1 /* 2 * (C) Copyright 2008 Semihalf 3 * 4 * (C) Copyright 2000-2006 5 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 6 * 7 * See file CREDITS for list of people who contributed to this 8 * project. 9 * 10 * This program is free software; you can redistribute it and/or 11 * modify it under the terms of the GNU General Public License as 12 * published by the Free Software Foundation; either version 2 of 13 * the License, or (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; if not, write to the Free Software 22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, 23 * MA 02111-1307 USA 24 */ 25 26 #ifndef USE_HOSTCC 27 #include <common.h> 28 #include <watchdog.h> 29 30 #ifdef CONFIG_SHOW_BOOT_PROGRESS 31 #include <status_led.h> 32 #endif 33 34 #ifdef CONFIG_HAS_DATAFLASH 35 #include <dataflash.h> 36 #endif 37 38 #ifdef CONFIG_LOGBUFFER 39 #include <logbuff.h> 40 #endif 41 42 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) 43 #include <rtc.h> 44 #endif 45 46 #include <image.h> 47 48 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT) 49 #include <fdt.h> 50 #include <libfdt.h> 51 #include <fdt_support.h> 52 #endif 53 54 #if defined(CONFIG_FIT) 55 #include <u-boot/md5.h> 56 #include <sha1.h> 57 58 static int fit_check_ramdisk(const void *fit, int os_noffset, 59 uint8_t arch, int verify); 60 #endif 61 62 #ifdef CONFIG_CMD_BDI 63 extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); 64 #endif 65 66 DECLARE_GLOBAL_DATA_PTR; 67 68 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 69 int verify); 70 #else 71 #include "mkimage.h" 72 #include <u-boot/md5.h> 73 #include <time.h> 74 #include <image.h> 75 #endif /* !USE_HOSTCC*/ 76 77 static const table_entry_t uimage_arch[] = { 78 { IH_ARCH_INVALID, NULL, "Invalid ARCH", }, 79 { IH_ARCH_ALPHA, "alpha", "Alpha", }, 80 { IH_ARCH_ARM, "arm", "ARM", }, 81 { IH_ARCH_I386, "x86", "Intel x86", }, 82 { IH_ARCH_IA64, "ia64", "IA64", }, 83 { IH_ARCH_M68K, "m68k", "M68K", }, 84 { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", }, 85 { IH_ARCH_MIPS, "mips", "MIPS", }, 86 { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", }, 87 { IH_ARCH_NIOS2, "nios2", "NIOS II", }, 88 { IH_ARCH_PPC, "powerpc", "PowerPC", }, 89 { IH_ARCH_PPC, "ppc", "PowerPC", }, 90 { IH_ARCH_S390, "s390", "IBM S390", }, 91 { IH_ARCH_SH, "sh", "SuperH", }, 92 { IH_ARCH_SPARC, "sparc", "SPARC", }, 93 { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", }, 94 { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", }, 95 { IH_ARCH_AVR32, "avr32", "AVR32", }, 96 { IH_ARCH_NDS32, "nds32", "NDS32", }, 97 { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",}, 98 { -1, "", "", }, 99 }; 100 101 static const table_entry_t uimage_os[] = { 102 { IH_OS_INVALID, NULL, "Invalid OS", }, 103 { IH_OS_LINUX, "linux", "Linux", }, 104 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC) 105 { IH_OS_LYNXOS, "lynxos", "LynxOS", }, 106 #endif 107 { IH_OS_NETBSD, "netbsd", "NetBSD", }, 108 { IH_OS_OSE, "ose", "Enea OSE", }, 109 { IH_OS_RTEMS, "rtems", "RTEMS", }, 110 { IH_OS_U_BOOT, "u-boot", "U-Boot", }, 111 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC) 112 { IH_OS_QNX, "qnx", "QNX", }, 113 { IH_OS_VXWORKS, "vxworks", "VxWorks", }, 114 #endif 115 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC) 116 { IH_OS_INTEGRITY,"integrity", "INTEGRITY", }, 117 #endif 118 #ifdef USE_HOSTCC 119 { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", }, 120 { IH_OS_DELL, "dell", "Dell", }, 121 { IH_OS_ESIX, "esix", "Esix", }, 122 { IH_OS_FREEBSD, "freebsd", "FreeBSD", }, 123 { IH_OS_IRIX, "irix", "Irix", }, 124 { IH_OS_NCR, "ncr", "NCR", }, 125 { IH_OS_OPENBSD, "openbsd", "OpenBSD", }, 126 { IH_OS_PSOS, "psos", "pSOS", }, 127 { IH_OS_SCO, "sco", "SCO", }, 128 { IH_OS_SOLARIS, "solaris", "Solaris", }, 129 { IH_OS_SVR4, "svr4", "SVR4", }, 130 #endif 131 { -1, "", "", }, 132 }; 133 134 static const table_entry_t uimage_type[] = { 135 { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",}, 136 { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", }, 137 { IH_TYPE_FIRMWARE, "firmware", "Firmware", }, 138 { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", }, 139 { IH_TYPE_KERNEL, "kernel", "Kernel Image", }, 140 { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", }, 141 { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",}, 142 { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",}, 143 { IH_TYPE_INVALID, NULL, "Invalid Image", }, 144 { IH_TYPE_MULTI, "multi", "Multi-File Image", }, 145 { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",}, 146 { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", }, 147 { IH_TYPE_SCRIPT, "script", "Script", }, 148 { IH_TYPE_STANDALONE, "standalone", "Standalone Program", }, 149 { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",}, 150 { -1, "", "", }, 151 }; 152 153 static const table_entry_t uimage_comp[] = { 154 { IH_COMP_NONE, "none", "uncompressed", }, 155 { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", }, 156 { IH_COMP_GZIP, "gzip", "gzip compressed", }, 157 { IH_COMP_LZMA, "lzma", "lzma compressed", }, 158 { IH_COMP_LZO, "lzo", "lzo compressed", }, 159 { -1, "", "", }, 160 }; 161 162 uint32_t crc32(uint32_t, const unsigned char *, uint); 163 uint32_t crc32_wd(uint32_t, const unsigned char *, uint, uint); 164 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 165 static void genimg_print_time(time_t timestamp); 166 #endif 167 168 /*****************************************************************************/ 169 /* Legacy format routines */ 170 /*****************************************************************************/ 171 int image_check_hcrc(const image_header_t *hdr) 172 { 173 ulong hcrc; 174 ulong len = image_get_header_size(); 175 image_header_t header; 176 177 /* Copy header so we can blank CRC field for re-calculation */ 178 memmove(&header, (char *)hdr, image_get_header_size()); 179 image_set_hcrc(&header, 0); 180 181 hcrc = crc32(0, (unsigned char *)&header, len); 182 183 return (hcrc == image_get_hcrc(hdr)); 184 } 185 186 int image_check_dcrc(const image_header_t *hdr) 187 { 188 ulong data = image_get_data(hdr); 189 ulong len = image_get_data_size(hdr); 190 ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32); 191 192 return (dcrc == image_get_dcrc(hdr)); 193 } 194 195 /** 196 * image_multi_count - get component (sub-image) count 197 * @hdr: pointer to the header of the multi component image 198 * 199 * image_multi_count() returns number of components in a multi 200 * component image. 201 * 202 * Note: no checking of the image type is done, caller must pass 203 * a valid multi component image. 204 * 205 * returns: 206 * number of components 207 */ 208 ulong image_multi_count(const image_header_t *hdr) 209 { 210 ulong i, count = 0; 211 uint32_t *size; 212 213 /* get start of the image payload, which in case of multi 214 * component images that points to a table of component sizes */ 215 size = (uint32_t *)image_get_data(hdr); 216 217 /* count non empty slots */ 218 for (i = 0; size[i]; ++i) 219 count++; 220 221 return count; 222 } 223 224 /** 225 * image_multi_getimg - get component data address and size 226 * @hdr: pointer to the header of the multi component image 227 * @idx: index of the requested component 228 * @data: pointer to a ulong variable, will hold component data address 229 * @len: pointer to a ulong variable, will hold component size 230 * 231 * image_multi_getimg() returns size and data address for the requested 232 * component in a multi component image. 233 * 234 * Note: no checking of the image type is done, caller must pass 235 * a valid multi component image. 236 * 237 * returns: 238 * data address and size of the component, if idx is valid 239 * 0 in data and len, if idx is out of range 240 */ 241 void image_multi_getimg(const image_header_t *hdr, ulong idx, 242 ulong *data, ulong *len) 243 { 244 int i; 245 uint32_t *size; 246 ulong offset, count, img_data; 247 248 /* get number of component */ 249 count = image_multi_count(hdr); 250 251 /* get start of the image payload, which in case of multi 252 * component images that points to a table of component sizes */ 253 size = (uint32_t *)image_get_data(hdr); 254 255 /* get address of the proper component data start, which means 256 * skipping sizes table (add 1 for last, null entry) */ 257 img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t); 258 259 if (idx < count) { 260 *len = uimage_to_cpu(size[idx]); 261 offset = 0; 262 263 /* go over all indices preceding requested component idx */ 264 for (i = 0; i < idx; i++) { 265 /* add up i-th component size, rounding up to 4 bytes */ 266 offset += (uimage_to_cpu(size[i]) + 3) & ~3 ; 267 } 268 269 /* calculate idx-th component data address */ 270 *data = img_data + offset; 271 } else { 272 *len = 0; 273 *data = 0; 274 } 275 } 276 277 static void image_print_type(const image_header_t *hdr) 278 { 279 const char *os, *arch, *type, *comp; 280 281 os = genimg_get_os_name(image_get_os(hdr)); 282 arch = genimg_get_arch_name(image_get_arch(hdr)); 283 type = genimg_get_type_name(image_get_type(hdr)); 284 comp = genimg_get_comp_name(image_get_comp(hdr)); 285 286 printf("%s %s %s (%s)\n", arch, os, type, comp); 287 } 288 289 /** 290 * image_print_contents - prints out the contents of the legacy format image 291 * @ptr: pointer to the legacy format image header 292 * @p: pointer to prefix string 293 * 294 * image_print_contents() formats a multi line legacy image contents description. 295 * The routine prints out all header fields followed by the size/offset data 296 * for MULTI/SCRIPT images. 297 * 298 * returns: 299 * no returned results 300 */ 301 void image_print_contents(const void *ptr) 302 { 303 const image_header_t *hdr = (const image_header_t *)ptr; 304 const char *p; 305 306 #ifdef USE_HOSTCC 307 p = ""; 308 #else 309 p = " "; 310 #endif 311 312 printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr)); 313 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 314 printf("%sCreated: ", p); 315 genimg_print_time((time_t)image_get_time(hdr)); 316 #endif 317 printf("%sImage Type: ", p); 318 image_print_type(hdr); 319 printf("%sData Size: ", p); 320 genimg_print_size(image_get_data_size(hdr)); 321 printf("%sLoad Address: %08x\n", p, image_get_load(hdr)); 322 printf("%sEntry Point: %08x\n", p, image_get_ep(hdr)); 323 324 if (image_check_type(hdr, IH_TYPE_MULTI) || 325 image_check_type(hdr, IH_TYPE_SCRIPT)) { 326 int i; 327 ulong data, len; 328 ulong count = image_multi_count(hdr); 329 330 printf("%sContents:\n", p); 331 for (i = 0; i < count; i++) { 332 image_multi_getimg(hdr, i, &data, &len); 333 334 printf("%s Image %d: ", p, i); 335 genimg_print_size(len); 336 337 if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) { 338 /* 339 * the user may need to know offsets 340 * if planning to do something with 341 * multiple files 342 */ 343 printf("%s Offset = 0x%08lx\n", p, data); 344 } 345 } 346 } 347 } 348 349 350 #ifndef USE_HOSTCC 351 /** 352 * image_get_ramdisk - get and verify ramdisk image 353 * @rd_addr: ramdisk image start address 354 * @arch: expected ramdisk architecture 355 * @verify: checksum verification flag 356 * 357 * image_get_ramdisk() returns a pointer to the verified ramdisk image 358 * header. Routine receives image start address and expected architecture 359 * flag. Verification done covers data and header integrity and os/type/arch 360 * fields checking. 361 * 362 * If dataflash support is enabled routine checks for dataflash addresses 363 * and handles required dataflash reads. 364 * 365 * returns: 366 * pointer to a ramdisk image header, if image was found and valid 367 * otherwise, return NULL 368 */ 369 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 370 int verify) 371 { 372 const image_header_t *rd_hdr = (const image_header_t *)rd_addr; 373 374 if (!image_check_magic(rd_hdr)) { 375 puts("Bad Magic Number\n"); 376 bootstage_error(BOOTSTAGE_ID_RD_MAGIC); 377 return NULL; 378 } 379 380 if (!image_check_hcrc(rd_hdr)) { 381 puts("Bad Header Checksum\n"); 382 bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 383 return NULL; 384 } 385 386 bootstage_mark(BOOTSTAGE_ID_RD_MAGIC); 387 image_print_contents(rd_hdr); 388 389 if (verify) { 390 puts(" Verifying Checksum ... "); 391 if (!image_check_dcrc(rd_hdr)) { 392 puts("Bad Data CRC\n"); 393 bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM); 394 return NULL; 395 } 396 puts("OK\n"); 397 } 398 399 bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 400 401 if (!image_check_os(rd_hdr, IH_OS_LINUX) || 402 !image_check_arch(rd_hdr, arch) || 403 !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) { 404 printf("No Linux %s Ramdisk Image\n", 405 genimg_get_arch_name(arch)); 406 bootstage_error(BOOTSTAGE_ID_RAMDISK); 407 return NULL; 408 } 409 410 return rd_hdr; 411 } 412 #endif /* !USE_HOSTCC */ 413 414 /*****************************************************************************/ 415 /* Shared dual-format routines */ 416 /*****************************************************************************/ 417 #ifndef USE_HOSTCC 418 int getenv_yesno(char *var) 419 { 420 char *s = getenv(var); 421 return (s && (*s == 'n')) ? 0 : 1; 422 } 423 424 ulong getenv_bootm_low(void) 425 { 426 char *s = getenv("bootm_low"); 427 if (s) { 428 ulong tmp = simple_strtoul(s, NULL, 16); 429 return tmp; 430 } 431 432 #if defined(CONFIG_SYS_SDRAM_BASE) 433 return CONFIG_SYS_SDRAM_BASE; 434 #elif defined(CONFIG_ARM) 435 return gd->bd->bi_dram[0].start; 436 #else 437 return 0; 438 #endif 439 } 440 441 phys_size_t getenv_bootm_size(void) 442 { 443 phys_size_t tmp; 444 char *s = getenv("bootm_size"); 445 if (s) { 446 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 447 return tmp; 448 } 449 s = getenv("bootm_low"); 450 if (s) 451 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 452 else 453 tmp = 0; 454 455 456 #if defined(CONFIG_ARM) 457 return gd->bd->bi_dram[0].size - tmp; 458 #else 459 return gd->bd->bi_memsize - tmp; 460 #endif 461 } 462 463 phys_size_t getenv_bootm_mapsize(void) 464 { 465 phys_size_t tmp; 466 char *s = getenv("bootm_mapsize"); 467 if (s) { 468 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 469 return tmp; 470 } 471 472 #if defined(CONFIG_SYS_BOOTMAPSZ) 473 return CONFIG_SYS_BOOTMAPSZ; 474 #else 475 return getenv_bootm_size(); 476 #endif 477 } 478 479 void memmove_wd(void *to, void *from, size_t len, ulong chunksz) 480 { 481 if (to == from) 482 return; 483 484 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 485 while (len > 0) { 486 size_t tail = (len > chunksz) ? chunksz : len; 487 WATCHDOG_RESET(); 488 memmove(to, from, tail); 489 to += tail; 490 from += tail; 491 len -= tail; 492 } 493 #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */ 494 memmove(to, from, len); 495 #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */ 496 } 497 #endif /* !USE_HOSTCC */ 498 499 void genimg_print_size(uint32_t size) 500 { 501 #ifndef USE_HOSTCC 502 printf("%d Bytes = ", size); 503 print_size(size, "\n"); 504 #else 505 printf("%d Bytes = %.2f kB = %.2f MB\n", 506 size, (double)size / 1.024e3, 507 (double)size / 1.048576e6); 508 #endif 509 } 510 511 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 512 static void genimg_print_time(time_t timestamp) 513 { 514 #ifndef USE_HOSTCC 515 struct rtc_time tm; 516 517 to_tm(timestamp, &tm); 518 printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n", 519 tm.tm_year, tm.tm_mon, tm.tm_mday, 520 tm.tm_hour, tm.tm_min, tm.tm_sec); 521 #else 522 printf("%s", ctime(×tamp)); 523 #endif 524 } 525 #endif /* CONFIG_TIMESTAMP || CONFIG_CMD_DATE || USE_HOSTCC */ 526 527 /** 528 * get_table_entry_name - translate entry id to long name 529 * @table: pointer to a translation table for entries of a specific type 530 * @msg: message to be returned when translation fails 531 * @id: entry id to be translated 532 * 533 * get_table_entry_name() will go over translation table trying to find 534 * entry that matches given id. If matching entry is found, its long 535 * name is returned to the caller. 536 * 537 * returns: 538 * long entry name if translation succeeds 539 * msg otherwise 540 */ 541 char *get_table_entry_name(const table_entry_t *table, char *msg, int id) 542 { 543 for (; table->id >= 0; ++table) { 544 if (table->id == id) 545 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 546 return table->lname; 547 #else 548 return table->lname + gd->reloc_off; 549 #endif 550 } 551 return (msg); 552 } 553 554 const char *genimg_get_os_name(uint8_t os) 555 { 556 return (get_table_entry_name(uimage_os, "Unknown OS", os)); 557 } 558 559 const char *genimg_get_arch_name(uint8_t arch) 560 { 561 return (get_table_entry_name(uimage_arch, "Unknown Architecture", 562 arch)); 563 } 564 565 const char *genimg_get_type_name(uint8_t type) 566 { 567 return (get_table_entry_name(uimage_type, "Unknown Image", type)); 568 } 569 570 const char *genimg_get_comp_name(uint8_t comp) 571 { 572 return (get_table_entry_name(uimage_comp, "Unknown Compression", 573 comp)); 574 } 575 576 /** 577 * get_table_entry_id - translate short entry name to id 578 * @table: pointer to a translation table for entries of a specific type 579 * @table_name: to be used in case of error 580 * @name: entry short name to be translated 581 * 582 * get_table_entry_id() will go over translation table trying to find 583 * entry that matches given short name. If matching entry is found, 584 * its id returned to the caller. 585 * 586 * returns: 587 * entry id if translation succeeds 588 * -1 otherwise 589 */ 590 int get_table_entry_id(const table_entry_t *table, 591 const char *table_name, const char *name) 592 { 593 const table_entry_t *t; 594 #ifdef USE_HOSTCC 595 int first = 1; 596 597 for (t = table; t->id >= 0; ++t) { 598 if (t->sname && strcasecmp(t->sname, name) == 0) 599 return(t->id); 600 } 601 602 fprintf(stderr, "\nInvalid %s Type - valid names are", table_name); 603 for (t = table; t->id >= 0; ++t) { 604 if (t->sname == NULL) 605 continue; 606 fprintf(stderr, "%c %s", (first) ? ':' : ',', t->sname); 607 first = 0; 608 } 609 fprintf(stderr, "\n"); 610 #else 611 for (t = table; t->id >= 0; ++t) { 612 #ifdef CONFIG_NEEDS_MANUAL_RELOC 613 if (t->sname && strcmp(t->sname + gd->reloc_off, name) == 0) 614 #else 615 if (t->sname && strcmp(t->sname, name) == 0) 616 #endif 617 return (t->id); 618 } 619 debug("Invalid %s Type: %s\n", table_name, name); 620 #endif /* USE_HOSTCC */ 621 return (-1); 622 } 623 624 int genimg_get_os_id(const char *name) 625 { 626 return (get_table_entry_id(uimage_os, "OS", name)); 627 } 628 629 int genimg_get_arch_id(const char *name) 630 { 631 return (get_table_entry_id(uimage_arch, "CPU", name)); 632 } 633 634 int genimg_get_type_id(const char *name) 635 { 636 return (get_table_entry_id(uimage_type, "Image", name)); 637 } 638 639 int genimg_get_comp_id(const char *name) 640 { 641 return (get_table_entry_id(uimage_comp, "Compression", name)); 642 } 643 644 #ifndef USE_HOSTCC 645 /** 646 * genimg_get_format - get image format type 647 * @img_addr: image start address 648 * 649 * genimg_get_format() checks whether provided address points to a valid 650 * legacy or FIT image. 651 * 652 * New uImage format and FDT blob are based on a libfdt. FDT blob 653 * may be passed directly or embedded in a FIT image. In both situations 654 * genimg_get_format() must be able to dectect libfdt header. 655 * 656 * returns: 657 * image format type or IMAGE_FORMAT_INVALID if no image is present 658 */ 659 int genimg_get_format(void *img_addr) 660 { 661 ulong format = IMAGE_FORMAT_INVALID; 662 const image_header_t *hdr; 663 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT) 664 char *fit_hdr; 665 #endif 666 667 hdr = (const image_header_t *)img_addr; 668 if (image_check_magic(hdr)) 669 format = IMAGE_FORMAT_LEGACY; 670 #if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT) 671 else { 672 fit_hdr = (char *)img_addr; 673 if (fdt_check_header(fit_hdr) == 0) 674 format = IMAGE_FORMAT_FIT; 675 } 676 #endif 677 678 return format; 679 } 680 681 /** 682 * genimg_get_image - get image from special storage (if necessary) 683 * @img_addr: image start address 684 * 685 * genimg_get_image() checks if provided image start adddress is located 686 * in a dataflash storage. If so, image is moved to a system RAM memory. 687 * 688 * returns: 689 * image start address after possible relocation from special storage 690 */ 691 ulong genimg_get_image(ulong img_addr) 692 { 693 ulong ram_addr = img_addr; 694 695 #ifdef CONFIG_HAS_DATAFLASH 696 ulong h_size, d_size; 697 698 if (addr_dataflash(img_addr)) { 699 /* ger RAM address */ 700 ram_addr = CONFIG_SYS_LOAD_ADDR; 701 702 /* get header size */ 703 h_size = image_get_header_size(); 704 #if defined(CONFIG_FIT) 705 if (sizeof(struct fdt_header) > h_size) 706 h_size = sizeof(struct fdt_header); 707 #endif 708 709 /* read in header */ 710 debug(" Reading image header from dataflash address " 711 "%08lx to RAM address %08lx\n", img_addr, ram_addr); 712 713 read_dataflash(img_addr, h_size, (char *)ram_addr); 714 715 /* get data size */ 716 switch (genimg_get_format((void *)ram_addr)) { 717 case IMAGE_FORMAT_LEGACY: 718 d_size = image_get_data_size( 719 (const image_header_t *)ram_addr); 720 debug(" Legacy format image found at 0x%08lx, " 721 "size 0x%08lx\n", 722 ram_addr, d_size); 723 break; 724 #if defined(CONFIG_FIT) 725 case IMAGE_FORMAT_FIT: 726 d_size = fit_get_size((const void *)ram_addr) - h_size; 727 debug(" FIT/FDT format image found at 0x%08lx, " 728 "size 0x%08lx\n", 729 ram_addr, d_size); 730 break; 731 #endif 732 default: 733 printf(" No valid image found at 0x%08lx\n", 734 img_addr); 735 return ram_addr; 736 } 737 738 /* read in image data */ 739 debug(" Reading image remaining data from dataflash address " 740 "%08lx to RAM address %08lx\n", img_addr + h_size, 741 ram_addr + h_size); 742 743 read_dataflash(img_addr + h_size, d_size, 744 (char *)(ram_addr + h_size)); 745 746 } 747 #endif /* CONFIG_HAS_DATAFLASH */ 748 749 return ram_addr; 750 } 751 752 /** 753 * fit_has_config - check if there is a valid FIT configuration 754 * @images: pointer to the bootm command headers structure 755 * 756 * fit_has_config() checks if there is a FIT configuration in use 757 * (if FTI support is present). 758 * 759 * returns: 760 * 0, no FIT support or no configuration found 761 * 1, configuration found 762 */ 763 int genimg_has_config(bootm_headers_t *images) 764 { 765 #if defined(CONFIG_FIT) 766 if (images->fit_uname_cfg) 767 return 1; 768 #endif 769 return 0; 770 } 771 772 /** 773 * boot_get_ramdisk - main ramdisk handling routine 774 * @argc: command argument count 775 * @argv: command argument list 776 * @images: pointer to the bootm images structure 777 * @arch: expected ramdisk architecture 778 * @rd_start: pointer to a ulong variable, will hold ramdisk start address 779 * @rd_end: pointer to a ulong variable, will hold ramdisk end 780 * 781 * boot_get_ramdisk() is responsible for finding a valid ramdisk image. 782 * Curently supported are the following ramdisk sources: 783 * - multicomponent kernel/ramdisk image, 784 * - commandline provided address of decicated ramdisk image. 785 * 786 * returns: 787 * 0, if ramdisk image was found and valid, or skiped 788 * rd_start and rd_end are set to ramdisk start/end addresses if 789 * ramdisk image is found and valid 790 * 791 * 1, if ramdisk image is found but corrupted, or invalid 792 * rd_start and rd_end are set to 0 if no ramdisk exists 793 */ 794 int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images, 795 uint8_t arch, ulong *rd_start, ulong *rd_end) 796 { 797 ulong rd_addr, rd_load; 798 ulong rd_data, rd_len; 799 const image_header_t *rd_hdr; 800 #if defined(CONFIG_FIT) 801 void *fit_hdr; 802 const char *fit_uname_config = NULL; 803 const char *fit_uname_ramdisk = NULL; 804 ulong default_addr; 805 int rd_noffset; 806 int cfg_noffset; 807 const void *data; 808 size_t size; 809 #endif 810 811 *rd_start = 0; 812 *rd_end = 0; 813 814 /* 815 * Look for a '-' which indicates to ignore the 816 * ramdisk argument 817 */ 818 if ((argc >= 3) && (strcmp(argv[2], "-") == 0)) { 819 debug("## Skipping init Ramdisk\n"); 820 rd_len = rd_data = 0; 821 } else if (argc >= 3 || genimg_has_config(images)) { 822 #if defined(CONFIG_FIT) 823 if (argc >= 3) { 824 /* 825 * If the init ramdisk comes from the FIT image and 826 * the FIT image address is omitted in the command 827 * line argument, try to use os FIT image address or 828 * default load address. 829 */ 830 if (images->fit_uname_os) 831 default_addr = (ulong)images->fit_hdr_os; 832 else 833 default_addr = load_addr; 834 835 if (fit_parse_conf(argv[2], default_addr, 836 &rd_addr, &fit_uname_config)) { 837 debug("* ramdisk: config '%s' from image at " 838 "0x%08lx\n", 839 fit_uname_config, rd_addr); 840 } else if (fit_parse_subimage(argv[2], default_addr, 841 &rd_addr, &fit_uname_ramdisk)) { 842 debug("* ramdisk: subimage '%s' from image at " 843 "0x%08lx\n", 844 fit_uname_ramdisk, rd_addr); 845 } else 846 #endif 847 { 848 rd_addr = simple_strtoul(argv[2], NULL, 16); 849 debug("* ramdisk: cmdline image address = " 850 "0x%08lx\n", 851 rd_addr); 852 } 853 #if defined(CONFIG_FIT) 854 } else { 855 /* use FIT configuration provided in first bootm 856 * command argument 857 */ 858 rd_addr = (ulong)images->fit_hdr_os; 859 fit_uname_config = images->fit_uname_cfg; 860 debug("* ramdisk: using config '%s' from image " 861 "at 0x%08lx\n", 862 fit_uname_config, rd_addr); 863 864 /* 865 * Check whether configuration has ramdisk defined, 866 * if not, don't try to use it, quit silently. 867 */ 868 fit_hdr = (void *)rd_addr; 869 cfg_noffset = fit_conf_get_node(fit_hdr, 870 fit_uname_config); 871 if (cfg_noffset < 0) { 872 debug("* ramdisk: no such config\n"); 873 return 1; 874 } 875 876 rd_noffset = fit_conf_get_ramdisk_node(fit_hdr, 877 cfg_noffset); 878 if (rd_noffset < 0) { 879 debug("* ramdisk: no ramdisk in config\n"); 880 return 0; 881 } 882 } 883 #endif 884 885 /* copy from dataflash if needed */ 886 rd_addr = genimg_get_image(rd_addr); 887 888 /* 889 * Check if there is an initrd image at the 890 * address provided in the second bootm argument 891 * check image type, for FIT images get FIT node. 892 */ 893 switch (genimg_get_format((void *)rd_addr)) { 894 case IMAGE_FORMAT_LEGACY: 895 printf("## Loading init Ramdisk from Legacy " 896 "Image at %08lx ...\n", rd_addr); 897 898 bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK); 899 rd_hdr = image_get_ramdisk(rd_addr, arch, 900 images->verify); 901 902 if (rd_hdr == NULL) 903 return 1; 904 905 rd_data = image_get_data(rd_hdr); 906 rd_len = image_get_data_size(rd_hdr); 907 rd_load = image_get_load(rd_hdr); 908 break; 909 #if defined(CONFIG_FIT) 910 case IMAGE_FORMAT_FIT: 911 fit_hdr = (void *)rd_addr; 912 printf("## Loading init Ramdisk from FIT " 913 "Image at %08lx ...\n", rd_addr); 914 915 bootstage_mark(BOOTSTAGE_ID_FIT_RD_FORMAT); 916 if (!fit_check_format(fit_hdr)) { 917 puts("Bad FIT ramdisk image format!\n"); 918 bootstage_error( 919 BOOTSTAGE_ID_FIT_RD_FORMAT); 920 return 1; 921 } 922 bootstage_mark(BOOTSTAGE_ID_FIT_RD_FORMAT_OK); 923 924 if (!fit_uname_ramdisk) { 925 /* 926 * no ramdisk image node unit name, try to get config 927 * node first. If config unit node name is NULL 928 * fit_conf_get_node() will try to find default config node 929 */ 930 bootstage_mark( 931 BOOTSTAGE_ID_FIT_RD_NO_UNIT_NAME); 932 cfg_noffset = fit_conf_get_node(fit_hdr, 933 fit_uname_config); 934 if (cfg_noffset < 0) { 935 puts("Could not find configuration " 936 "node\n"); 937 bootstage_error( 938 BOOTSTAGE_ID_FIT_RD_NO_UNIT_NAME); 939 return 1; 940 } 941 fit_uname_config = fdt_get_name(fit_hdr, 942 cfg_noffset, NULL); 943 printf(" Using '%s' configuration\n", 944 fit_uname_config); 945 946 rd_noffset = fit_conf_get_ramdisk_node(fit_hdr, 947 cfg_noffset); 948 fit_uname_ramdisk = fit_get_name(fit_hdr, 949 rd_noffset, NULL); 950 } else { 951 /* get ramdisk component image node offset */ 952 bootstage_mark( 953 BOOTSTAGE_ID_FIT_RD_UNIT_NAME); 954 rd_noffset = fit_image_get_node(fit_hdr, 955 fit_uname_ramdisk); 956 } 957 if (rd_noffset < 0) { 958 puts("Could not find subimage node\n"); 959 bootstage_error(BOOTSTAGE_ID_FIT_RD_SUBNODE); 960 return 1; 961 } 962 963 printf(" Trying '%s' ramdisk subimage\n", 964 fit_uname_ramdisk); 965 966 bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK); 967 if (!fit_check_ramdisk(fit_hdr, rd_noffset, arch, 968 images->verify)) 969 return 1; 970 971 /* get ramdisk image data address and length */ 972 if (fit_image_get_data(fit_hdr, rd_noffset, &data, 973 &size)) { 974 puts("Could not find ramdisk subimage data!\n"); 975 bootstage_error(BOOTSTAGE_ID_FIT_RD_GET_DATA); 976 return 1; 977 } 978 bootstage_mark(BOOTSTAGE_ID_FIT_RD_GET_DATA_OK); 979 980 rd_data = (ulong)data; 981 rd_len = size; 982 983 if (fit_image_get_load(fit_hdr, rd_noffset, &rd_load)) { 984 puts("Can't get ramdisk subimage load " 985 "address!\n"); 986 bootstage_error(BOOTSTAGE_ID_FIT_RD_LOAD); 987 return 1; 988 } 989 bootstage_mark(BOOTSTAGE_ID_FIT_RD_LOAD); 990 991 images->fit_hdr_rd = fit_hdr; 992 images->fit_uname_rd = fit_uname_ramdisk; 993 images->fit_noffset_rd = rd_noffset; 994 break; 995 #endif 996 default: 997 puts("Wrong Ramdisk Image Format\n"); 998 rd_data = rd_len = rd_load = 0; 999 return 1; 1000 } 1001 } else if (images->legacy_hdr_valid && 1002 image_check_type(&images->legacy_hdr_os_copy, 1003 IH_TYPE_MULTI)) { 1004 1005 /* 1006 * Now check if we have a legacy mult-component image, 1007 * get second entry data start address and len. 1008 */ 1009 bootstage_mark(BOOTSTAGE_ID_RAMDISK); 1010 printf("## Loading init Ramdisk from multi component " 1011 "Legacy Image at %08lx ...\n", 1012 (ulong)images->legacy_hdr_os); 1013 1014 image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len); 1015 } else { 1016 /* 1017 * no initrd image 1018 */ 1019 bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK); 1020 rd_len = rd_data = 0; 1021 } 1022 1023 if (!rd_data) { 1024 debug("## No init Ramdisk\n"); 1025 } else { 1026 *rd_start = rd_data; 1027 *rd_end = rd_data + rd_len; 1028 } 1029 debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n", 1030 *rd_start, *rd_end); 1031 1032 return 0; 1033 } 1034 1035 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH 1036 /** 1037 * boot_ramdisk_high - relocate init ramdisk 1038 * @lmb: pointer to lmb handle, will be used for memory mgmt 1039 * @rd_data: ramdisk data start address 1040 * @rd_len: ramdisk data length 1041 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk 1042 * start address (after possible relocation) 1043 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk 1044 * end address (after possible relocation) 1045 * 1046 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environement 1047 * variable and if requested ramdisk data is moved to a specified location. 1048 * 1049 * Initrd_start and initrd_end are set to final (after relocation) ramdisk 1050 * start/end addresses if ramdisk image start and len were provided, 1051 * otherwise set initrd_start and initrd_end set to zeros. 1052 * 1053 * returns: 1054 * 0 - success 1055 * -1 - failure 1056 */ 1057 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len, 1058 ulong *initrd_start, ulong *initrd_end) 1059 { 1060 char *s; 1061 ulong initrd_high; 1062 int initrd_copy_to_ram = 1; 1063 1064 if ((s = getenv("initrd_high")) != NULL) { 1065 /* a value of "no" or a similar string will act like 0, 1066 * turning the "load high" feature off. This is intentional. 1067 */ 1068 initrd_high = simple_strtoul(s, NULL, 16); 1069 if (initrd_high == ~0) 1070 initrd_copy_to_ram = 0; 1071 } else { 1072 /* not set, no restrictions to load high */ 1073 initrd_high = ~0; 1074 } 1075 1076 1077 #ifdef CONFIG_LOGBUFFER 1078 /* Prevent initrd from overwriting logbuffer */ 1079 lmb_reserve(lmb, logbuffer_base() - LOGBUFF_OVERHEAD, LOGBUFF_RESERVE); 1080 #endif 1081 1082 debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n", 1083 initrd_high, initrd_copy_to_ram); 1084 1085 if (rd_data) { 1086 if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */ 1087 debug(" in-place initrd\n"); 1088 *initrd_start = rd_data; 1089 *initrd_end = rd_data + rd_len; 1090 lmb_reserve(lmb, rd_data, rd_len); 1091 } else { 1092 if (initrd_high) 1093 *initrd_start = (ulong)lmb_alloc_base(lmb, 1094 rd_len, 0x1000, initrd_high); 1095 else 1096 *initrd_start = (ulong)lmb_alloc(lmb, rd_len, 1097 0x1000); 1098 1099 if (*initrd_start == 0) { 1100 puts("ramdisk - allocation error\n"); 1101 goto error; 1102 } 1103 bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK); 1104 1105 *initrd_end = *initrd_start + rd_len; 1106 printf(" Loading Ramdisk to %08lx, end %08lx ... ", 1107 *initrd_start, *initrd_end); 1108 1109 memmove_wd((void *)*initrd_start, 1110 (void *)rd_data, rd_len, CHUNKSZ); 1111 1112 #ifdef CONFIG_MP 1113 /* 1114 * Ensure the image is flushed to memory to handle 1115 * AMP boot scenarios in which we might not be 1116 * HW cache coherent 1117 */ 1118 flush_cache((unsigned long)*initrd_start, rd_len); 1119 #endif 1120 puts("OK\n"); 1121 } 1122 } else { 1123 *initrd_start = 0; 1124 *initrd_end = 0; 1125 } 1126 debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n", 1127 *initrd_start, *initrd_end); 1128 1129 return 0; 1130 1131 error: 1132 return -1; 1133 } 1134 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */ 1135 1136 #ifdef CONFIG_OF_LIBFDT 1137 static void fdt_error(const char *msg) 1138 { 1139 puts("ERROR: "); 1140 puts(msg); 1141 puts(" - must RESET the board to recover.\n"); 1142 } 1143 1144 static const image_header_t *image_get_fdt(ulong fdt_addr) 1145 { 1146 const image_header_t *fdt_hdr = (const image_header_t *)fdt_addr; 1147 1148 image_print_contents(fdt_hdr); 1149 1150 puts(" Verifying Checksum ... "); 1151 if (!image_check_hcrc(fdt_hdr)) { 1152 fdt_error("fdt header checksum invalid"); 1153 return NULL; 1154 } 1155 1156 if (!image_check_dcrc(fdt_hdr)) { 1157 fdt_error("fdt checksum invalid"); 1158 return NULL; 1159 } 1160 puts("OK\n"); 1161 1162 if (!image_check_type(fdt_hdr, IH_TYPE_FLATDT)) { 1163 fdt_error("uImage is not a fdt"); 1164 return NULL; 1165 } 1166 if (image_get_comp(fdt_hdr) != IH_COMP_NONE) { 1167 fdt_error("uImage is compressed"); 1168 return NULL; 1169 } 1170 if (fdt_check_header((char *)image_get_data(fdt_hdr)) != 0) { 1171 fdt_error("uImage data is not a fdt"); 1172 return NULL; 1173 } 1174 return fdt_hdr; 1175 } 1176 1177 /** 1178 * fit_check_fdt - verify FIT format FDT subimage 1179 * @fit_hdr: pointer to the FIT header 1180 * fdt_noffset: FDT subimage node offset within FIT image 1181 * @verify: data CRC verification flag 1182 * 1183 * fit_check_fdt() verifies integrity of the FDT subimage and from 1184 * specified FIT image. 1185 * 1186 * returns: 1187 * 1, on success 1188 * 0, on failure 1189 */ 1190 #if defined(CONFIG_FIT) 1191 static int fit_check_fdt(const void *fit, int fdt_noffset, int verify) 1192 { 1193 fit_image_print(fit, fdt_noffset, " "); 1194 1195 if (verify) { 1196 puts(" Verifying Hash Integrity ... "); 1197 if (!fit_image_check_hashes(fit, fdt_noffset)) { 1198 fdt_error("Bad Data Hash"); 1199 return 0; 1200 } 1201 puts("OK\n"); 1202 } 1203 1204 if (!fit_image_check_type(fit, fdt_noffset, IH_TYPE_FLATDT)) { 1205 fdt_error("Not a FDT image"); 1206 return 0; 1207 } 1208 1209 if (!fit_image_check_comp(fit, fdt_noffset, IH_COMP_NONE)) { 1210 fdt_error("FDT image is compressed"); 1211 return 0; 1212 } 1213 1214 return 1; 1215 } 1216 #endif /* CONFIG_FIT */ 1217 1218 #ifndef CONFIG_SYS_FDT_PAD 1219 #define CONFIG_SYS_FDT_PAD 0x3000 1220 #endif 1221 1222 #if defined(CONFIG_OF_LIBFDT) 1223 /** 1224 * boot_fdt_add_mem_rsv_regions - Mark the memreserve sections as unusable 1225 * @lmb: pointer to lmb handle, will be used for memory mgmt 1226 * @fdt_blob: pointer to fdt blob base address 1227 * 1228 * Adds the memreserve regions in the dtb to the lmb block. Adding the 1229 * memreserve regions prevents u-boot from using them to store the initrd 1230 * or the fdt blob. 1231 */ 1232 void boot_fdt_add_mem_rsv_regions(struct lmb *lmb, void *fdt_blob) 1233 { 1234 uint64_t addr, size; 1235 int i, total; 1236 1237 if (fdt_check_header(fdt_blob) != 0) 1238 return; 1239 1240 total = fdt_num_mem_rsv(fdt_blob); 1241 for (i = 0; i < total; i++) { 1242 if (fdt_get_mem_rsv(fdt_blob, i, &addr, &size) != 0) 1243 continue; 1244 printf(" reserving fdt memory region: addr=%llx size=%llx\n", 1245 (unsigned long long)addr, (unsigned long long)size); 1246 lmb_reserve(lmb, addr, size); 1247 } 1248 } 1249 1250 /** 1251 * boot_relocate_fdt - relocate flat device tree 1252 * @lmb: pointer to lmb handle, will be used for memory mgmt 1253 * @of_flat_tree: pointer to a char* variable, will hold fdt start address 1254 * @of_size: pointer to a ulong variable, will hold fdt length 1255 * 1256 * boot_relocate_fdt() allocates a region of memory within the bootmap and 1257 * relocates the of_flat_tree into that region, even if the fdt is already in 1258 * the bootmap. It also expands the size of the fdt by CONFIG_SYS_FDT_PAD 1259 * bytes. 1260 * 1261 * of_flat_tree and of_size are set to final (after relocation) values 1262 * 1263 * returns: 1264 * 0 - success 1265 * 1 - failure 1266 */ 1267 int boot_relocate_fdt(struct lmb *lmb, char **of_flat_tree, ulong *of_size) 1268 { 1269 void *fdt_blob = *of_flat_tree; 1270 void *of_start = 0; 1271 char *fdt_high; 1272 ulong of_len = 0; 1273 int err; 1274 int disable_relocation = 0; 1275 1276 /* nothing to do */ 1277 if (*of_size == 0) 1278 return 0; 1279 1280 if (fdt_check_header(fdt_blob) != 0) { 1281 fdt_error("image is not a fdt"); 1282 goto error; 1283 } 1284 1285 /* position on a 4K boundary before the alloc_current */ 1286 /* Pad the FDT by a specified amount */ 1287 of_len = *of_size + CONFIG_SYS_FDT_PAD; 1288 1289 /* If fdt_high is set use it to select the relocation address */ 1290 fdt_high = getenv("fdt_high"); 1291 if (fdt_high) { 1292 void *desired_addr = (void *)simple_strtoul(fdt_high, NULL, 16); 1293 1294 if (((ulong) desired_addr) == ~0UL) { 1295 /* All ones means use fdt in place */ 1296 of_start = fdt_blob; 1297 lmb_reserve(lmb, (ulong)of_start, of_len); 1298 disable_relocation = 1; 1299 } else if (desired_addr) { 1300 of_start = 1301 (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000, 1302 (ulong)desired_addr); 1303 if (of_start == 0) { 1304 puts("Failed using fdt_high value for Device Tree"); 1305 goto error; 1306 } 1307 } else { 1308 of_start = 1309 (void *)(ulong) lmb_alloc(lmb, of_len, 0x1000); 1310 } 1311 } else { 1312 of_start = 1313 (void *)(ulong) lmb_alloc_base(lmb, of_len, 0x1000, 1314 getenv_bootm_mapsize() 1315 + getenv_bootm_low()); 1316 } 1317 1318 if (of_start == 0) { 1319 puts("device tree - allocation error\n"); 1320 goto error; 1321 } 1322 1323 if (disable_relocation) { 1324 /* We assume there is space after the existing fdt to use for padding */ 1325 fdt_set_totalsize(of_start, of_len); 1326 printf(" Using Device Tree in place at %p, end %p\n", 1327 of_start, of_start + of_len - 1); 1328 } else { 1329 debug("## device tree at %p ... %p (len=%ld [0x%lX])\n", 1330 fdt_blob, fdt_blob + *of_size - 1, of_len, of_len); 1331 1332 printf(" Loading Device Tree to %p, end %p ... ", 1333 of_start, of_start + of_len - 1); 1334 1335 err = fdt_open_into(fdt_blob, of_start, of_len); 1336 if (err != 0) { 1337 fdt_error("fdt move failed"); 1338 goto error; 1339 } 1340 puts("OK\n"); 1341 } 1342 1343 *of_flat_tree = of_start; 1344 *of_size = of_len; 1345 1346 set_working_fdt_addr(*of_flat_tree); 1347 return 0; 1348 1349 error: 1350 return 1; 1351 } 1352 #endif /* CONFIG_OF_LIBFDT */ 1353 1354 /** 1355 * boot_get_fdt - main fdt handling routine 1356 * @argc: command argument count 1357 * @argv: command argument list 1358 * @images: pointer to the bootm images structure 1359 * @of_flat_tree: pointer to a char* variable, will hold fdt start address 1360 * @of_size: pointer to a ulong variable, will hold fdt length 1361 * 1362 * boot_get_fdt() is responsible for finding a valid flat device tree image. 1363 * Curently supported are the following ramdisk sources: 1364 * - multicomponent kernel/ramdisk image, 1365 * - commandline provided address of decicated ramdisk image. 1366 * 1367 * returns: 1368 * 0, if fdt image was found and valid, or skipped 1369 * of_flat_tree and of_size are set to fdt start address and length if 1370 * fdt image is found and valid 1371 * 1372 * 1, if fdt image is found but corrupted 1373 * of_flat_tree and of_size are set to 0 if no fdt exists 1374 */ 1375 int boot_get_fdt(int flag, int argc, char * const argv[], 1376 bootm_headers_t *images, char **of_flat_tree, ulong *of_size) 1377 { 1378 const image_header_t *fdt_hdr; 1379 ulong fdt_addr; 1380 char *fdt_blob = NULL; 1381 ulong image_start, image_data, image_end; 1382 ulong load_start, load_end; 1383 #if defined(CONFIG_FIT) 1384 void *fit_hdr; 1385 const char *fit_uname_config = NULL; 1386 const char *fit_uname_fdt = NULL; 1387 ulong default_addr; 1388 int cfg_noffset; 1389 int fdt_noffset; 1390 const void *data; 1391 size_t size; 1392 #endif 1393 1394 *of_flat_tree = NULL; 1395 *of_size = 0; 1396 1397 if (argc > 3 || genimg_has_config(images)) { 1398 #if defined(CONFIG_FIT) 1399 if (argc > 3) { 1400 /* 1401 * If the FDT blob comes from the FIT image and the 1402 * FIT image address is omitted in the command line 1403 * argument, try to use ramdisk or os FIT image 1404 * address or default load address. 1405 */ 1406 if (images->fit_uname_rd) 1407 default_addr = (ulong)images->fit_hdr_rd; 1408 else if (images->fit_uname_os) 1409 default_addr = (ulong)images->fit_hdr_os; 1410 else 1411 default_addr = load_addr; 1412 1413 if (fit_parse_conf(argv[3], default_addr, 1414 &fdt_addr, &fit_uname_config)) { 1415 debug("* fdt: config '%s' from image at " 1416 "0x%08lx\n", 1417 fit_uname_config, fdt_addr); 1418 } else if (fit_parse_subimage(argv[3], default_addr, 1419 &fdt_addr, &fit_uname_fdt)) { 1420 debug("* fdt: subimage '%s' from image at " 1421 "0x%08lx\n", 1422 fit_uname_fdt, fdt_addr); 1423 } else 1424 #endif 1425 { 1426 fdt_addr = simple_strtoul(argv[3], NULL, 16); 1427 debug("* fdt: cmdline image address = " 1428 "0x%08lx\n", 1429 fdt_addr); 1430 } 1431 #if defined(CONFIG_FIT) 1432 } else { 1433 /* use FIT configuration provided in first bootm 1434 * command argument 1435 */ 1436 fdt_addr = (ulong)images->fit_hdr_os; 1437 fit_uname_config = images->fit_uname_cfg; 1438 debug("* fdt: using config '%s' from image " 1439 "at 0x%08lx\n", 1440 fit_uname_config, fdt_addr); 1441 1442 /* 1443 * Check whether configuration has FDT blob defined, 1444 * if not quit silently. 1445 */ 1446 fit_hdr = (void *)fdt_addr; 1447 cfg_noffset = fit_conf_get_node(fit_hdr, 1448 fit_uname_config); 1449 if (cfg_noffset < 0) { 1450 debug("* fdt: no such config\n"); 1451 return 0; 1452 } 1453 1454 fdt_noffset = fit_conf_get_fdt_node(fit_hdr, 1455 cfg_noffset); 1456 if (fdt_noffset < 0) { 1457 debug("* fdt: no fdt in config\n"); 1458 return 0; 1459 } 1460 } 1461 #endif 1462 1463 debug("## Checking for 'FDT'/'FDT Image' at %08lx\n", 1464 fdt_addr); 1465 1466 /* copy from dataflash if needed */ 1467 fdt_addr = genimg_get_image(fdt_addr); 1468 1469 /* 1470 * Check if there is an FDT image at the 1471 * address provided in the second bootm argument 1472 * check image type, for FIT images get a FIT node. 1473 */ 1474 switch (genimg_get_format((void *)fdt_addr)) { 1475 case IMAGE_FORMAT_LEGACY: 1476 /* verify fdt_addr points to a valid image header */ 1477 printf("## Flattened Device Tree from Legacy Image " 1478 "at %08lx\n", 1479 fdt_addr); 1480 fdt_hdr = image_get_fdt(fdt_addr); 1481 if (!fdt_hdr) 1482 goto error; 1483 1484 /* 1485 * move image data to the load address, 1486 * make sure we don't overwrite initial image 1487 */ 1488 image_start = (ulong)fdt_hdr; 1489 image_data = (ulong)image_get_data(fdt_hdr); 1490 image_end = image_get_image_end(fdt_hdr); 1491 1492 load_start = image_get_load(fdt_hdr); 1493 load_end = load_start + image_get_data_size(fdt_hdr); 1494 1495 if (load_start == image_start || 1496 load_start == image_data) { 1497 fdt_blob = (char *)image_data; 1498 break; 1499 } 1500 1501 if ((load_start < image_end) && (load_end > image_start)) { 1502 fdt_error("fdt overwritten"); 1503 goto error; 1504 } 1505 1506 debug(" Loading FDT from 0x%08lx to 0x%08lx\n", 1507 image_data, load_start); 1508 1509 memmove((void *)load_start, 1510 (void *)image_data, 1511 image_get_data_size(fdt_hdr)); 1512 1513 fdt_blob = (char *)load_start; 1514 break; 1515 case IMAGE_FORMAT_FIT: 1516 /* 1517 * This case will catch both: new uImage format 1518 * (libfdt based) and raw FDT blob (also libfdt 1519 * based). 1520 */ 1521 #if defined(CONFIG_FIT) 1522 /* check FDT blob vs FIT blob */ 1523 if (fit_check_format((const void *)fdt_addr)) { 1524 /* 1525 * FIT image 1526 */ 1527 fit_hdr = (void *)fdt_addr; 1528 printf("## Flattened Device Tree from FIT " 1529 "Image at %08lx\n", 1530 fdt_addr); 1531 1532 if (!fit_uname_fdt) { 1533 /* 1534 * no FDT blob image node unit name, 1535 * try to get config node first. If 1536 * config unit node name is NULL 1537 * fit_conf_get_node() will try to 1538 * find default config node 1539 */ 1540 cfg_noffset = fit_conf_get_node(fit_hdr, 1541 fit_uname_config); 1542 1543 if (cfg_noffset < 0) { 1544 fdt_error("Could not find " 1545 "configuration " 1546 "node\n"); 1547 goto error; 1548 } 1549 1550 fit_uname_config = fdt_get_name(fit_hdr, 1551 cfg_noffset, NULL); 1552 printf(" Using '%s' configuration\n", 1553 fit_uname_config); 1554 1555 fdt_noffset = fit_conf_get_fdt_node( 1556 fit_hdr, 1557 cfg_noffset); 1558 fit_uname_fdt = fit_get_name(fit_hdr, 1559 fdt_noffset, NULL); 1560 } else { 1561 /* get FDT component image node offset */ 1562 fdt_noffset = fit_image_get_node( 1563 fit_hdr, 1564 fit_uname_fdt); 1565 } 1566 if (fdt_noffset < 0) { 1567 fdt_error("Could not find subimage " 1568 "node\n"); 1569 goto error; 1570 } 1571 1572 printf(" Trying '%s' FDT blob subimage\n", 1573 fit_uname_fdt); 1574 1575 if (!fit_check_fdt(fit_hdr, fdt_noffset, 1576 images->verify)) 1577 goto error; 1578 1579 /* get ramdisk image data address and length */ 1580 if (fit_image_get_data(fit_hdr, fdt_noffset, 1581 &data, &size)) { 1582 fdt_error("Could not find FDT " 1583 "subimage data"); 1584 goto error; 1585 } 1586 1587 /* verift that image data is a proper FDT blob */ 1588 if (fdt_check_header((char *)data) != 0) { 1589 fdt_error("Subimage data is not a FTD"); 1590 goto error; 1591 } 1592 1593 /* 1594 * move image data to the load address, 1595 * make sure we don't overwrite initial image 1596 */ 1597 image_start = (ulong)fit_hdr; 1598 image_end = fit_get_end(fit_hdr); 1599 1600 if (fit_image_get_load(fit_hdr, fdt_noffset, 1601 &load_start) == 0) { 1602 load_end = load_start + size; 1603 1604 if ((load_start < image_end) && 1605 (load_end > image_start)) { 1606 fdt_error("FDT overwritten"); 1607 goto error; 1608 } 1609 1610 printf(" Loading FDT from 0x%08lx " 1611 "to 0x%08lx\n", 1612 (ulong)data, 1613 load_start); 1614 1615 memmove((void *)load_start, 1616 (void *)data, size); 1617 1618 fdt_blob = (char *)load_start; 1619 } else { 1620 fdt_blob = (char *)data; 1621 } 1622 1623 images->fit_hdr_fdt = fit_hdr; 1624 images->fit_uname_fdt = fit_uname_fdt; 1625 images->fit_noffset_fdt = fdt_noffset; 1626 break; 1627 } else 1628 #endif 1629 { 1630 /* 1631 * FDT blob 1632 */ 1633 fdt_blob = (char *)fdt_addr; 1634 debug("* fdt: raw FDT blob\n"); 1635 printf("## Flattened Device Tree blob at " 1636 "%08lx\n", (long)fdt_blob); 1637 } 1638 break; 1639 default: 1640 puts("ERROR: Did not find a cmdline Flattened Device " 1641 "Tree\n"); 1642 goto error; 1643 } 1644 1645 printf(" Booting using the fdt blob at 0x%p\n", fdt_blob); 1646 1647 } else if (images->legacy_hdr_valid && 1648 image_check_type(&images->legacy_hdr_os_copy, 1649 IH_TYPE_MULTI)) { 1650 1651 ulong fdt_data, fdt_len; 1652 1653 /* 1654 * Now check if we have a legacy multi-component image, 1655 * get second entry data start address and len. 1656 */ 1657 printf("## Flattened Device Tree from multi " 1658 "component Image at %08lX\n", 1659 (ulong)images->legacy_hdr_os); 1660 1661 image_multi_getimg(images->legacy_hdr_os, 2, &fdt_data, 1662 &fdt_len); 1663 if (fdt_len) { 1664 1665 fdt_blob = (char *)fdt_data; 1666 printf(" Booting using the fdt at 0x%p\n", fdt_blob); 1667 1668 if (fdt_check_header(fdt_blob) != 0) { 1669 fdt_error("image is not a fdt"); 1670 goto error; 1671 } 1672 1673 if (fdt_totalsize(fdt_blob) != fdt_len) { 1674 fdt_error("fdt size != image size"); 1675 goto error; 1676 } 1677 } else { 1678 debug("## No Flattened Device Tree\n"); 1679 return 0; 1680 } 1681 } else { 1682 debug("## No Flattened Device Tree\n"); 1683 return 0; 1684 } 1685 1686 *of_flat_tree = fdt_blob; 1687 *of_size = fdt_totalsize(fdt_blob); 1688 debug(" of_flat_tree at 0x%08lx size 0x%08lx\n", 1689 (ulong)*of_flat_tree, *of_size); 1690 1691 return 0; 1692 1693 error: 1694 *of_flat_tree = 0; 1695 *of_size = 0; 1696 return 1; 1697 } 1698 #endif /* CONFIG_OF_LIBFDT */ 1699 1700 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE 1701 /** 1702 * boot_get_cmdline - allocate and initialize kernel cmdline 1703 * @lmb: pointer to lmb handle, will be used for memory mgmt 1704 * @cmd_start: pointer to a ulong variable, will hold cmdline start 1705 * @cmd_end: pointer to a ulong variable, will hold cmdline end 1706 * 1707 * boot_get_cmdline() allocates space for kernel command line below 1708 * BOOTMAPSZ + getenv_bootm_low() address. If "bootargs" U-boot environemnt 1709 * variable is present its contents is copied to allocated kernel 1710 * command line. 1711 * 1712 * returns: 1713 * 0 - success 1714 * -1 - failure 1715 */ 1716 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end) 1717 { 1718 char *cmdline; 1719 char *s; 1720 1721 cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf, 1722 getenv_bootm_mapsize() + getenv_bootm_low()); 1723 1724 if (cmdline == NULL) 1725 return -1; 1726 1727 if ((s = getenv("bootargs")) == NULL) 1728 s = ""; 1729 1730 strcpy(cmdline, s); 1731 1732 *cmd_start = (ulong) & cmdline[0]; 1733 *cmd_end = *cmd_start + strlen(cmdline); 1734 1735 debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end); 1736 1737 return 0; 1738 } 1739 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */ 1740 1741 #ifdef CONFIG_SYS_BOOT_GET_KBD 1742 /** 1743 * boot_get_kbd - allocate and initialize kernel copy of board info 1744 * @lmb: pointer to lmb handle, will be used for memory mgmt 1745 * @kbd: double pointer to board info data 1746 * 1747 * boot_get_kbd() allocates space for kernel copy of board info data below 1748 * BOOTMAPSZ + getenv_bootm_low() address and kernel board info is initialized 1749 * with the current u-boot board info data. 1750 * 1751 * returns: 1752 * 0 - success 1753 * -1 - failure 1754 */ 1755 int boot_get_kbd(struct lmb *lmb, bd_t **kbd) 1756 { 1757 *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf, 1758 getenv_bootm_mapsize() + getenv_bootm_low()); 1759 if (*kbd == NULL) 1760 return -1; 1761 1762 **kbd = *(gd->bd); 1763 1764 debug("## kernel board info at 0x%08lx\n", (ulong)*kbd); 1765 1766 #if defined(DEBUG) && defined(CONFIG_CMD_BDI) 1767 do_bdinfo(NULL, 0, 0, NULL); 1768 #endif 1769 1770 return 0; 1771 } 1772 #endif /* CONFIG_SYS_BOOT_GET_KBD */ 1773 #endif /* !USE_HOSTCC */ 1774 1775 #if defined(CONFIG_FIT) 1776 /*****************************************************************************/ 1777 /* New uImage format routines */ 1778 /*****************************************************************************/ 1779 #ifndef USE_HOSTCC 1780 static int fit_parse_spec(const char *spec, char sepc, ulong addr_curr, 1781 ulong *addr, const char **name) 1782 { 1783 const char *sep; 1784 1785 *addr = addr_curr; 1786 *name = NULL; 1787 1788 sep = strchr(spec, sepc); 1789 if (sep) { 1790 if (sep - spec > 0) 1791 *addr = simple_strtoul(spec, NULL, 16); 1792 1793 *name = sep + 1; 1794 return 1; 1795 } 1796 1797 return 0; 1798 } 1799 1800 /** 1801 * fit_parse_conf - parse FIT configuration spec 1802 * @spec: input string, containing configuration spec 1803 * @add_curr: current image address (to be used as a possible default) 1804 * @addr: pointer to a ulong variable, will hold FIT image address of a given 1805 * configuration 1806 * @conf_name double pointer to a char, will hold pointer to a configuration 1807 * unit name 1808 * 1809 * fit_parse_conf() expects configuration spec in the for of [<addr>]#<conf>, 1810 * where <addr> is a FIT image address that contains configuration 1811 * with a <conf> unit name. 1812 * 1813 * Address part is optional, and if omitted default add_curr will 1814 * be used instead. 1815 * 1816 * returns: 1817 * 1 if spec is a valid configuration string, 1818 * addr and conf_name are set accordingly 1819 * 0 otherwise 1820 */ 1821 inline int fit_parse_conf(const char *spec, ulong addr_curr, 1822 ulong *addr, const char **conf_name) 1823 { 1824 return fit_parse_spec(spec, '#', addr_curr, addr, conf_name); 1825 } 1826 1827 /** 1828 * fit_parse_subimage - parse FIT subimage spec 1829 * @spec: input string, containing subimage spec 1830 * @add_curr: current image address (to be used as a possible default) 1831 * @addr: pointer to a ulong variable, will hold FIT image address of a given 1832 * subimage 1833 * @image_name: double pointer to a char, will hold pointer to a subimage name 1834 * 1835 * fit_parse_subimage() expects subimage spec in the for of 1836 * [<addr>]:<subimage>, where <addr> is a FIT image address that contains 1837 * subimage with a <subimg> unit name. 1838 * 1839 * Address part is optional, and if omitted default add_curr will 1840 * be used instead. 1841 * 1842 * returns: 1843 * 1 if spec is a valid subimage string, 1844 * addr and image_name are set accordingly 1845 * 0 otherwise 1846 */ 1847 inline int fit_parse_subimage(const char *spec, ulong addr_curr, 1848 ulong *addr, const char **image_name) 1849 { 1850 return fit_parse_spec(spec, ':', addr_curr, addr, image_name); 1851 } 1852 #endif /* !USE_HOSTCC */ 1853 1854 static void fit_get_debug(const void *fit, int noffset, 1855 char *prop_name, int err) 1856 { 1857 debug("Can't get '%s' property from FIT 0x%08lx, " 1858 "node: offset %d, name %s (%s)\n", 1859 prop_name, (ulong)fit, noffset, 1860 fit_get_name(fit, noffset, NULL), 1861 fdt_strerror(err)); 1862 } 1863 1864 /** 1865 * fit_print_contents - prints out the contents of the FIT format image 1866 * @fit: pointer to the FIT format image header 1867 * @p: pointer to prefix string 1868 * 1869 * fit_print_contents() formats a multi line FIT image contents description. 1870 * The routine prints out FIT image properties (root node level) follwed by 1871 * the details of each component image. 1872 * 1873 * returns: 1874 * no returned results 1875 */ 1876 void fit_print_contents(const void *fit) 1877 { 1878 char *desc; 1879 char *uname; 1880 int images_noffset; 1881 int confs_noffset; 1882 int noffset; 1883 int ndepth; 1884 int count = 0; 1885 int ret; 1886 const char *p; 1887 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 1888 time_t timestamp; 1889 #endif 1890 1891 #ifdef USE_HOSTCC 1892 p = ""; 1893 #else 1894 p = " "; 1895 #endif 1896 1897 /* Root node properties */ 1898 ret = fit_get_desc(fit, 0, &desc); 1899 printf("%sFIT description: ", p); 1900 if (ret) 1901 printf("unavailable\n"); 1902 else 1903 printf("%s\n", desc); 1904 1905 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 1906 ret = fit_get_timestamp(fit, 0, ×tamp); 1907 printf("%sCreated: ", p); 1908 if (ret) 1909 printf("unavailable\n"); 1910 else 1911 genimg_print_time(timestamp); 1912 #endif 1913 1914 /* Find images parent node offset */ 1915 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 1916 if (images_noffset < 0) { 1917 printf("Can't find images parent node '%s' (%s)\n", 1918 FIT_IMAGES_PATH, fdt_strerror(images_noffset)); 1919 return; 1920 } 1921 1922 /* Process its subnodes, print out component images details */ 1923 for (ndepth = 0, count = 0, 1924 noffset = fdt_next_node(fit, images_noffset, &ndepth); 1925 (noffset >= 0) && (ndepth > 0); 1926 noffset = fdt_next_node(fit, noffset, &ndepth)) { 1927 if (ndepth == 1) { 1928 /* 1929 * Direct child node of the images parent node, 1930 * i.e. component image node. 1931 */ 1932 printf("%s Image %u (%s)\n", p, count++, 1933 fit_get_name(fit, noffset, NULL)); 1934 1935 fit_image_print(fit, noffset, p); 1936 } 1937 } 1938 1939 /* Find configurations parent node offset */ 1940 confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH); 1941 if (confs_noffset < 0) { 1942 debug("Can't get configurations parent node '%s' (%s)\n", 1943 FIT_CONFS_PATH, fdt_strerror(confs_noffset)); 1944 return; 1945 } 1946 1947 /* get default configuration unit name from default property */ 1948 uname = (char *)fdt_getprop(fit, noffset, FIT_DEFAULT_PROP, NULL); 1949 if (uname) 1950 printf("%s Default Configuration: '%s'\n", p, uname); 1951 1952 /* Process its subnodes, print out configurations details */ 1953 for (ndepth = 0, count = 0, 1954 noffset = fdt_next_node(fit, confs_noffset, &ndepth); 1955 (noffset >= 0) && (ndepth > 0); 1956 noffset = fdt_next_node(fit, noffset, &ndepth)) { 1957 if (ndepth == 1) { 1958 /* 1959 * Direct child node of the configurations parent node, 1960 * i.e. configuration node. 1961 */ 1962 printf("%s Configuration %u (%s)\n", p, count++, 1963 fit_get_name(fit, noffset, NULL)); 1964 1965 fit_conf_print(fit, noffset, p); 1966 } 1967 } 1968 } 1969 1970 /** 1971 * fit_image_print - prints out the FIT component image details 1972 * @fit: pointer to the FIT format image header 1973 * @image_noffset: offset of the component image node 1974 * @p: pointer to prefix string 1975 * 1976 * fit_image_print() lists all mandatory properies for the processed component 1977 * image. If present, hash nodes are printed out as well. Load 1978 * address for images of type firmware is also printed out. Since the load 1979 * address is not mandatory for firmware images, it will be output as 1980 * "unavailable" when not present. 1981 * 1982 * returns: 1983 * no returned results 1984 */ 1985 void fit_image_print(const void *fit, int image_noffset, const char *p) 1986 { 1987 char *desc; 1988 uint8_t type, arch, os, comp; 1989 size_t size; 1990 ulong load, entry; 1991 const void *data; 1992 int noffset; 1993 int ndepth; 1994 int ret; 1995 1996 /* Mandatory properties */ 1997 ret = fit_get_desc(fit, image_noffset, &desc); 1998 printf("%s Description: ", p); 1999 if (ret) 2000 printf("unavailable\n"); 2001 else 2002 printf("%s\n", desc); 2003 2004 fit_image_get_type(fit, image_noffset, &type); 2005 printf("%s Type: %s\n", p, genimg_get_type_name(type)); 2006 2007 fit_image_get_comp(fit, image_noffset, &comp); 2008 printf("%s Compression: %s\n", p, genimg_get_comp_name(comp)); 2009 2010 ret = fit_image_get_data(fit, image_noffset, &data, &size); 2011 2012 #ifndef USE_HOSTCC 2013 printf("%s Data Start: ", p); 2014 if (ret) 2015 printf("unavailable\n"); 2016 else 2017 printf("0x%08lx\n", (ulong)data); 2018 #endif 2019 2020 printf("%s Data Size: ", p); 2021 if (ret) 2022 printf("unavailable\n"); 2023 else 2024 genimg_print_size(size); 2025 2026 /* Remaining, type dependent properties */ 2027 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) || 2028 (type == IH_TYPE_RAMDISK) || (type == IH_TYPE_FIRMWARE) || 2029 (type == IH_TYPE_FLATDT)) { 2030 fit_image_get_arch(fit, image_noffset, &arch); 2031 printf("%s Architecture: %s\n", p, genimg_get_arch_name(arch)); 2032 } 2033 2034 if (type == IH_TYPE_KERNEL) { 2035 fit_image_get_os(fit, image_noffset, &os); 2036 printf("%s OS: %s\n", p, genimg_get_os_name(os)); 2037 } 2038 2039 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE) || 2040 (type == IH_TYPE_FIRMWARE)) { 2041 ret = fit_image_get_load(fit, image_noffset, &load); 2042 printf("%s Load Address: ", p); 2043 if (ret) 2044 printf("unavailable\n"); 2045 else 2046 printf("0x%08lx\n", load); 2047 } 2048 2049 if ((type == IH_TYPE_KERNEL) || (type == IH_TYPE_STANDALONE)) { 2050 fit_image_get_entry(fit, image_noffset, &entry); 2051 printf("%s Entry Point: ", p); 2052 if (ret) 2053 printf("unavailable\n"); 2054 else 2055 printf("0x%08lx\n", entry); 2056 } 2057 2058 /* Process all hash subnodes of the component image node */ 2059 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth); 2060 (noffset >= 0) && (ndepth > 0); 2061 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2062 if (ndepth == 1) { 2063 /* Direct child node of the component image node */ 2064 fit_image_print_hash(fit, noffset, p); 2065 } 2066 } 2067 } 2068 2069 /** 2070 * fit_image_print_hash - prints out the hash node details 2071 * @fit: pointer to the FIT format image header 2072 * @noffset: offset of the hash node 2073 * @p: pointer to prefix string 2074 * 2075 * fit_image_print_hash() lists properies for the processed hash node 2076 * 2077 * returns: 2078 * no returned results 2079 */ 2080 void fit_image_print_hash(const void *fit, int noffset, const char *p) 2081 { 2082 char *algo; 2083 uint8_t *value; 2084 int value_len; 2085 int i, ret; 2086 2087 /* 2088 * Check subnode name, must be equal to "hash". 2089 * Multiple hash nodes require unique unit node 2090 * names, e.g. hash@1, hash@2, etc. 2091 */ 2092 if (strncmp(fit_get_name(fit, noffset, NULL), 2093 FIT_HASH_NODENAME, 2094 strlen(FIT_HASH_NODENAME)) != 0) 2095 return; 2096 2097 debug("%s Hash node: '%s'\n", p, 2098 fit_get_name(fit, noffset, NULL)); 2099 2100 printf("%s Hash algo: ", p); 2101 if (fit_image_hash_get_algo(fit, noffset, &algo)) { 2102 printf("invalid/unsupported\n"); 2103 return; 2104 } 2105 printf("%s\n", algo); 2106 2107 ret = fit_image_hash_get_value(fit, noffset, &value, 2108 &value_len); 2109 printf("%s Hash value: ", p); 2110 if (ret) { 2111 printf("unavailable\n"); 2112 } else { 2113 for (i = 0; i < value_len; i++) 2114 printf("%02x", value[i]); 2115 printf("\n"); 2116 } 2117 2118 debug("%s Hash len: %d\n", p, value_len); 2119 } 2120 2121 /** 2122 * fit_get_desc - get node description property 2123 * @fit: pointer to the FIT format image header 2124 * @noffset: node offset 2125 * @desc: double pointer to the char, will hold pointer to the descrption 2126 * 2127 * fit_get_desc() reads description property from a given node, if 2128 * description is found pointer to it is returened in third call argument. 2129 * 2130 * returns: 2131 * 0, on success 2132 * -1, on failure 2133 */ 2134 int fit_get_desc(const void *fit, int noffset, char **desc) 2135 { 2136 int len; 2137 2138 *desc = (char *)fdt_getprop(fit, noffset, FIT_DESC_PROP, &len); 2139 if (*desc == NULL) { 2140 fit_get_debug(fit, noffset, FIT_DESC_PROP, len); 2141 return -1; 2142 } 2143 2144 return 0; 2145 } 2146 2147 /** 2148 * fit_get_timestamp - get node timestamp property 2149 * @fit: pointer to the FIT format image header 2150 * @noffset: node offset 2151 * @timestamp: pointer to the time_t, will hold read timestamp 2152 * 2153 * fit_get_timestamp() reads timestamp poperty from given node, if timestamp 2154 * is found and has a correct size its value is retured in third call 2155 * argument. 2156 * 2157 * returns: 2158 * 0, on success 2159 * -1, on property read failure 2160 * -2, on wrong timestamp size 2161 */ 2162 int fit_get_timestamp(const void *fit, int noffset, time_t *timestamp) 2163 { 2164 int len; 2165 const void *data; 2166 2167 data = fdt_getprop(fit, noffset, FIT_TIMESTAMP_PROP, &len); 2168 if (data == NULL) { 2169 fit_get_debug(fit, noffset, FIT_TIMESTAMP_PROP, len); 2170 return -1; 2171 } 2172 if (len != sizeof(uint32_t)) { 2173 debug("FIT timestamp with incorrect size of (%u)\n", len); 2174 return -2; 2175 } 2176 2177 *timestamp = uimage_to_cpu(*((uint32_t *)data)); 2178 return 0; 2179 } 2180 2181 /** 2182 * fit_image_get_node - get node offset for component image of a given unit name 2183 * @fit: pointer to the FIT format image header 2184 * @image_uname: component image node unit name 2185 * 2186 * fit_image_get_node() finds a component image (withing the '/images' 2187 * node) of a provided unit name. If image is found its node offset is 2188 * returned to the caller. 2189 * 2190 * returns: 2191 * image node offset when found (>=0) 2192 * negative number on failure (FDT_ERR_* code) 2193 */ 2194 int fit_image_get_node(const void *fit, const char *image_uname) 2195 { 2196 int noffset, images_noffset; 2197 2198 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 2199 if (images_noffset < 0) { 2200 debug("Can't find images parent node '%s' (%s)\n", 2201 FIT_IMAGES_PATH, fdt_strerror(images_noffset)); 2202 return images_noffset; 2203 } 2204 2205 noffset = fdt_subnode_offset(fit, images_noffset, image_uname); 2206 if (noffset < 0) { 2207 debug("Can't get node offset for image unit name: '%s' (%s)\n", 2208 image_uname, fdt_strerror(noffset)); 2209 } 2210 2211 return noffset; 2212 } 2213 2214 /** 2215 * fit_image_get_os - get os id for a given component image node 2216 * @fit: pointer to the FIT format image header 2217 * @noffset: component image node offset 2218 * @os: pointer to the uint8_t, will hold os numeric id 2219 * 2220 * fit_image_get_os() finds os property in a given component image node. 2221 * If the property is found, its (string) value is translated to the numeric 2222 * id which is returned to the caller. 2223 * 2224 * returns: 2225 * 0, on success 2226 * -1, on failure 2227 */ 2228 int fit_image_get_os(const void *fit, int noffset, uint8_t *os) 2229 { 2230 int len; 2231 const void *data; 2232 2233 /* Get OS name from property data */ 2234 data = fdt_getprop(fit, noffset, FIT_OS_PROP, &len); 2235 if (data == NULL) { 2236 fit_get_debug(fit, noffset, FIT_OS_PROP, len); 2237 *os = -1; 2238 return -1; 2239 } 2240 2241 /* Translate OS name to id */ 2242 *os = genimg_get_os_id(data); 2243 return 0; 2244 } 2245 2246 /** 2247 * fit_image_get_arch - get arch id for a given component image node 2248 * @fit: pointer to the FIT format image header 2249 * @noffset: component image node offset 2250 * @arch: pointer to the uint8_t, will hold arch numeric id 2251 * 2252 * fit_image_get_arch() finds arch property in a given component image node. 2253 * If the property is found, its (string) value is translated to the numeric 2254 * id which is returned to the caller. 2255 * 2256 * returns: 2257 * 0, on success 2258 * -1, on failure 2259 */ 2260 int fit_image_get_arch(const void *fit, int noffset, uint8_t *arch) 2261 { 2262 int len; 2263 const void *data; 2264 2265 /* Get architecture name from property data */ 2266 data = fdt_getprop(fit, noffset, FIT_ARCH_PROP, &len); 2267 if (data == NULL) { 2268 fit_get_debug(fit, noffset, FIT_ARCH_PROP, len); 2269 *arch = -1; 2270 return -1; 2271 } 2272 2273 /* Translate architecture name to id */ 2274 *arch = genimg_get_arch_id(data); 2275 return 0; 2276 } 2277 2278 /** 2279 * fit_image_get_type - get type id for a given component image node 2280 * @fit: pointer to the FIT format image header 2281 * @noffset: component image node offset 2282 * @type: pointer to the uint8_t, will hold type numeric id 2283 * 2284 * fit_image_get_type() finds type property in a given component image node. 2285 * If the property is found, its (string) value is translated to the numeric 2286 * id which is returned to the caller. 2287 * 2288 * returns: 2289 * 0, on success 2290 * -1, on failure 2291 */ 2292 int fit_image_get_type(const void *fit, int noffset, uint8_t *type) 2293 { 2294 int len; 2295 const void *data; 2296 2297 /* Get image type name from property data */ 2298 data = fdt_getprop(fit, noffset, FIT_TYPE_PROP, &len); 2299 if (data == NULL) { 2300 fit_get_debug(fit, noffset, FIT_TYPE_PROP, len); 2301 *type = -1; 2302 return -1; 2303 } 2304 2305 /* Translate image type name to id */ 2306 *type = genimg_get_type_id(data); 2307 return 0; 2308 } 2309 2310 /** 2311 * fit_image_get_comp - get comp id for a given component image node 2312 * @fit: pointer to the FIT format image header 2313 * @noffset: component image node offset 2314 * @comp: pointer to the uint8_t, will hold comp numeric id 2315 * 2316 * fit_image_get_comp() finds comp property in a given component image node. 2317 * If the property is found, its (string) value is translated to the numeric 2318 * id which is returned to the caller. 2319 * 2320 * returns: 2321 * 0, on success 2322 * -1, on failure 2323 */ 2324 int fit_image_get_comp(const void *fit, int noffset, uint8_t *comp) 2325 { 2326 int len; 2327 const void *data; 2328 2329 /* Get compression name from property data */ 2330 data = fdt_getprop(fit, noffset, FIT_COMP_PROP, &len); 2331 if (data == NULL) { 2332 fit_get_debug(fit, noffset, FIT_COMP_PROP, len); 2333 *comp = -1; 2334 return -1; 2335 } 2336 2337 /* Translate compression name to id */ 2338 *comp = genimg_get_comp_id(data); 2339 return 0; 2340 } 2341 2342 /** 2343 * fit_image_get_load - get load address property for a given component image node 2344 * @fit: pointer to the FIT format image header 2345 * @noffset: component image node offset 2346 * @load: pointer to the uint32_t, will hold load address 2347 * 2348 * fit_image_get_load() finds load address property in a given component image node. 2349 * If the property is found, its value is returned to the caller. 2350 * 2351 * returns: 2352 * 0, on success 2353 * -1, on failure 2354 */ 2355 int fit_image_get_load(const void *fit, int noffset, ulong *load) 2356 { 2357 int len; 2358 const uint32_t *data; 2359 2360 data = fdt_getprop(fit, noffset, FIT_LOAD_PROP, &len); 2361 if (data == NULL) { 2362 fit_get_debug(fit, noffset, FIT_LOAD_PROP, len); 2363 return -1; 2364 } 2365 2366 *load = uimage_to_cpu(*data); 2367 return 0; 2368 } 2369 2370 /** 2371 * fit_image_get_entry - get entry point address property for a given component image node 2372 * @fit: pointer to the FIT format image header 2373 * @noffset: component image node offset 2374 * @entry: pointer to the uint32_t, will hold entry point address 2375 * 2376 * fit_image_get_entry() finds entry point address property in a given component image node. 2377 * If the property is found, its value is returned to the caller. 2378 * 2379 * returns: 2380 * 0, on success 2381 * -1, on failure 2382 */ 2383 int fit_image_get_entry(const void *fit, int noffset, ulong *entry) 2384 { 2385 int len; 2386 const uint32_t *data; 2387 2388 data = fdt_getprop(fit, noffset, FIT_ENTRY_PROP, &len); 2389 if (data == NULL) { 2390 fit_get_debug(fit, noffset, FIT_ENTRY_PROP, len); 2391 return -1; 2392 } 2393 2394 *entry = uimage_to_cpu(*data); 2395 return 0; 2396 } 2397 2398 /** 2399 * fit_image_get_data - get data property and its size for a given component image node 2400 * @fit: pointer to the FIT format image header 2401 * @noffset: component image node offset 2402 * @data: double pointer to void, will hold data property's data address 2403 * @size: pointer to size_t, will hold data property's data size 2404 * 2405 * fit_image_get_data() finds data property in a given component image node. 2406 * If the property is found its data start address and size are returned to 2407 * the caller. 2408 * 2409 * returns: 2410 * 0, on success 2411 * -1, on failure 2412 */ 2413 int fit_image_get_data(const void *fit, int noffset, 2414 const void **data, size_t *size) 2415 { 2416 int len; 2417 2418 *data = fdt_getprop(fit, noffset, FIT_DATA_PROP, &len); 2419 if (*data == NULL) { 2420 fit_get_debug(fit, noffset, FIT_DATA_PROP, len); 2421 *size = 0; 2422 return -1; 2423 } 2424 2425 *size = len; 2426 return 0; 2427 } 2428 2429 /** 2430 * fit_image_hash_get_algo - get hash algorithm name 2431 * @fit: pointer to the FIT format image header 2432 * @noffset: hash node offset 2433 * @algo: double pointer to char, will hold pointer to the algorithm name 2434 * 2435 * fit_image_hash_get_algo() finds hash algorithm property in a given hash node. 2436 * If the property is found its data start address is returned to the caller. 2437 * 2438 * returns: 2439 * 0, on success 2440 * -1, on failure 2441 */ 2442 int fit_image_hash_get_algo(const void *fit, int noffset, char **algo) 2443 { 2444 int len; 2445 2446 *algo = (char *)fdt_getprop(fit, noffset, FIT_ALGO_PROP, &len); 2447 if (*algo == NULL) { 2448 fit_get_debug(fit, noffset, FIT_ALGO_PROP, len); 2449 return -1; 2450 } 2451 2452 return 0; 2453 } 2454 2455 /** 2456 * fit_image_hash_get_value - get hash value and length 2457 * @fit: pointer to the FIT format image header 2458 * @noffset: hash node offset 2459 * @value: double pointer to uint8_t, will hold address of a hash value data 2460 * @value_len: pointer to an int, will hold hash data length 2461 * 2462 * fit_image_hash_get_value() finds hash value property in a given hash node. 2463 * If the property is found its data start address and size are returned to 2464 * the caller. 2465 * 2466 * returns: 2467 * 0, on success 2468 * -1, on failure 2469 */ 2470 int fit_image_hash_get_value(const void *fit, int noffset, uint8_t **value, 2471 int *value_len) 2472 { 2473 int len; 2474 2475 *value = (uint8_t *)fdt_getprop(fit, noffset, FIT_VALUE_PROP, &len); 2476 if (*value == NULL) { 2477 fit_get_debug(fit, noffset, FIT_VALUE_PROP, len); 2478 *value_len = 0; 2479 return -1; 2480 } 2481 2482 *value_len = len; 2483 return 0; 2484 } 2485 2486 /** 2487 * fit_set_timestamp - set node timestamp property 2488 * @fit: pointer to the FIT format image header 2489 * @noffset: node offset 2490 * @timestamp: timestamp value to be set 2491 * 2492 * fit_set_timestamp() attempts to set timestamp property in the requested 2493 * node and returns operation status to the caller. 2494 * 2495 * returns: 2496 * 0, on success 2497 * -1, on property read failure 2498 */ 2499 int fit_set_timestamp(void *fit, int noffset, time_t timestamp) 2500 { 2501 uint32_t t; 2502 int ret; 2503 2504 t = cpu_to_uimage(timestamp); 2505 ret = fdt_setprop(fit, noffset, FIT_TIMESTAMP_PROP, &t, 2506 sizeof(uint32_t)); 2507 if (ret) { 2508 printf("Can't set '%s' property for '%s' node (%s)\n", 2509 FIT_TIMESTAMP_PROP, fit_get_name(fit, noffset, NULL), 2510 fdt_strerror(ret)); 2511 return -1; 2512 } 2513 2514 return 0; 2515 } 2516 2517 /** 2518 * calculate_hash - calculate and return hash for provided input data 2519 * @data: pointer to the input data 2520 * @data_len: data length 2521 * @algo: requested hash algorithm 2522 * @value: pointer to the char, will hold hash value data (caller must 2523 * allocate enough free space) 2524 * value_len: length of the calculated hash 2525 * 2526 * calculate_hash() computes input data hash according to the requested algorithm. 2527 * Resulting hash value is placed in caller provided 'value' buffer, length 2528 * of the calculated hash is returned via value_len pointer argument. 2529 * 2530 * returns: 2531 * 0, on success 2532 * -1, when algo is unsupported 2533 */ 2534 static int calculate_hash(const void *data, int data_len, const char *algo, 2535 uint8_t *value, int *value_len) 2536 { 2537 if (strcmp(algo, "crc32") == 0) { 2538 *((uint32_t *)value) = crc32_wd(0, data, data_len, 2539 CHUNKSZ_CRC32); 2540 *((uint32_t *)value) = cpu_to_uimage(*((uint32_t *)value)); 2541 *value_len = 4; 2542 } else if (strcmp(algo, "sha1") == 0) { 2543 sha1_csum_wd((unsigned char *) data, data_len, 2544 (unsigned char *) value, CHUNKSZ_SHA1); 2545 *value_len = 20; 2546 } else if (strcmp(algo, "md5") == 0) { 2547 md5_wd((unsigned char *)data, data_len, value, CHUNKSZ_MD5); 2548 *value_len = 16; 2549 } else { 2550 debug("Unsupported hash alogrithm\n"); 2551 return -1; 2552 } 2553 return 0; 2554 } 2555 2556 #ifdef USE_HOSTCC 2557 /** 2558 * fit_set_hashes - process FIT component image nodes and calculate hashes 2559 * @fit: pointer to the FIT format image header 2560 * 2561 * fit_set_hashes() adds hash values for all component images in the FIT blob. 2562 * Hashes are calculated for all component images which have hash subnodes 2563 * with algorithm property set to one of the supported hash algorithms. 2564 * 2565 * returns 2566 * 0, on success 2567 * libfdt error code, on failure 2568 */ 2569 int fit_set_hashes(void *fit) 2570 { 2571 int images_noffset; 2572 int noffset; 2573 int ndepth; 2574 int ret; 2575 2576 /* Find images parent node offset */ 2577 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 2578 if (images_noffset < 0) { 2579 printf("Can't find images parent node '%s' (%s)\n", 2580 FIT_IMAGES_PATH, fdt_strerror(images_noffset)); 2581 return images_noffset; 2582 } 2583 2584 /* Process its subnodes, print out component images details */ 2585 for (ndepth = 0, noffset = fdt_next_node(fit, images_noffset, &ndepth); 2586 (noffset >= 0) && (ndepth > 0); 2587 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2588 if (ndepth == 1) { 2589 /* 2590 * Direct child node of the images parent node, 2591 * i.e. component image node. 2592 */ 2593 ret = fit_image_set_hashes(fit, noffset); 2594 if (ret) 2595 return ret; 2596 } 2597 } 2598 2599 return 0; 2600 } 2601 2602 /** 2603 * fit_image_set_hashes - calculate/set hashes for given component image node 2604 * @fit: pointer to the FIT format image header 2605 * @image_noffset: requested component image node 2606 * 2607 * fit_image_set_hashes() adds hash values for an component image node. All 2608 * existing hash subnodes are checked, if algorithm property is set to one of 2609 * the supported hash algorithms, hash value is computed and corresponding 2610 * hash node property is set, for example: 2611 * 2612 * Input component image node structure: 2613 * 2614 * o image@1 (at image_noffset) 2615 * | - data = [binary data] 2616 * o hash@1 2617 * |- algo = "sha1" 2618 * 2619 * Output component image node structure: 2620 * 2621 * o image@1 (at image_noffset) 2622 * | - data = [binary data] 2623 * o hash@1 2624 * |- algo = "sha1" 2625 * |- value = sha1(data) 2626 * 2627 * returns: 2628 * 0 on sucess 2629 * <0 on failure 2630 */ 2631 int fit_image_set_hashes(void *fit, int image_noffset) 2632 { 2633 const void *data; 2634 size_t size; 2635 char *algo; 2636 uint8_t value[FIT_MAX_HASH_LEN]; 2637 int value_len; 2638 int noffset; 2639 int ndepth; 2640 2641 /* Get image data and data length */ 2642 if (fit_image_get_data(fit, image_noffset, &data, &size)) { 2643 printf("Can't get image data/size\n"); 2644 return -1; 2645 } 2646 2647 /* Process all hash subnodes of the component image node */ 2648 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth); 2649 (noffset >= 0) && (ndepth > 0); 2650 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2651 if (ndepth == 1) { 2652 /* Direct child node of the component image node */ 2653 2654 /* 2655 * Check subnode name, must be equal to "hash". 2656 * Multiple hash nodes require unique unit node 2657 * names, e.g. hash@1, hash@2, etc. 2658 */ 2659 if (strncmp(fit_get_name(fit, noffset, NULL), 2660 FIT_HASH_NODENAME, 2661 strlen(FIT_HASH_NODENAME)) != 0) { 2662 /* Not a hash subnode, skip it */ 2663 continue; 2664 } 2665 2666 if (fit_image_hash_get_algo(fit, noffset, &algo)) { 2667 printf("Can't get hash algo property for " 2668 "'%s' hash node in '%s' image node\n", 2669 fit_get_name(fit, noffset, NULL), 2670 fit_get_name(fit, image_noffset, NULL)); 2671 return -1; 2672 } 2673 2674 if (calculate_hash(data, size, algo, value, 2675 &value_len)) { 2676 printf("Unsupported hash algorithm (%s) for " 2677 "'%s' hash node in '%s' image node\n", 2678 algo, fit_get_name(fit, noffset, NULL), 2679 fit_get_name(fit, image_noffset, 2680 NULL)); 2681 return -1; 2682 } 2683 2684 if (fit_image_hash_set_value(fit, noffset, value, 2685 value_len)) { 2686 printf("Can't set hash value for " 2687 "'%s' hash node in '%s' image node\n", 2688 fit_get_name(fit, noffset, NULL), 2689 fit_get_name(fit, image_noffset, NULL)); 2690 return -1; 2691 } 2692 } 2693 } 2694 2695 return 0; 2696 } 2697 2698 /** 2699 * fit_image_hash_set_value - set hash value in requested has node 2700 * @fit: pointer to the FIT format image header 2701 * @noffset: hash node offset 2702 * @value: hash value to be set 2703 * @value_len: hash value length 2704 * 2705 * fit_image_hash_set_value() attempts to set hash value in a node at offset 2706 * given and returns operation status to the caller. 2707 * 2708 * returns 2709 * 0, on success 2710 * -1, on failure 2711 */ 2712 int fit_image_hash_set_value(void *fit, int noffset, uint8_t *value, 2713 int value_len) 2714 { 2715 int ret; 2716 2717 ret = fdt_setprop(fit, noffset, FIT_VALUE_PROP, value, value_len); 2718 if (ret) { 2719 printf("Can't set hash '%s' property for '%s' node(%s)\n", 2720 FIT_VALUE_PROP, fit_get_name(fit, noffset, NULL), 2721 fdt_strerror(ret)); 2722 return -1; 2723 } 2724 2725 return 0; 2726 } 2727 #endif /* USE_HOSTCC */ 2728 2729 /** 2730 * fit_image_check_hashes - verify data intergity 2731 * @fit: pointer to the FIT format image header 2732 * @image_noffset: component image node offset 2733 * 2734 * fit_image_check_hashes() goes over component image hash nodes, 2735 * re-calculates each data hash and compares with the value stored in hash 2736 * node. 2737 * 2738 * returns: 2739 * 1, if all hashes are valid 2740 * 0, otherwise (or on error) 2741 */ 2742 int fit_image_check_hashes(const void *fit, int image_noffset) 2743 { 2744 const void *data; 2745 size_t size; 2746 char *algo; 2747 uint8_t *fit_value; 2748 int fit_value_len; 2749 uint8_t value[FIT_MAX_HASH_LEN]; 2750 int value_len; 2751 int noffset; 2752 int ndepth; 2753 char *err_msg = ""; 2754 2755 /* Get image data and data length */ 2756 if (fit_image_get_data(fit, image_noffset, &data, &size)) { 2757 printf("Can't get image data/size\n"); 2758 return 0; 2759 } 2760 2761 /* Process all hash subnodes of the component image node */ 2762 for (ndepth = 0, noffset = fdt_next_node(fit, image_noffset, &ndepth); 2763 (noffset >= 0) && (ndepth > 0); 2764 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2765 if (ndepth == 1) { 2766 /* Direct child node of the component image node */ 2767 2768 /* 2769 * Check subnode name, must be equal to "hash". 2770 * Multiple hash nodes require unique unit node 2771 * names, e.g. hash@1, hash@2, etc. 2772 */ 2773 if (strncmp(fit_get_name(fit, noffset, NULL), 2774 FIT_HASH_NODENAME, 2775 strlen(FIT_HASH_NODENAME)) != 0) 2776 continue; 2777 2778 if (fit_image_hash_get_algo(fit, noffset, &algo)) { 2779 err_msg = " error!\nCan't get hash algo " 2780 "property"; 2781 goto error; 2782 } 2783 printf("%s", algo); 2784 2785 if (fit_image_hash_get_value(fit, noffset, &fit_value, 2786 &fit_value_len)) { 2787 err_msg = " error!\nCan't get hash value " 2788 "property"; 2789 goto error; 2790 } 2791 2792 if (calculate_hash(data, size, algo, value, 2793 &value_len)) { 2794 err_msg = " error!\n" 2795 "Unsupported hash algorithm"; 2796 goto error; 2797 } 2798 2799 if (value_len != fit_value_len) { 2800 err_msg = " error !\nBad hash value len"; 2801 goto error; 2802 } else if (memcmp(value, fit_value, value_len) != 0) { 2803 err_msg = " error!\nBad hash value"; 2804 goto error; 2805 } 2806 printf("+ "); 2807 } 2808 } 2809 2810 return 1; 2811 2812 error: 2813 printf("%s for '%s' hash node in '%s' image node\n", 2814 err_msg, fit_get_name(fit, noffset, NULL), 2815 fit_get_name(fit, image_noffset, NULL)); 2816 return 0; 2817 } 2818 2819 /** 2820 * fit_all_image_check_hashes - verify data intergity for all images 2821 * @fit: pointer to the FIT format image header 2822 * 2823 * fit_all_image_check_hashes() goes over all images in the FIT and 2824 * for every images checks if all it's hashes are valid. 2825 * 2826 * returns: 2827 * 1, if all hashes of all images are valid 2828 * 0, otherwise (or on error) 2829 */ 2830 int fit_all_image_check_hashes(const void *fit) 2831 { 2832 int images_noffset; 2833 int noffset; 2834 int ndepth; 2835 int count; 2836 2837 /* Find images parent node offset */ 2838 images_noffset = fdt_path_offset(fit, FIT_IMAGES_PATH); 2839 if (images_noffset < 0) { 2840 printf("Can't find images parent node '%s' (%s)\n", 2841 FIT_IMAGES_PATH, fdt_strerror(images_noffset)); 2842 return 0; 2843 } 2844 2845 /* Process all image subnodes, check hashes for each */ 2846 printf("## Checking hash(es) for FIT Image at %08lx ...\n", 2847 (ulong)fit); 2848 for (ndepth = 0, count = 0, 2849 noffset = fdt_next_node(fit, images_noffset, &ndepth); 2850 (noffset >= 0) && (ndepth > 0); 2851 noffset = fdt_next_node(fit, noffset, &ndepth)) { 2852 if (ndepth == 1) { 2853 /* 2854 * Direct child node of the images parent node, 2855 * i.e. component image node. 2856 */ 2857 printf(" Hash(es) for Image %u (%s): ", count++, 2858 fit_get_name(fit, noffset, NULL)); 2859 2860 if (!fit_image_check_hashes(fit, noffset)) 2861 return 0; 2862 printf("\n"); 2863 } 2864 } 2865 return 1; 2866 } 2867 2868 /** 2869 * fit_image_check_os - check whether image node is of a given os type 2870 * @fit: pointer to the FIT format image header 2871 * @noffset: component image node offset 2872 * @os: requested image os 2873 * 2874 * fit_image_check_os() reads image os property and compares its numeric 2875 * id with the requested os. Comparison result is returned to the caller. 2876 * 2877 * returns: 2878 * 1 if image is of given os type 2879 * 0 otherwise (or on error) 2880 */ 2881 int fit_image_check_os(const void *fit, int noffset, uint8_t os) 2882 { 2883 uint8_t image_os; 2884 2885 if (fit_image_get_os(fit, noffset, &image_os)) 2886 return 0; 2887 return (os == image_os); 2888 } 2889 2890 /** 2891 * fit_image_check_arch - check whether image node is of a given arch 2892 * @fit: pointer to the FIT format image header 2893 * @noffset: component image node offset 2894 * @arch: requested imagearch 2895 * 2896 * fit_image_check_arch() reads image arch property and compares its numeric 2897 * id with the requested arch. Comparison result is returned to the caller. 2898 * 2899 * returns: 2900 * 1 if image is of given arch 2901 * 0 otherwise (or on error) 2902 */ 2903 int fit_image_check_arch(const void *fit, int noffset, uint8_t arch) 2904 { 2905 uint8_t image_arch; 2906 2907 if (fit_image_get_arch(fit, noffset, &image_arch)) 2908 return 0; 2909 return (arch == image_arch); 2910 } 2911 2912 /** 2913 * fit_image_check_type - check whether image node is of a given type 2914 * @fit: pointer to the FIT format image header 2915 * @noffset: component image node offset 2916 * @type: requested image type 2917 * 2918 * fit_image_check_type() reads image type property and compares its numeric 2919 * id with the requested type. Comparison result is returned to the caller. 2920 * 2921 * returns: 2922 * 1 if image is of given type 2923 * 0 otherwise (or on error) 2924 */ 2925 int fit_image_check_type(const void *fit, int noffset, uint8_t type) 2926 { 2927 uint8_t image_type; 2928 2929 if (fit_image_get_type(fit, noffset, &image_type)) 2930 return 0; 2931 return (type == image_type); 2932 } 2933 2934 /** 2935 * fit_image_check_comp - check whether image node uses given compression 2936 * @fit: pointer to the FIT format image header 2937 * @noffset: component image node offset 2938 * @comp: requested image compression type 2939 * 2940 * fit_image_check_comp() reads image compression property and compares its 2941 * numeric id with the requested compression type. Comparison result is 2942 * returned to the caller. 2943 * 2944 * returns: 2945 * 1 if image uses requested compression 2946 * 0 otherwise (or on error) 2947 */ 2948 int fit_image_check_comp(const void *fit, int noffset, uint8_t comp) 2949 { 2950 uint8_t image_comp; 2951 2952 if (fit_image_get_comp(fit, noffset, &image_comp)) 2953 return 0; 2954 return (comp == image_comp); 2955 } 2956 2957 /** 2958 * fit_check_format - sanity check FIT image format 2959 * @fit: pointer to the FIT format image header 2960 * 2961 * fit_check_format() runs a basic sanity FIT image verification. 2962 * Routine checks for mandatory properties, nodes, etc. 2963 * 2964 * returns: 2965 * 1, on success 2966 * 0, on failure 2967 */ 2968 int fit_check_format(const void *fit) 2969 { 2970 /* mandatory / node 'description' property */ 2971 if (fdt_getprop(fit, 0, FIT_DESC_PROP, NULL) == NULL) { 2972 debug("Wrong FIT format: no description\n"); 2973 return 0; 2974 } 2975 2976 #if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE) || defined(USE_HOSTCC) 2977 /* mandatory / node 'timestamp' property */ 2978 if (fdt_getprop(fit, 0, FIT_TIMESTAMP_PROP, NULL) == NULL) { 2979 debug("Wrong FIT format: no timestamp\n"); 2980 return 0; 2981 } 2982 #endif 2983 2984 /* mandatory subimages parent '/images' node */ 2985 if (fdt_path_offset(fit, FIT_IMAGES_PATH) < 0) { 2986 debug("Wrong FIT format: no images parent node\n"); 2987 return 0; 2988 } 2989 2990 return 1; 2991 } 2992 2993 /** 2994 * fit_conf_get_node - get node offset for configuration of a given unit name 2995 * @fit: pointer to the FIT format image header 2996 * @conf_uname: configuration node unit name 2997 * 2998 * fit_conf_get_node() finds a configuration (withing the '/configurations' 2999 * parant node) of a provided unit name. If configuration is found its node offset 3000 * is returned to the caller. 3001 * 3002 * When NULL is provided in second argument fit_conf_get_node() will search 3003 * for a default configuration node instead. Default configuration node unit name 3004 * is retrived from FIT_DEFAULT_PROP property of the '/configurations' node. 3005 * 3006 * returns: 3007 * configuration node offset when found (>=0) 3008 * negative number on failure (FDT_ERR_* code) 3009 */ 3010 int fit_conf_get_node(const void *fit, const char *conf_uname) 3011 { 3012 int noffset, confs_noffset; 3013 int len; 3014 3015 confs_noffset = fdt_path_offset(fit, FIT_CONFS_PATH); 3016 if (confs_noffset < 0) { 3017 debug("Can't find configurations parent node '%s' (%s)\n", 3018 FIT_CONFS_PATH, fdt_strerror(confs_noffset)); 3019 return confs_noffset; 3020 } 3021 3022 if (conf_uname == NULL) { 3023 /* get configuration unit name from the default property */ 3024 debug("No configuration specified, trying default...\n"); 3025 conf_uname = (char *)fdt_getprop(fit, confs_noffset, 3026 FIT_DEFAULT_PROP, &len); 3027 if (conf_uname == NULL) { 3028 fit_get_debug(fit, confs_noffset, FIT_DEFAULT_PROP, 3029 len); 3030 return len; 3031 } 3032 debug("Found default configuration: '%s'\n", conf_uname); 3033 } 3034 3035 noffset = fdt_subnode_offset(fit, confs_noffset, conf_uname); 3036 if (noffset < 0) { 3037 debug("Can't get node offset for configuration unit name: " 3038 "'%s' (%s)\n", 3039 conf_uname, fdt_strerror(noffset)); 3040 } 3041 3042 return noffset; 3043 } 3044 3045 static int __fit_conf_get_prop_node(const void *fit, int noffset, 3046 const char *prop_name) 3047 { 3048 char *uname; 3049 int len; 3050 3051 /* get kernel image unit name from configuration kernel property */ 3052 uname = (char *)fdt_getprop(fit, noffset, prop_name, &len); 3053 if (uname == NULL) 3054 return len; 3055 3056 return fit_image_get_node(fit, uname); 3057 } 3058 3059 /** 3060 * fit_conf_get_kernel_node - get kernel image node offset that corresponds to 3061 * a given configuration 3062 * @fit: pointer to the FIT format image header 3063 * @noffset: configuration node offset 3064 * 3065 * fit_conf_get_kernel_node() retrives kernel image node unit name from 3066 * configuration FIT_KERNEL_PROP property and translates it to the node 3067 * offset. 3068 * 3069 * returns: 3070 * image node offset when found (>=0) 3071 * negative number on failure (FDT_ERR_* code) 3072 */ 3073 int fit_conf_get_kernel_node(const void *fit, int noffset) 3074 { 3075 return __fit_conf_get_prop_node(fit, noffset, FIT_KERNEL_PROP); 3076 } 3077 3078 /** 3079 * fit_conf_get_ramdisk_node - get ramdisk image node offset that corresponds to 3080 * a given configuration 3081 * @fit: pointer to the FIT format image header 3082 * @noffset: configuration node offset 3083 * 3084 * fit_conf_get_ramdisk_node() retrives ramdisk image node unit name from 3085 * configuration FIT_KERNEL_PROP property and translates it to the node 3086 * offset. 3087 * 3088 * returns: 3089 * image node offset when found (>=0) 3090 * negative number on failure (FDT_ERR_* code) 3091 */ 3092 int fit_conf_get_ramdisk_node(const void *fit, int noffset) 3093 { 3094 return __fit_conf_get_prop_node(fit, noffset, FIT_RAMDISK_PROP); 3095 } 3096 3097 /** 3098 * fit_conf_get_fdt_node - get fdt image node offset that corresponds to 3099 * a given configuration 3100 * @fit: pointer to the FIT format image header 3101 * @noffset: configuration node offset 3102 * 3103 * fit_conf_get_fdt_node() retrives fdt image node unit name from 3104 * configuration FIT_KERNEL_PROP property and translates it to the node 3105 * offset. 3106 * 3107 * returns: 3108 * image node offset when found (>=0) 3109 * negative number on failure (FDT_ERR_* code) 3110 */ 3111 int fit_conf_get_fdt_node(const void *fit, int noffset) 3112 { 3113 return __fit_conf_get_prop_node(fit, noffset, FIT_FDT_PROP); 3114 } 3115 3116 /** 3117 * fit_conf_print - prints out the FIT configuration details 3118 * @fit: pointer to the FIT format image header 3119 * @noffset: offset of the configuration node 3120 * @p: pointer to prefix string 3121 * 3122 * fit_conf_print() lists all mandatory properies for the processed 3123 * configuration node. 3124 * 3125 * returns: 3126 * no returned results 3127 */ 3128 void fit_conf_print(const void *fit, int noffset, const char *p) 3129 { 3130 char *desc; 3131 char *uname; 3132 int ret; 3133 3134 /* Mandatory properties */ 3135 ret = fit_get_desc(fit, noffset, &desc); 3136 printf("%s Description: ", p); 3137 if (ret) 3138 printf("unavailable\n"); 3139 else 3140 printf("%s\n", desc); 3141 3142 uname = (char *)fdt_getprop(fit, noffset, FIT_KERNEL_PROP, NULL); 3143 printf("%s Kernel: ", p); 3144 if (uname == NULL) 3145 printf("unavailable\n"); 3146 else 3147 printf("%s\n", uname); 3148 3149 /* Optional properties */ 3150 uname = (char *)fdt_getprop(fit, noffset, FIT_RAMDISK_PROP, NULL); 3151 if (uname) 3152 printf("%s Init Ramdisk: %s\n", p, uname); 3153 3154 uname = (char *)fdt_getprop(fit, noffset, FIT_FDT_PROP, NULL); 3155 if (uname) 3156 printf("%s FDT: %s\n", p, uname); 3157 } 3158 3159 /** 3160 * fit_check_ramdisk - verify FIT format ramdisk subimage 3161 * @fit_hdr: pointer to the FIT ramdisk header 3162 * @rd_noffset: ramdisk subimage node offset within FIT image 3163 * @arch: requested ramdisk image architecture type 3164 * @verify: data CRC verification flag 3165 * 3166 * fit_check_ramdisk() verifies integrity of the ramdisk subimage and from 3167 * specified FIT image. 3168 * 3169 * returns: 3170 * 1, on success 3171 * 0, on failure 3172 */ 3173 #ifndef USE_HOSTCC 3174 static int fit_check_ramdisk(const void *fit, int rd_noffset, uint8_t arch, 3175 int verify) 3176 { 3177 fit_image_print(fit, rd_noffset, " "); 3178 3179 if (verify) { 3180 puts(" Verifying Hash Integrity ... "); 3181 if (!fit_image_check_hashes(fit, rd_noffset)) { 3182 puts("Bad Data Hash\n"); 3183 bootstage_error(BOOTSTAGE_ID_FIT_RD_HASH); 3184 return 0; 3185 } 3186 puts("OK\n"); 3187 } 3188 3189 bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK_ALL); 3190 if (!fit_image_check_os(fit, rd_noffset, IH_OS_LINUX) || 3191 !fit_image_check_arch(fit, rd_noffset, arch) || 3192 !fit_image_check_type(fit, rd_noffset, IH_TYPE_RAMDISK)) { 3193 printf("No Linux %s Ramdisk Image\n", 3194 genimg_get_arch_name(arch)); 3195 bootstage_error(BOOTSTAGE_ID_FIT_RD_CHECK_ALL); 3196 return 0; 3197 } 3198 3199 bootstage_mark(BOOTSTAGE_ID_FIT_RD_CHECK_ALL_OK); 3200 return 1; 3201 } 3202 #endif /* USE_HOSTCC */ 3203 #endif /* CONFIG_FIT */ 3204