1 /* 2 * (C) Copyright 2008 Semihalf 3 * 4 * (C) Copyright 2000-2006 5 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 6 * 7 * SPDX-License-Identifier: GPL-2.0+ 8 */ 9 10 #ifndef USE_HOSTCC 11 #include <common.h> 12 #include <watchdog.h> 13 14 #ifdef CONFIG_SHOW_BOOT_PROGRESS 15 #include <status_led.h> 16 #endif 17 18 #ifdef CONFIG_HAS_DATAFLASH 19 #include <dataflash.h> 20 #endif 21 22 #ifdef CONFIG_LOGBUFFER 23 #include <logbuff.h> 24 #endif 25 26 #include <rtc.h> 27 28 #include <environment.h> 29 #include <image.h> 30 #include <mapmem.h> 31 32 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT 33 #include <libfdt.h> 34 #include <fdt_support.h> 35 #include <fpga.h> 36 #include <xilinx.h> 37 #endif 38 39 #include <u-boot/md5.h> 40 #include <u-boot/sha1.h> 41 #include <linux/errno.h> 42 #include <asm/io.h> 43 44 #ifdef CONFIG_CMD_BDI 45 extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); 46 #endif 47 48 DECLARE_GLOBAL_DATA_PTR; 49 50 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 51 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 52 int verify); 53 #endif 54 #else 55 #include "mkimage.h" 56 #include <u-boot/md5.h> 57 #include <time.h> 58 #include <image.h> 59 60 #ifndef __maybe_unused 61 # define __maybe_unused /* unimplemented */ 62 #endif 63 #endif /* !USE_HOSTCC*/ 64 65 #include <u-boot/crc.h> 66 67 #ifndef CONFIG_SYS_BARGSIZE 68 #define CONFIG_SYS_BARGSIZE 512 69 #endif 70 71 static const table_entry_t uimage_arch[] = { 72 { IH_ARCH_INVALID, "invalid", "Invalid ARCH", }, 73 { IH_ARCH_ALPHA, "alpha", "Alpha", }, 74 { IH_ARCH_ARM, "arm", "ARM", }, 75 { IH_ARCH_I386, "x86", "Intel x86", }, 76 { IH_ARCH_IA64, "ia64", "IA64", }, 77 { IH_ARCH_M68K, "m68k", "M68K", }, 78 { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", }, 79 { IH_ARCH_MIPS, "mips", "MIPS", }, 80 { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", }, 81 { IH_ARCH_NIOS2, "nios2", "NIOS II", }, 82 { IH_ARCH_PPC, "powerpc", "PowerPC", }, 83 { IH_ARCH_PPC, "ppc", "PowerPC", }, 84 { IH_ARCH_S390, "s390", "IBM S390", }, 85 { IH_ARCH_SH, "sh", "SuperH", }, 86 { IH_ARCH_SPARC, "sparc", "SPARC", }, 87 { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", }, 88 { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", }, 89 { IH_ARCH_AVR32, "avr32", "AVR32", }, 90 { IH_ARCH_NDS32, "nds32", "NDS32", }, 91 { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",}, 92 { IH_ARCH_SANDBOX, "sandbox", "Sandbox", }, 93 { IH_ARCH_ARM64, "arm64", "AArch64", }, 94 { IH_ARCH_ARC, "arc", "ARC", }, 95 { IH_ARCH_X86_64, "x86_64", "AMD x86_64", }, 96 { IH_ARCH_XTENSA, "xtensa", "Xtensa", }, 97 { -1, "", "", }, 98 }; 99 100 static const table_entry_t uimage_os[] = { 101 { IH_OS_INVALID, "invalid", "Invalid OS", }, 102 { IH_OS_LINUX, "linux", "Linux", }, 103 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC) 104 { IH_OS_LYNXOS, "lynxos", "LynxOS", }, 105 #endif 106 { IH_OS_NETBSD, "netbsd", "NetBSD", }, 107 { IH_OS_OSE, "ose", "Enea OSE", }, 108 { IH_OS_PLAN9, "plan9", "Plan 9", }, 109 { IH_OS_RTEMS, "rtems", "RTEMS", }, 110 { IH_OS_U_BOOT, "u-boot", "U-Boot", }, 111 { IH_OS_VXWORKS, "vxworks", "VxWorks", }, 112 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC) 113 { IH_OS_QNX, "qnx", "QNX", }, 114 #endif 115 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC) 116 { IH_OS_INTEGRITY,"integrity", "INTEGRITY", }, 117 #endif 118 #ifdef USE_HOSTCC 119 { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", }, 120 { IH_OS_DELL, "dell", "Dell", }, 121 { IH_OS_ESIX, "esix", "Esix", }, 122 { IH_OS_FREEBSD, "freebsd", "FreeBSD", }, 123 { IH_OS_IRIX, "irix", "Irix", }, 124 { IH_OS_NCR, "ncr", "NCR", }, 125 { IH_OS_OPENBSD, "openbsd", "OpenBSD", }, 126 { IH_OS_PSOS, "psos", "pSOS", }, 127 { IH_OS_SCO, "sco", "SCO", }, 128 { IH_OS_SOLARIS, "solaris", "Solaris", }, 129 { IH_OS_SVR4, "svr4", "SVR4", }, 130 #endif 131 #if defined(CONFIG_BOOTM_OPENRTOS) || defined(USE_HOSTCC) 132 { IH_OS_OPENRTOS, "openrtos", "OpenRTOS", }, 133 #endif 134 135 { -1, "", "", }, 136 }; 137 138 static const table_entry_t uimage_type[] = { 139 { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",}, 140 { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", }, 141 { IH_TYPE_FIRMWARE, "firmware", "Firmware", }, 142 { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", }, 143 { IH_TYPE_GPIMAGE, "gpimage", "TI Keystone SPL Image",}, 144 { IH_TYPE_KERNEL, "kernel", "Kernel Image", }, 145 { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", }, 146 { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",}, 147 { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",}, 148 { IH_TYPE_INVALID, "invalid", "Invalid Image", }, 149 { IH_TYPE_MULTI, "multi", "Multi-File Image", }, 150 { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",}, 151 { IH_TYPE_PBLIMAGE, "pblimage", "Freescale PBL Boot Image",}, 152 { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", }, 153 { IH_TYPE_SCRIPT, "script", "Script", }, 154 { IH_TYPE_SOCFPGAIMAGE, "socfpgaimage", "Altera SOCFPGA preloader",}, 155 { IH_TYPE_STANDALONE, "standalone", "Standalone Program", }, 156 { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",}, 157 { IH_TYPE_MXSIMAGE, "mxsimage", "Freescale MXS Boot Image",}, 158 { IH_TYPE_ATMELIMAGE, "atmelimage", "ATMEL ROM-Boot Image",}, 159 { IH_TYPE_X86_SETUP, "x86_setup", "x86 setup.bin", }, 160 { IH_TYPE_LPC32XXIMAGE, "lpc32xximage", "LPC32XX Boot Image", }, 161 { IH_TYPE_RKIMAGE, "rkimage", "Rockchip Boot Image" }, 162 { IH_TYPE_RKSD, "rksd", "Rockchip SD Boot Image" }, 163 { IH_TYPE_RKSPI, "rkspi", "Rockchip SPI Boot Image" }, 164 { IH_TYPE_ZYNQIMAGE, "zynqimage", "Xilinx Zynq Boot Image" }, 165 { IH_TYPE_ZYNQMPIMAGE, "zynqmpimage", "Xilinx ZynqMP Boot Image" }, 166 { IH_TYPE_FPGA, "fpga", "FPGA Image" }, 167 { -1, "", "", }, 168 }; 169 170 static const table_entry_t uimage_comp[] = { 171 { IH_COMP_NONE, "none", "uncompressed", }, 172 { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", }, 173 { IH_COMP_GZIP, "gzip", "gzip compressed", }, 174 { IH_COMP_LZMA, "lzma", "lzma compressed", }, 175 { IH_COMP_LZO, "lzo", "lzo compressed", }, 176 { IH_COMP_LZ4, "lz4", "lz4 compressed", }, 177 { -1, "", "", }, 178 }; 179 180 struct table_info { 181 const char *desc; 182 int count; 183 const table_entry_t *table; 184 }; 185 186 static const struct table_info table_info[IH_COUNT] = { 187 { "architecture", IH_ARCH_COUNT, uimage_arch }, 188 { "compression", IH_COMP_COUNT, uimage_comp }, 189 { "operating system", IH_OS_COUNT, uimage_os }, 190 { "image type", IH_TYPE_COUNT, uimage_type }, 191 }; 192 193 /*****************************************************************************/ 194 /* Legacy format routines */ 195 /*****************************************************************************/ 196 int image_check_hcrc(const image_header_t *hdr) 197 { 198 ulong hcrc; 199 ulong len = image_get_header_size(); 200 image_header_t header; 201 202 /* Copy header so we can blank CRC field for re-calculation */ 203 memmove(&header, (char *)hdr, image_get_header_size()); 204 image_set_hcrc(&header, 0); 205 206 hcrc = crc32(0, (unsigned char *)&header, len); 207 208 return (hcrc == image_get_hcrc(hdr)); 209 } 210 211 int image_check_dcrc(const image_header_t *hdr) 212 { 213 ulong data = image_get_data(hdr); 214 ulong len = image_get_data_size(hdr); 215 ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32); 216 217 return (dcrc == image_get_dcrc(hdr)); 218 } 219 220 /** 221 * image_multi_count - get component (sub-image) count 222 * @hdr: pointer to the header of the multi component image 223 * 224 * image_multi_count() returns number of components in a multi 225 * component image. 226 * 227 * Note: no checking of the image type is done, caller must pass 228 * a valid multi component image. 229 * 230 * returns: 231 * number of components 232 */ 233 ulong image_multi_count(const image_header_t *hdr) 234 { 235 ulong i, count = 0; 236 uint32_t *size; 237 238 /* get start of the image payload, which in case of multi 239 * component images that points to a table of component sizes */ 240 size = (uint32_t *)image_get_data(hdr); 241 242 /* count non empty slots */ 243 for (i = 0; size[i]; ++i) 244 count++; 245 246 return count; 247 } 248 249 /** 250 * image_multi_getimg - get component data address and size 251 * @hdr: pointer to the header of the multi component image 252 * @idx: index of the requested component 253 * @data: pointer to a ulong variable, will hold component data address 254 * @len: pointer to a ulong variable, will hold component size 255 * 256 * image_multi_getimg() returns size and data address for the requested 257 * component in a multi component image. 258 * 259 * Note: no checking of the image type is done, caller must pass 260 * a valid multi component image. 261 * 262 * returns: 263 * data address and size of the component, if idx is valid 264 * 0 in data and len, if idx is out of range 265 */ 266 void image_multi_getimg(const image_header_t *hdr, ulong idx, 267 ulong *data, ulong *len) 268 { 269 int i; 270 uint32_t *size; 271 ulong offset, count, img_data; 272 273 /* get number of component */ 274 count = image_multi_count(hdr); 275 276 /* get start of the image payload, which in case of multi 277 * component images that points to a table of component sizes */ 278 size = (uint32_t *)image_get_data(hdr); 279 280 /* get address of the proper component data start, which means 281 * skipping sizes table (add 1 for last, null entry) */ 282 img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t); 283 284 if (idx < count) { 285 *len = uimage_to_cpu(size[idx]); 286 offset = 0; 287 288 /* go over all indices preceding requested component idx */ 289 for (i = 0; i < idx; i++) { 290 /* add up i-th component size, rounding up to 4 bytes */ 291 offset += (uimage_to_cpu(size[i]) + 3) & ~3 ; 292 } 293 294 /* calculate idx-th component data address */ 295 *data = img_data + offset; 296 } else { 297 *len = 0; 298 *data = 0; 299 } 300 } 301 302 static void image_print_type(const image_header_t *hdr) 303 { 304 const char __maybe_unused *os, *arch, *type, *comp; 305 306 os = genimg_get_os_name(image_get_os(hdr)); 307 arch = genimg_get_arch_name(image_get_arch(hdr)); 308 type = genimg_get_type_name(image_get_type(hdr)); 309 comp = genimg_get_comp_name(image_get_comp(hdr)); 310 311 printf("%s %s %s (%s)\n", arch, os, type, comp); 312 } 313 314 /** 315 * image_print_contents - prints out the contents of the legacy format image 316 * @ptr: pointer to the legacy format image header 317 * @p: pointer to prefix string 318 * 319 * image_print_contents() formats a multi line legacy image contents description. 320 * The routine prints out all header fields followed by the size/offset data 321 * for MULTI/SCRIPT images. 322 * 323 * returns: 324 * no returned results 325 */ 326 void image_print_contents(const void *ptr) 327 { 328 const image_header_t *hdr = (const image_header_t *)ptr; 329 const char __maybe_unused *p; 330 331 p = IMAGE_INDENT_STRING; 332 printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr)); 333 if (IMAGE_ENABLE_TIMESTAMP) { 334 printf("%sCreated: ", p); 335 genimg_print_time((time_t)image_get_time(hdr)); 336 } 337 printf("%sImage Type: ", p); 338 image_print_type(hdr); 339 printf("%sData Size: ", p); 340 genimg_print_size(image_get_data_size(hdr)); 341 printf("%sLoad Address: %08x\n", p, image_get_load(hdr)); 342 printf("%sEntry Point: %08x\n", p, image_get_ep(hdr)); 343 344 if (image_check_type(hdr, IH_TYPE_MULTI) || 345 image_check_type(hdr, IH_TYPE_SCRIPT)) { 346 int i; 347 ulong data, len; 348 ulong count = image_multi_count(hdr); 349 350 printf("%sContents:\n", p); 351 for (i = 0; i < count; i++) { 352 image_multi_getimg(hdr, i, &data, &len); 353 354 printf("%s Image %d: ", p, i); 355 genimg_print_size(len); 356 357 if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) { 358 /* 359 * the user may need to know offsets 360 * if planning to do something with 361 * multiple files 362 */ 363 printf("%s Offset = 0x%08lx\n", p, data); 364 } 365 } 366 } 367 } 368 369 370 #ifndef USE_HOSTCC 371 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 372 /** 373 * image_get_ramdisk - get and verify ramdisk image 374 * @rd_addr: ramdisk image start address 375 * @arch: expected ramdisk architecture 376 * @verify: checksum verification flag 377 * 378 * image_get_ramdisk() returns a pointer to the verified ramdisk image 379 * header. Routine receives image start address and expected architecture 380 * flag. Verification done covers data and header integrity and os/type/arch 381 * fields checking. 382 * 383 * If dataflash support is enabled routine checks for dataflash addresses 384 * and handles required dataflash reads. 385 * 386 * returns: 387 * pointer to a ramdisk image header, if image was found and valid 388 * otherwise, return NULL 389 */ 390 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 391 int verify) 392 { 393 const image_header_t *rd_hdr = (const image_header_t *)rd_addr; 394 395 if (!image_check_magic(rd_hdr)) { 396 puts("Bad Magic Number\n"); 397 bootstage_error(BOOTSTAGE_ID_RD_MAGIC); 398 return NULL; 399 } 400 401 if (!image_check_hcrc(rd_hdr)) { 402 puts("Bad Header Checksum\n"); 403 bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 404 return NULL; 405 } 406 407 bootstage_mark(BOOTSTAGE_ID_RD_MAGIC); 408 image_print_contents(rd_hdr); 409 410 if (verify) { 411 puts(" Verifying Checksum ... "); 412 if (!image_check_dcrc(rd_hdr)) { 413 puts("Bad Data CRC\n"); 414 bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM); 415 return NULL; 416 } 417 puts("OK\n"); 418 } 419 420 bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 421 422 if (!image_check_os(rd_hdr, IH_OS_LINUX) || 423 !image_check_arch(rd_hdr, arch) || 424 !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) { 425 printf("No Linux %s Ramdisk Image\n", 426 genimg_get_arch_name(arch)); 427 bootstage_error(BOOTSTAGE_ID_RAMDISK); 428 return NULL; 429 } 430 431 return rd_hdr; 432 } 433 #endif 434 #endif /* !USE_HOSTCC */ 435 436 /*****************************************************************************/ 437 /* Shared dual-format routines */ 438 /*****************************************************************************/ 439 #ifndef USE_HOSTCC 440 ulong load_addr = CONFIG_SYS_LOAD_ADDR; /* Default Load Address */ 441 ulong save_addr; /* Default Save Address */ 442 ulong save_size; /* Default Save Size (in bytes) */ 443 444 static int on_loadaddr(const char *name, const char *value, enum env_op op, 445 int flags) 446 { 447 switch (op) { 448 case env_op_create: 449 case env_op_overwrite: 450 load_addr = simple_strtoul(value, NULL, 16); 451 break; 452 default: 453 break; 454 } 455 456 return 0; 457 } 458 U_BOOT_ENV_CALLBACK(loadaddr, on_loadaddr); 459 460 ulong getenv_bootm_low(void) 461 { 462 char *s = getenv("bootm_low"); 463 if (s) { 464 ulong tmp = simple_strtoul(s, NULL, 16); 465 return tmp; 466 } 467 468 #if defined(CONFIG_SYS_SDRAM_BASE) 469 return CONFIG_SYS_SDRAM_BASE; 470 #elif defined(CONFIG_ARM) 471 return gd->bd->bi_dram[0].start; 472 #else 473 return 0; 474 #endif 475 } 476 477 phys_size_t getenv_bootm_size(void) 478 { 479 phys_size_t tmp, size; 480 phys_addr_t start; 481 char *s = getenv("bootm_size"); 482 if (s) { 483 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 484 return tmp; 485 } 486 487 #if defined(CONFIG_ARM) && defined(CONFIG_NR_DRAM_BANKS) 488 start = gd->bd->bi_dram[0].start; 489 size = gd->bd->bi_dram[0].size; 490 #else 491 start = gd->bd->bi_memstart; 492 size = gd->bd->bi_memsize; 493 #endif 494 495 s = getenv("bootm_low"); 496 if (s) 497 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 498 else 499 tmp = start; 500 501 return size - (tmp - start); 502 } 503 504 phys_size_t getenv_bootm_mapsize(void) 505 { 506 phys_size_t tmp; 507 char *s = getenv("bootm_mapsize"); 508 if (s) { 509 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 510 return tmp; 511 } 512 513 #if defined(CONFIG_SYS_BOOTMAPSZ) 514 return CONFIG_SYS_BOOTMAPSZ; 515 #else 516 return getenv_bootm_size(); 517 #endif 518 } 519 520 void memmove_wd(void *to, void *from, size_t len, ulong chunksz) 521 { 522 if (to == from) 523 return; 524 525 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 526 if (to > from) { 527 from += len; 528 to += len; 529 } 530 while (len > 0) { 531 size_t tail = (len > chunksz) ? chunksz : len; 532 WATCHDOG_RESET(); 533 if (to > from) { 534 to -= tail; 535 from -= tail; 536 } 537 memmove(to, from, tail); 538 if (to < from) { 539 to += tail; 540 from += tail; 541 } 542 len -= tail; 543 } 544 #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */ 545 memmove(to, from, len); 546 #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */ 547 } 548 #endif /* !USE_HOSTCC */ 549 550 void genimg_print_size(uint32_t size) 551 { 552 #ifndef USE_HOSTCC 553 printf("%d Bytes = ", size); 554 print_size(size, "\n"); 555 #else 556 printf("%d Bytes = %.2f kB = %.2f MB\n", 557 size, (double)size / 1.024e3, 558 (double)size / 1.048576e6); 559 #endif 560 } 561 562 #if IMAGE_ENABLE_TIMESTAMP 563 void genimg_print_time(time_t timestamp) 564 { 565 #ifndef USE_HOSTCC 566 struct rtc_time tm; 567 568 rtc_to_tm(timestamp, &tm); 569 printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n", 570 tm.tm_year, tm.tm_mon, tm.tm_mday, 571 tm.tm_hour, tm.tm_min, tm.tm_sec); 572 #else 573 printf("%s", ctime(×tamp)); 574 #endif 575 } 576 #endif 577 578 const table_entry_t *get_table_entry(const table_entry_t *table, int id) 579 { 580 for (; table->id >= 0; ++table) { 581 if (table->id == id) 582 return table; 583 } 584 return NULL; 585 } 586 587 static const char *unknown_msg(enum ih_category category) 588 { 589 static char msg[30]; 590 591 strcpy(msg, "Unknown "); 592 strcat(msg, table_info[category].desc); 593 594 return msg; 595 } 596 597 /** 598 * get_cat_table_entry_name - translate entry id to long name 599 * @category: category to look up (enum ih_category) 600 * @id: entry id to be translated 601 * 602 * This will scan the translation table trying to find the entry that matches 603 * the given id. 604 * 605 * @retur long entry name if translation succeeds; error string on failure 606 */ 607 const char *genimg_get_cat_name(enum ih_category category, uint id) 608 { 609 const table_entry_t *entry; 610 611 entry = get_table_entry(table_info[category].table, id); 612 if (!entry) 613 return unknown_msg(category); 614 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 615 return entry->lname; 616 #else 617 return entry->lname + gd->reloc_off; 618 #endif 619 } 620 621 /** 622 * get_cat_table_entry_short_name - translate entry id to short name 623 * @category: category to look up (enum ih_category) 624 * @id: entry id to be translated 625 * 626 * This will scan the translation table trying to find the entry that matches 627 * the given id. 628 * 629 * @retur short entry name if translation succeeds; error string on failure 630 */ 631 const char *genimg_get_cat_short_name(enum ih_category category, uint id) 632 { 633 const table_entry_t *entry; 634 635 entry = get_table_entry(table_info[category].table, id); 636 if (!entry) 637 return unknown_msg(category); 638 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 639 return entry->sname; 640 #else 641 return entry->sname + gd->reloc_off; 642 #endif 643 } 644 645 int genimg_get_cat_count(enum ih_category category) 646 { 647 return table_info[category].count; 648 } 649 650 const char *genimg_get_cat_desc(enum ih_category category) 651 { 652 return table_info[category].desc; 653 } 654 655 /** 656 * get_table_entry_name - translate entry id to long name 657 * @table: pointer to a translation table for entries of a specific type 658 * @msg: message to be returned when translation fails 659 * @id: entry id to be translated 660 * 661 * get_table_entry_name() will go over translation table trying to find 662 * entry that matches given id. If matching entry is found, its long 663 * name is returned to the caller. 664 * 665 * returns: 666 * long entry name if translation succeeds 667 * msg otherwise 668 */ 669 char *get_table_entry_name(const table_entry_t *table, char *msg, int id) 670 { 671 table = get_table_entry(table, id); 672 if (!table) 673 return msg; 674 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 675 return table->lname; 676 #else 677 return table->lname + gd->reloc_off; 678 #endif 679 } 680 681 const char *genimg_get_os_name(uint8_t os) 682 { 683 return (get_table_entry_name(uimage_os, "Unknown OS", os)); 684 } 685 686 const char *genimg_get_arch_name(uint8_t arch) 687 { 688 return (get_table_entry_name(uimage_arch, "Unknown Architecture", 689 arch)); 690 } 691 692 const char *genimg_get_type_name(uint8_t type) 693 { 694 return (get_table_entry_name(uimage_type, "Unknown Image", type)); 695 } 696 697 static const char *genimg_get_short_name(const table_entry_t *table, int val) 698 { 699 table = get_table_entry(table, val); 700 if (!table) 701 return "unknown"; 702 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 703 return table->sname; 704 #else 705 return table->sname + gd->reloc_off; 706 #endif 707 } 708 709 const char *genimg_get_type_short_name(uint8_t type) 710 { 711 return genimg_get_short_name(uimage_type, type); 712 } 713 714 const char *genimg_get_comp_name(uint8_t comp) 715 { 716 return (get_table_entry_name(uimage_comp, "Unknown Compression", 717 comp)); 718 } 719 720 const char *genimg_get_comp_short_name(uint8_t comp) 721 { 722 return genimg_get_short_name(uimage_comp, comp); 723 } 724 725 const char *genimg_get_os_short_name(uint8_t os) 726 { 727 return genimg_get_short_name(uimage_os, os); 728 } 729 730 const char *genimg_get_arch_short_name(uint8_t arch) 731 { 732 return genimg_get_short_name(uimage_arch, arch); 733 } 734 735 /** 736 * get_table_entry_id - translate short entry name to id 737 * @table: pointer to a translation table for entries of a specific type 738 * @table_name: to be used in case of error 739 * @name: entry short name to be translated 740 * 741 * get_table_entry_id() will go over translation table trying to find 742 * entry that matches given short name. If matching entry is found, 743 * its id returned to the caller. 744 * 745 * returns: 746 * entry id if translation succeeds 747 * -1 otherwise 748 */ 749 int get_table_entry_id(const table_entry_t *table, 750 const char *table_name, const char *name) 751 { 752 const table_entry_t *t; 753 754 for (t = table; t->id >= 0; ++t) { 755 #ifdef CONFIG_NEEDS_MANUAL_RELOC 756 if (t->sname && strcasecmp(t->sname + gd->reloc_off, name) == 0) 757 #else 758 if (t->sname && strcasecmp(t->sname, name) == 0) 759 #endif 760 return (t->id); 761 } 762 debug("Invalid %s Type: %s\n", table_name, name); 763 764 return -1; 765 } 766 767 int genimg_get_os_id(const char *name) 768 { 769 return (get_table_entry_id(uimage_os, "OS", name)); 770 } 771 772 int genimg_get_arch_id(const char *name) 773 { 774 return (get_table_entry_id(uimage_arch, "CPU", name)); 775 } 776 777 int genimg_get_type_id(const char *name) 778 { 779 return (get_table_entry_id(uimage_type, "Image", name)); 780 } 781 782 int genimg_get_comp_id(const char *name) 783 { 784 return (get_table_entry_id(uimage_comp, "Compression", name)); 785 } 786 787 #ifndef USE_HOSTCC 788 /** 789 * genimg_get_kernel_addr_fit - get the real kernel address and return 2 790 * FIT strings 791 * @img_addr: a string might contain real image address 792 * @fit_uname_config: double pointer to a char, will hold pointer to a 793 * configuration unit name 794 * @fit_uname_kernel: double pointer to a char, will hold pointer to a subimage 795 * name 796 * 797 * genimg_get_kernel_addr_fit get the real kernel start address from a string 798 * which is normally the first argv of bootm/bootz 799 * 800 * returns: 801 * kernel start address 802 */ 803 ulong genimg_get_kernel_addr_fit(char * const img_addr, 804 const char **fit_uname_config, 805 const char **fit_uname_kernel) 806 { 807 ulong kernel_addr; 808 809 /* find out kernel image address */ 810 if (!img_addr) { 811 kernel_addr = load_addr; 812 debug("* kernel: default image load address = 0x%08lx\n", 813 load_addr); 814 #if CONFIG_IS_ENABLED(FIT) 815 } else if (fit_parse_conf(img_addr, load_addr, &kernel_addr, 816 fit_uname_config)) { 817 debug("* kernel: config '%s' from image at 0x%08lx\n", 818 *fit_uname_config, kernel_addr); 819 } else if (fit_parse_subimage(img_addr, load_addr, &kernel_addr, 820 fit_uname_kernel)) { 821 debug("* kernel: subimage '%s' from image at 0x%08lx\n", 822 *fit_uname_kernel, kernel_addr); 823 #endif 824 } else { 825 kernel_addr = simple_strtoul(img_addr, NULL, 16); 826 debug("* kernel: cmdline image address = 0x%08lx\n", 827 kernel_addr); 828 } 829 830 return kernel_addr; 831 } 832 833 /** 834 * genimg_get_kernel_addr() is the simple version of 835 * genimg_get_kernel_addr_fit(). It ignores those return FIT strings 836 */ 837 ulong genimg_get_kernel_addr(char * const img_addr) 838 { 839 const char *fit_uname_config = NULL; 840 const char *fit_uname_kernel = NULL; 841 842 return genimg_get_kernel_addr_fit(img_addr, &fit_uname_config, 843 &fit_uname_kernel); 844 } 845 846 /** 847 * genimg_get_format - get image format type 848 * @img_addr: image start address 849 * 850 * genimg_get_format() checks whether provided address points to a valid 851 * legacy or FIT image. 852 * 853 * New uImage format and FDT blob are based on a libfdt. FDT blob 854 * may be passed directly or embedded in a FIT image. In both situations 855 * genimg_get_format() must be able to dectect libfdt header. 856 * 857 * returns: 858 * image format type or IMAGE_FORMAT_INVALID if no image is present 859 */ 860 int genimg_get_format(const void *img_addr) 861 { 862 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 863 const image_header_t *hdr; 864 865 hdr = (const image_header_t *)img_addr; 866 if (image_check_magic(hdr)) 867 return IMAGE_FORMAT_LEGACY; 868 #endif 869 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT 870 if (fdt_check_header(img_addr) == 0) 871 return IMAGE_FORMAT_FIT; 872 #endif 873 #ifdef CONFIG_ANDROID_BOOT_IMAGE 874 if (android_image_check_header(img_addr) == 0) 875 return IMAGE_FORMAT_ANDROID; 876 #endif 877 878 return IMAGE_FORMAT_INVALID; 879 } 880 881 /** 882 * genimg_get_image - get image from special storage (if necessary) 883 * @img_addr: image start address 884 * 885 * genimg_get_image() checks if provided image start address is located 886 * in a dataflash storage. If so, image is moved to a system RAM memory. 887 * 888 * returns: 889 * image start address after possible relocation from special storage 890 */ 891 ulong genimg_get_image(ulong img_addr) 892 { 893 ulong ram_addr = img_addr; 894 895 #ifdef CONFIG_HAS_DATAFLASH 896 ulong h_size, d_size; 897 898 if (addr_dataflash(img_addr)) { 899 void *buf; 900 901 /* ger RAM address */ 902 ram_addr = CONFIG_SYS_LOAD_ADDR; 903 904 /* get header size */ 905 h_size = image_get_header_size(); 906 #if IMAGE_ENABLE_FIT 907 if (sizeof(struct fdt_header) > h_size) 908 h_size = sizeof(struct fdt_header); 909 #endif 910 911 /* read in header */ 912 debug(" Reading image header from dataflash address " 913 "%08lx to RAM address %08lx\n", img_addr, ram_addr); 914 915 buf = map_sysmem(ram_addr, 0); 916 read_dataflash(img_addr, h_size, buf); 917 918 /* get data size */ 919 switch (genimg_get_format(buf)) { 920 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 921 case IMAGE_FORMAT_LEGACY: 922 d_size = image_get_data_size(buf); 923 debug(" Legacy format image found at 0x%08lx, " 924 "size 0x%08lx\n", 925 ram_addr, d_size); 926 break; 927 #endif 928 #if IMAGE_ENABLE_FIT 929 case IMAGE_FORMAT_FIT: 930 d_size = fit_get_size(buf) - h_size; 931 debug(" FIT/FDT format image found at 0x%08lx, " 932 "size 0x%08lx\n", 933 ram_addr, d_size); 934 break; 935 #endif 936 default: 937 printf(" No valid image found at 0x%08lx\n", 938 img_addr); 939 return ram_addr; 940 } 941 942 /* read in image data */ 943 debug(" Reading image remaining data from dataflash address " 944 "%08lx to RAM address %08lx\n", img_addr + h_size, 945 ram_addr + h_size); 946 947 read_dataflash(img_addr + h_size, d_size, 948 (char *)(buf + h_size)); 949 950 } 951 #endif /* CONFIG_HAS_DATAFLASH */ 952 953 return ram_addr; 954 } 955 956 /** 957 * fit_has_config - check if there is a valid FIT configuration 958 * @images: pointer to the bootm command headers structure 959 * 960 * fit_has_config() checks if there is a FIT configuration in use 961 * (if FTI support is present). 962 * 963 * returns: 964 * 0, no FIT support or no configuration found 965 * 1, configuration found 966 */ 967 int genimg_has_config(bootm_headers_t *images) 968 { 969 #if IMAGE_ENABLE_FIT 970 if (images->fit_uname_cfg) 971 return 1; 972 #endif 973 return 0; 974 } 975 976 /** 977 * boot_get_ramdisk - main ramdisk handling routine 978 * @argc: command argument count 979 * @argv: command argument list 980 * @images: pointer to the bootm images structure 981 * @arch: expected ramdisk architecture 982 * @rd_start: pointer to a ulong variable, will hold ramdisk start address 983 * @rd_end: pointer to a ulong variable, will hold ramdisk end 984 * 985 * boot_get_ramdisk() is responsible for finding a valid ramdisk image. 986 * Curently supported are the following ramdisk sources: 987 * - multicomponent kernel/ramdisk image, 988 * - commandline provided address of decicated ramdisk image. 989 * 990 * returns: 991 * 0, if ramdisk image was found and valid, or skiped 992 * rd_start and rd_end are set to ramdisk start/end addresses if 993 * ramdisk image is found and valid 994 * 995 * 1, if ramdisk image is found but corrupted, or invalid 996 * rd_start and rd_end are set to 0 if no ramdisk exists 997 */ 998 int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images, 999 uint8_t arch, ulong *rd_start, ulong *rd_end) 1000 { 1001 ulong rd_addr, rd_load; 1002 ulong rd_data, rd_len; 1003 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 1004 const image_header_t *rd_hdr; 1005 #endif 1006 void *buf; 1007 #ifdef CONFIG_SUPPORT_RAW_INITRD 1008 char *end; 1009 #endif 1010 #if IMAGE_ENABLE_FIT 1011 const char *fit_uname_config = images->fit_uname_cfg; 1012 const char *fit_uname_ramdisk = NULL; 1013 ulong default_addr; 1014 int rd_noffset; 1015 #endif 1016 const char *select = NULL; 1017 1018 *rd_start = 0; 1019 *rd_end = 0; 1020 1021 #ifdef CONFIG_ANDROID_BOOT_IMAGE 1022 /* 1023 * Look for an Android boot image. 1024 */ 1025 buf = map_sysmem(images->os.start, 0); 1026 if (buf && genimg_get_format(buf) == IMAGE_FORMAT_ANDROID) 1027 select = argv[0]; 1028 #endif 1029 1030 if (argc >= 2) 1031 select = argv[1]; 1032 1033 /* 1034 * Look for a '-' which indicates to ignore the 1035 * ramdisk argument 1036 */ 1037 if (select && strcmp(select, "-") == 0) { 1038 debug("## Skipping init Ramdisk\n"); 1039 rd_len = rd_data = 0; 1040 } else if (select || genimg_has_config(images)) { 1041 #if IMAGE_ENABLE_FIT 1042 if (select) { 1043 /* 1044 * If the init ramdisk comes from the FIT image and 1045 * the FIT image address is omitted in the command 1046 * line argument, try to use os FIT image address or 1047 * default load address. 1048 */ 1049 if (images->fit_uname_os) 1050 default_addr = (ulong)images->fit_hdr_os; 1051 else 1052 default_addr = load_addr; 1053 1054 if (fit_parse_conf(select, default_addr, 1055 &rd_addr, &fit_uname_config)) { 1056 debug("* ramdisk: config '%s' from image at " 1057 "0x%08lx\n", 1058 fit_uname_config, rd_addr); 1059 } else if (fit_parse_subimage(select, default_addr, 1060 &rd_addr, &fit_uname_ramdisk)) { 1061 debug("* ramdisk: subimage '%s' from image at " 1062 "0x%08lx\n", 1063 fit_uname_ramdisk, rd_addr); 1064 } else 1065 #endif 1066 { 1067 rd_addr = simple_strtoul(select, NULL, 16); 1068 debug("* ramdisk: cmdline image address = " 1069 "0x%08lx\n", 1070 rd_addr); 1071 } 1072 #if IMAGE_ENABLE_FIT 1073 } else { 1074 /* use FIT configuration provided in first bootm 1075 * command argument. If the property is not defined, 1076 * quit silently. 1077 */ 1078 rd_addr = map_to_sysmem(images->fit_hdr_os); 1079 rd_noffset = fit_get_node_from_config(images, 1080 FIT_RAMDISK_PROP, rd_addr); 1081 if (rd_noffset == -ENOENT) 1082 return 0; 1083 else if (rd_noffset < 0) 1084 return 1; 1085 } 1086 #endif 1087 1088 /* copy from dataflash if needed */ 1089 rd_addr = genimg_get_image(rd_addr); 1090 1091 /* 1092 * Check if there is an initrd image at the 1093 * address provided in the second bootm argument 1094 * check image type, for FIT images get FIT node. 1095 */ 1096 buf = map_sysmem(rd_addr, 0); 1097 switch (genimg_get_format(buf)) { 1098 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 1099 case IMAGE_FORMAT_LEGACY: 1100 printf("## Loading init Ramdisk from Legacy " 1101 "Image at %08lx ...\n", rd_addr); 1102 1103 bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK); 1104 rd_hdr = image_get_ramdisk(rd_addr, arch, 1105 images->verify); 1106 1107 if (rd_hdr == NULL) 1108 return 1; 1109 1110 rd_data = image_get_data(rd_hdr); 1111 rd_len = image_get_data_size(rd_hdr); 1112 rd_load = image_get_load(rd_hdr); 1113 break; 1114 #endif 1115 #if IMAGE_ENABLE_FIT 1116 case IMAGE_FORMAT_FIT: 1117 rd_noffset = fit_image_load(images, 1118 rd_addr, &fit_uname_ramdisk, 1119 &fit_uname_config, arch, 1120 IH_TYPE_RAMDISK, 1121 BOOTSTAGE_ID_FIT_RD_START, 1122 FIT_LOAD_OPTIONAL_NON_ZERO, 1123 &rd_data, &rd_len); 1124 if (rd_noffset < 0) 1125 return 1; 1126 1127 images->fit_hdr_rd = map_sysmem(rd_addr, 0); 1128 images->fit_uname_rd = fit_uname_ramdisk; 1129 images->fit_noffset_rd = rd_noffset; 1130 break; 1131 #endif 1132 #ifdef CONFIG_ANDROID_BOOT_IMAGE 1133 case IMAGE_FORMAT_ANDROID: 1134 android_image_get_ramdisk((void *)images->os.start, 1135 &rd_data, &rd_len); 1136 break; 1137 #endif 1138 default: 1139 #ifdef CONFIG_SUPPORT_RAW_INITRD 1140 end = NULL; 1141 if (select) 1142 end = strchr(select, ':'); 1143 if (end) { 1144 rd_len = simple_strtoul(++end, NULL, 16); 1145 rd_data = rd_addr; 1146 } else 1147 #endif 1148 { 1149 puts("Wrong Ramdisk Image Format\n"); 1150 rd_data = rd_len = rd_load = 0; 1151 return 1; 1152 } 1153 } 1154 } else if (images->legacy_hdr_valid && 1155 image_check_type(&images->legacy_hdr_os_copy, 1156 IH_TYPE_MULTI)) { 1157 1158 /* 1159 * Now check if we have a legacy mult-component image, 1160 * get second entry data start address and len. 1161 */ 1162 bootstage_mark(BOOTSTAGE_ID_RAMDISK); 1163 printf("## Loading init Ramdisk from multi component " 1164 "Legacy Image at %08lx ...\n", 1165 (ulong)images->legacy_hdr_os); 1166 1167 image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len); 1168 } else { 1169 /* 1170 * no initrd image 1171 */ 1172 bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK); 1173 rd_len = rd_data = 0; 1174 } 1175 1176 if (!rd_data) { 1177 debug("## No init Ramdisk\n"); 1178 } else { 1179 *rd_start = rd_data; 1180 *rd_end = rd_data + rd_len; 1181 } 1182 debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n", 1183 *rd_start, *rd_end); 1184 1185 return 0; 1186 } 1187 1188 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH 1189 /** 1190 * boot_ramdisk_high - relocate init ramdisk 1191 * @lmb: pointer to lmb handle, will be used for memory mgmt 1192 * @rd_data: ramdisk data start address 1193 * @rd_len: ramdisk data length 1194 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk 1195 * start address (after possible relocation) 1196 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk 1197 * end address (after possible relocation) 1198 * 1199 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environment 1200 * variable and if requested ramdisk data is moved to a specified location. 1201 * 1202 * Initrd_start and initrd_end are set to final (after relocation) ramdisk 1203 * start/end addresses if ramdisk image start and len were provided, 1204 * otherwise set initrd_start and initrd_end set to zeros. 1205 * 1206 * returns: 1207 * 0 - success 1208 * -1 - failure 1209 */ 1210 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len, 1211 ulong *initrd_start, ulong *initrd_end) 1212 { 1213 char *s; 1214 ulong initrd_high; 1215 int initrd_copy_to_ram = 1; 1216 1217 if ((s = getenv("initrd_high")) != NULL) { 1218 /* a value of "no" or a similar string will act like 0, 1219 * turning the "load high" feature off. This is intentional. 1220 */ 1221 initrd_high = simple_strtoul(s, NULL, 16); 1222 if (initrd_high == ~0) 1223 initrd_copy_to_ram = 0; 1224 } else { 1225 initrd_high = getenv_bootm_mapsize() + getenv_bootm_low(); 1226 } 1227 1228 1229 #ifdef CONFIG_LOGBUFFER 1230 /* Prevent initrd from overwriting logbuffer */ 1231 lmb_reserve(lmb, logbuffer_base() - LOGBUFF_OVERHEAD, LOGBUFF_RESERVE); 1232 #endif 1233 1234 debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n", 1235 initrd_high, initrd_copy_to_ram); 1236 1237 if (rd_data) { 1238 if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */ 1239 debug(" in-place initrd\n"); 1240 *initrd_start = rd_data; 1241 *initrd_end = rd_data + rd_len; 1242 lmb_reserve(lmb, rd_data, rd_len); 1243 } else { 1244 if (initrd_high) 1245 *initrd_start = (ulong)lmb_alloc_base(lmb, 1246 rd_len, 0x1000, initrd_high); 1247 else 1248 *initrd_start = (ulong)lmb_alloc(lmb, rd_len, 1249 0x1000); 1250 1251 if (*initrd_start == 0) { 1252 puts("ramdisk - allocation error\n"); 1253 goto error; 1254 } 1255 bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK); 1256 1257 *initrd_end = *initrd_start + rd_len; 1258 printf(" Loading Ramdisk to %08lx, end %08lx ... ", 1259 *initrd_start, *initrd_end); 1260 1261 memmove_wd((void *)*initrd_start, 1262 (void *)rd_data, rd_len, CHUNKSZ); 1263 1264 #ifdef CONFIG_MP 1265 /* 1266 * Ensure the image is flushed to memory to handle 1267 * AMP boot scenarios in which we might not be 1268 * HW cache coherent 1269 */ 1270 flush_cache((unsigned long)*initrd_start, rd_len); 1271 #endif 1272 puts("OK\n"); 1273 } 1274 } else { 1275 *initrd_start = 0; 1276 *initrd_end = 0; 1277 } 1278 debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n", 1279 *initrd_start, *initrd_end); 1280 1281 return 0; 1282 1283 error: 1284 return -1; 1285 } 1286 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */ 1287 1288 int boot_get_setup(bootm_headers_t *images, uint8_t arch, 1289 ulong *setup_start, ulong *setup_len) 1290 { 1291 #if IMAGE_ENABLE_FIT 1292 return boot_get_setup_fit(images, arch, setup_start, setup_len); 1293 #else 1294 return -ENOENT; 1295 #endif 1296 } 1297 1298 #if IMAGE_ENABLE_FIT 1299 #if defined(CONFIG_FPGA) && defined(CONFIG_FPGA_XILINX) 1300 int boot_get_fpga(int argc, char * const argv[], bootm_headers_t *images, 1301 uint8_t arch, const ulong *ld_start, ulong * const ld_len) 1302 { 1303 ulong tmp_img_addr, img_data, img_len; 1304 void *buf; 1305 int conf_noffset; 1306 int fit_img_result; 1307 char *uname, *name; 1308 int err; 1309 int devnum = 0; /* TODO support multi fpga platforms */ 1310 const fpga_desc * const desc = fpga_get_desc(devnum); 1311 xilinx_desc *desc_xilinx = desc->devdesc; 1312 1313 /* Check to see if the images struct has a FIT configuration */ 1314 if (!genimg_has_config(images)) { 1315 debug("## FIT configuration was not specified\n"); 1316 return 0; 1317 } 1318 1319 /* 1320 * Obtain the os FIT header from the images struct 1321 * copy from dataflash if needed 1322 */ 1323 tmp_img_addr = map_to_sysmem(images->fit_hdr_os); 1324 tmp_img_addr = genimg_get_image(tmp_img_addr); 1325 buf = map_sysmem(tmp_img_addr, 0); 1326 /* 1327 * Check image type. For FIT images get FIT node 1328 * and attempt to locate a generic binary. 1329 */ 1330 switch (genimg_get_format(buf)) { 1331 case IMAGE_FORMAT_FIT: 1332 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg); 1333 1334 err = fdt_get_string_index(buf, conf_noffset, FIT_FPGA_PROP, 0, 1335 (const char **)&uname); 1336 if (err < 0) { 1337 debug("## FPGA image is not specified\n"); 1338 return 0; 1339 } 1340 fit_img_result = fit_image_load(images, 1341 tmp_img_addr, 1342 (const char **)&uname, 1343 &(images->fit_uname_cfg), 1344 arch, 1345 IH_TYPE_FPGA, 1346 BOOTSTAGE_ID_FPGA_INIT, 1347 FIT_LOAD_OPTIONAL_NON_ZERO, 1348 &img_data, &img_len); 1349 1350 debug("FPGA image (%s) loaded to 0x%lx/size 0x%lx\n", 1351 uname, img_data, img_len); 1352 1353 if (fit_img_result < 0) { 1354 /* Something went wrong! */ 1355 return fit_img_result; 1356 } 1357 1358 if (img_len >= desc_xilinx->size) { 1359 name = "full"; 1360 err = fpga_loadbitstream(devnum, (char *)img_data, 1361 img_len, BIT_FULL); 1362 if (err) 1363 err = fpga_load(devnum, (const void *)img_data, 1364 img_len, BIT_FULL); 1365 } else { 1366 name = "partial"; 1367 err = fpga_loadbitstream(devnum, (char *)img_data, 1368 img_len, BIT_PARTIAL); 1369 if (err) 1370 err = fpga_load(devnum, (const void *)img_data, 1371 img_len, BIT_PARTIAL); 1372 } 1373 1374 printf(" Programming %s bitstream... ", name); 1375 if (err) 1376 printf("failed\n"); 1377 else 1378 printf("OK\n"); 1379 break; 1380 default: 1381 printf("The given image format is not supported (corrupt?)\n"); 1382 return 1; 1383 } 1384 1385 return 0; 1386 } 1387 #endif 1388 1389 int boot_get_loadable(int argc, char * const argv[], bootm_headers_t *images, 1390 uint8_t arch, const ulong *ld_start, ulong * const ld_len) 1391 { 1392 /* 1393 * These variables are used to hold the current image location 1394 * in system memory. 1395 */ 1396 ulong tmp_img_addr; 1397 /* 1398 * These two variables are requirements for fit_image_load, but 1399 * their values are not used 1400 */ 1401 ulong img_data, img_len; 1402 void *buf; 1403 int loadables_index; 1404 int conf_noffset; 1405 int fit_img_result; 1406 char *uname; 1407 1408 /* Check to see if the images struct has a FIT configuration */ 1409 if (!genimg_has_config(images)) { 1410 debug("## FIT configuration was not specified\n"); 1411 return 0; 1412 } 1413 1414 /* 1415 * Obtain the os FIT header from the images struct 1416 * copy from dataflash if needed 1417 */ 1418 tmp_img_addr = map_to_sysmem(images->fit_hdr_os); 1419 tmp_img_addr = genimg_get_image(tmp_img_addr); 1420 buf = map_sysmem(tmp_img_addr, 0); 1421 /* 1422 * Check image type. For FIT images get FIT node 1423 * and attempt to locate a generic binary. 1424 */ 1425 switch (genimg_get_format(buf)) { 1426 case IMAGE_FORMAT_FIT: 1427 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg); 1428 1429 for (loadables_index = 0; 1430 fdt_get_string_index(buf, conf_noffset, 1431 FIT_LOADABLE_PROP, 1432 loadables_index, 1433 (const char **)&uname) == 0; 1434 loadables_index++) 1435 { 1436 fit_img_result = fit_image_load(images, 1437 tmp_img_addr, 1438 (const char **)&uname, 1439 &(images->fit_uname_cfg), arch, 1440 IH_TYPE_LOADABLE, 1441 BOOTSTAGE_ID_FIT_LOADABLE_START, 1442 FIT_LOAD_OPTIONAL_NON_ZERO, 1443 &img_data, &img_len); 1444 if (fit_img_result < 0) { 1445 /* Something went wrong! */ 1446 return fit_img_result; 1447 } 1448 } 1449 break; 1450 default: 1451 printf("The given image format is not supported (corrupt?)\n"); 1452 return 1; 1453 } 1454 1455 return 0; 1456 } 1457 #endif 1458 1459 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE 1460 /** 1461 * boot_get_cmdline - allocate and initialize kernel cmdline 1462 * @lmb: pointer to lmb handle, will be used for memory mgmt 1463 * @cmd_start: pointer to a ulong variable, will hold cmdline start 1464 * @cmd_end: pointer to a ulong variable, will hold cmdline end 1465 * 1466 * boot_get_cmdline() allocates space for kernel command line below 1467 * BOOTMAPSZ + getenv_bootm_low() address. If "bootargs" U-Boot environemnt 1468 * variable is present its contents is copied to allocated kernel 1469 * command line. 1470 * 1471 * returns: 1472 * 0 - success 1473 * -1 - failure 1474 */ 1475 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end) 1476 { 1477 char *cmdline; 1478 char *s; 1479 1480 cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf, 1481 getenv_bootm_mapsize() + getenv_bootm_low()); 1482 1483 if (cmdline == NULL) 1484 return -1; 1485 1486 if ((s = getenv("bootargs")) == NULL) 1487 s = ""; 1488 1489 strcpy(cmdline, s); 1490 1491 *cmd_start = (ulong) & cmdline[0]; 1492 *cmd_end = *cmd_start + strlen(cmdline); 1493 1494 debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end); 1495 1496 return 0; 1497 } 1498 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */ 1499 1500 #ifdef CONFIG_SYS_BOOT_GET_KBD 1501 /** 1502 * boot_get_kbd - allocate and initialize kernel copy of board info 1503 * @lmb: pointer to lmb handle, will be used for memory mgmt 1504 * @kbd: double pointer to board info data 1505 * 1506 * boot_get_kbd() allocates space for kernel copy of board info data below 1507 * BOOTMAPSZ + getenv_bootm_low() address and kernel board info is initialized 1508 * with the current u-boot board info data. 1509 * 1510 * returns: 1511 * 0 - success 1512 * -1 - failure 1513 */ 1514 int boot_get_kbd(struct lmb *lmb, bd_t **kbd) 1515 { 1516 *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf, 1517 getenv_bootm_mapsize() + getenv_bootm_low()); 1518 if (*kbd == NULL) 1519 return -1; 1520 1521 **kbd = *(gd->bd); 1522 1523 debug("## kernel board info at 0x%08lx\n", (ulong)*kbd); 1524 1525 #if defined(DEBUG) && defined(CONFIG_CMD_BDI) 1526 do_bdinfo(NULL, 0, 0, NULL); 1527 #endif 1528 1529 return 0; 1530 } 1531 #endif /* CONFIG_SYS_BOOT_GET_KBD */ 1532 1533 #ifdef CONFIG_LMB 1534 int image_setup_linux(bootm_headers_t *images) 1535 { 1536 ulong of_size = images->ft_len; 1537 char **of_flat_tree = &images->ft_addr; 1538 ulong *initrd_start = &images->initrd_start; 1539 ulong *initrd_end = &images->initrd_end; 1540 struct lmb *lmb = &images->lmb; 1541 ulong rd_len; 1542 int ret; 1543 1544 if (IMAGE_ENABLE_OF_LIBFDT) 1545 boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree); 1546 1547 if (IMAGE_BOOT_GET_CMDLINE) { 1548 ret = boot_get_cmdline(lmb, &images->cmdline_start, 1549 &images->cmdline_end); 1550 if (ret) { 1551 puts("ERROR with allocation of cmdline\n"); 1552 return ret; 1553 } 1554 } 1555 if (IMAGE_ENABLE_RAMDISK_HIGH) { 1556 rd_len = images->rd_end - images->rd_start; 1557 ret = boot_ramdisk_high(lmb, images->rd_start, rd_len, 1558 initrd_start, initrd_end); 1559 if (ret) 1560 return ret; 1561 } 1562 1563 if (IMAGE_ENABLE_OF_LIBFDT) { 1564 ret = boot_relocate_fdt(lmb, of_flat_tree, &of_size); 1565 if (ret) 1566 return ret; 1567 } 1568 1569 if (IMAGE_ENABLE_OF_LIBFDT && of_size) { 1570 ret = image_setup_libfdt(images, *of_flat_tree, of_size, lmb); 1571 if (ret) 1572 return ret; 1573 } 1574 1575 return 0; 1576 } 1577 #endif /* CONFIG_LMB */ 1578 #endif /* !USE_HOSTCC */ 1579