 187 { "image type", IH_TYPE_COUNT, uimage_type }, 188 }; 189 190 /*****************************************************************************/ 191 /* Legacy format routines */ 192 /*****************************************************************************/ 193 int image_check_hcrc(const image_header_t *hdr) 194 { 195 ulong hcrc; 196 ulong len = image_get_header_size(); 197 image_header_t header; 198 199 /* Copy header so we can blank CRC field for re-calculation */ 200 memmove(&header, (char *)hdr, image_get_header_size()); 201 image_set_hcrc(&header, 0); 202 203 hcrc = crc32(0, (unsigned char *)&header, len); 204 205 return (hcrc == image_get_hcrc(hdr)); 206 } 207 208 int image_check_dcrc(const image_header_t *hdr) 209 { 210 ulong data = image_get_data(hdr); 211 ulong len = image_get_data_size(hdr); 212 ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32); 213 214 return (dcrc == image_get_dcrc(hdr)); 215 } 216 217 /** 218 * image_multi_count - get component (sub-image) count 219 * @hdr: pointer to the header of the multi component image 220 * 221 * image_multi_count() returns number of components in a multi 222 * component image. 223 * 224 * Note: no checking of the image type is done, caller must pass 225 * a valid multi component image. 226 * 227 * returns: 228 * number of components 229 */ 230 ulong image_multi_count(const image_header_t *hdr) 231 { 232 ulong i, count = 0; 233 uint32_t *size; 234 235 /* get start of the image payload, which in case of multi 236 * component images that points to a table of component sizes */ 237 size = (uint32_t *)image_get_data(hdr); 238 239 /* count non empty slots */ 240 for (i = 0; size[i]; ++i) 241 count++; 242 243 return count; 244 } 245 246 /** 247 * image_multi_getimg - get component data address and size 248 * @hdr: pointer to the header of the multi component image 249 * @idx: index of the requested component 250 * @data: pointer to a ulong variable, will hold component data address 251 * @len: pointer to a ulong variable, will hold component size 252 * 253 * image_multi_getimg() returns size and data address for the requested 254 * component in a multi component image. 255 * 256 * Note: no checking of the image type is done, caller must pass 257 * a valid multi component image. 258 * 259 * returns: 260 * data address and size of the component, if idx is valid 261 * 0 in data and len, if idx is out of range 262 */ 263 void image_multi_getimg(const image_header_t *hdr, ulong idx, 264 ulong *data, ulong *len) 265 { 266 int i; 267 uint32_t *size; 268 ulong offset, count, img_data; 269 270 /* get number of component */ 271 count = image_multi_count(hdr); 272 273 /* get start of the image payload, which in case of multi 274 * component images that points to a table of component sizes */ 275 size = (uint32_t *)image_get_data(hdr); 276 277 /* get address of the proper component data start, which means 278 * skipping sizes table (add 1 for last, null entry) */ 279 img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t); 280 281 if (idx < count) { 282 *len = uimage_to_cpu(size[idx]); 283 offset = 0; 284 285 /* go over all indices preceding requested component idx */ 286 for (i = 0; i < idx; i++) { 287 /* add up i-th component size, rounding up to 4 bytes */ 288 offset += (uimage_to_cpu(size[i]) + 3) & ~3 ; 289 } 290 291 /* calculate idx-th component data address */ 292 *data = img_data + offset; 293 } else { 294 *len = 0; 295 *data = 0; 296 } 297 } 298 299 static void image_print_type(const image_header_t *hdr) 300 { 301 const char __maybe_unused *os, *arch, *type, *comp; 302 303 os = genimg_get_os_name(image_get_os(hdr)); 304 arch = genimg_get_arch_name(image_get_arch(hdr)); 305 type = genimg_get_type_name(image_get_type(hdr)); 306 comp = genimg_get_comp_name(image_get_comp(hdr)); 307 308 printf("%s %s %s (%s)\n", arch, os, type, comp); 309 } 310 311 /** 312 * image_print_contents - prints out the contents of the legacy format image 313 * @ptr: pointer to the legacy format image header 314 * @p: pointer to prefix string 315 * 316 * image_print_contents() formats a multi line legacy image contents description. 317 * The routine prints out all header fields followed by the size/offset data 318 * for MULTI/SCRIPT images. 319 * 320 * returns: 321 * no returned results 322 */ 323 void image_print_contents(const void *ptr) 324 { 325 const image_header_t *hdr = (const image_header_t *)ptr; 326 const char __maybe_unused *p; 327 328 p = IMAGE_INDENT_STRING; 329 printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr)); 330 if (IMAGE_ENABLE_TIMESTAMP) { 331 printf("%sCreated: ", p); 332 genimg_print_time((time_t)image_get_time(hdr)); 333 } 334 printf("%sImage Type: ", p); 335 image_print_type(hdr); 336 printf("%sData Size: ", p); 337 genimg_print_size(image_get_data_size(hdr)); 338 printf("%sLoad Address: %08x\n", p, image_get_load(hdr)); 339 printf("%sEntry Point: %08x\n", p, image_get_ep(hdr)); 340 341 if (image_check_type(hdr, IH_TYPE_MULTI) || 342 image_check_type(hdr, IH_TYPE_SCRIPT)) { 343 int i; 344 ulong data, len; 345 ulong count = image_multi_count(hdr); 346 347 printf("%sContents:\n", p); 348 for (i = 0; i < count; i++) { 349 image_multi_getimg(hdr, i, &data, &len); 350 351 printf("%s Image %d: ", p, i); 352 genimg_print_size(len); 353 354 if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) { 355 /* 356 * the user may need to know offsets 357 * if planning to do something with 358 * multiple files 359 */ 360 printf("%s Offset = 0x%08lx\n", p, data); 361 } 362 } 363 } else if (image_check_type(hdr, IH_TYPE_FIRMWARE_IVT)) { 364 printf("HAB Blocks: 0x%08x 0x0000 0x%08x\n", 365 image_get_load(hdr) - image_get_header_size(), 366 image_get_size(hdr) + image_get_header_size() 367 - 0x1FE0); 368 } 369 } 370 371 372 #ifndef USE_HOSTCC 373 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 374 /** 375 * image_get_ramdisk - get and verify ramdisk image 376 * @rd_addr: ramdisk image start address 377 * @arch: expected ramdisk architecture 378 * @verify: checksum verification flag 379 * 380 * image_get_ramdisk() returns a pointer to the verified ramdisk image 381 * header. Routine receives image start address and expected architecture 382 * flag. Verification done covers data and header integrity and os/type/arch 383 * fields checking. 384 * 385 * returns: 386 * pointer to a ramdisk image header, if image was found and valid 387 * otherwise, return NULL 388 */ 389 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 390 int verify) 391 { 392 const image_header_t *rd_hdr = (const image_header_t *)rd_addr; 393 394 if (!image_check_magic(rd_hdr)) { 395 puts("Bad Magic Number\n"); 396 bootstage_error(BOOTSTAGE_ID_RD_MAGIC); 397 return NULL; 398 } 399 400 if (!image_check_hcrc(rd_hdr)) { 401 puts("Bad Header Checksum\n"); 402 bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 403 return NULL; 404 } 405 406 bootstage_mark(BOOTSTAGE_ID_RD_MAGIC); 407 image_print_contents(rd_hdr); 408 409 if (verify) { 410 puts(" Verifying Checksum ... "); 411 if (!image_check_dcrc(rd_hdr)) { 412 puts("Bad Data CRC\n"); 413 bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM); 414 return NULL; 415 } 416 puts("OK\n"); 417 } 418 419 bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 420 421 if (!image_check_os(rd_hdr, IH_OS_LINUX) || 422 !image_check_arch(rd_hdr, arch) || 423 !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) { 424 printf("No Linux %s Ramdisk Image\n", 425 genimg_get_arch_name(arch)); 426 bootstage_error(BOOTSTAGE_ID_RAMDISK); 427 return NULL; 428 } 429 430 return rd_hdr; 431 } 432 #endif 433 #endif /* !USE_HOSTCC */ 434 435 /*****************************************************************************/ 436 /* Shared dual-format routines */ 437 /*****************************************************************************/ 438 #ifndef USE_HOSTCC 439 ulong load_addr = CONFIG_SYS_LOAD_ADDR; /* Default Load Address */ 440 ulong save_addr; /* Default Save Address */ 441 ulong save_size; /* Default Save Size (in bytes) */ 442 443 static int on_loadaddr(const char *name, const char *value, enum env_op op, 444 int flags) 445 { 446 switch (op) { 447 case env_op_create: 448 case env_op_overwrite: 449 load_addr = simple_strtoul(value, NULL, 16); 450 break; 451 default: 452 break; 453 } 454 455 return 0; 456 } 457 U_BOOT_ENV_CALLBACK(loadaddr, on_loadaddr); 458 459 ulong env_get_bootm_low(void) 460 { 461 char *s = env_get("bootm_low"); 462 if (s) { 463 ulong tmp = simple_strtoul(s, NULL, 16); 464 return tmp; 465 } 466 467 #if defined(CONFIG_SYS_SDRAM_BASE) 468 return CONFIG_SYS_SDRAM_BASE; 469 #elif defined(CONFIG_ARM) 470 return gd->bd->bi_dram[0].start; 471 #else 472 return 0; 473 #endif 474 } 475 476 phys_size_t env_get_bootm_size(void) 477 { 478 phys_size_t tmp, size; 479 phys_addr_t start; 480 char *s = env_get("bootm_size"); 481 if (s) { 482 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 483 return tmp; 484 } 485 486 #if defined(CONFIG_ARM) && defined(CONFIG_NR_DRAM_BANKS) 487 start = gd->bd->bi_dram[0].start; 488 size = gd->bd->bi_dram[0].size; 489 #else 490 start = gd->bd->bi_memstart; 491 size = gd->bd->bi_memsize; 492 #endif 493 494 s = env_get("bootm_low"); 495 if (s) 496 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 497 else 498 tmp = start; 499 500 return size - (tmp - start); 501 } 502 503 phys_size_t env_get_bootm_mapsize(void) 504 { 505 phys_size_t tmp; 506 char *s = env_get("bootm_mapsize"); 507 if (s) { 508 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 509 return tmp; 510 } 511 512 #if defined(CONFIG_SYS_BOOTMAPSZ) 513 return CONFIG_SYS_BOOTMAPSZ; 514 #else 515 return env_get_bootm_size(); 516 #endif 517 } 518 519 void memmove_wd(void *to, void *from, size_t len, ulong chunksz) 520 { 521 if (to == from) 522 return; 523 524 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 525 if (to > from) { 526 from += len; 527 to += len; 528 } 529 while (len > 0) { 530 size_t tail = (len > chunksz) ? chunksz : len; 531 WATCHDOG_RESET(); 532 if (to > from) { 533 to -= tail; 534 from -= tail; 535 } 536 memmove(to, from, tail); 537 if (to < from) { 538 to += tail; 539 from += tail; 540 } 541 len -= tail; 542 } 543 #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */ 544 memmove(to, from, len); 545 #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */ 546 } 547 #endif /* !USE_HOSTCC */ 548 549 void genimg_print_size(uint32_t size) 550 { 551 #ifndef USE_HOSTCC 552 printf("%d Bytes = ", size); 553 print_size(size, "\n"); 554 #else 555 printf("%d Bytes = %.2f KiB = %.2f MiB\n", 556 size, (double)size / 1.024e3, 557 (double)size / 1.048576e6); 558 #endif 559 } 560 561 #if IMAGE_ENABLE_TIMESTAMP 562 void genimg_print_time(time_t timestamp) 563 { 564 #ifndef USE_HOSTCC 565 struct rtc_time tm; 566 567 rtc_to_tm(timestamp, &tm); 568 printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n", 569 tm.tm_year, tm.tm_mon, tm.tm_mday, 570 tm.tm_hour, tm.tm_min, tm.tm_sec); 571 #else 572 printf("%s", ctime(×tamp)); 573 #endif 574 } 575 #endif 576 577 const table_entry_t *get_table_entry(const table_entry_t *table, int id) 578 { 579 for (; table->id >= 0; ++table) { 580 if (table->id == id) 581 return table; 582 } 583 return NULL; 584 } 585 586 static const char *unknown_msg(enum ih_category category) 587 { 588 static const char unknown_str[] = "Unknown "; 589 static char msg[30]; 590 591 strcpy(msg, unknown_str); 592 strncat(msg, table_info[category].desc, 593 sizeof(msg) - sizeof(unknown_str)); 594 595 return msg; 596 } 597 598 /** 599 * get_cat_table_entry_name - translate entry id to long name 600 * @category: category to look up (enum ih_category) 601 * @id: entry id to be translated 602 * 603 * This will scan the translation table trying to find the entry that matches 604 * the given id. 605 * 606 * @retur long entry name if translation succeeds; error string on failure 607 */ 608 const char *genimg_get_cat_name(enum ih_category category, uint id) 609 { 610 const table_entry_t *entry; 611 612 entry = get_table_entry(table_info[category].table, id); 613 if (!entry) 614 return unknown_msg(category); 615 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 616 return entry->lname; 617 #else 618 return entry->lname + gd->reloc_off; 619 #endif 620 } 621 622 /** 623 * get_cat_table_entry_short_name - translate entry id to short name 624 * @category: category to look up (enum ih_category) 625 * @id: entry id to be translated 626 * 627 * This will scan the translation table trying to find the entry that matches 628 * the given id. 629 * 630 * @retur short entry name if translation succeeds; error string on failure 631 */ 632 const char *genimg_get_cat_short_name(enum ih_category category, uint id) 633 { 634 const table_entry_t *entry; 635 636 entry = get_table_entry(table_info[category].table, id); 637 if (!entry) 638 return unknown_msg(category); 639 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 640 return entry->sname; 641 #else 642 return entry->sname + gd->reloc_off; 643 #endif 644 } 645 646 int genimg_get_cat_count(enum ih_category category) 647 { 648 return table_info[category].count; 649 } 650 651 const char *genimg_get_cat_desc(enum ih_category category) 652 { 653 return table_info[category].desc; 654 } 655 656 /** 657 * get_table_entry_name - translate entry id to long name 658 * @table: pointer to a translation table for entries of a specific type 659 * @msg: message to be returned when translation fails 660 * @id: entry id to be translated 661 * 662 * get_table_entry_name() will go over translation table trying to find 663 * entry that matches given id. If matching entry is found, its long 664 * name is returned to the caller. 665 * 666 * returns: 667 * long entry name if translation succeeds 668 * msg otherwise 669 */ 670 char *get_table_entry_name(const table_entry_t *table, char *msg, int id) 671 { 672 table = get_table_entry(table, id); 673 if (!table) 674 return msg; 675 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 676 return table->lname; 677 #else 678 return table->lname + gd->reloc_off; 679 #endif 680 } 681 682 const char *genimg_get_os_name(uint8_t os) 683 { 684 return (get_table_entry_name(uimage_os, "Unknown OS", os)); 685 } 686 687 const char *genimg_get_arch_name(uint8_t arch) 688 { 689 return (get_table_entry_name(uimage_arch, "Unknown Architecture", 690 arch)); 691 } 692 693 const char *genimg_get_type_name(uint8_t type) 694 { 695 return (get_table_entry_name(uimage_type, "Unknown Image", type)); 696 } 697 698 static const char *genimg_get_short_name(const table_entry_t *table, int val) 699 { 700 table = get_table_entry(table, val); 701 if (!table) 702 return "unknown"; 703 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 704 return table->sname; 705 #else 706 return table->sname + gd->reloc_off; 707 #endif 708 } 709 710 const char *genimg_get_type_short_name(uint8_t type) 711 { 712 return genimg_get_short_name(uimage_type, type); 713 } 714 715 const char *genimg_get_comp_name(uint8_t comp) 716 { 717 return (get_table_entry_name(uimage_comp, "Unknown Compression", 718 comp)); 719 } 720 721 const char *genimg_get_comp_short_name(uint8_t comp) 722 { 723 return genimg_get_short_name(uimage_comp, comp); 724 } 725 726 const char *genimg_get_os_short_name(uint8_t os) 727 { 728 return genimg_get_short_name(uimage_os, os); 729 } 730 731 const char *genimg_get_arch_short_name(uint8_t arch) 732 { 733 return genimg_get_short_name(uimage_arch, arch); 734 } 735 736 /** 737 * get_table_entry_id - translate short entry name to id 738 * @table: pointer to a translation table for entries of a specific type 739 * @table_name: to be used in case of error 740 * @name: entry short name to be translated 741 * 742 * get_table_entry_id() will go over translation table trying to find 743 * entry that matches given short name. If matching entry is found, 744 * its id returned to the caller. 745 * 746 * returns: 747 * entry id if translation succeeds 748 * -1 otherwise 749 */ 750 int get_table_entry_id(const table_entry_t *table, 751 const char *table_name, const char *name) 752 { 753 const table_entry_t *t; 754 755 for (t = table; t->id >= 0; ++t) { 756 #ifdef CONFIG_NEEDS_MANUAL_RELOC 757 if (t->sname && strcasecmp(t->sname + gd->reloc_off, name) == 0) 758 #else 759 if (t->sname && strcasecmp(t->sname, name) == 0) 760 #endif 761 return (t->id); 762 } 763 debug("Invalid %s Type: %s\n", table_name, name); 764 765 return -1; 766 } 767 768 int genimg_get_os_id(const char *name) 769 { 770 return (get_table_entry_id(uimage_os, "OS", name)); 771 } 772 773 int genimg_get_arch_id(const char *name) 774 { 775 return (get_table_entry_id(uimage_arch, "CPU", name)); 776 } 777 778 int genimg_get_type_id(const char *name) 779 { 780 return (get_table_entry_id(uimage_type, "Image", name)); 781 } 782 783 int genimg_get_comp_id(const char *name) 784 { 785 return (get_table_entry_id(uimage_comp, "Compression", name)); 786 } 787 788 #ifndef USE_HOSTCC 789 /** 790 * genimg_get_kernel_addr_fit - get the real kernel address and return 2 791 * FIT strings 792 * @img_addr: a string might contain real image address 793 * @fit_uname_config: double pointer to a char, will hold pointer to a 794 * configuration unit name 795 * @fit_uname_kernel: double pointer to a char, will hold pointer to a subimage 796 * name 797 * 798 * genimg_get_kernel_addr_fit get the real kernel start address from a string 799 * which is normally the first argv of bootm/bootz 800 * 801 * returns: 802 * kernel start address 803 */ 804 ulong genimg_get_kernel_addr_fit(char * const img_addr, 805 const char **fit_uname_config, 806 const char **fit_uname_kernel) 807 { 808 ulong kernel_addr; 809 810 /* find out kernel image address */ 811 if (!img_addr) { 812 kernel_addr = load_addr; 813 debug("* kernel: default image load address = 0x%08lx\n", 814 load_addr); 815 #if CONFIG_IS_ENABLED(FIT) 816 } else if (fit_parse_conf(img_addr, load_addr, &kernel_addr, 817 fit_uname_config)) { 818 debug("* kernel: config '%s' from image at 0x%08lx\n", 819 *fit_uname_config, kernel_addr); 820 } else if (fit_parse_subimage(img_addr, load_addr, &kernel_addr, 821 fit_uname_kernel)) { 822 debug("* kernel: subimage '%s' from image at 0x%08lx\n", 823 *fit_uname_kernel, kernel_addr); 824 #endif 825 } else { 826 kernel_addr = simple_strtoul(img_addr, NULL, 16); 827 debug("* kernel: cmdline image address = 0x%08lx\n", 828 kernel_addr); 829 } 830 831 return kernel_addr; 832 } 833 834 /** 835 * genimg_get_kernel_addr() is the simple version of 836 * genimg_get_kernel_addr_fit(). It ignores those return FIT strings 837 */ 838 ulong genimg_get_kernel_addr(char * const img_addr) 839 { 840 const char *fit_uname_config = NULL; 841 const char *fit_uname_kernel = NULL; 842 843 return genimg_get_kernel_addr_fit(img_addr, &fit_uname_config, 844 &fit_uname_kernel); 845 } 846 847 /** 848 * genimg_get_format - get image format type 849 * @img_addr: image start address 850 * 851 * genimg_get_format() checks whether provided address points to a valid 852 * legacy or FIT image. 853 * 854 * New uImage format and FDT blob are based on a libfdt. FDT blob 855 * may be passed directly or embedded in a FIT image. In both situations 856 * genimg_get_format() must be able to dectect libfdt header. 857 * 858 * returns: 859 * image format type or IMAGE_FORMAT_INVALID if no image is present 860 */ 861 int genimg_get_format(const void *img_addr) 862 { 863 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 864 const image_header_t *hdr; 865 866 hdr = (const image_header_t *)img_addr; 867 if (image_check_magic(hdr)) 868 return IMAGE_FORMAT_LEGACY; 869 #endif 870 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT 871 if (fdt_check_header(img_addr) == 0) 872 return IMAGE_FORMAT_FIT; 873 #endif 874 #ifdef CONFIG_ANDROID_BOOT_IMAGE 875 if (android_image_check_header(img_addr) == 0) 876 return IMAGE_FORMAT_ANDROID; 877 #endif 878 879 return IMAGE_FORMAT_INVALID; 880 } 881 882 /** 883 * fit_has_config - check if there is a valid FIT configuration 884 * @images: pointer to the bootm command headers structure 885 * 886 * fit_has_config() checks if there is a FIT configuration in use 887 * (if FTI support is present). 888 * 889 * returns: 890 * 0, no FIT support or no configuration found 891 * 1, configuration found 892 */ 893 int genimg_has_config(bootm_headers_t *images) 894 { 895 #if IMAGE_ENABLE_FIT 896 if (images->fit_uname_cfg) 897 return 1; 898 #endif 899 return 0; 900 } 901 902 /** 903 * boot_get_ramdisk - main ramdisk handling routine 904 * @argc: command argument count 905 * @argv: command argument list 906 * @images: pointer to the bootm images structure 907 * @arch: expected ramdisk architecture 908 * @rd_start: pointer to a ulong variable, will hold ramdisk start address 909 * @rd_end: pointer to a ulong variable, will hold ramdisk end 910 * 911 * boot_get_ramdisk() is responsible for finding a valid ramdisk image. 912 * Curently supported are the following ramdisk sources: 913 * - multicomponent kernel/ramdisk image, 914 * - commandline provided address of decicated ramdisk image. 915 * 916 * returns: 917 * 0, if ramdisk image was found and valid, or skiped 918 * rd_start and rd_end are set to ramdisk start/end addresses if 919 * ramdisk image is found and valid 920 * 921 * 1, if ramdisk image is found but corrupted, or invalid 922 * rd_start and rd_end are set to 0 if no ramdisk exists 923 */ 924 int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images, 925 uint8_t arch, ulong *rd_start, ulong *rd_end) 926 { 927 ulong rd_addr, rd_load; 928 ulong rd_data, rd_len; 929 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 930 const image_header_t *rd_hdr; 931 #endif 932 void *buf; 933 #ifdef CONFIG_SUPPORT_RAW_INITRD 934 char *end; 935 #endif 936 #if IMAGE_ENABLE_FIT 937 const char *fit_uname_config = images->fit_uname_cfg; 938 const char *fit_uname_ramdisk = NULL; 939 ulong default_addr; 940 int rd_noffset; 941 #endif 942 const char *select = NULL; 943 944 *rd_start = 0; 945 *rd_end = 0; 946 947 #ifdef CONFIG_ANDROID_BOOT_IMAGE 948 /* 949 * Look for an Android boot image. 950 */ 951 buf = map_sysmem(images->os.start, 0); 952 if (buf && genimg_get_format(buf) == IMAGE_FORMAT_ANDROID) 953 select = argv[0]; 954 #endif 955 956 if (argc >= 2) 957 select = argv[1]; 958 959 /* 960 * Look for a '-' which indicates to ignore the 961 * ramdisk argument 962 */ 963 if (select && strcmp(select, "-") == 0) { 964 debug("## Skipping init Ramdisk\n"); 965 rd_len = rd_data = 0; 966 } else if (select || genimg_has_config(images)) { 967 #if IMAGE_ENABLE_FIT 968 if (select) { 969 /* 970 * If the init ramdisk comes from the FIT image and 971 * the FIT image address is omitted in the command 972 * line argument, try to use os FIT image address or 973 * default load address. 974 */ 975 if (images->fit_uname_os) 976 default_addr = (ulong)images->fit_hdr_os; 977 else 978 default_addr = load_addr; 979 980 if (fit_parse_conf(select, default_addr, 981 &rd_addr, &fit_uname_config)) { 982 debug("* ramdisk: config '%s' from image at " 983 "0x%08lx\n", 984 fit_uname_config, rd_addr); 985 } else if (fit_parse_subimage(select, default_addr, 986 &rd_addr, &fit_uname_ramdisk)) { 987 debug("* ramdisk: subimage '%s' from image at " 988 "0x%08lx\n", 989 fit_uname_ramdisk, rd_addr); 990 } else 991 #endif 992 { 993 rd_addr = simple_strtoul(select, NULL, 16); 994 debug("* ramdisk: cmdline image address = " 995 "0x%08lx\n", 996 rd_addr); 997 } 998 #if IMAGE_ENABLE_FIT 999 } else { 1000 /* use FIT configuration provided in first bootm 1001 * command argument. If the property is not defined, 1002 * quit silently. 1003 */ 1004 rd_addr = map_to_sysmem(images->fit_hdr_os); 1005 rd_noffset = fit_get_node_from_config(images, 1006 FIT_RAMDISK_PROP, rd_addr); 1007 if (rd_noffset == -ENOENT) 1008 return 0; 1009 else if (rd_noffset < 0) 1010 return 1; 1011 } 1012 #endif 1013 1014 /* 1015 * Check if there is an initrd image at the 1016 * address provided in the second bootm argument 1017 * check image type, for FIT images get FIT node. 1018 */ 1019 buf = map_sysmem(rd_addr, 0); 1020 switch (genimg_get_format(buf)) { 1021 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 1022 case IMAGE_FORMAT_LEGACY: 1023 printf("## Loading init Ramdisk from Legacy " 1024 "Image at %08lx ...\n", rd_addr); 1025 1026 bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK); 1027 rd_hdr = image_get_ramdisk(rd_addr, arch, 1028 images->verify); 1029 1030 if (rd_hdr == NULL) 1031 return 1; 1032 1033 rd_data = image_get_data(rd_hdr); 1034 rd_len = image_get_data_size(rd_hdr); 1035 rd_load = image_get_load(rd_hdr); 1036 break; 1037 #endif 1038 #if IMAGE_ENABLE_FIT 1039 case IMAGE_FORMAT_FIT: 1040 rd_noffset = fit_image_load(images, 1041 rd_addr, &fit_uname_ramdisk, 1042 &fit_uname_config, arch, 1043 IH_TYPE_RAMDISK, 1044 BOOTSTAGE_ID_FIT_RD_START, 1045 FIT_LOAD_OPTIONAL_NON_ZERO, 1046 &rd_data, &rd_len); 1047 if (rd_noffset < 0) 1048 return 1; 1049 1050 images->fit_hdr_rd = map_sysmem(rd_addr, 0); 1051 images->fit_uname_rd = fit_uname_ramdisk; 1052 images->fit_noffset_rd = rd_noffset; 1053 break; 1054 #endif 1055 #ifdef CONFIG_ANDROID_BOOT_IMAGE 1056 case IMAGE_FORMAT_ANDROID: 1057 android_image_get_ramdisk((void *)images->os.start, 1058 &rd_data, &rd_len); 1059 break; 1060 #endif 1061 default: 1062 #ifdef CONFIG_SUPPORT_RAW_INITRD 1063 end = NULL; 1064 if (select) 1065 end = strchr(select, ':'); 1066 if (end) { 1067 rd_len = simple_strtoul(++end, NULL, 16); 1068 rd_data = rd_addr; 1069 } else 1070 #endif 1071 { 1072 puts("Wrong Ramdisk Image Format\n"); 1073 rd_data = rd_len = rd_load = 0; 1074 return 1; 1075 } 1076 } 1077 } else if (images->legacy_hdr_valid && 1078 image_check_type(&images->legacy_hdr_os_copy, 1079 IH_TYPE_MULTI)) { 1080 1081 /* 1082 * Now check if we have a legacy mult-component image, 1083 * get second entry data start address and len. 1084 */ 1085 bootstage_mark(BOOTSTAGE_ID_RAMDISK); 1086 printf("## Loading init Ramdisk from multi component " 1087 "Legacy Image at %08lx ...\n", 1088 (ulong)images->legacy_hdr_os); 1089 1090 image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len); 1091 } else { 1092 /* 1093 * no initrd image 1094 */ 1095 bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK); 1096 rd_len = rd_data = 0; 1097 } 1098 1099 if (!rd_data) { 1100 debug("## No init Ramdisk\n"); 1101 } else { 1102 *rd_start = rd_data; 1103 *rd_end = rd_data + rd_len; 1104 } 1105 debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n", 1106 *rd_start, *rd_end); 1107 1108 return 0; 1109 } 1110 1111 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH 1112 /** 1113 * boot_ramdisk_high - relocate init ramdisk 1114 * @lmb: pointer to lmb handle, will be used for memory mgmt 1115 * @rd_data: ramdisk data start address 1116 * @rd_len: ramdisk data length 1117 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk 1118 * start address (after possible relocation) 1119 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk 1120 * end address (after possible relocation) 1121 * 1122 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environment 1123 * variable and if requested ramdisk data is moved to a specified location. 1124 * 1125 * Initrd_start and initrd_end are set to final (after relocation) ramdisk 1126 * start/end addresses if ramdisk image start and len were provided, 1127 * otherwise set initrd_start and initrd_end set to zeros. 1128 * 1129 * returns: 1130 * 0 - success 1131 * -1 - failure 1132 */ 1133 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len, 1134 ulong *initrd_start, ulong *initrd_end) 1135 { 1136 char *s; 1137 ulong initrd_high; 1138 int initrd_copy_to_ram = 1; 1139 1140 s = env_get("initrd_high"); 1141 if (s) { 1142 /* a value of "no" or a similar string will act like 0, 1143 * turning the "load high" feature off. This is intentional. 1144 */ 1145 initrd_high = simple_strtoul(s, NULL, 16); 1146 if (initrd_high == ~0) 1147 initrd_copy_to_ram = 0; 1148 } else { 1149 initrd_high = env_get_bootm_mapsize() + env_get_bootm_low(); 1150 } 1151 1152 1153 debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n", 1154 initrd_high, initrd_copy_to_ram); 1155 1156 if (rd_data) { 1157 if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */ 1158 debug(" in-place initrd\n"); 1159 *initrd_start = rd_data; 1160 *initrd_end = rd_data + rd_len; 1161 lmb_reserve(lmb, rd_data, rd_len); 1162 } else { 1163 if (initrd_high) 1164 *initrd_start = (ulong)lmb_alloc_base(lmb, 1165 rd_len, 0x1000, initrd_high); 1166 else 1167 *initrd_start = (ulong)lmb_alloc(lmb, rd_len, 1168 0x1000); 1169 1170 if (*initrd_start == 0) { 1171 puts("ramdisk - allocation error\n"); 1172 goto error; 1173 } 1174 bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK); 1175 1176 *initrd_end = *initrd_start + rd_len; 1177 printf(" Loading Ramdisk to %08lx, end %08lx ... ", 1178 *initrd_start, *initrd_end); 1179 1180 memmove_wd((void *)*initrd_start, 1181 (void *)rd_data, rd_len, CHUNKSZ); 1182 1183 #ifdef CONFIG_MP 1184 /* 1185 * Ensure the image is flushed to memory to handle 1186 * AMP boot scenarios in which we might not be 1187 * HW cache coherent 1188 */ 1189 flush_cache((unsigned long)*initrd_start, 1190 ALIGN(rd_len, ARCH_DMA_MINALIGN)); 1191 #endif 1192 puts("OK\n"); 1193 } 1194 } else { 1195 *initrd_start = 0; 1196 *initrd_end = 0; 1197 } 1198 debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n", 1199 *initrd_start, *initrd_end); 1200 1201 return 0; 1202 1203 error: 1204 return -1; 1205 } 1206 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */ 1207 1208 int boot_get_setup(bootm_headers_t *images, uint8_t arch, 1209 ulong *setup_start, ulong *setup_len) 1210 { 1211 #if IMAGE_ENABLE_FIT 1212 return boot_get_setup_fit(images, arch, setup_start, setup_len); 1213 #else 1214 return -ENOENT; 1215 #endif 1216 } 1217 1218 #if IMAGE_ENABLE_FIT 1219 #if defined(CONFIG_FPGA) 1220 int boot_get_fpga(int argc, char * const argv[], bootm_headers_t *images, 1221 uint8_t arch, const ulong *ld_start, ulong * const ld_len) 1222 { 1223 ulong tmp_img_addr, img_data, img_len; 1224 void *buf; 1225 int conf_noffset; 1226 int fit_img_result; 1227 const char *uname, *name; 1228 int err; 1229 int devnum = 0; /* TODO support multi fpga platforms */ 1230 1231 /* Check to see if the images struct has a FIT configuration */ 1232 if (!genimg_has_config(images)) { 1233 debug("## FIT configuration was not specified\n"); 1234 return 0; 1235 } 1236 1237 /* 1238 * Obtain the os FIT header from the images struct 1239 */ 1240 tmp_img_addr = map_to_sysmem(images->fit_hdr_os); 1241 buf = map_sysmem(tmp_img_addr, 0); 1242 /* 1243 * Check image type. For FIT images get FIT node 1244 * and attempt to locate a generic binary. 1245 */ 1246 switch (genimg_get_format(buf)) { 1247 case IMAGE_FORMAT_FIT: 1248 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg); 1249 1250 uname = fdt_stringlist_get(buf, conf_noffset, FIT_FPGA_PROP, 0, 1251 NULL); 1252 if (!uname) { 1253 debug("## FPGA image is not specified\n"); 1254 return 0; 1255 } 1256 fit_img_result = fit_image_load(images, 1257 tmp_img_addr, 1258 (const char **)&uname, 1259 &(images->fit_uname_cfg), 1260 arch, 1261 IH_TYPE_FPGA, 1262 BOOTSTAGE_ID_FPGA_INIT, 1263 FIT_LOAD_OPTIONAL_NON_ZERO, 1264 &img_data, &img_len); 1265 1266 debug("FPGA image (%s) loaded to 0x%lx/size 0x%lx\n", 1267 uname, img_data, img_len); 1268 1269 if (fit_img_result < 0) { 1270 /* Something went wrong! */ 1271 return fit_img_result; 1272 } 1273 1274 if (!fpga_is_partial_data(devnum, img_len)) { 1275 name = "full"; 1276 err = fpga_loadbitstream(devnum, (char *)img_data, 1277 img_len, BIT_FULL); 1278 if (err) 1279 err = fpga_load(devnum, (const void *)img_data, 1280 img_len, BIT_FULL); 1281 } else { 1282 name = "partial"; 1283 err = fpga_loadbitstream(devnum, (char *)img_data, 1284 img_len, BIT_PARTIAL); 1285 if (err) 1286 err = fpga_load(devnum, (const void *)img_data, 1287 img_len, BIT_PARTIAL); 1288 } 1289 1290 if (err) 1291 return err; 1292 1293 printf(" Programming %s bitstream... OK\n", name); 1294 break; 1295 default: 1296 printf("The given image format is not supported (corrupt?)\n"); 1297 return 1; 1298 } 1299 1300 return 0; 1301 } 1302 #endif 1303 1304 static void fit_loadable_process(uint8_t img_type, 1305 ulong img_data, 1306 ulong img_len) 1307 { 1308 int i; 1309 const unsigned int count = 1310 ll_entry_count(struct fit_loadable_tbl, fit_loadable); 1311 struct fit_loadable_tbl *fit_loadable_handler = 1312 ll_entry_start(struct fit_loadable_tbl, fit_loadable); 1313 /* For each loadable handler */ 1314 for (i = 0; i < count; i++, fit_loadable_handler++) 1315 /* matching this type */ 1316 if (fit_loadable_handler->type == img_type) 1317 /* call that handler with this image data */ 1318 fit_loadable_handler->handler(img_data, img_len); 1319 } 1320 1321 int boot_get_loadable(int argc, char * const argv[], bootm_headers_t *images, 1322 uint8_t arch, const ulong *ld_start, ulong * const ld_len) 1323 { 1324 /* 1325 * These variables are used to hold the current image location 1326 * in system memory. 1327 */ 1328 ulong tmp_img_addr; 1329 /* 1330 * These two variables are requirements for fit_image_load, but 1331 * their values are not used 1332 */ 1333 ulong img_data, img_len; 1334 void *buf; 1335 int loadables_index; 1336 int conf_noffset; 1337 int fit_img_result; 1338 const char *uname; 1339 uint8_t img_type; 1340 1341 /* Check to see if the images struct has a FIT configuration */ 1342 if (!genimg_has_config(images)) { 1343 debug("## FIT configuration was not specified\n"); 1344 return 0; 1345 } 1346 1347 /* 1348 * Obtain the os FIT header from the images struct 1349 */ 1350 tmp_img_addr = map_to_sysmem(images->fit_hdr_os); 1351 buf = map_sysmem(tmp_img_addr, 0); 1352 /* 1353 * Check image type. For FIT images get FIT node 1354 * and attempt to locate a generic binary. 1355 */ 1356 switch (genimg_get_format(buf)) { 1357 case IMAGE_FORMAT_FIT: 1358 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg); 1359 1360 for (loadables_index = 0; 1361 uname = fdt_stringlist_get(buf, conf_noffset, 1362 FIT_LOADABLE_PROP, loadables_index, 1363 NULL), uname; 1364 loadables_index++) 1365 { 1366 fit_img_result = fit_image_load(images, 1367 tmp_img_addr, 1368 &uname, 1369 &(images->fit_uname_cfg), arch, 1370 IH_TYPE_LOADABLE, 1371 BOOTSTAGE_ID_FIT_LOADABLE_START, 1372 FIT_LOAD_OPTIONAL_NON_ZERO, 1373 &img_data, &img_len); 1374 if (fit_img_result < 0) { 1375 /* Something went wrong! */ 1376 return fit_img_result; 1377 } 1378 1379 fit_img_result = fit_image_get_node(buf, uname); 1380 if (fit_img_result < 0) { 1381 /* Something went wrong! */ 1382 return fit_img_result; 1383 } 1384 fit_img_result = fit_image_get_type(buf, 1385 fit_img_result, 1386 &img_type); 1387 if (fit_img_result < 0) { 1388 /* Something went wrong! */ 1389 return fit_img_result; 1390 } 1391 1392 fit_loadable_process(img_type, img_data, img_len); 1393 } 1394 break; 1395 default: 1396 printf("The given image format is not supported (corrupt?)\n"); 1397 return 1; 1398 } 1399 1400 return 0; 1401 } 1402 #endif 1403 1404 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE 1405 /** 1406 * boot_get_cmdline - allocate and initialize kernel cmdline 1407 * @lmb: pointer to lmb handle, will be used for memory mgmt 1408 * @cmd_start: pointer to a ulong variable, will hold cmdline start 1409 * @cmd_end: pointer to a ulong variable, will hold cmdline end 1410 * 1411 * boot_get_cmdline() allocates space for kernel command line below 1412 * BOOTMAPSZ + env_get_bootm_low() address. If "bootargs" U-Boot environemnt 1413 * variable is present its contents is copied to allocated kernel 1414 * command line. 1415 * 1416 * returns: 1417 * 0 - success 1418 * -1 - failure 1419 */ 1420 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end) 1421 { 1422 char *cmdline; 1423 char *s; 1424 1425 cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf, 1426 env_get_bootm_mapsize() + env_get_bootm_low()); 1427 1428 if (cmdline == NULL) 1429 return -1; 1430 1431 s = env_get("bootargs"); 1432 if (!s) 1433 s = ""; 1434 1435 strcpy(cmdline, s); 1436 1437 *cmd_start = (ulong) & cmdline[0]; 1438 *cmd_end = *cmd_start + strlen(cmdline); 1439 1440 debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end); 1441 1442 return 0; 1443 } 1444 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */ 1445 1446 #ifdef CONFIG_SYS_BOOT_GET_KBD 1447 /** 1448 * boot_get_kbd - allocate and initialize kernel copy of board info 1449 * @lmb: pointer to lmb handle, will be used for memory mgmt 1450 * @kbd: double pointer to board info data 1451 * 1452 * boot_get_kbd() allocates space for kernel copy of board info data below 1453 * BOOTMAPSZ + env_get_bootm_low() address and kernel board info is initialized 1454 * with the current u-boot board info data. 1455 * 1456 * returns: 1457 * 0 - success 1458 * -1 - failure 1459 */ 1460 int boot_get_kbd(struct lmb *lmb, bd_t **kbd) 1461 { 1462 *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf, 1463 env_get_bootm_mapsize() + env_get_bootm_low()); 1464 if (*kbd == NULL) 1465 return -1; 1466 1467 **kbd = *(gd->bd); 1468 1469 debug("## kernel board info at 0x%08lx\n", (ulong)*kbd); 1470 1471 #if defined(DEBUG) && defined(CONFIG_CMD_BDI) 1472 do_bdinfo(NULL, 0, 0, NULL); 1473 #endif 1474 1475 return 0; 1476 } 1477 #endif /* CONFIG_SYS_BOOT_GET_KBD */ 1478 1479 #ifdef CONFIG_LMB 1480 int image_setup_linux(bootm_headers_t *images) 1481 { 1482 ulong of_size = images->ft_len; 1483 char **of_flat_tree = &images->ft_addr; 1484 struct lmb *lmb = &images->lmb; 1485 int ret; 1486 1487 if (IMAGE_ENABLE_OF_LIBFDT) 1488 boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree); 1489 1490 if (IMAGE_BOOT_GET_CMDLINE) { 1491 ret = boot_get_cmdline(lmb, &images->cmdline_start, 1492 &images->cmdline_end); 1493 if (ret) { 1494 puts("ERROR with allocation of cmdline\n"); 1495 return ret; 1496 } 1497 } 1498 1499 if (IMAGE_ENABLE_OF_LIBFDT) { 1500 ret = boot_relocate_fdt(lmb, of_flat_tree, &of_size); 1501 if (ret) 1502 return ret; 1503 } 1504 1505 if (IMAGE_ENABLE_OF_LIBFDT && of_size) { 1506 ret = image_setup_libfdt(images, *of_flat_tree, of_size, lmb); 1507 if (ret) 1508 return ret; 1509 } 1510 1511 return 0; 1512 } 1513 #endif /* CONFIG_LMB */ 1514 #endif /* !USE_HOSTCC */ 1515