1 /* 2 * Copyright (c) 2012 The Chromium OS Authors. 3 * 4 * (C) Copyright 2011 5 * Joe Hershberger, National Instruments, joe.hershberger@ni.com 6 * 7 * (C) Copyright 2000 8 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 9 * 10 * SPDX-License-Identifier: GPL-2.0+ 11 */ 12 13 #ifndef USE_HOSTCC 14 #include <common.h> 15 #include <command.h> 16 #include <malloc.h> 17 #include <mapmem.h> 18 #include <hw_sha.h> 19 #include <asm/io.h> 20 #include <asm/errno.h> 21 #else 22 #include "mkimage.h" 23 #include <time.h> 24 #include <image.h> 25 #endif /* !USE_HOSTCC*/ 26 27 #include <hash.h> 28 #include <u-boot/crc.h> 29 #include <u-boot/sha1.h> 30 #include <u-boot/sha256.h> 31 #include <u-boot/md5.h> 32 33 #ifdef CONFIG_SHA1 34 static int hash_init_sha1(struct hash_algo *algo, void **ctxp) 35 { 36 sha1_context *ctx = malloc(sizeof(sha1_context)); 37 sha1_starts(ctx); 38 *ctxp = ctx; 39 return 0; 40 } 41 42 static int hash_update_sha1(struct hash_algo *algo, void *ctx, const void *buf, 43 unsigned int size, int is_last) 44 { 45 sha1_update((sha1_context *)ctx, buf, size); 46 return 0; 47 } 48 49 static int hash_finish_sha1(struct hash_algo *algo, void *ctx, void *dest_buf, 50 int size) 51 { 52 if (size < algo->digest_size) 53 return -1; 54 55 sha1_finish((sha1_context *)ctx, dest_buf); 56 free(ctx); 57 return 0; 58 } 59 #endif 60 61 #ifdef CONFIG_SHA256 62 static int hash_init_sha256(struct hash_algo *algo, void **ctxp) 63 { 64 sha256_context *ctx = malloc(sizeof(sha256_context)); 65 sha256_starts(ctx); 66 *ctxp = ctx; 67 return 0; 68 } 69 70 static int hash_update_sha256(struct hash_algo *algo, void *ctx, 71 const void *buf, unsigned int size, int is_last) 72 { 73 sha256_update((sha256_context *)ctx, buf, size); 74 return 0; 75 } 76 77 static int hash_finish_sha256(struct hash_algo *algo, void *ctx, void 78 *dest_buf, int size) 79 { 80 if (size < algo->digest_size) 81 return -1; 82 83 sha256_finish((sha256_context *)ctx, dest_buf); 84 free(ctx); 85 return 0; 86 } 87 #endif 88 89 static int hash_init_crc32(struct hash_algo *algo, void **ctxp) 90 { 91 uint32_t *ctx = malloc(sizeof(uint32_t)); 92 *ctx = 0; 93 *ctxp = ctx; 94 return 0; 95 } 96 97 static int hash_update_crc32(struct hash_algo *algo, void *ctx, 98 const void *buf, unsigned int size, int is_last) 99 { 100 *((uint32_t *)ctx) = crc32(*((uint32_t *)ctx), buf, size); 101 return 0; 102 } 103 104 static int hash_finish_crc32(struct hash_algo *algo, void *ctx, void *dest_buf, 105 int size) 106 { 107 if (size < algo->digest_size) 108 return -1; 109 110 *((uint32_t *)dest_buf) = *((uint32_t *)ctx); 111 free(ctx); 112 return 0; 113 } 114 115 /* 116 * These are the hash algorithms we support. Chips which support accelerated 117 * crypto could perhaps add named version of these algorithms here. Note that 118 * algorithm names must be in lower case. 119 */ 120 static struct hash_algo hash_algo[] = { 121 /* 122 * CONFIG_SHA_HW_ACCEL is defined if hardware acceleration is 123 * available. 124 */ 125 #ifdef CONFIG_SHA_HW_ACCEL 126 { 127 "sha1", 128 SHA1_SUM_LEN, 129 hw_sha1, 130 CHUNKSZ_SHA1, 131 #ifdef CONFIG_SHA_PROG_HW_ACCEL 132 hw_sha_init, 133 hw_sha_update, 134 hw_sha_finish, 135 #endif 136 }, { 137 "sha256", 138 SHA256_SUM_LEN, 139 hw_sha256, 140 CHUNKSZ_SHA256, 141 #ifdef CONFIG_SHA_PROG_HW_ACCEL 142 hw_sha_init, 143 hw_sha_update, 144 hw_sha_finish, 145 #endif 146 }, 147 #endif 148 #ifdef CONFIG_SHA1 149 { 150 "sha1", 151 SHA1_SUM_LEN, 152 sha1_csum_wd, 153 CHUNKSZ_SHA1, 154 hash_init_sha1, 155 hash_update_sha1, 156 hash_finish_sha1, 157 }, 158 #endif 159 #ifdef CONFIG_SHA256 160 { 161 "sha256", 162 SHA256_SUM_LEN, 163 sha256_csum_wd, 164 CHUNKSZ_SHA256, 165 hash_init_sha256, 166 hash_update_sha256, 167 hash_finish_sha256, 168 }, 169 #endif 170 { 171 "crc32", 172 4, 173 crc32_wd_buf, 174 CHUNKSZ_CRC32, 175 hash_init_crc32, 176 hash_update_crc32, 177 hash_finish_crc32, 178 }, 179 }; 180 181 #if defined(CONFIG_SHA256) || defined(CONFIG_CMD_SHA1SUM) 182 #define MULTI_HASH 183 #endif 184 185 #if defined(CONFIG_HASH_VERIFY) || defined(CONFIG_CMD_HASH) 186 #define MULTI_HASH 187 #endif 188 189 /* Try to minimize code size for boards that don't want much hashing */ 190 #ifdef MULTI_HASH 191 #define multi_hash() 1 192 #else 193 #define multi_hash() 0 194 #endif 195 196 int hash_lookup_algo(const char *algo_name, struct hash_algo **algop) 197 { 198 int i; 199 200 for (i = 0; i < ARRAY_SIZE(hash_algo); i++) { 201 if (!strcmp(algo_name, hash_algo[i].name)) { 202 *algop = &hash_algo[i]; 203 return 0; 204 } 205 } 206 207 debug("Unknown hash algorithm '%s'\n", algo_name); 208 return -EPROTONOSUPPORT; 209 } 210 211 int hash_progressive_lookup_algo(const char *algo_name, 212 struct hash_algo **algop) 213 { 214 int i; 215 216 for (i = 0; i < ARRAY_SIZE(hash_algo); i++) { 217 if (!strcmp(algo_name, hash_algo[i].name)) { 218 if (hash_algo[i].hash_init) { 219 *algop = &hash_algo[i]; 220 return 0; 221 } 222 } 223 } 224 225 debug("Unknown hash algorithm '%s'\n", algo_name); 226 return -EPROTONOSUPPORT; 227 } 228 229 #ifndef USE_HOSTCC 230 /** 231 * store_result: Store the resulting sum to an address or variable 232 * 233 * @algo: Hash algorithm being used 234 * @sum: Hash digest (algo->digest_size bytes) 235 * @dest: Destination, interpreted as a hex address if it starts 236 * with * (or allow_env_vars is 0) or otherwise as an 237 * environment variable. 238 * @allow_env_vars: non-zero to permit storing the result to an 239 * variable environment 240 */ 241 static void store_result(struct hash_algo *algo, const uint8_t *sum, 242 const char *dest, int allow_env_vars) 243 { 244 unsigned int i; 245 int env_var = 0; 246 247 /* 248 * If environment variables are allowed, then we assume that 'dest' 249 * is an environment variable, unless it starts with *, in which 250 * case we assume it is an address. If not allowed, it is always an 251 * address. This is to support the crc32 command. 252 */ 253 if (allow_env_vars) { 254 if (*dest == '*') 255 dest++; 256 else 257 env_var = 1; 258 } 259 260 if (env_var) { 261 char str_output[HASH_MAX_DIGEST_SIZE * 2 + 1]; 262 char *str_ptr = str_output; 263 264 for (i = 0; i < algo->digest_size; i++) { 265 sprintf(str_ptr, "%02x", sum[i]); 266 str_ptr += 2; 267 } 268 *str_ptr = '\0'; 269 setenv(dest, str_output); 270 } else { 271 ulong addr; 272 void *buf; 273 274 addr = simple_strtoul(dest, NULL, 16); 275 buf = map_sysmem(addr, algo->digest_size); 276 memcpy(buf, sum, algo->digest_size); 277 unmap_sysmem(buf); 278 } 279 } 280 281 /** 282 * parse_verify_sum: Parse a hash verification parameter 283 * 284 * @algo: Hash algorithm being used 285 * @verify_str: Argument to parse. If it starts with * then it is 286 * interpreted as a hex address containing the hash. 287 * If the length is exactly the right number of hex digits 288 * for the digest size, then we assume it is a hex digest. 289 * Otherwise we assume it is an environment variable, and 290 * look up its value (it must contain a hex digest). 291 * @vsum: Returns binary digest value (algo->digest_size bytes) 292 * @allow_env_vars: non-zero to permit storing the result to an environment 293 * variable. If 0 then verify_str is assumed to be an 294 * address, and the * prefix is not expected. 295 * @return 0 if ok, non-zero on error 296 */ 297 static int parse_verify_sum(struct hash_algo *algo, char *verify_str, 298 uint8_t *vsum, int allow_env_vars) 299 { 300 int env_var = 0; 301 302 /* See comment above in store_result() */ 303 if (allow_env_vars) { 304 if (*verify_str == '*') 305 verify_str++; 306 else 307 env_var = 1; 308 } 309 310 if (!env_var) { 311 ulong addr; 312 void *buf; 313 314 addr = simple_strtoul(verify_str, NULL, 16); 315 buf = map_sysmem(addr, algo->digest_size); 316 memcpy(vsum, buf, algo->digest_size); 317 } else { 318 unsigned int i; 319 char *vsum_str; 320 int digits = algo->digest_size * 2; 321 322 /* 323 * As with the original code from sha1sum.c, we assume that a 324 * string which matches the digest size exactly is a hex 325 * string and not an environment variable. 326 */ 327 if (strlen(verify_str) == digits) 328 vsum_str = verify_str; 329 else { 330 vsum_str = getenv(verify_str); 331 if (vsum_str == NULL || strlen(vsum_str) != digits) { 332 printf("Expected %d hex digits in env var\n", 333 digits); 334 return 1; 335 } 336 } 337 338 for (i = 0; i < algo->digest_size; i++) { 339 char *nullp = vsum_str + (i + 1) * 2; 340 char end = *nullp; 341 342 *nullp = '\0'; 343 vsum[i] = simple_strtoul(vsum_str + (i * 2), NULL, 16); 344 *nullp = end; 345 } 346 } 347 return 0; 348 } 349 350 void hash_show(struct hash_algo *algo, ulong addr, ulong len, uint8_t *output) 351 { 352 int i; 353 354 printf("%s for %08lx ... %08lx ==> ", algo->name, addr, addr + len - 1); 355 for (i = 0; i < algo->digest_size; i++) 356 printf("%02x", output[i]); 357 } 358 359 int hash_block(const char *algo_name, const void *data, unsigned int len, 360 uint8_t *output, int *output_size) 361 { 362 struct hash_algo *algo; 363 int ret; 364 365 ret = hash_lookup_algo(algo_name, &algo); 366 if (ret) 367 return ret; 368 369 if (output_size && *output_size < algo->digest_size) { 370 debug("Output buffer size %d too small (need %d bytes)", 371 *output_size, algo->digest_size); 372 return -ENOSPC; 373 } 374 if (output_size) 375 *output_size = algo->digest_size; 376 algo->hash_func_ws(data, len, output, algo->chunk_size); 377 378 return 0; 379 } 380 381 int hash_command(const char *algo_name, int flags, cmd_tbl_t *cmdtp, int flag, 382 int argc, char * const argv[]) 383 { 384 ulong addr, len; 385 386 if ((argc < 2) || ((flags & HASH_FLAG_VERIFY) && (argc < 3))) 387 return CMD_RET_USAGE; 388 389 addr = simple_strtoul(*argv++, NULL, 16); 390 len = simple_strtoul(*argv++, NULL, 16); 391 392 if (multi_hash()) { 393 struct hash_algo *algo; 394 uint8_t output[HASH_MAX_DIGEST_SIZE]; 395 uint8_t vsum[HASH_MAX_DIGEST_SIZE]; 396 void *buf; 397 398 if (hash_lookup_algo(algo_name, &algo)) { 399 printf("Unknown hash algorithm '%s'\n", algo_name); 400 return CMD_RET_USAGE; 401 } 402 argc -= 2; 403 404 if (algo->digest_size > HASH_MAX_DIGEST_SIZE) { 405 puts("HASH_MAX_DIGEST_SIZE exceeded\n"); 406 return 1; 407 } 408 409 buf = map_sysmem(addr, len); 410 algo->hash_func_ws(buf, len, output, algo->chunk_size); 411 unmap_sysmem(buf); 412 413 /* Try to avoid code bloat when verify is not needed */ 414 #ifdef CONFIG_HASH_VERIFY 415 if (flags & HASH_FLAG_VERIFY) { 416 #else 417 if (0) { 418 #endif 419 if (parse_verify_sum(algo, *argv, vsum, 420 flags & HASH_FLAG_ENV)) { 421 printf("ERROR: %s does not contain a valid " 422 "%s sum\n", *argv, algo->name); 423 return 1; 424 } 425 if (memcmp(output, vsum, algo->digest_size) != 0) { 426 int i; 427 428 hash_show(algo, addr, len, output); 429 printf(" != "); 430 for (i = 0; i < algo->digest_size; i++) 431 printf("%02x", vsum[i]); 432 puts(" ** ERROR **\n"); 433 return 1; 434 } 435 } else { 436 hash_show(algo, addr, len, output); 437 printf("\n"); 438 439 if (argc) { 440 store_result(algo, output, *argv, 441 flags & HASH_FLAG_ENV); 442 } 443 } 444 445 /* Horrible code size hack for boards that just want crc32 */ 446 } else { 447 ulong crc; 448 ulong *ptr; 449 450 crc = crc32_wd(0, (const uchar *)addr, len, CHUNKSZ_CRC32); 451 452 printf("CRC32 for %08lx ... %08lx ==> %08lx\n", 453 addr, addr + len - 1, crc); 454 455 if (argc >= 3) { 456 ptr = (ulong *)simple_strtoul(argv[0], NULL, 16); 457 *ptr = crc; 458 } 459 } 460 461 return 0; 462 } 463 #endif 464