1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright 2008 Semihalf 4 * 5 * (C) Copyright 2000-2006 6 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 7 */ 8 9 #ifndef USE_HOSTCC 10 #include <common.h> 11 #include <watchdog.h> 12 13 #ifdef CONFIG_SHOW_BOOT_PROGRESS 14 #include <status_led.h> 15 #endif 16 17 #include <rtc.h> 18 19 #include <environment.h> 20 #include <image.h> 21 #include <mapmem.h> 22 23 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT 24 #include <linux/libfdt.h> 25 #include <fdt_support.h> 26 #include <fpga.h> 27 #include <xilinx.h> 28 #endif 29 30 #include <u-boot/md5.h> 31 #include <u-boot/sha1.h> 32 #include <linux/errno.h> 33 #include <asm/io.h> 34 35 #ifdef CONFIG_CMD_BDI 36 extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]); 37 #endif 38 39 DECLARE_GLOBAL_DATA_PTR; 40 41 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 42 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 43 int verify); 44 #endif 45 #else 46 #include "mkimage.h" 47 #include <u-boot/md5.h> 48 #include <time.h> 49 #include <image.h> 50 51 #ifndef __maybe_unused 52 # define __maybe_unused /* unimplemented */ 53 #endif 54 #endif /* !USE_HOSTCC*/ 55 56 #include <u-boot/crc.h> 57 58 #ifndef CONFIG_SYS_BARGSIZE 59 #define CONFIG_SYS_BARGSIZE 512 60 #endif 61 62 static const table_entry_t uimage_arch[] = { 63 { IH_ARCH_INVALID, "invalid", "Invalid ARCH", }, 64 { IH_ARCH_ALPHA, "alpha", "Alpha", }, 65 { IH_ARCH_ARM, "arm", "ARM", }, 66 { IH_ARCH_I386, "x86", "Intel x86", }, 67 { IH_ARCH_IA64, "ia64", "IA64", }, 68 { IH_ARCH_M68K, "m68k", "M68K", }, 69 { IH_ARCH_MICROBLAZE, "microblaze", "MicroBlaze", }, 70 { IH_ARCH_MIPS, "mips", "MIPS", }, 71 { IH_ARCH_MIPS64, "mips64", "MIPS 64 Bit", }, 72 { IH_ARCH_NIOS2, "nios2", "NIOS II", }, 73 { IH_ARCH_PPC, "powerpc", "PowerPC", }, 74 { IH_ARCH_PPC, "ppc", "PowerPC", }, 75 { IH_ARCH_S390, "s390", "IBM S390", }, 76 { IH_ARCH_SH, "sh", "SuperH", }, 77 { IH_ARCH_SPARC, "sparc", "SPARC", }, 78 { IH_ARCH_SPARC64, "sparc64", "SPARC 64 Bit", }, 79 { IH_ARCH_BLACKFIN, "blackfin", "Blackfin", }, 80 { IH_ARCH_AVR32, "avr32", "AVR32", }, 81 { IH_ARCH_NDS32, "nds32", "NDS32", }, 82 { IH_ARCH_OPENRISC, "or1k", "OpenRISC 1000",}, 83 { IH_ARCH_SANDBOX, "sandbox", "Sandbox", }, 84 { IH_ARCH_ARM64, "arm64", "AArch64", }, 85 { IH_ARCH_ARC, "arc", "ARC", }, 86 { IH_ARCH_X86_64, "x86_64", "AMD x86_64", }, 87 { IH_ARCH_XTENSA, "xtensa", "Xtensa", }, 88 { IH_ARCH_RISCV, "riscv", "RISC-V", }, 89 { -1, "", "", }, 90 }; 91 92 static const table_entry_t uimage_os[] = { 93 { IH_OS_INVALID, "invalid", "Invalid OS", }, 94 { IH_OS_ARM_TRUSTED_FIRMWARE, "arm-trusted-firmware", "ARM Trusted Firmware" }, 95 { IH_OS_LINUX, "linux", "Linux", }, 96 #if defined(CONFIG_LYNXKDI) || defined(USE_HOSTCC) 97 { IH_OS_LYNXOS, "lynxos", "LynxOS", }, 98 #endif 99 { IH_OS_NETBSD, "netbsd", "NetBSD", }, 100 { IH_OS_OSE, "ose", "Enea OSE", }, 101 { IH_OS_PLAN9, "plan9", "Plan 9", }, 102 { IH_OS_RTEMS, "rtems", "RTEMS", }, 103 { IH_OS_TEE, "tee", "Trusted Execution Environment" }, 104 { IH_OS_U_BOOT, "u-boot", "U-Boot", }, 105 { IH_OS_VXWORKS, "vxworks", "VxWorks", }, 106 #if defined(CONFIG_CMD_ELF) || defined(USE_HOSTCC) 107 { IH_OS_QNX, "qnx", "QNX", }, 108 #endif 109 #if defined(CONFIG_INTEGRITY) || defined(USE_HOSTCC) 110 { IH_OS_INTEGRITY,"integrity", "INTEGRITY", }, 111 #endif 112 #ifdef USE_HOSTCC 113 { IH_OS_4_4BSD, "4_4bsd", "4_4BSD", }, 114 { IH_OS_DELL, "dell", "Dell", }, 115 { IH_OS_ESIX, "esix", "Esix", }, 116 { IH_OS_FREEBSD, "freebsd", "FreeBSD", }, 117 { IH_OS_IRIX, "irix", "Irix", }, 118 { IH_OS_NCR, "ncr", "NCR", }, 119 { IH_OS_OPENBSD, "openbsd", "OpenBSD", }, 120 { IH_OS_PSOS, "psos", "pSOS", }, 121 { IH_OS_SCO, "sco", "SCO", }, 122 { IH_OS_SOLARIS, "solaris", "Solaris", }, 123 { IH_OS_SVR4, "svr4", "SVR4", }, 124 #endif 125 #if defined(CONFIG_BOOTM_OPENRTOS) || defined(USE_HOSTCC) 126 { IH_OS_OPENRTOS, "openrtos", "OpenRTOS", }, 127 #endif 128 129 { -1, "", "", }, 130 }; 131 132 static const table_entry_t uimage_type[] = { 133 { IH_TYPE_AISIMAGE, "aisimage", "Davinci AIS image",}, 134 { IH_TYPE_FILESYSTEM, "filesystem", "Filesystem Image", }, 135 { IH_TYPE_FIRMWARE, "firmware", "Firmware", }, 136 { IH_TYPE_FLATDT, "flat_dt", "Flat Device Tree", }, 137 { IH_TYPE_GPIMAGE, "gpimage", "TI Keystone SPL Image",}, 138 { IH_TYPE_KERNEL, "kernel", "Kernel Image", }, 139 { IH_TYPE_KERNEL_NOLOAD, "kernel_noload", "Kernel Image (no loading done)", }, 140 { IH_TYPE_KWBIMAGE, "kwbimage", "Kirkwood Boot Image",}, 141 { IH_TYPE_IMXIMAGE, "imximage", "Freescale i.MX Boot Image",}, 142 { IH_TYPE_INVALID, "invalid", "Invalid Image", }, 143 { IH_TYPE_MULTI, "multi", "Multi-File Image", }, 144 { IH_TYPE_OMAPIMAGE, "omapimage", "TI OMAP SPL With GP CH",}, 145 { IH_TYPE_PBLIMAGE, "pblimage", "Freescale PBL Boot Image",}, 146 { IH_TYPE_RAMDISK, "ramdisk", "RAMDisk Image", }, 147 { IH_TYPE_SCRIPT, "script", "Script", }, 148 { IH_TYPE_SOCFPGAIMAGE, "socfpgaimage", "Altera SOCFPGA preloader",}, 149 { IH_TYPE_STANDALONE, "standalone", "Standalone Program", }, 150 { IH_TYPE_UBLIMAGE, "ublimage", "Davinci UBL image",}, 151 { IH_TYPE_MXSIMAGE, "mxsimage", "Freescale MXS Boot Image",}, 152 { IH_TYPE_ATMELIMAGE, "atmelimage", "ATMEL ROM-Boot Image",}, 153 { IH_TYPE_X86_SETUP, "x86_setup", "x86 setup.bin", }, 154 { IH_TYPE_LPC32XXIMAGE, "lpc32xximage", "LPC32XX Boot Image", }, 155 { IH_TYPE_RKIMAGE, "rkimage", "Rockchip Boot Image" }, 156 { IH_TYPE_RKSD, "rksd", "Rockchip SD Boot Image" }, 157 { IH_TYPE_RKSPI, "rkspi", "Rockchip SPI Boot Image" }, 158 { IH_TYPE_VYBRIDIMAGE, "vybridimage", "Vybrid Boot Image", }, 159 { IH_TYPE_ZYNQIMAGE, "zynqimage", "Xilinx Zynq Boot Image" }, 160 { IH_TYPE_ZYNQMPIMAGE, "zynqmpimage", "Xilinx ZynqMP Boot Image" }, 161 { IH_TYPE_FPGA, "fpga", "FPGA Image" }, 162 { IH_TYPE_TEE, "tee", "Trusted Execution Environment Image",}, 163 { IH_TYPE_FIRMWARE_IVT, "firmware_ivt", "Firmware with HABv4 IVT" }, 164 { IH_TYPE_PMMC, "pmmc", "TI Power Management Micro-Controller Firmware",}, 165 { IH_TYPE_STM32IMAGE, "stm32image", "STMicroelectronics STM32 Image" }, 166 { -1, "", "", }, 167 }; 168 169 static const table_entry_t uimage_comp[] = { 170 { IH_COMP_NONE, "none", "uncompressed", }, 171 { IH_COMP_BZIP2, "bzip2", "bzip2 compressed", }, 172 { IH_COMP_GZIP, "gzip", "gzip compressed", }, 173 { IH_COMP_LZMA, "lzma", "lzma compressed", }, 174 { IH_COMP_LZO, "lzo", "lzo compressed", }, 175 { IH_COMP_LZ4, "lz4", "lz4 compressed", }, 176 { -1, "", "", }, 177 }; 178 179 struct table_info { 180 const char *desc; 181 int count; 182 const table_entry_t *table; 183 }; 184 185 static const struct table_info table_info[IH_COUNT] = { 186 { "architecture", IH_ARCH_COUNT, uimage_arch }, 187 { "compression", IH_COMP_COUNT, uimage_comp }, 188 { "operating system", IH_OS_COUNT, uimage_os }, 189 { "image type", IH_TYPE_COUNT, uimage_type }, 190 }; 191 192 /*****************************************************************************/ 193 /* Legacy format routines */ 194 /*****************************************************************************/ 195 int image_check_hcrc(const image_header_t *hdr) 196 { 197 ulong hcrc; 198 ulong len = image_get_header_size(); 199 image_header_t header; 200 201 /* Copy header so we can blank CRC field for re-calculation */ 202 memmove(&header, (char *)hdr, image_get_header_size()); 203 image_set_hcrc(&header, 0); 204 205 hcrc = crc32(0, (unsigned char *)&header, len); 206 207 return (hcrc == image_get_hcrc(hdr)); 208 } 209 210 int image_check_dcrc(const image_header_t *hdr) 211 { 212 ulong data = image_get_data(hdr); 213 ulong len = image_get_data_size(hdr); 214 ulong dcrc = crc32_wd(0, (unsigned char *)data, len, CHUNKSZ_CRC32); 215 216 return (dcrc == image_get_dcrc(hdr)); 217 } 218 219 /** 220 * image_multi_count - get component (sub-image) count 221 * @hdr: pointer to the header of the multi component image 222 * 223 * image_multi_count() returns number of components in a multi 224 * component image. 225 * 226 * Note: no checking of the image type is done, caller must pass 227 * a valid multi component image. 228 * 229 * returns: 230 * number of components 231 */ 232 ulong image_multi_count(const image_header_t *hdr) 233 { 234 ulong i, count = 0; 235 uint32_t *size; 236 237 /* get start of the image payload, which in case of multi 238 * component images that points to a table of component sizes */ 239 size = (uint32_t *)image_get_data(hdr); 240 241 /* count non empty slots */ 242 for (i = 0; size[i]; ++i) 243 count++; 244 245 return count; 246 } 247 248 /** 249 * image_multi_getimg - get component data address and size 250 * @hdr: pointer to the header of the multi component image 251 * @idx: index of the requested component 252 * @data: pointer to a ulong variable, will hold component data address 253 * @len: pointer to a ulong variable, will hold component size 254 * 255 * image_multi_getimg() returns size and data address for the requested 256 * component in a multi component image. 257 * 258 * Note: no checking of the image type is done, caller must pass 259 * a valid multi component image. 260 * 261 * returns: 262 * data address and size of the component, if idx is valid 263 * 0 in data and len, if idx is out of range 264 */ 265 void image_multi_getimg(const image_header_t *hdr, ulong idx, 266 ulong *data, ulong *len) 267 { 268 int i; 269 uint32_t *size; 270 ulong offset, count, img_data; 271 272 /* get number of component */ 273 count = image_multi_count(hdr); 274 275 /* get start of the image payload, which in case of multi 276 * component images that points to a table of component sizes */ 277 size = (uint32_t *)image_get_data(hdr); 278 279 /* get address of the proper component data start, which means 280 * skipping sizes table (add 1 for last, null entry) */ 281 img_data = image_get_data(hdr) + (count + 1) * sizeof(uint32_t); 282 283 if (idx < count) { 284 *len = uimage_to_cpu(size[idx]); 285 offset = 0; 286 287 /* go over all indices preceding requested component idx */ 288 for (i = 0; i < idx; i++) { 289 /* add up i-th component size, rounding up to 4 bytes */ 290 offset += (uimage_to_cpu(size[i]) + 3) & ~3 ; 291 } 292 293 /* calculate idx-th component data address */ 294 *data = img_data + offset; 295 } else { 296 *len = 0; 297 *data = 0; 298 } 299 } 300 301 static void image_print_type(const image_header_t *hdr) 302 { 303 const char __maybe_unused *os, *arch, *type, *comp; 304 305 os = genimg_get_os_name(image_get_os(hdr)); 306 arch = genimg_get_arch_name(image_get_arch(hdr)); 307 type = genimg_get_type_name(image_get_type(hdr)); 308 comp = genimg_get_comp_name(image_get_comp(hdr)); 309 310 printf("%s %s %s (%s)\n", arch, os, type, comp); 311 } 312 313 /** 314 * image_print_contents - prints out the contents of the legacy format image 315 * @ptr: pointer to the legacy format image header 316 * @p: pointer to prefix string 317 * 318 * image_print_contents() formats a multi line legacy image contents description. 319 * The routine prints out all header fields followed by the size/offset data 320 * for MULTI/SCRIPT images. 321 * 322 * returns: 323 * no returned results 324 */ 325 void image_print_contents(const void *ptr) 326 { 327 const image_header_t *hdr = (const image_header_t *)ptr; 328 const char __maybe_unused *p; 329 330 p = IMAGE_INDENT_STRING; 331 printf("%sImage Name: %.*s\n", p, IH_NMLEN, image_get_name(hdr)); 332 if (IMAGE_ENABLE_TIMESTAMP) { 333 printf("%sCreated: ", p); 334 genimg_print_time((time_t)image_get_time(hdr)); 335 } 336 printf("%sImage Type: ", p); 337 image_print_type(hdr); 338 printf("%sData Size: ", p); 339 genimg_print_size(image_get_data_size(hdr)); 340 printf("%sLoad Address: %08x\n", p, image_get_load(hdr)); 341 printf("%sEntry Point: %08x\n", p, image_get_ep(hdr)); 342 343 if (image_check_type(hdr, IH_TYPE_MULTI) || 344 image_check_type(hdr, IH_TYPE_SCRIPT)) { 345 int i; 346 ulong data, len; 347 ulong count = image_multi_count(hdr); 348 349 printf("%sContents:\n", p); 350 for (i = 0; i < count; i++) { 351 image_multi_getimg(hdr, i, &data, &len); 352 353 printf("%s Image %d: ", p, i); 354 genimg_print_size(len); 355 356 if (image_check_type(hdr, IH_TYPE_SCRIPT) && i > 0) { 357 /* 358 * the user may need to know offsets 359 * if planning to do something with 360 * multiple files 361 */ 362 printf("%s Offset = 0x%08lx\n", p, data); 363 } 364 } 365 } else if (image_check_type(hdr, IH_TYPE_FIRMWARE_IVT)) { 366 printf("HAB Blocks: 0x%08x 0x0000 0x%08x\n", 367 image_get_load(hdr) - image_get_header_size(), 368 image_get_size(hdr) + image_get_header_size() 369 - 0x1FE0); 370 } 371 } 372 373 374 #ifndef USE_HOSTCC 375 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 376 /** 377 * image_get_ramdisk - get and verify ramdisk image 378 * @rd_addr: ramdisk image start address 379 * @arch: expected ramdisk architecture 380 * @verify: checksum verification flag 381 * 382 * image_get_ramdisk() returns a pointer to the verified ramdisk image 383 * header. Routine receives image start address and expected architecture 384 * flag. Verification done covers data and header integrity and os/type/arch 385 * fields checking. 386 * 387 * returns: 388 * pointer to a ramdisk image header, if image was found and valid 389 * otherwise, return NULL 390 */ 391 static const image_header_t *image_get_ramdisk(ulong rd_addr, uint8_t arch, 392 int verify) 393 { 394 const image_header_t *rd_hdr = (const image_header_t *)rd_addr; 395 396 if (!image_check_magic(rd_hdr)) { 397 puts("Bad Magic Number\n"); 398 bootstage_error(BOOTSTAGE_ID_RD_MAGIC); 399 return NULL; 400 } 401 402 if (!image_check_hcrc(rd_hdr)) { 403 puts("Bad Header Checksum\n"); 404 bootstage_error(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 405 return NULL; 406 } 407 408 bootstage_mark(BOOTSTAGE_ID_RD_MAGIC); 409 image_print_contents(rd_hdr); 410 411 if (verify) { 412 puts(" Verifying Checksum ... "); 413 if (!image_check_dcrc(rd_hdr)) { 414 puts("Bad Data CRC\n"); 415 bootstage_error(BOOTSTAGE_ID_RD_CHECKSUM); 416 return NULL; 417 } 418 puts("OK\n"); 419 } 420 421 bootstage_mark(BOOTSTAGE_ID_RD_HDR_CHECKSUM); 422 423 if (!image_check_os(rd_hdr, IH_OS_LINUX) || 424 !image_check_arch(rd_hdr, arch) || 425 !image_check_type(rd_hdr, IH_TYPE_RAMDISK)) { 426 printf("No Linux %s Ramdisk Image\n", 427 genimg_get_arch_name(arch)); 428 bootstage_error(BOOTSTAGE_ID_RAMDISK); 429 return NULL; 430 } 431 432 return rd_hdr; 433 } 434 #endif 435 #endif /* !USE_HOSTCC */ 436 437 /*****************************************************************************/ 438 /* Shared dual-format routines */ 439 /*****************************************************************************/ 440 #ifndef USE_HOSTCC 441 ulong load_addr = CONFIG_SYS_LOAD_ADDR; /* Default Load Address */ 442 ulong save_addr; /* Default Save Address */ 443 ulong save_size; /* Default Save Size (in bytes) */ 444 445 static int on_loadaddr(const char *name, const char *value, enum env_op op, 446 int flags) 447 { 448 switch (op) { 449 case env_op_create: 450 case env_op_overwrite: 451 load_addr = simple_strtoul(value, NULL, 16); 452 break; 453 default: 454 break; 455 } 456 457 return 0; 458 } 459 U_BOOT_ENV_CALLBACK(loadaddr, on_loadaddr); 460 461 ulong env_get_bootm_low(void) 462 { 463 char *s = env_get("bootm_low"); 464 if (s) { 465 ulong tmp = simple_strtoul(s, NULL, 16); 466 return tmp; 467 } 468 469 #if defined(CONFIG_SYS_SDRAM_BASE) 470 return CONFIG_SYS_SDRAM_BASE; 471 #elif defined(CONFIG_ARM) 472 return gd->bd->bi_dram[0].start; 473 #else 474 return 0; 475 #endif 476 } 477 478 phys_size_t env_get_bootm_size(void) 479 { 480 phys_size_t tmp, size; 481 phys_addr_t start; 482 char *s = env_get("bootm_size"); 483 if (s) { 484 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 485 return tmp; 486 } 487 488 #if defined(CONFIG_ARM) && defined(CONFIG_NR_DRAM_BANKS) 489 start = gd->bd->bi_dram[0].start; 490 size = gd->bd->bi_dram[0].size; 491 #else 492 start = gd->bd->bi_memstart; 493 size = gd->bd->bi_memsize; 494 #endif 495 496 s = env_get("bootm_low"); 497 if (s) 498 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 499 else 500 tmp = start; 501 502 return size - (tmp - start); 503 } 504 505 phys_size_t env_get_bootm_mapsize(void) 506 { 507 phys_size_t tmp; 508 char *s = env_get("bootm_mapsize"); 509 if (s) { 510 tmp = (phys_size_t)simple_strtoull(s, NULL, 16); 511 return tmp; 512 } 513 514 #if defined(CONFIG_SYS_BOOTMAPSZ) 515 return CONFIG_SYS_BOOTMAPSZ; 516 #else 517 return env_get_bootm_size(); 518 #endif 519 } 520 521 void memmove_wd(void *to, void *from, size_t len, ulong chunksz) 522 { 523 if (to == from) 524 return; 525 526 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG) 527 if (to > from) { 528 from += len; 529 to += len; 530 } 531 while (len > 0) { 532 size_t tail = (len > chunksz) ? chunksz : len; 533 WATCHDOG_RESET(); 534 if (to > from) { 535 to -= tail; 536 from -= tail; 537 } 538 memmove(to, from, tail); 539 if (to < from) { 540 to += tail; 541 from += tail; 542 } 543 len -= tail; 544 } 545 #else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */ 546 memmove(to, from, len); 547 #endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */ 548 } 549 #endif /* !USE_HOSTCC */ 550 551 void genimg_print_size(uint32_t size) 552 { 553 #ifndef USE_HOSTCC 554 printf("%d Bytes = ", size); 555 print_size(size, "\n"); 556 #else 557 printf("%d Bytes = %.2f KiB = %.2f MiB\n", 558 size, (double)size / 1.024e3, 559 (double)size / 1.048576e6); 560 #endif 561 } 562 563 #if IMAGE_ENABLE_TIMESTAMP 564 void genimg_print_time(time_t timestamp) 565 { 566 #ifndef USE_HOSTCC 567 struct rtc_time tm; 568 569 rtc_to_tm(timestamp, &tm); 570 printf("%4d-%02d-%02d %2d:%02d:%02d UTC\n", 571 tm.tm_year, tm.tm_mon, tm.tm_mday, 572 tm.tm_hour, tm.tm_min, tm.tm_sec); 573 #else 574 printf("%s", ctime(×tamp)); 575 #endif 576 } 577 #endif 578 579 const table_entry_t *get_table_entry(const table_entry_t *table, int id) 580 { 581 for (; table->id >= 0; ++table) { 582 if (table->id == id) 583 return table; 584 } 585 return NULL; 586 } 587 588 static const char *unknown_msg(enum ih_category category) 589 { 590 static const char unknown_str[] = "Unknown "; 591 static char msg[30]; 592 593 strcpy(msg, unknown_str); 594 strncat(msg, table_info[category].desc, 595 sizeof(msg) - sizeof(unknown_str)); 596 597 return msg; 598 } 599 600 /** 601 * get_cat_table_entry_name - translate entry id to long name 602 * @category: category to look up (enum ih_category) 603 * @id: entry id to be translated 604 * 605 * This will scan the translation table trying to find the entry that matches 606 * the given id. 607 * 608 * @retur long entry name if translation succeeds; error string on failure 609 */ 610 const char *genimg_get_cat_name(enum ih_category category, uint id) 611 { 612 const table_entry_t *entry; 613 614 entry = get_table_entry(table_info[category].table, id); 615 if (!entry) 616 return unknown_msg(category); 617 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 618 return entry->lname; 619 #else 620 return entry->lname + gd->reloc_off; 621 #endif 622 } 623 624 /** 625 * get_cat_table_entry_short_name - translate entry id to short name 626 * @category: category to look up (enum ih_category) 627 * @id: entry id to be translated 628 * 629 * This will scan the translation table trying to find the entry that matches 630 * the given id. 631 * 632 * @retur short entry name if translation succeeds; error string on failure 633 */ 634 const char *genimg_get_cat_short_name(enum ih_category category, uint id) 635 { 636 const table_entry_t *entry; 637 638 entry = get_table_entry(table_info[category].table, id); 639 if (!entry) 640 return unknown_msg(category); 641 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 642 return entry->sname; 643 #else 644 return entry->sname + gd->reloc_off; 645 #endif 646 } 647 648 int genimg_get_cat_count(enum ih_category category) 649 { 650 return table_info[category].count; 651 } 652 653 const char *genimg_get_cat_desc(enum ih_category category) 654 { 655 return table_info[category].desc; 656 } 657 658 /** 659 * get_table_entry_name - translate entry id to long name 660 * @table: pointer to a translation table for entries of a specific type 661 * @msg: message to be returned when translation fails 662 * @id: entry id to be translated 663 * 664 * get_table_entry_name() will go over translation table trying to find 665 * entry that matches given id. If matching entry is found, its long 666 * name is returned to the caller. 667 * 668 * returns: 669 * long entry name if translation succeeds 670 * msg otherwise 671 */ 672 char *get_table_entry_name(const table_entry_t *table, char *msg, int id) 673 { 674 table = get_table_entry(table, id); 675 if (!table) 676 return msg; 677 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 678 return table->lname; 679 #else 680 return table->lname + gd->reloc_off; 681 #endif 682 } 683 684 const char *genimg_get_os_name(uint8_t os) 685 { 686 return (get_table_entry_name(uimage_os, "Unknown OS", os)); 687 } 688 689 const char *genimg_get_arch_name(uint8_t arch) 690 { 691 return (get_table_entry_name(uimage_arch, "Unknown Architecture", 692 arch)); 693 } 694 695 const char *genimg_get_type_name(uint8_t type) 696 { 697 return (get_table_entry_name(uimage_type, "Unknown Image", type)); 698 } 699 700 static const char *genimg_get_short_name(const table_entry_t *table, int val) 701 { 702 table = get_table_entry(table, val); 703 if (!table) 704 return "unknown"; 705 #if defined(USE_HOSTCC) || !defined(CONFIG_NEEDS_MANUAL_RELOC) 706 return table->sname; 707 #else 708 return table->sname + gd->reloc_off; 709 #endif 710 } 711 712 const char *genimg_get_type_short_name(uint8_t type) 713 { 714 return genimg_get_short_name(uimage_type, type); 715 } 716 717 const char *genimg_get_comp_name(uint8_t comp) 718 { 719 return (get_table_entry_name(uimage_comp, "Unknown Compression", 720 comp)); 721 } 722 723 const char *genimg_get_comp_short_name(uint8_t comp) 724 { 725 return genimg_get_short_name(uimage_comp, comp); 726 } 727 728 const char *genimg_get_os_short_name(uint8_t os) 729 { 730 return genimg_get_short_name(uimage_os, os); 731 } 732 733 const char *genimg_get_arch_short_name(uint8_t arch) 734 { 735 return genimg_get_short_name(uimage_arch, arch); 736 } 737 738 /** 739 * get_table_entry_id - translate short entry name to id 740 * @table: pointer to a translation table for entries of a specific type 741 * @table_name: to be used in case of error 742 * @name: entry short name to be translated 743 * 744 * get_table_entry_id() will go over translation table trying to find 745 * entry that matches given short name. If matching entry is found, 746 * its id returned to the caller. 747 * 748 * returns: 749 * entry id if translation succeeds 750 * -1 otherwise 751 */ 752 int get_table_entry_id(const table_entry_t *table, 753 const char *table_name, const char *name) 754 { 755 const table_entry_t *t; 756 757 for (t = table; t->id >= 0; ++t) { 758 #ifdef CONFIG_NEEDS_MANUAL_RELOC 759 if (t->sname && strcasecmp(t->sname + gd->reloc_off, name) == 0) 760 #else 761 if (t->sname && strcasecmp(t->sname, name) == 0) 762 #endif 763 return (t->id); 764 } 765 debug("Invalid %s Type: %s\n", table_name, name); 766 767 return -1; 768 } 769 770 int genimg_get_os_id(const char *name) 771 { 772 return (get_table_entry_id(uimage_os, "OS", name)); 773 } 774 775 int genimg_get_arch_id(const char *name) 776 { 777 return (get_table_entry_id(uimage_arch, "CPU", name)); 778 } 779 780 int genimg_get_type_id(const char *name) 781 { 782 return (get_table_entry_id(uimage_type, "Image", name)); 783 } 784 785 int genimg_get_comp_id(const char *name) 786 { 787 return (get_table_entry_id(uimage_comp, "Compression", name)); 788 } 789 790 #ifndef USE_HOSTCC 791 /** 792 * genimg_get_kernel_addr_fit - get the real kernel address and return 2 793 * FIT strings 794 * @img_addr: a string might contain real image address 795 * @fit_uname_config: double pointer to a char, will hold pointer to a 796 * configuration unit name 797 * @fit_uname_kernel: double pointer to a char, will hold pointer to a subimage 798 * name 799 * 800 * genimg_get_kernel_addr_fit get the real kernel start address from a string 801 * which is normally the first argv of bootm/bootz 802 * 803 * returns: 804 * kernel start address 805 */ 806 ulong genimg_get_kernel_addr_fit(char * const img_addr, 807 const char **fit_uname_config, 808 const char **fit_uname_kernel) 809 { 810 ulong kernel_addr; 811 812 /* find out kernel image address */ 813 if (!img_addr) { 814 kernel_addr = load_addr; 815 debug("* kernel: default image load address = 0x%08lx\n", 816 load_addr); 817 #if CONFIG_IS_ENABLED(FIT) 818 } else if (fit_parse_conf(img_addr, load_addr, &kernel_addr, 819 fit_uname_config)) { 820 debug("* kernel: config '%s' from image at 0x%08lx\n", 821 *fit_uname_config, kernel_addr); 822 } else if (fit_parse_subimage(img_addr, load_addr, &kernel_addr, 823 fit_uname_kernel)) { 824 debug("* kernel: subimage '%s' from image at 0x%08lx\n", 825 *fit_uname_kernel, kernel_addr); 826 #endif 827 } else { 828 kernel_addr = simple_strtoul(img_addr, NULL, 16); 829 debug("* kernel: cmdline image address = 0x%08lx\n", 830 kernel_addr); 831 } 832 833 return kernel_addr; 834 } 835 836 /** 837 * genimg_get_kernel_addr() is the simple version of 838 * genimg_get_kernel_addr_fit(). It ignores those return FIT strings 839 */ 840 ulong genimg_get_kernel_addr(char * const img_addr) 841 { 842 const char *fit_uname_config = NULL; 843 const char *fit_uname_kernel = NULL; 844 845 return genimg_get_kernel_addr_fit(img_addr, &fit_uname_config, 846 &fit_uname_kernel); 847 } 848 849 /** 850 * genimg_get_format - get image format type 851 * @img_addr: image start address 852 * 853 * genimg_get_format() checks whether provided address points to a valid 854 * legacy or FIT image. 855 * 856 * New uImage format and FDT blob are based on a libfdt. FDT blob 857 * may be passed directly or embedded in a FIT image. In both situations 858 * genimg_get_format() must be able to dectect libfdt header. 859 * 860 * returns: 861 * image format type or IMAGE_FORMAT_INVALID if no image is present 862 */ 863 int genimg_get_format(const void *img_addr) 864 { 865 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 866 const image_header_t *hdr; 867 868 hdr = (const image_header_t *)img_addr; 869 if (image_check_magic(hdr)) 870 return IMAGE_FORMAT_LEGACY; 871 #endif 872 #if IMAGE_ENABLE_FIT || IMAGE_ENABLE_OF_LIBFDT 873 if (fdt_check_header(img_addr) == 0) 874 return IMAGE_FORMAT_FIT; 875 #endif 876 #ifdef CONFIG_ANDROID_BOOT_IMAGE 877 if (android_image_check_header(img_addr) == 0) 878 return IMAGE_FORMAT_ANDROID; 879 #endif 880 881 return IMAGE_FORMAT_INVALID; 882 } 883 884 /** 885 * fit_has_config - check if there is a valid FIT configuration 886 * @images: pointer to the bootm command headers structure 887 * 888 * fit_has_config() checks if there is a FIT configuration in use 889 * (if FTI support is present). 890 * 891 * returns: 892 * 0, no FIT support or no configuration found 893 * 1, configuration found 894 */ 895 int genimg_has_config(bootm_headers_t *images) 896 { 897 #if IMAGE_ENABLE_FIT 898 if (images->fit_uname_cfg) 899 return 1; 900 #endif 901 return 0; 902 } 903 904 /** 905 * boot_get_ramdisk - main ramdisk handling routine 906 * @argc: command argument count 907 * @argv: command argument list 908 * @images: pointer to the bootm images structure 909 * @arch: expected ramdisk architecture 910 * @rd_start: pointer to a ulong variable, will hold ramdisk start address 911 * @rd_end: pointer to a ulong variable, will hold ramdisk end 912 * 913 * boot_get_ramdisk() is responsible for finding a valid ramdisk image. 914 * Curently supported are the following ramdisk sources: 915 * - multicomponent kernel/ramdisk image, 916 * - commandline provided address of decicated ramdisk image. 917 * 918 * returns: 919 * 0, if ramdisk image was found and valid, or skiped 920 * rd_start and rd_end are set to ramdisk start/end addresses if 921 * ramdisk image is found and valid 922 * 923 * 1, if ramdisk image is found but corrupted, or invalid 924 * rd_start and rd_end are set to 0 if no ramdisk exists 925 */ 926 int boot_get_ramdisk(int argc, char * const argv[], bootm_headers_t *images, 927 uint8_t arch, ulong *rd_start, ulong *rd_end) 928 { 929 ulong rd_addr, rd_load; 930 ulong rd_data, rd_len; 931 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 932 const image_header_t *rd_hdr; 933 #endif 934 void *buf; 935 #ifdef CONFIG_SUPPORT_RAW_INITRD 936 char *end; 937 #endif 938 #if IMAGE_ENABLE_FIT 939 const char *fit_uname_config = images->fit_uname_cfg; 940 const char *fit_uname_ramdisk = NULL; 941 ulong default_addr; 942 int rd_noffset; 943 #endif 944 const char *select = NULL; 945 946 *rd_start = 0; 947 *rd_end = 0; 948 949 #ifdef CONFIG_ANDROID_BOOT_IMAGE 950 /* 951 * Look for an Android boot image. 952 */ 953 buf = map_sysmem(images->os.start, 0); 954 if (buf && genimg_get_format(buf) == IMAGE_FORMAT_ANDROID) 955 select = argv[0]; 956 #endif 957 958 if (argc >= 2) 959 select = argv[1]; 960 961 /* 962 * Look for a '-' which indicates to ignore the 963 * ramdisk argument 964 */ 965 if (select && strcmp(select, "-") == 0) { 966 debug("## Skipping init Ramdisk\n"); 967 rd_len = rd_data = 0; 968 } else if (select || genimg_has_config(images)) { 969 #if IMAGE_ENABLE_FIT 970 if (select) { 971 /* 972 * If the init ramdisk comes from the FIT image and 973 * the FIT image address is omitted in the command 974 * line argument, try to use os FIT image address or 975 * default load address. 976 */ 977 if (images->fit_uname_os) 978 default_addr = (ulong)images->fit_hdr_os; 979 else 980 default_addr = load_addr; 981 982 if (fit_parse_conf(select, default_addr, 983 &rd_addr, &fit_uname_config)) { 984 debug("* ramdisk: config '%s' from image at " 985 "0x%08lx\n", 986 fit_uname_config, rd_addr); 987 } else if (fit_parse_subimage(select, default_addr, 988 &rd_addr, &fit_uname_ramdisk)) { 989 debug("* ramdisk: subimage '%s' from image at " 990 "0x%08lx\n", 991 fit_uname_ramdisk, rd_addr); 992 } else 993 #endif 994 { 995 rd_addr = simple_strtoul(select, NULL, 16); 996 debug("* ramdisk: cmdline image address = " 997 "0x%08lx\n", 998 rd_addr); 999 } 1000 #if IMAGE_ENABLE_FIT 1001 } else { 1002 /* use FIT configuration provided in first bootm 1003 * command argument. If the property is not defined, 1004 * quit silently. 1005 */ 1006 rd_addr = map_to_sysmem(images->fit_hdr_os); 1007 rd_noffset = fit_get_node_from_config(images, 1008 FIT_RAMDISK_PROP, rd_addr); 1009 if (rd_noffset == -ENOENT) 1010 return 0; 1011 else if (rd_noffset < 0) 1012 return 1; 1013 } 1014 #endif 1015 1016 /* 1017 * Check if there is an initrd image at the 1018 * address provided in the second bootm argument 1019 * check image type, for FIT images get FIT node. 1020 */ 1021 buf = map_sysmem(rd_addr, 0); 1022 switch (genimg_get_format(buf)) { 1023 #if defined(CONFIG_IMAGE_FORMAT_LEGACY) 1024 case IMAGE_FORMAT_LEGACY: 1025 printf("## Loading init Ramdisk from Legacy " 1026 "Image at %08lx ...\n", rd_addr); 1027 1028 bootstage_mark(BOOTSTAGE_ID_CHECK_RAMDISK); 1029 rd_hdr = image_get_ramdisk(rd_addr, arch, 1030 images->verify); 1031 1032 if (rd_hdr == NULL) 1033 return 1; 1034 1035 rd_data = image_get_data(rd_hdr); 1036 rd_len = image_get_data_size(rd_hdr); 1037 rd_load = image_get_load(rd_hdr); 1038 break; 1039 #endif 1040 #if IMAGE_ENABLE_FIT 1041 case IMAGE_FORMAT_FIT: 1042 rd_noffset = fit_image_load(images, 1043 rd_addr, &fit_uname_ramdisk, 1044 &fit_uname_config, arch, 1045 IH_TYPE_RAMDISK, 1046 BOOTSTAGE_ID_FIT_RD_START, 1047 FIT_LOAD_OPTIONAL_NON_ZERO, 1048 &rd_data, &rd_len); 1049 if (rd_noffset < 0) 1050 return 1; 1051 1052 images->fit_hdr_rd = map_sysmem(rd_addr, 0); 1053 images->fit_uname_rd = fit_uname_ramdisk; 1054 images->fit_noffset_rd = rd_noffset; 1055 break; 1056 #endif 1057 #ifdef CONFIG_ANDROID_BOOT_IMAGE 1058 case IMAGE_FORMAT_ANDROID: 1059 android_image_get_ramdisk((void *)images->os.start, 1060 &rd_data, &rd_len); 1061 break; 1062 #endif 1063 default: 1064 #ifdef CONFIG_SUPPORT_RAW_INITRD 1065 end = NULL; 1066 if (select) 1067 end = strchr(select, ':'); 1068 if (end) { 1069 rd_len = simple_strtoul(++end, NULL, 16); 1070 rd_data = rd_addr; 1071 } else 1072 #endif 1073 { 1074 puts("Wrong Ramdisk Image Format\n"); 1075 rd_data = rd_len = rd_load = 0; 1076 return 1; 1077 } 1078 } 1079 } else if (images->legacy_hdr_valid && 1080 image_check_type(&images->legacy_hdr_os_copy, 1081 IH_TYPE_MULTI)) { 1082 1083 /* 1084 * Now check if we have a legacy mult-component image, 1085 * get second entry data start address and len. 1086 */ 1087 bootstage_mark(BOOTSTAGE_ID_RAMDISK); 1088 printf("## Loading init Ramdisk from multi component " 1089 "Legacy Image at %08lx ...\n", 1090 (ulong)images->legacy_hdr_os); 1091 1092 image_multi_getimg(images->legacy_hdr_os, 1, &rd_data, &rd_len); 1093 } else { 1094 /* 1095 * no initrd image 1096 */ 1097 bootstage_mark(BOOTSTAGE_ID_NO_RAMDISK); 1098 rd_len = rd_data = 0; 1099 } 1100 1101 if (!rd_data) { 1102 debug("## No init Ramdisk\n"); 1103 } else { 1104 *rd_start = rd_data; 1105 *rd_end = rd_data + rd_len; 1106 } 1107 debug(" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n", 1108 *rd_start, *rd_end); 1109 1110 return 0; 1111 } 1112 1113 #ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH 1114 /** 1115 * boot_ramdisk_high - relocate init ramdisk 1116 * @lmb: pointer to lmb handle, will be used for memory mgmt 1117 * @rd_data: ramdisk data start address 1118 * @rd_len: ramdisk data length 1119 * @initrd_start: pointer to a ulong variable, will hold final init ramdisk 1120 * start address (after possible relocation) 1121 * @initrd_end: pointer to a ulong variable, will hold final init ramdisk 1122 * end address (after possible relocation) 1123 * 1124 * boot_ramdisk_high() takes a relocation hint from "initrd_high" environment 1125 * variable and if requested ramdisk data is moved to a specified location. 1126 * 1127 * Initrd_start and initrd_end are set to final (after relocation) ramdisk 1128 * start/end addresses if ramdisk image start and len were provided, 1129 * otherwise set initrd_start and initrd_end set to zeros. 1130 * 1131 * returns: 1132 * 0 - success 1133 * -1 - failure 1134 */ 1135 int boot_ramdisk_high(struct lmb *lmb, ulong rd_data, ulong rd_len, 1136 ulong *initrd_start, ulong *initrd_end) 1137 { 1138 char *s; 1139 ulong initrd_high; 1140 int initrd_copy_to_ram = 1; 1141 1142 s = env_get("initrd_high"); 1143 if (s) { 1144 /* a value of "no" or a similar string will act like 0, 1145 * turning the "load high" feature off. This is intentional. 1146 */ 1147 initrd_high = simple_strtoul(s, NULL, 16); 1148 if (initrd_high == ~0) 1149 initrd_copy_to_ram = 0; 1150 } else { 1151 initrd_high = env_get_bootm_mapsize() + env_get_bootm_low(); 1152 } 1153 1154 1155 debug("## initrd_high = 0x%08lx, copy_to_ram = %d\n", 1156 initrd_high, initrd_copy_to_ram); 1157 1158 if (rd_data) { 1159 if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */ 1160 debug(" in-place initrd\n"); 1161 *initrd_start = rd_data; 1162 *initrd_end = rd_data + rd_len; 1163 lmb_reserve(lmb, rd_data, rd_len); 1164 } else { 1165 if (initrd_high) 1166 *initrd_start = (ulong)lmb_alloc_base(lmb, 1167 rd_len, 0x1000, initrd_high); 1168 else 1169 *initrd_start = (ulong)lmb_alloc(lmb, rd_len, 1170 0x1000); 1171 1172 if (*initrd_start == 0) { 1173 puts("ramdisk - allocation error\n"); 1174 goto error; 1175 } 1176 bootstage_mark(BOOTSTAGE_ID_COPY_RAMDISK); 1177 1178 *initrd_end = *initrd_start + rd_len; 1179 printf(" Loading Ramdisk to %08lx, end %08lx ... ", 1180 *initrd_start, *initrd_end); 1181 1182 memmove_wd((void *)*initrd_start, 1183 (void *)rd_data, rd_len, CHUNKSZ); 1184 1185 #ifdef CONFIG_MP 1186 /* 1187 * Ensure the image is flushed to memory to handle 1188 * AMP boot scenarios in which we might not be 1189 * HW cache coherent 1190 */ 1191 flush_cache((unsigned long)*initrd_start, 1192 ALIGN(rd_len, ARCH_DMA_MINALIGN)); 1193 #endif 1194 puts("OK\n"); 1195 } 1196 } else { 1197 *initrd_start = 0; 1198 *initrd_end = 0; 1199 } 1200 debug(" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n", 1201 *initrd_start, *initrd_end); 1202 1203 return 0; 1204 1205 error: 1206 return -1; 1207 } 1208 #endif /* CONFIG_SYS_BOOT_RAMDISK_HIGH */ 1209 1210 int boot_get_setup(bootm_headers_t *images, uint8_t arch, 1211 ulong *setup_start, ulong *setup_len) 1212 { 1213 #if IMAGE_ENABLE_FIT 1214 return boot_get_setup_fit(images, arch, setup_start, setup_len); 1215 #else 1216 return -ENOENT; 1217 #endif 1218 } 1219 1220 #if IMAGE_ENABLE_FIT 1221 #if defined(CONFIG_FPGA) 1222 int boot_get_fpga(int argc, char * const argv[], bootm_headers_t *images, 1223 uint8_t arch, const ulong *ld_start, ulong * const ld_len) 1224 { 1225 ulong tmp_img_addr, img_data, img_len; 1226 void *buf; 1227 int conf_noffset; 1228 int fit_img_result; 1229 const char *uname, *name; 1230 int err; 1231 int devnum = 0; /* TODO support multi fpga platforms */ 1232 1233 /* Check to see if the images struct has a FIT configuration */ 1234 if (!genimg_has_config(images)) { 1235 debug("## FIT configuration was not specified\n"); 1236 return 0; 1237 } 1238 1239 /* 1240 * Obtain the os FIT header from the images struct 1241 */ 1242 tmp_img_addr = map_to_sysmem(images->fit_hdr_os); 1243 buf = map_sysmem(tmp_img_addr, 0); 1244 /* 1245 * Check image type. For FIT images get FIT node 1246 * and attempt to locate a generic binary. 1247 */ 1248 switch (genimg_get_format(buf)) { 1249 case IMAGE_FORMAT_FIT: 1250 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg); 1251 1252 uname = fdt_stringlist_get(buf, conf_noffset, FIT_FPGA_PROP, 0, 1253 NULL); 1254 if (!uname) { 1255 debug("## FPGA image is not specified\n"); 1256 return 0; 1257 } 1258 fit_img_result = fit_image_load(images, 1259 tmp_img_addr, 1260 (const char **)&uname, 1261 &(images->fit_uname_cfg), 1262 arch, 1263 IH_TYPE_FPGA, 1264 BOOTSTAGE_ID_FPGA_INIT, 1265 FIT_LOAD_OPTIONAL_NON_ZERO, 1266 &img_data, &img_len); 1267 1268 debug("FPGA image (%s) loaded to 0x%lx/size 0x%lx\n", 1269 uname, img_data, img_len); 1270 1271 if (fit_img_result < 0) { 1272 /* Something went wrong! */ 1273 return fit_img_result; 1274 } 1275 1276 if (!fpga_is_partial_data(devnum, img_len)) { 1277 name = "full"; 1278 err = fpga_loadbitstream(devnum, (char *)img_data, 1279 img_len, BIT_FULL); 1280 if (err) 1281 err = fpga_load(devnum, (const void *)img_data, 1282 img_len, BIT_FULL); 1283 } else { 1284 name = "partial"; 1285 err = fpga_loadbitstream(devnum, (char *)img_data, 1286 img_len, BIT_PARTIAL); 1287 if (err) 1288 err = fpga_load(devnum, (const void *)img_data, 1289 img_len, BIT_PARTIAL); 1290 } 1291 1292 if (err) 1293 return err; 1294 1295 printf(" Programming %s bitstream... OK\n", name); 1296 break; 1297 default: 1298 printf("The given image format is not supported (corrupt?)\n"); 1299 return 1; 1300 } 1301 1302 return 0; 1303 } 1304 #endif 1305 1306 static void fit_loadable_process(uint8_t img_type, 1307 ulong img_data, 1308 ulong img_len) 1309 { 1310 int i; 1311 const unsigned int count = 1312 ll_entry_count(struct fit_loadable_tbl, fit_loadable); 1313 struct fit_loadable_tbl *fit_loadable_handler = 1314 ll_entry_start(struct fit_loadable_tbl, fit_loadable); 1315 /* For each loadable handler */ 1316 for (i = 0; i < count; i++, fit_loadable_handler++) 1317 /* matching this type */ 1318 if (fit_loadable_handler->type == img_type) 1319 /* call that handler with this image data */ 1320 fit_loadable_handler->handler(img_data, img_len); 1321 } 1322 1323 int boot_get_loadable(int argc, char * const argv[], bootm_headers_t *images, 1324 uint8_t arch, const ulong *ld_start, ulong * const ld_len) 1325 { 1326 /* 1327 * These variables are used to hold the current image location 1328 * in system memory. 1329 */ 1330 ulong tmp_img_addr; 1331 /* 1332 * These two variables are requirements for fit_image_load, but 1333 * their values are not used 1334 */ 1335 ulong img_data, img_len; 1336 void *buf; 1337 int loadables_index; 1338 int conf_noffset; 1339 int fit_img_result; 1340 const char *uname; 1341 uint8_t img_type; 1342 1343 /* Check to see if the images struct has a FIT configuration */ 1344 if (!genimg_has_config(images)) { 1345 debug("## FIT configuration was not specified\n"); 1346 return 0; 1347 } 1348 1349 /* 1350 * Obtain the os FIT header from the images struct 1351 */ 1352 tmp_img_addr = map_to_sysmem(images->fit_hdr_os); 1353 buf = map_sysmem(tmp_img_addr, 0); 1354 /* 1355 * Check image type. For FIT images get FIT node 1356 * and attempt to locate a generic binary. 1357 */ 1358 switch (genimg_get_format(buf)) { 1359 case IMAGE_FORMAT_FIT: 1360 conf_noffset = fit_conf_get_node(buf, images->fit_uname_cfg); 1361 1362 for (loadables_index = 0; 1363 uname = fdt_stringlist_get(buf, conf_noffset, 1364 FIT_LOADABLE_PROP, loadables_index, 1365 NULL), uname; 1366 loadables_index++) 1367 { 1368 fit_img_result = fit_image_load(images, 1369 tmp_img_addr, 1370 &uname, 1371 &(images->fit_uname_cfg), arch, 1372 IH_TYPE_LOADABLE, 1373 BOOTSTAGE_ID_FIT_LOADABLE_START, 1374 FIT_LOAD_OPTIONAL_NON_ZERO, 1375 &img_data, &img_len); 1376 if (fit_img_result < 0) { 1377 /* Something went wrong! */ 1378 return fit_img_result; 1379 } 1380 1381 fit_img_result = fit_image_get_node(buf, uname); 1382 if (fit_img_result < 0) { 1383 /* Something went wrong! */ 1384 return fit_img_result; 1385 } 1386 fit_img_result = fit_image_get_type(buf, 1387 fit_img_result, 1388 &img_type); 1389 if (fit_img_result < 0) { 1390 /* Something went wrong! */ 1391 return fit_img_result; 1392 } 1393 1394 fit_loadable_process(img_type, img_data, img_len); 1395 } 1396 break; 1397 default: 1398 printf("The given image format is not supported (corrupt?)\n"); 1399 return 1; 1400 } 1401 1402 return 0; 1403 } 1404 #endif 1405 1406 #ifdef CONFIG_SYS_BOOT_GET_CMDLINE 1407 /** 1408 * boot_get_cmdline - allocate and initialize kernel cmdline 1409 * @lmb: pointer to lmb handle, will be used for memory mgmt 1410 * @cmd_start: pointer to a ulong variable, will hold cmdline start 1411 * @cmd_end: pointer to a ulong variable, will hold cmdline end 1412 * 1413 * boot_get_cmdline() allocates space for kernel command line below 1414 * BOOTMAPSZ + env_get_bootm_low() address. If "bootargs" U-Boot environemnt 1415 * variable is present its contents is copied to allocated kernel 1416 * command line. 1417 * 1418 * returns: 1419 * 0 - success 1420 * -1 - failure 1421 */ 1422 int boot_get_cmdline(struct lmb *lmb, ulong *cmd_start, ulong *cmd_end) 1423 { 1424 char *cmdline; 1425 char *s; 1426 1427 cmdline = (char *)(ulong)lmb_alloc_base(lmb, CONFIG_SYS_BARGSIZE, 0xf, 1428 env_get_bootm_mapsize() + env_get_bootm_low()); 1429 1430 if (cmdline == NULL) 1431 return -1; 1432 1433 s = env_get("bootargs"); 1434 if (!s) 1435 s = ""; 1436 1437 strcpy(cmdline, s); 1438 1439 *cmd_start = (ulong) & cmdline[0]; 1440 *cmd_end = *cmd_start + strlen(cmdline); 1441 1442 debug("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end); 1443 1444 return 0; 1445 } 1446 #endif /* CONFIG_SYS_BOOT_GET_CMDLINE */ 1447 1448 #ifdef CONFIG_SYS_BOOT_GET_KBD 1449 /** 1450 * boot_get_kbd - allocate and initialize kernel copy of board info 1451 * @lmb: pointer to lmb handle, will be used for memory mgmt 1452 * @kbd: double pointer to board info data 1453 * 1454 * boot_get_kbd() allocates space for kernel copy of board info data below 1455 * BOOTMAPSZ + env_get_bootm_low() address and kernel board info is initialized 1456 * with the current u-boot board info data. 1457 * 1458 * returns: 1459 * 0 - success 1460 * -1 - failure 1461 */ 1462 int boot_get_kbd(struct lmb *lmb, bd_t **kbd) 1463 { 1464 *kbd = (bd_t *)(ulong)lmb_alloc_base(lmb, sizeof(bd_t), 0xf, 1465 env_get_bootm_mapsize() + env_get_bootm_low()); 1466 if (*kbd == NULL) 1467 return -1; 1468 1469 **kbd = *(gd->bd); 1470 1471 debug("## kernel board info at 0x%08lx\n", (ulong)*kbd); 1472 1473 #if defined(DEBUG) && defined(CONFIG_CMD_BDI) 1474 do_bdinfo(NULL, 0, 0, NULL); 1475 #endif 1476 1477 return 0; 1478 } 1479 #endif /* CONFIG_SYS_BOOT_GET_KBD */ 1480 1481 #ifdef CONFIG_LMB 1482 int image_setup_linux(bootm_headers_t *images) 1483 { 1484 ulong of_size = images->ft_len; 1485 char **of_flat_tree = &images->ft_addr; 1486 struct lmb *lmb = &images->lmb; 1487 int ret; 1488 1489 if (IMAGE_ENABLE_OF_LIBFDT) 1490 boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree); 1491 1492 if (IMAGE_BOOT_GET_CMDLINE) { 1493 ret = boot_get_cmdline(lmb, &images->cmdline_start, 1494 &images->cmdline_end); 1495 if (ret) { 1496 puts("ERROR with allocation of cmdline\n"); 1497 return ret; 1498 } 1499 } 1500 1501 if (IMAGE_ENABLE_OF_LIBFDT) { 1502 ret = boot_relocate_fdt(lmb, of_flat_tree, &of_size); 1503 if (ret) 1504 return ret; 1505 } 1506 1507 if (IMAGE_ENABLE_OF_LIBFDT && of_size) { 1508 ret = image_setup_libfdt(images, *of_flat_tree, of_size, lmb); 1509 if (ret) 1510 return ret; 1511 } 1512 1513 return 0; 1514 } 1515 #endif /* CONFIG_LMB */ 1516 #endif /* !USE_HOSTCC */ 1517