1 #include <common.h> 2 3 #if defined(CONFIG_UNIT_TEST) 4 #define DEBUG 5 #endif 6 7 #include <malloc.h> 8 #include <asm/io.h> 9 10 #ifdef DEBUG 11 #if __STD_C 12 static void malloc_update_mallinfo (void); 13 void malloc_stats (void); 14 #else 15 static void malloc_update_mallinfo (); 16 void malloc_stats(); 17 #endif 18 #endif /* DEBUG */ 19 20 DECLARE_GLOBAL_DATA_PTR; 21 22 /* 23 Emulation of sbrk for WIN32 24 All code within the ifdef WIN32 is untested by me. 25 26 Thanks to Martin Fong and others for supplying this. 27 */ 28 29 30 #ifdef WIN32 31 32 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \ 33 ~(malloc_getpagesize-1)) 34 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1)) 35 36 /* resrve 64MB to insure large contiguous space */ 37 #define RESERVED_SIZE (1024*1024*64) 38 #define NEXT_SIZE (2048*1024) 39 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024) 40 41 struct GmListElement; 42 typedef struct GmListElement GmListElement; 43 44 struct GmListElement 45 { 46 GmListElement* next; 47 void* base; 48 }; 49 50 static GmListElement* head = 0; 51 static unsigned int gNextAddress = 0; 52 static unsigned int gAddressBase = 0; 53 static unsigned int gAllocatedSize = 0; 54 55 static 56 GmListElement* makeGmListElement (void* bas) 57 { 58 GmListElement* this; 59 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement)); 60 assert (this); 61 if (this) 62 { 63 this->base = bas; 64 this->next = head; 65 head = this; 66 } 67 return this; 68 } 69 70 void gcleanup () 71 { 72 BOOL rval; 73 assert ( (head == NULL) || (head->base == (void*)gAddressBase)); 74 if (gAddressBase && (gNextAddress - gAddressBase)) 75 { 76 rval = VirtualFree ((void*)gAddressBase, 77 gNextAddress - gAddressBase, 78 MEM_DECOMMIT); 79 assert (rval); 80 } 81 while (head) 82 { 83 GmListElement* next = head->next; 84 rval = VirtualFree (head->base, 0, MEM_RELEASE); 85 assert (rval); 86 LocalFree (head); 87 head = next; 88 } 89 } 90 91 static 92 void* findRegion (void* start_address, unsigned long size) 93 { 94 MEMORY_BASIC_INFORMATION info; 95 if (size >= TOP_MEMORY) return NULL; 96 97 while ((unsigned long)start_address + size < TOP_MEMORY) 98 { 99 VirtualQuery (start_address, &info, sizeof (info)); 100 if ((info.State == MEM_FREE) && (info.RegionSize >= size)) 101 return start_address; 102 else 103 { 104 /* Requested region is not available so see if the */ 105 /* next region is available. Set 'start_address' */ 106 /* to the next region and call 'VirtualQuery()' */ 107 /* again. */ 108 109 start_address = (char*)info.BaseAddress + info.RegionSize; 110 111 /* Make sure we start looking for the next region */ 112 /* on the *next* 64K boundary. Otherwise, even if */ 113 /* the new region is free according to */ 114 /* 'VirtualQuery()', the subsequent call to */ 115 /* 'VirtualAlloc()' (which follows the call to */ 116 /* this routine in 'wsbrk()') will round *down* */ 117 /* the requested address to a 64K boundary which */ 118 /* we already know is an address in the */ 119 /* unavailable region. Thus, the subsequent call */ 120 /* to 'VirtualAlloc()' will fail and bring us back */ 121 /* here, causing us to go into an infinite loop. */ 122 123 start_address = 124 (void *) AlignPage64K((unsigned long) start_address); 125 } 126 } 127 return NULL; 128 129 } 130 131 132 void* wsbrk (long size) 133 { 134 void* tmp; 135 if (size > 0) 136 { 137 if (gAddressBase == 0) 138 { 139 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size)); 140 gNextAddress = gAddressBase = 141 (unsigned int)VirtualAlloc (NULL, gAllocatedSize, 142 MEM_RESERVE, PAGE_NOACCESS); 143 } else if (AlignPage (gNextAddress + size) > (gAddressBase + 144 gAllocatedSize)) 145 { 146 long new_size = max (NEXT_SIZE, AlignPage (size)); 147 void* new_address = (void*)(gAddressBase+gAllocatedSize); 148 do 149 { 150 new_address = findRegion (new_address, new_size); 151 152 if (!new_address) 153 return (void*)-1; 154 155 gAddressBase = gNextAddress = 156 (unsigned int)VirtualAlloc (new_address, new_size, 157 MEM_RESERVE, PAGE_NOACCESS); 158 /* repeat in case of race condition */ 159 /* The region that we found has been snagged */ 160 /* by another thread */ 161 } 162 while (gAddressBase == 0); 163 164 assert (new_address == (void*)gAddressBase); 165 166 gAllocatedSize = new_size; 167 168 if (!makeGmListElement ((void*)gAddressBase)) 169 return (void*)-1; 170 } 171 if ((size + gNextAddress) > AlignPage (gNextAddress)) 172 { 173 void* res; 174 res = VirtualAlloc ((void*)AlignPage (gNextAddress), 175 (size + gNextAddress - 176 AlignPage (gNextAddress)), 177 MEM_COMMIT, PAGE_READWRITE); 178 if (!res) 179 return (void*)-1; 180 } 181 tmp = (void*)gNextAddress; 182 gNextAddress = (unsigned int)tmp + size; 183 return tmp; 184 } 185 else if (size < 0) 186 { 187 unsigned int alignedGoal = AlignPage (gNextAddress + size); 188 /* Trim by releasing the virtual memory */ 189 if (alignedGoal >= gAddressBase) 190 { 191 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal, 192 MEM_DECOMMIT); 193 gNextAddress = gNextAddress + size; 194 return (void*)gNextAddress; 195 } 196 else 197 { 198 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase, 199 MEM_DECOMMIT); 200 gNextAddress = gAddressBase; 201 return (void*)-1; 202 } 203 } 204 else 205 { 206 return (void*)gNextAddress; 207 } 208 } 209 210 #endif 211 212 213 214 /* 215 Type declarations 216 */ 217 218 219 struct malloc_chunk 220 { 221 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */ 222 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */ 223 struct malloc_chunk* fd; /* double links -- used only if free. */ 224 struct malloc_chunk* bk; 225 } __attribute__((__may_alias__)) ; 226 227 typedef struct malloc_chunk* mchunkptr; 228 229 /* 230 231 malloc_chunk details: 232 233 (The following includes lightly edited explanations by Colin Plumb.) 234 235 Chunks of memory are maintained using a `boundary tag' method as 236 described in e.g., Knuth or Standish. (See the paper by Paul 237 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a 238 survey of such techniques.) Sizes of free chunks are stored both 239 in the front of each chunk and at the end. This makes 240 consolidating fragmented chunks into bigger chunks very fast. The 241 size fields also hold bits representing whether chunks are free or 242 in use. 243 244 An allocated chunk looks like this: 245 246 247 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 248 | Size of previous chunk, if allocated | | 249 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 250 | Size of chunk, in bytes |P| 251 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 252 | User data starts here... . 253 . . 254 . (malloc_usable_space() bytes) . 255 . | 256 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 257 | Size of chunk | 258 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 259 260 261 Where "chunk" is the front of the chunk for the purpose of most of 262 the malloc code, but "mem" is the pointer that is returned to the 263 user. "Nextchunk" is the beginning of the next contiguous chunk. 264 265 Chunks always begin on even word boundries, so the mem portion 266 (which is returned to the user) is also on an even word boundary, and 267 thus double-word aligned. 268 269 Free chunks are stored in circular doubly-linked lists, and look like this: 270 271 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 272 | Size of previous chunk | 273 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 274 `head:' | Size of chunk, in bytes |P| 275 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 276 | Forward pointer to next chunk in list | 277 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 278 | Back pointer to previous chunk in list | 279 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 280 | Unused space (may be 0 bytes long) . 281 . . 282 . | 283 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 284 `foot:' | Size of chunk, in bytes | 285 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 286 287 The P (PREV_INUSE) bit, stored in the unused low-order bit of the 288 chunk size (which is always a multiple of two words), is an in-use 289 bit for the *previous* chunk. If that bit is *clear*, then the 290 word before the current chunk size contains the previous chunk 291 size, and can be used to find the front of the previous chunk. 292 (The very first chunk allocated always has this bit set, 293 preventing access to non-existent (or non-owned) memory.) 294 295 Note that the `foot' of the current chunk is actually represented 296 as the prev_size of the NEXT chunk. (This makes it easier to 297 deal with alignments etc). 298 299 The two exceptions to all this are 300 301 1. The special chunk `top', which doesn't bother using the 302 trailing size field since there is no 303 next contiguous chunk that would have to index off it. (After 304 initialization, `top' is forced to always exist. If it would 305 become less than MINSIZE bytes long, it is replenished via 306 malloc_extend_top.) 307 308 2. Chunks allocated via mmap, which have the second-lowest-order 309 bit (IS_MMAPPED) set in their size fields. Because they are 310 never merged or traversed from any other chunk, they have no 311 foot size or inuse information. 312 313 Available chunks are kept in any of several places (all declared below): 314 315 * `av': An array of chunks serving as bin headers for consolidated 316 chunks. Each bin is doubly linked. The bins are approximately 317 proportionally (log) spaced. There are a lot of these bins 318 (128). This may look excessive, but works very well in 319 practice. All procedures maintain the invariant that no 320 consolidated chunk physically borders another one. Chunks in 321 bins are kept in size order, with ties going to the 322 approximately least recently used chunk. 323 324 The chunks in each bin are maintained in decreasing sorted order by 325 size. This is irrelevant for the small bins, which all contain 326 the same-sized chunks, but facilitates best-fit allocation for 327 larger chunks. (These lists are just sequential. Keeping them in 328 order almost never requires enough traversal to warrant using 329 fancier ordered data structures.) Chunks of the same size are 330 linked with the most recently freed at the front, and allocations 331 are taken from the back. This results in LRU or FIFO allocation 332 order, which tends to give each chunk an equal opportunity to be 333 consolidated with adjacent freed chunks, resulting in larger free 334 chunks and less fragmentation. 335 336 * `top': The top-most available chunk (i.e., the one bordering the 337 end of available memory) is treated specially. It is never 338 included in any bin, is used only if no other chunk is 339 available, and is released back to the system if it is very 340 large (see M_TRIM_THRESHOLD). 341 342 * `last_remainder': A bin holding only the remainder of the 343 most recently split (non-top) chunk. This bin is checked 344 before other non-fitting chunks, so as to provide better 345 locality for runs of sequentially allocated chunks. 346 347 * Implicitly, through the host system's memory mapping tables. 348 If supported, requests greater than a threshold are usually 349 serviced via calls to mmap, and then later released via munmap. 350 351 */ 352 353 /* sizes, alignments */ 354 355 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T)) 356 #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ) 357 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1) 358 #define MINSIZE (sizeof(struct malloc_chunk)) 359 360 /* conversion from malloc headers to user pointers, and back */ 361 362 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ)) 363 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ)) 364 365 /* pad request bytes into a usable size */ 366 367 #define request2size(req) \ 368 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \ 369 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \ 370 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK))) 371 372 /* Check if m has acceptable alignment */ 373 374 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0) 375 376 377 378 379 /* 380 Physical chunk operations 381 */ 382 383 384 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */ 385 386 #define PREV_INUSE 0x1 387 388 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */ 389 390 #define IS_MMAPPED 0x2 391 392 /* Bits to mask off when extracting size */ 393 394 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED) 395 396 397 /* Ptr to next physical malloc_chunk. */ 398 399 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) )) 400 401 /* Ptr to previous physical malloc_chunk */ 402 403 #define prev_chunk(p)\ 404 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) )) 405 406 407 /* Treat space at ptr + offset as a chunk */ 408 409 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) 410 411 412 413 414 /* 415 Dealing with use bits 416 */ 417 418 /* extract p's inuse bit */ 419 420 #define inuse(p)\ 421 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE) 422 423 /* extract inuse bit of previous chunk */ 424 425 #define prev_inuse(p) ((p)->size & PREV_INUSE) 426 427 /* check for mmap()'ed chunk */ 428 429 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED) 430 431 /* set/clear chunk as in use without otherwise disturbing */ 432 433 #define set_inuse(p)\ 434 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE 435 436 #define clear_inuse(p)\ 437 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE) 438 439 /* check/set/clear inuse bits in known places */ 440 441 #define inuse_bit_at_offset(p, s)\ 442 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE) 443 444 #define set_inuse_bit_at_offset(p, s)\ 445 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE) 446 447 #define clear_inuse_bit_at_offset(p, s)\ 448 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE)) 449 450 451 452 453 /* 454 Dealing with size fields 455 */ 456 457 /* Get size, ignoring use bits */ 458 459 #define chunksize(p) ((p)->size & ~(SIZE_BITS)) 460 461 /* Set size at head, without disturbing its use bit */ 462 463 #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s))) 464 465 /* Set size/use ignoring previous bits in header */ 466 467 #define set_head(p, s) ((p)->size = (s)) 468 469 /* Set size at footer (only when chunk is not in use) */ 470 471 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s)) 472 473 474 475 476 477 /* 478 Bins 479 480 The bins, `av_' are an array of pairs of pointers serving as the 481 heads of (initially empty) doubly-linked lists of chunks, laid out 482 in a way so that each pair can be treated as if it were in a 483 malloc_chunk. (This way, the fd/bk offsets for linking bin heads 484 and chunks are the same). 485 486 Bins for sizes < 512 bytes contain chunks of all the same size, spaced 487 8 bytes apart. Larger bins are approximately logarithmically 488 spaced. (See the table below.) The `av_' array is never mentioned 489 directly in the code, but instead via bin access macros. 490 491 Bin layout: 492 493 64 bins of size 8 494 32 bins of size 64 495 16 bins of size 512 496 8 bins of size 4096 497 4 bins of size 32768 498 2 bins of size 262144 499 1 bin of size what's left 500 501 There is actually a little bit of slop in the numbers in bin_index 502 for the sake of speed. This makes no difference elsewhere. 503 504 The special chunks `top' and `last_remainder' get their own bins, 505 (this is implemented via yet more trickery with the av_ array), 506 although `top' is never properly linked to its bin since it is 507 always handled specially. 508 509 */ 510 511 #define NAV 128 /* number of bins */ 512 513 typedef struct malloc_chunk* mbinptr; 514 515 /* access macros */ 516 517 #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ)) 518 #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr))) 519 #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr))) 520 521 /* 522 The first 2 bins are never indexed. The corresponding av_ cells are instead 523 used for bookkeeping. This is not to save space, but to simplify 524 indexing, maintain locality, and avoid some initialization tests. 525 */ 526 527 #define top (av_[2]) /* The topmost chunk */ 528 #define last_remainder (bin_at(1)) /* remainder from last split */ 529 530 531 /* 532 Because top initially points to its own bin with initial 533 zero size, thus forcing extension on the first malloc request, 534 we avoid having any special code in malloc to check whether 535 it even exists yet. But we still need to in malloc_extend_top. 536 */ 537 538 #define initial_top ((mchunkptr)(bin_at(0))) 539 540 /* Helper macro to initialize bins */ 541 542 #define IAV(i) bin_at(i), bin_at(i) 543 544 static mbinptr av_[NAV * 2 + 2] = { 545 NULL, NULL, 546 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7), 547 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15), 548 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23), 549 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31), 550 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39), 551 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47), 552 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55), 553 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63), 554 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71), 555 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79), 556 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87), 557 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95), 558 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103), 559 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111), 560 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119), 561 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127) 562 }; 563 564 #ifdef CONFIG_NEEDS_MANUAL_RELOC 565 static void malloc_bin_reloc(void) 566 { 567 mbinptr *p = &av_[2]; 568 size_t i; 569 570 for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p) 571 *p = (mbinptr)((ulong)*p + gd->reloc_off); 572 } 573 #else 574 static inline void malloc_bin_reloc(void) {} 575 #endif 576 577 ulong mem_malloc_start = 0; 578 ulong mem_malloc_end = 0; 579 ulong mem_malloc_brk = 0; 580 581 void *sbrk(ptrdiff_t increment) 582 { 583 ulong old = mem_malloc_brk; 584 ulong new = old + increment; 585 586 /* 587 * if we are giving memory back make sure we clear it out since 588 * we set MORECORE_CLEARS to 1 589 */ 590 if (increment < 0) 591 memset((void *)new, 0, -increment); 592 593 if ((new < mem_malloc_start) || (new > mem_malloc_end)) 594 return (void *)MORECORE_FAILURE; 595 596 mem_malloc_brk = new; 597 598 return (void *)old; 599 } 600 601 void mem_malloc_init(ulong start, ulong size) 602 { 603 mem_malloc_start = start; 604 mem_malloc_end = start + size; 605 mem_malloc_brk = start; 606 607 debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start, 608 mem_malloc_end); 609 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT 610 memset((void *)mem_malloc_start, 0x0, size); 611 #endif 612 malloc_bin_reloc(); 613 } 614 615 /* field-extraction macros */ 616 617 #define first(b) ((b)->fd) 618 #define last(b) ((b)->bk) 619 620 /* 621 Indexing into bins 622 */ 623 624 #define bin_index(sz) \ 625 (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \ 626 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \ 627 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \ 628 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \ 629 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \ 630 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \ 631 126) 632 /* 633 bins for chunks < 512 are all spaced 8 bytes apart, and hold 634 identically sized chunks. This is exploited in malloc. 635 */ 636 637 #define MAX_SMALLBIN 63 638 #define MAX_SMALLBIN_SIZE 512 639 #define SMALLBIN_WIDTH 8 640 641 #define smallbin_index(sz) (((unsigned long)(sz)) >> 3) 642 643 /* 644 Requests are `small' if both the corresponding and the next bin are small 645 */ 646 647 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH) 648 649 650 651 /* 652 To help compensate for the large number of bins, a one-level index 653 structure is used for bin-by-bin searching. `binblocks' is a 654 one-word bitvector recording whether groups of BINBLOCKWIDTH bins 655 have any (possibly) non-empty bins, so they can be skipped over 656 all at once during during traversals. The bits are NOT always 657 cleared as soon as all bins in a block are empty, but instead only 658 when all are noticed to be empty during traversal in malloc. 659 */ 660 661 #define BINBLOCKWIDTH 4 /* bins per block */ 662 663 #define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */ 664 #define binblocks_w (av_[1]) 665 666 /* bin<->block macros */ 667 668 #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH)) 669 #define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii))) 670 #define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii)))) 671 672 673 674 675 676 /* Other static bookkeeping data */ 677 678 /* variables holding tunable values */ 679 680 static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD; 681 static unsigned long top_pad = DEFAULT_TOP_PAD; 682 static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX; 683 static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD; 684 685 /* The first value returned from sbrk */ 686 static char* sbrk_base = (char*)(-1); 687 688 /* The maximum memory obtained from system via sbrk */ 689 static unsigned long max_sbrked_mem = 0; 690 691 /* The maximum via either sbrk or mmap */ 692 static unsigned long max_total_mem = 0; 693 694 /* internal working copy of mallinfo */ 695 static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 696 697 /* The total memory obtained from system via sbrk */ 698 #define sbrked_mem (current_mallinfo.arena) 699 700 /* Tracking mmaps */ 701 702 #ifdef DEBUG 703 static unsigned int n_mmaps = 0; 704 #endif /* DEBUG */ 705 static unsigned long mmapped_mem = 0; 706 #if HAVE_MMAP 707 static unsigned int max_n_mmaps = 0; 708 static unsigned long max_mmapped_mem = 0; 709 #endif 710 711 712 713 /* 714 Debugging support 715 */ 716 717 #ifdef DEBUG 718 719 720 /* 721 These routines make a number of assertions about the states 722 of data structures that should be true at all times. If any 723 are not true, it's very likely that a user program has somehow 724 trashed memory. (It's also possible that there is a coding error 725 in malloc. In which case, please report it!) 726 */ 727 728 #if __STD_C 729 static void do_check_chunk(mchunkptr p) 730 #else 731 static void do_check_chunk(p) mchunkptr p; 732 #endif 733 { 734 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; 735 736 /* No checkable chunk is mmapped */ 737 assert(!chunk_is_mmapped(p)); 738 739 /* Check for legal address ... */ 740 assert((char*)p >= sbrk_base); 741 if (p != top) 742 assert((char*)p + sz <= (char*)top); 743 else 744 assert((char*)p + sz <= sbrk_base + sbrked_mem); 745 746 } 747 748 749 #if __STD_C 750 static void do_check_free_chunk(mchunkptr p) 751 #else 752 static void do_check_free_chunk(p) mchunkptr p; 753 #endif 754 { 755 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; 756 mchunkptr next = chunk_at_offset(p, sz); 757 758 do_check_chunk(p); 759 760 /* Check whether it claims to be free ... */ 761 assert(!inuse(p)); 762 763 /* Unless a special marker, must have OK fields */ 764 if ((long)sz >= (long)MINSIZE) 765 { 766 assert((sz & MALLOC_ALIGN_MASK) == 0); 767 assert(aligned_OK(chunk2mem(p))); 768 /* ... matching footer field */ 769 assert(next->prev_size == sz); 770 /* ... and is fully consolidated */ 771 assert(prev_inuse(p)); 772 assert (next == top || inuse(next)); 773 774 /* ... and has minimally sane links */ 775 assert(p->fd->bk == p); 776 assert(p->bk->fd == p); 777 } 778 else /* markers are always of size SIZE_SZ */ 779 assert(sz == SIZE_SZ); 780 } 781 782 #if __STD_C 783 static void do_check_inuse_chunk(mchunkptr p) 784 #else 785 static void do_check_inuse_chunk(p) mchunkptr p; 786 #endif 787 { 788 mchunkptr next = next_chunk(p); 789 do_check_chunk(p); 790 791 /* Check whether it claims to be in use ... */ 792 assert(inuse(p)); 793 794 /* ... and is surrounded by OK chunks. 795 Since more things can be checked with free chunks than inuse ones, 796 if an inuse chunk borders them and debug is on, it's worth doing them. 797 */ 798 if (!prev_inuse(p)) 799 { 800 mchunkptr prv = prev_chunk(p); 801 assert(next_chunk(prv) == p); 802 do_check_free_chunk(prv); 803 } 804 if (next == top) 805 { 806 assert(prev_inuse(next)); 807 assert(chunksize(next) >= MINSIZE); 808 } 809 else if (!inuse(next)) 810 do_check_free_chunk(next); 811 812 } 813 814 #if __STD_C 815 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s) 816 #else 817 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s; 818 #endif 819 { 820 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; 821 long room = sz - s; 822 823 do_check_inuse_chunk(p); 824 825 /* Legal size ... */ 826 assert((long)sz >= (long)MINSIZE); 827 assert((sz & MALLOC_ALIGN_MASK) == 0); 828 assert(room >= 0); 829 assert(room < (long)MINSIZE); 830 831 /* ... and alignment */ 832 assert(aligned_OK(chunk2mem(p))); 833 834 835 /* ... and was allocated at front of an available chunk */ 836 assert(prev_inuse(p)); 837 838 } 839 840 841 #define check_free_chunk(P) do_check_free_chunk(P) 842 #define check_inuse_chunk(P) do_check_inuse_chunk(P) 843 #define check_chunk(P) do_check_chunk(P) 844 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N) 845 #else 846 #define check_free_chunk(P) 847 #define check_inuse_chunk(P) 848 #define check_chunk(P) 849 #define check_malloced_chunk(P,N) 850 #endif 851 852 853 854 /* 855 Macro-based internal utilities 856 */ 857 858 859 /* 860 Linking chunks in bin lists. 861 Call these only with variables, not arbitrary expressions, as arguments. 862 */ 863 864 /* 865 Place chunk p of size s in its bin, in size order, 866 putting it ahead of others of same size. 867 */ 868 869 870 #define frontlink(P, S, IDX, BK, FD) \ 871 { \ 872 if (S < MAX_SMALLBIN_SIZE) \ 873 { \ 874 IDX = smallbin_index(S); \ 875 mark_binblock(IDX); \ 876 BK = bin_at(IDX); \ 877 FD = BK->fd; \ 878 P->bk = BK; \ 879 P->fd = FD; \ 880 FD->bk = BK->fd = P; \ 881 } \ 882 else \ 883 { \ 884 IDX = bin_index(S); \ 885 BK = bin_at(IDX); \ 886 FD = BK->fd; \ 887 if (FD == BK) mark_binblock(IDX); \ 888 else \ 889 { \ 890 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \ 891 BK = FD->bk; \ 892 } \ 893 P->bk = BK; \ 894 P->fd = FD; \ 895 FD->bk = BK->fd = P; \ 896 } \ 897 } 898 899 900 /* take a chunk off a list */ 901 902 #define unlink(P, BK, FD) \ 903 { \ 904 BK = P->bk; \ 905 FD = P->fd; \ 906 FD->bk = BK; \ 907 BK->fd = FD; \ 908 } \ 909 910 /* Place p as the last remainder */ 911 912 #define link_last_remainder(P) \ 913 { \ 914 last_remainder->fd = last_remainder->bk = P; \ 915 P->fd = P->bk = last_remainder; \ 916 } 917 918 /* Clear the last_remainder bin */ 919 920 #define clear_last_remainder \ 921 (last_remainder->fd = last_remainder->bk = last_remainder) 922 923 924 925 926 927 /* Routines dealing with mmap(). */ 928 929 #if HAVE_MMAP 930 931 #if __STD_C 932 static mchunkptr mmap_chunk(size_t size) 933 #else 934 static mchunkptr mmap_chunk(size) size_t size; 935 #endif 936 { 937 size_t page_mask = malloc_getpagesize - 1; 938 mchunkptr p; 939 940 #ifndef MAP_ANONYMOUS 941 static int fd = -1; 942 #endif 943 944 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */ 945 946 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because 947 * there is no following chunk whose prev_size field could be used. 948 */ 949 size = (size + SIZE_SZ + page_mask) & ~page_mask; 950 951 #ifdef MAP_ANONYMOUS 952 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, 953 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); 954 #else /* !MAP_ANONYMOUS */ 955 if (fd < 0) 956 { 957 fd = open("/dev/zero", O_RDWR); 958 if(fd < 0) return 0; 959 } 960 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); 961 #endif 962 963 if(p == (mchunkptr)-1) return 0; 964 965 n_mmaps++; 966 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps; 967 968 /* We demand that eight bytes into a page must be 8-byte aligned. */ 969 assert(aligned_OK(chunk2mem(p))); 970 971 /* The offset to the start of the mmapped region is stored 972 * in the prev_size field of the chunk; normally it is zero, 973 * but that can be changed in memalign(). 974 */ 975 p->prev_size = 0; 976 set_head(p, size|IS_MMAPPED); 977 978 mmapped_mem += size; 979 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) 980 max_mmapped_mem = mmapped_mem; 981 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) 982 max_total_mem = mmapped_mem + sbrked_mem; 983 return p; 984 } 985 986 #if __STD_C 987 static void munmap_chunk(mchunkptr p) 988 #else 989 static void munmap_chunk(p) mchunkptr p; 990 #endif 991 { 992 INTERNAL_SIZE_T size = chunksize(p); 993 int ret; 994 995 assert (chunk_is_mmapped(p)); 996 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); 997 assert((n_mmaps > 0)); 998 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0); 999 1000 n_mmaps--; 1001 mmapped_mem -= (size + p->prev_size); 1002 1003 ret = munmap((char *)p - p->prev_size, size + p->prev_size); 1004 1005 /* munmap returns non-zero on failure */ 1006 assert(ret == 0); 1007 } 1008 1009 #if HAVE_MREMAP 1010 1011 #if __STD_C 1012 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size) 1013 #else 1014 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size; 1015 #endif 1016 { 1017 size_t page_mask = malloc_getpagesize - 1; 1018 INTERNAL_SIZE_T offset = p->prev_size; 1019 INTERNAL_SIZE_T size = chunksize(p); 1020 char *cp; 1021 1022 assert (chunk_is_mmapped(p)); 1023 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); 1024 assert((n_mmaps > 0)); 1025 assert(((size + offset) & (malloc_getpagesize-1)) == 0); 1026 1027 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */ 1028 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask; 1029 1030 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1); 1031 1032 if (cp == (char *)-1) return 0; 1033 1034 p = (mchunkptr)(cp + offset); 1035 1036 assert(aligned_OK(chunk2mem(p))); 1037 1038 assert((p->prev_size == offset)); 1039 set_head(p, (new_size - offset)|IS_MMAPPED); 1040 1041 mmapped_mem -= size + offset; 1042 mmapped_mem += new_size; 1043 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) 1044 max_mmapped_mem = mmapped_mem; 1045 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) 1046 max_total_mem = mmapped_mem + sbrked_mem; 1047 return p; 1048 } 1049 1050 #endif /* HAVE_MREMAP */ 1051 1052 #endif /* HAVE_MMAP */ 1053 1054 1055 1056 1057 /* 1058 Extend the top-most chunk by obtaining memory from system. 1059 Main interface to sbrk (but see also malloc_trim). 1060 */ 1061 1062 #if __STD_C 1063 static void malloc_extend_top(INTERNAL_SIZE_T nb) 1064 #else 1065 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb; 1066 #endif 1067 { 1068 char* brk; /* return value from sbrk */ 1069 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */ 1070 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */ 1071 char* new_brk; /* return of 2nd sbrk call */ 1072 INTERNAL_SIZE_T top_size; /* new size of top chunk */ 1073 1074 mchunkptr old_top = top; /* Record state of old top */ 1075 INTERNAL_SIZE_T old_top_size = chunksize(old_top); 1076 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size)); 1077 1078 /* Pad request with top_pad plus minimal overhead */ 1079 1080 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE; 1081 unsigned long pagesz = malloc_getpagesize; 1082 1083 /* If not the first time through, round to preserve page boundary */ 1084 /* Otherwise, we need to correct to a page size below anyway. */ 1085 /* (We also correct below if an intervening foreign sbrk call.) */ 1086 1087 if (sbrk_base != (char*)(-1)) 1088 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1); 1089 1090 brk = (char*)(MORECORE (sbrk_size)); 1091 1092 /* Fail if sbrk failed or if a foreign sbrk call killed our space */ 1093 if (brk == (char*)(MORECORE_FAILURE) || 1094 (brk < old_end && old_top != initial_top)) 1095 return; 1096 1097 sbrked_mem += sbrk_size; 1098 1099 if (brk == old_end) /* can just add bytes to current top */ 1100 { 1101 top_size = sbrk_size + old_top_size; 1102 set_head(top, top_size | PREV_INUSE); 1103 } 1104 else 1105 { 1106 if (sbrk_base == (char*)(-1)) /* First time through. Record base */ 1107 sbrk_base = brk; 1108 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */ 1109 sbrked_mem += brk - (char*)old_end; 1110 1111 /* Guarantee alignment of first new chunk made from this space */ 1112 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK; 1113 if (front_misalign > 0) 1114 { 1115 correction = (MALLOC_ALIGNMENT) - front_misalign; 1116 brk += correction; 1117 } 1118 else 1119 correction = 0; 1120 1121 /* Guarantee the next brk will be at a page boundary */ 1122 1123 correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) & 1124 ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size)); 1125 1126 /* Allocate correction */ 1127 new_brk = (char*)(MORECORE (correction)); 1128 if (new_brk == (char*)(MORECORE_FAILURE)) return; 1129 1130 sbrked_mem += correction; 1131 1132 top = (mchunkptr)brk; 1133 top_size = new_brk - brk + correction; 1134 set_head(top, top_size | PREV_INUSE); 1135 1136 if (old_top != initial_top) 1137 { 1138 1139 /* There must have been an intervening foreign sbrk call. */ 1140 /* A double fencepost is necessary to prevent consolidation */ 1141 1142 /* If not enough space to do this, then user did something very wrong */ 1143 if (old_top_size < MINSIZE) 1144 { 1145 set_head(top, PREV_INUSE); /* will force null return from malloc */ 1146 return; 1147 } 1148 1149 /* Also keep size a multiple of MALLOC_ALIGNMENT */ 1150 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK; 1151 set_head_size(old_top, old_top_size); 1152 chunk_at_offset(old_top, old_top_size )->size = 1153 SIZE_SZ|PREV_INUSE; 1154 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size = 1155 SIZE_SZ|PREV_INUSE; 1156 /* If possible, release the rest. */ 1157 if (old_top_size >= MINSIZE) 1158 fREe(chunk2mem(old_top)); 1159 } 1160 } 1161 1162 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem) 1163 max_sbrked_mem = sbrked_mem; 1164 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) 1165 max_total_mem = mmapped_mem + sbrked_mem; 1166 1167 /* We always land on a page boundary */ 1168 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0); 1169 } 1170 1171 1172 1173 1174 /* Main public routines */ 1175 1176 1177 /* 1178 Malloc Algorthim: 1179 1180 The requested size is first converted into a usable form, `nb'. 1181 This currently means to add 4 bytes overhead plus possibly more to 1182 obtain 8-byte alignment and/or to obtain a size of at least 1183 MINSIZE (currently 16 bytes), the smallest allocatable size. 1184 (All fits are considered `exact' if they are within MINSIZE bytes.) 1185 1186 From there, the first successful of the following steps is taken: 1187 1188 1. The bin corresponding to the request size is scanned, and if 1189 a chunk of exactly the right size is found, it is taken. 1190 1191 2. The most recently remaindered chunk is used if it is big 1192 enough. This is a form of (roving) first fit, used only in 1193 the absence of exact fits. Runs of consecutive requests use 1194 the remainder of the chunk used for the previous such request 1195 whenever possible. This limited use of a first-fit style 1196 allocation strategy tends to give contiguous chunks 1197 coextensive lifetimes, which improves locality and can reduce 1198 fragmentation in the long run. 1199 1200 3. Other bins are scanned in increasing size order, using a 1201 chunk big enough to fulfill the request, and splitting off 1202 any remainder. This search is strictly by best-fit; i.e., 1203 the smallest (with ties going to approximately the least 1204 recently used) chunk that fits is selected. 1205 1206 4. If large enough, the chunk bordering the end of memory 1207 (`top') is split off. (This use of `top' is in accord with 1208 the best-fit search rule. In effect, `top' is treated as 1209 larger (and thus less well fitting) than any other available 1210 chunk since it can be extended to be as large as necessary 1211 (up to system limitations). 1212 1213 5. If the request size meets the mmap threshold and the 1214 system supports mmap, and there are few enough currently 1215 allocated mmapped regions, and a call to mmap succeeds, 1216 the request is allocated via direct memory mapping. 1217 1218 6. Otherwise, the top of memory is extended by 1219 obtaining more space from the system (normally using sbrk, 1220 but definable to anything else via the MORECORE macro). 1221 Memory is gathered from the system (in system page-sized 1222 units) in a way that allows chunks obtained across different 1223 sbrk calls to be consolidated, but does not require 1224 contiguous memory. Thus, it should be safe to intersperse 1225 mallocs with other sbrk calls. 1226 1227 1228 All allocations are made from the the `lowest' part of any found 1229 chunk. (The implementation invariant is that prev_inuse is 1230 always true of any allocated chunk; i.e., that each allocated 1231 chunk borders either a previously allocated and still in-use chunk, 1232 or the base of its memory arena.) 1233 1234 */ 1235 1236 #if __STD_C 1237 Void_t* mALLOc(size_t bytes) 1238 #else 1239 Void_t* mALLOc(bytes) size_t bytes; 1240 #endif 1241 { 1242 mchunkptr victim; /* inspected/selected chunk */ 1243 INTERNAL_SIZE_T victim_size; /* its size */ 1244 int idx; /* index for bin traversal */ 1245 mbinptr bin; /* associated bin */ 1246 mchunkptr remainder; /* remainder from a split */ 1247 long remainder_size; /* its size */ 1248 int remainder_index; /* its bin index */ 1249 unsigned long block; /* block traverser bit */ 1250 int startidx; /* first bin of a traversed block */ 1251 mchunkptr fwd; /* misc temp for linking */ 1252 mchunkptr bck; /* misc temp for linking */ 1253 mbinptr q; /* misc temp */ 1254 1255 INTERNAL_SIZE_T nb; 1256 1257 #if CONFIG_VAL(SYS_MALLOC_F_LEN) 1258 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) 1259 return malloc_simple(bytes); 1260 #endif 1261 1262 /* check if mem_malloc_init() was run */ 1263 if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) { 1264 /* not initialized yet */ 1265 return NULL; 1266 } 1267 1268 if ((long)bytes < 0) return NULL; 1269 1270 nb = request2size(bytes); /* padded request size; */ 1271 1272 /* Check for exact match in a bin */ 1273 1274 if (is_small_request(nb)) /* Faster version for small requests */ 1275 { 1276 idx = smallbin_index(nb); 1277 1278 /* No traversal or size check necessary for small bins. */ 1279 1280 q = bin_at(idx); 1281 victim = last(q); 1282 1283 /* Also scan the next one, since it would have a remainder < MINSIZE */ 1284 if (victim == q) 1285 { 1286 q = next_bin(q); 1287 victim = last(q); 1288 } 1289 if (victim != q) 1290 { 1291 victim_size = chunksize(victim); 1292 unlink(victim, bck, fwd); 1293 set_inuse_bit_at_offset(victim, victim_size); 1294 check_malloced_chunk(victim, nb); 1295 return chunk2mem(victim); 1296 } 1297 1298 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */ 1299 1300 } 1301 else 1302 { 1303 idx = bin_index(nb); 1304 bin = bin_at(idx); 1305 1306 for (victim = last(bin); victim != bin; victim = victim->bk) 1307 { 1308 victim_size = chunksize(victim); 1309 remainder_size = victim_size - nb; 1310 1311 if (remainder_size >= (long)MINSIZE) /* too big */ 1312 { 1313 --idx; /* adjust to rescan below after checking last remainder */ 1314 break; 1315 } 1316 1317 else if (remainder_size >= 0) /* exact fit */ 1318 { 1319 unlink(victim, bck, fwd); 1320 set_inuse_bit_at_offset(victim, victim_size); 1321 check_malloced_chunk(victim, nb); 1322 return chunk2mem(victim); 1323 } 1324 } 1325 1326 ++idx; 1327 1328 } 1329 1330 /* Try to use the last split-off remainder */ 1331 1332 if ( (victim = last_remainder->fd) != last_remainder) 1333 { 1334 victim_size = chunksize(victim); 1335 remainder_size = victim_size - nb; 1336 1337 if (remainder_size >= (long)MINSIZE) /* re-split */ 1338 { 1339 remainder = chunk_at_offset(victim, nb); 1340 set_head(victim, nb | PREV_INUSE); 1341 link_last_remainder(remainder); 1342 set_head(remainder, remainder_size | PREV_INUSE); 1343 set_foot(remainder, remainder_size); 1344 check_malloced_chunk(victim, nb); 1345 return chunk2mem(victim); 1346 } 1347 1348 clear_last_remainder; 1349 1350 if (remainder_size >= 0) /* exhaust */ 1351 { 1352 set_inuse_bit_at_offset(victim, victim_size); 1353 check_malloced_chunk(victim, nb); 1354 return chunk2mem(victim); 1355 } 1356 1357 /* Else place in bin */ 1358 1359 frontlink(victim, victim_size, remainder_index, bck, fwd); 1360 } 1361 1362 /* 1363 If there are any possibly nonempty big-enough blocks, 1364 search for best fitting chunk by scanning bins in blockwidth units. 1365 */ 1366 1367 if ( (block = idx2binblock(idx)) <= binblocks_r) 1368 { 1369 1370 /* Get to the first marked block */ 1371 1372 if ( (block & binblocks_r) == 0) 1373 { 1374 /* force to an even block boundary */ 1375 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH; 1376 block <<= 1; 1377 while ((block & binblocks_r) == 0) 1378 { 1379 idx += BINBLOCKWIDTH; 1380 block <<= 1; 1381 } 1382 } 1383 1384 /* For each possibly nonempty block ... */ 1385 for (;;) 1386 { 1387 startidx = idx; /* (track incomplete blocks) */ 1388 q = bin = bin_at(idx); 1389 1390 /* For each bin in this block ... */ 1391 do 1392 { 1393 /* Find and use first big enough chunk ... */ 1394 1395 for (victim = last(bin); victim != bin; victim = victim->bk) 1396 { 1397 victim_size = chunksize(victim); 1398 remainder_size = victim_size - nb; 1399 1400 if (remainder_size >= (long)MINSIZE) /* split */ 1401 { 1402 remainder = chunk_at_offset(victim, nb); 1403 set_head(victim, nb | PREV_INUSE); 1404 unlink(victim, bck, fwd); 1405 link_last_remainder(remainder); 1406 set_head(remainder, remainder_size | PREV_INUSE); 1407 set_foot(remainder, remainder_size); 1408 check_malloced_chunk(victim, nb); 1409 return chunk2mem(victim); 1410 } 1411 1412 else if (remainder_size >= 0) /* take */ 1413 { 1414 set_inuse_bit_at_offset(victim, victim_size); 1415 unlink(victim, bck, fwd); 1416 check_malloced_chunk(victim, nb); 1417 return chunk2mem(victim); 1418 } 1419 1420 } 1421 1422 bin = next_bin(bin); 1423 1424 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0); 1425 1426 /* Clear out the block bit. */ 1427 1428 do /* Possibly backtrack to try to clear a partial block */ 1429 { 1430 if ((startidx & (BINBLOCKWIDTH - 1)) == 0) 1431 { 1432 av_[1] = (mbinptr)(binblocks_r & ~block); 1433 break; 1434 } 1435 --startidx; 1436 q = prev_bin(q); 1437 } while (first(q) == q); 1438 1439 /* Get to the next possibly nonempty block */ 1440 1441 if ( (block <<= 1) <= binblocks_r && (block != 0) ) 1442 { 1443 while ((block & binblocks_r) == 0) 1444 { 1445 idx += BINBLOCKWIDTH; 1446 block <<= 1; 1447 } 1448 } 1449 else 1450 break; 1451 } 1452 } 1453 1454 1455 /* Try to use top chunk */ 1456 1457 /* Require that there be a remainder, ensuring top always exists */ 1458 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) 1459 { 1460 1461 #if HAVE_MMAP 1462 /* If big and would otherwise need to extend, try to use mmap instead */ 1463 if ((unsigned long)nb >= (unsigned long)mmap_threshold && 1464 (victim = mmap_chunk(nb))) 1465 return chunk2mem(victim); 1466 #endif 1467 1468 /* Try to extend */ 1469 malloc_extend_top(nb); 1470 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) 1471 return NULL; /* propagate failure */ 1472 } 1473 1474 victim = top; 1475 set_head(victim, nb | PREV_INUSE); 1476 top = chunk_at_offset(victim, nb); 1477 set_head(top, remainder_size | PREV_INUSE); 1478 check_malloced_chunk(victim, nb); 1479 return chunk2mem(victim); 1480 1481 } 1482 1483 1484 1485 1486 /* 1487 1488 free() algorithm : 1489 1490 cases: 1491 1492 1. free(0) has no effect. 1493 1494 2. If the chunk was allocated via mmap, it is release via munmap(). 1495 1496 3. If a returned chunk borders the current high end of memory, 1497 it is consolidated into the top, and if the total unused 1498 topmost memory exceeds the trim threshold, malloc_trim is 1499 called. 1500 1501 4. Other chunks are consolidated as they arrive, and 1502 placed in corresponding bins. (This includes the case of 1503 consolidating with the current `last_remainder'). 1504 1505 */ 1506 1507 1508 #if __STD_C 1509 void fREe(Void_t* mem) 1510 #else 1511 void fREe(mem) Void_t* mem; 1512 #endif 1513 { 1514 mchunkptr p; /* chunk corresponding to mem */ 1515 INTERNAL_SIZE_T hd; /* its head field */ 1516 INTERNAL_SIZE_T sz; /* its size */ 1517 int idx; /* its bin index */ 1518 mchunkptr next; /* next contiguous chunk */ 1519 INTERNAL_SIZE_T nextsz; /* its size */ 1520 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */ 1521 mchunkptr bck; /* misc temp for linking */ 1522 mchunkptr fwd; /* misc temp for linking */ 1523 int islr; /* track whether merging with last_remainder */ 1524 1525 #if CONFIG_VAL(SYS_MALLOC_F_LEN) 1526 /* free() is a no-op - all the memory will be freed on relocation */ 1527 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) 1528 return; 1529 #endif 1530 1531 if (mem == NULL) /* free(0) has no effect */ 1532 return; 1533 1534 p = mem2chunk(mem); 1535 hd = p->size; 1536 1537 #if HAVE_MMAP 1538 if (hd & IS_MMAPPED) /* release mmapped memory. */ 1539 { 1540 munmap_chunk(p); 1541 return; 1542 } 1543 #endif 1544 1545 check_inuse_chunk(p); 1546 1547 sz = hd & ~PREV_INUSE; 1548 next = chunk_at_offset(p, sz); 1549 nextsz = chunksize(next); 1550 1551 if (next == top) /* merge with top */ 1552 { 1553 sz += nextsz; 1554 1555 if (!(hd & PREV_INUSE)) /* consolidate backward */ 1556 { 1557 prevsz = p->prev_size; 1558 p = chunk_at_offset(p, -((long) prevsz)); 1559 sz += prevsz; 1560 unlink(p, bck, fwd); 1561 } 1562 1563 set_head(p, sz | PREV_INUSE); 1564 top = p; 1565 if ((unsigned long)(sz) >= (unsigned long)trim_threshold) 1566 malloc_trim(top_pad); 1567 return; 1568 } 1569 1570 set_head(next, nextsz); /* clear inuse bit */ 1571 1572 islr = 0; 1573 1574 if (!(hd & PREV_INUSE)) /* consolidate backward */ 1575 { 1576 prevsz = p->prev_size; 1577 p = chunk_at_offset(p, -((long) prevsz)); 1578 sz += prevsz; 1579 1580 if (p->fd == last_remainder) /* keep as last_remainder */ 1581 islr = 1; 1582 else 1583 unlink(p, bck, fwd); 1584 } 1585 1586 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */ 1587 { 1588 sz += nextsz; 1589 1590 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */ 1591 { 1592 islr = 1; 1593 link_last_remainder(p); 1594 } 1595 else 1596 unlink(next, bck, fwd); 1597 } 1598 1599 1600 set_head(p, sz | PREV_INUSE); 1601 set_foot(p, sz); 1602 if (!islr) 1603 frontlink(p, sz, idx, bck, fwd); 1604 } 1605 1606 1607 1608 1609 1610 /* 1611 1612 Realloc algorithm: 1613 1614 Chunks that were obtained via mmap cannot be extended or shrunk 1615 unless HAVE_MREMAP is defined, in which case mremap is used. 1616 Otherwise, if their reallocation is for additional space, they are 1617 copied. If for less, they are just left alone. 1618 1619 Otherwise, if the reallocation is for additional space, and the 1620 chunk can be extended, it is, else a malloc-copy-free sequence is 1621 taken. There are several different ways that a chunk could be 1622 extended. All are tried: 1623 1624 * Extending forward into following adjacent free chunk. 1625 * Shifting backwards, joining preceding adjacent space 1626 * Both shifting backwards and extending forward. 1627 * Extending into newly sbrked space 1628 1629 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a 1630 size argument of zero (re)allocates a minimum-sized chunk. 1631 1632 If the reallocation is for less space, and the new request is for 1633 a `small' (<512 bytes) size, then the newly unused space is lopped 1634 off and freed. 1635 1636 The old unix realloc convention of allowing the last-free'd chunk 1637 to be used as an argument to realloc is no longer supported. 1638 I don't know of any programs still relying on this feature, 1639 and allowing it would also allow too many other incorrect 1640 usages of realloc to be sensible. 1641 1642 1643 */ 1644 1645 1646 #if __STD_C 1647 Void_t* rEALLOc(Void_t* oldmem, size_t bytes) 1648 #else 1649 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes; 1650 #endif 1651 { 1652 INTERNAL_SIZE_T nb; /* padded request size */ 1653 1654 mchunkptr oldp; /* chunk corresponding to oldmem */ 1655 INTERNAL_SIZE_T oldsize; /* its size */ 1656 1657 mchunkptr newp; /* chunk to return */ 1658 INTERNAL_SIZE_T newsize; /* its size */ 1659 Void_t* newmem; /* corresponding user mem */ 1660 1661 mchunkptr next; /* next contiguous chunk after oldp */ 1662 INTERNAL_SIZE_T nextsize; /* its size */ 1663 1664 mchunkptr prev; /* previous contiguous chunk before oldp */ 1665 INTERNAL_SIZE_T prevsize; /* its size */ 1666 1667 mchunkptr remainder; /* holds split off extra space from newp */ 1668 INTERNAL_SIZE_T remainder_size; /* its size */ 1669 1670 mchunkptr bck; /* misc temp for linking */ 1671 mchunkptr fwd; /* misc temp for linking */ 1672 1673 #ifdef REALLOC_ZERO_BYTES_FREES 1674 if (!bytes) { 1675 fREe(oldmem); 1676 return NULL; 1677 } 1678 #endif 1679 1680 if ((long)bytes < 0) return NULL; 1681 1682 /* realloc of null is supposed to be same as malloc */ 1683 if (oldmem == NULL) return mALLOc(bytes); 1684 1685 #if CONFIG_VAL(SYS_MALLOC_F_LEN) 1686 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) { 1687 /* This is harder to support and should not be needed */ 1688 panic("pre-reloc realloc() is not supported"); 1689 } 1690 #endif 1691 1692 newp = oldp = mem2chunk(oldmem); 1693 newsize = oldsize = chunksize(oldp); 1694 1695 1696 nb = request2size(bytes); 1697 1698 #if HAVE_MMAP 1699 if (chunk_is_mmapped(oldp)) 1700 { 1701 #if HAVE_MREMAP 1702 newp = mremap_chunk(oldp, nb); 1703 if(newp) return chunk2mem(newp); 1704 #endif 1705 /* Note the extra SIZE_SZ overhead. */ 1706 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */ 1707 /* Must alloc, copy, free. */ 1708 newmem = mALLOc(bytes); 1709 if (!newmem) 1710 return NULL; /* propagate failure */ 1711 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ); 1712 munmap_chunk(oldp); 1713 return newmem; 1714 } 1715 #endif 1716 1717 check_inuse_chunk(oldp); 1718 1719 if ((long)(oldsize) < (long)(nb)) 1720 { 1721 1722 /* Try expanding forward */ 1723 1724 next = chunk_at_offset(oldp, oldsize); 1725 if (next == top || !inuse(next)) 1726 { 1727 nextsize = chunksize(next); 1728 1729 /* Forward into top only if a remainder */ 1730 if (next == top) 1731 { 1732 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE)) 1733 { 1734 newsize += nextsize; 1735 top = chunk_at_offset(oldp, nb); 1736 set_head(top, (newsize - nb) | PREV_INUSE); 1737 set_head_size(oldp, nb); 1738 return chunk2mem(oldp); 1739 } 1740 } 1741 1742 /* Forward into next chunk */ 1743 else if (((long)(nextsize + newsize) >= (long)(nb))) 1744 { 1745 unlink(next, bck, fwd); 1746 newsize += nextsize; 1747 goto split; 1748 } 1749 } 1750 else 1751 { 1752 next = NULL; 1753 nextsize = 0; 1754 } 1755 1756 /* Try shifting backwards. */ 1757 1758 if (!prev_inuse(oldp)) 1759 { 1760 prev = prev_chunk(oldp); 1761 prevsize = chunksize(prev); 1762 1763 /* try forward + backward first to save a later consolidation */ 1764 1765 if (next != NULL) 1766 { 1767 /* into top */ 1768 if (next == top) 1769 { 1770 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE)) 1771 { 1772 unlink(prev, bck, fwd); 1773 newp = prev; 1774 newsize += prevsize + nextsize; 1775 newmem = chunk2mem(newp); 1776 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); 1777 top = chunk_at_offset(newp, nb); 1778 set_head(top, (newsize - nb) | PREV_INUSE); 1779 set_head_size(newp, nb); 1780 return newmem; 1781 } 1782 } 1783 1784 /* into next chunk */ 1785 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb))) 1786 { 1787 unlink(next, bck, fwd); 1788 unlink(prev, bck, fwd); 1789 newp = prev; 1790 newsize += nextsize + prevsize; 1791 newmem = chunk2mem(newp); 1792 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); 1793 goto split; 1794 } 1795 } 1796 1797 /* backward only */ 1798 if (prev != NULL && (long)(prevsize + newsize) >= (long)nb) 1799 { 1800 unlink(prev, bck, fwd); 1801 newp = prev; 1802 newsize += prevsize; 1803 newmem = chunk2mem(newp); 1804 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); 1805 goto split; 1806 } 1807 } 1808 1809 /* Must allocate */ 1810 1811 newmem = mALLOc (bytes); 1812 1813 if (newmem == NULL) /* propagate failure */ 1814 return NULL; 1815 1816 /* Avoid copy if newp is next chunk after oldp. */ 1817 /* (This can only happen when new chunk is sbrk'ed.) */ 1818 1819 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp)) 1820 { 1821 newsize += chunksize(newp); 1822 newp = oldp; 1823 goto split; 1824 } 1825 1826 /* Otherwise copy, free, and exit */ 1827 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); 1828 fREe(oldmem); 1829 return newmem; 1830 } 1831 1832 1833 split: /* split off extra room in old or expanded chunk */ 1834 1835 if (newsize - nb >= MINSIZE) /* split off remainder */ 1836 { 1837 remainder = chunk_at_offset(newp, nb); 1838 remainder_size = newsize - nb; 1839 set_head_size(newp, nb); 1840 set_head(remainder, remainder_size | PREV_INUSE); 1841 set_inuse_bit_at_offset(remainder, remainder_size); 1842 fREe(chunk2mem(remainder)); /* let free() deal with it */ 1843 } 1844 else 1845 { 1846 set_head_size(newp, newsize); 1847 set_inuse_bit_at_offset(newp, newsize); 1848 } 1849 1850 check_inuse_chunk(newp); 1851 return chunk2mem(newp); 1852 } 1853 1854 1855 1856 1857 /* 1858 1859 memalign algorithm: 1860 1861 memalign requests more than enough space from malloc, finds a spot 1862 within that chunk that meets the alignment request, and then 1863 possibly frees the leading and trailing space. 1864 1865 The alignment argument must be a power of two. This property is not 1866 checked by memalign, so misuse may result in random runtime errors. 1867 1868 8-byte alignment is guaranteed by normal malloc calls, so don't 1869 bother calling memalign with an argument of 8 or less. 1870 1871 Overreliance on memalign is a sure way to fragment space. 1872 1873 */ 1874 1875 1876 #if __STD_C 1877 Void_t* mEMALIGn(size_t alignment, size_t bytes) 1878 #else 1879 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes; 1880 #endif 1881 { 1882 INTERNAL_SIZE_T nb; /* padded request size */ 1883 char* m; /* memory returned by malloc call */ 1884 mchunkptr p; /* corresponding chunk */ 1885 char* brk; /* alignment point within p */ 1886 mchunkptr newp; /* chunk to return */ 1887 INTERNAL_SIZE_T newsize; /* its size */ 1888 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */ 1889 mchunkptr remainder; /* spare room at end to split off */ 1890 long remainder_size; /* its size */ 1891 1892 if ((long)bytes < 0) return NULL; 1893 1894 #if CONFIG_VAL(SYS_MALLOC_F_LEN) 1895 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) { 1896 nb = roundup(bytes, alignment); 1897 return malloc_simple(nb); 1898 } 1899 #endif 1900 1901 /* If need less alignment than we give anyway, just relay to malloc */ 1902 1903 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes); 1904 1905 /* Otherwise, ensure that it is at least a minimum chunk size */ 1906 1907 if (alignment < MINSIZE) alignment = MINSIZE; 1908 1909 /* Call malloc with worst case padding to hit alignment. */ 1910 1911 nb = request2size(bytes); 1912 m = (char*)(mALLOc(nb + alignment + MINSIZE)); 1913 1914 /* 1915 * The attempt to over-allocate (with a size large enough to guarantee the 1916 * ability to find an aligned region within allocated memory) failed. 1917 * 1918 * Try again, this time only allocating exactly the size the user wants. If 1919 * the allocation now succeeds and just happens to be aligned, we can still 1920 * fulfill the user's request. 1921 */ 1922 if (m == NULL) { 1923 size_t extra, extra2; 1924 /* 1925 * Use bytes not nb, since mALLOc internally calls request2size too, and 1926 * each call increases the size to allocate, to account for the header. 1927 */ 1928 m = (char*)(mALLOc(bytes)); 1929 /* Aligned -> return it */ 1930 if ((((unsigned long)(m)) % alignment) == 0) 1931 return m; 1932 /* 1933 * Otherwise, try again, requesting enough extra space to be able to 1934 * acquire alignment. 1935 */ 1936 fREe(m); 1937 /* Add in extra bytes to match misalignment of unexpanded allocation */ 1938 extra = alignment - (((unsigned long)(m)) % alignment); 1939 m = (char*)(mALLOc(bytes + extra)); 1940 /* 1941 * m might not be the same as before. Validate that the previous value of 1942 * extra still works for the current value of m. 1943 * If (!m), extra2=alignment so 1944 */ 1945 if (m) { 1946 extra2 = alignment - (((unsigned long)(m)) % alignment); 1947 if (extra2 > extra) { 1948 fREe(m); 1949 m = NULL; 1950 } 1951 } 1952 /* Fall through to original NULL check and chunk splitting logic */ 1953 } 1954 1955 if (m == NULL) return NULL; /* propagate failure */ 1956 1957 p = mem2chunk(m); 1958 1959 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */ 1960 { 1961 #if HAVE_MMAP 1962 if(chunk_is_mmapped(p)) 1963 return chunk2mem(p); /* nothing more to do */ 1964 #endif 1965 } 1966 else /* misaligned */ 1967 { 1968 /* 1969 Find an aligned spot inside chunk. 1970 Since we need to give back leading space in a chunk of at 1971 least MINSIZE, if the first calculation places us at 1972 a spot with less than MINSIZE leader, we can move to the 1973 next aligned spot -- we've allocated enough total room so that 1974 this is always possible. 1975 */ 1976 1977 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment)); 1978 if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment; 1979 1980 newp = (mchunkptr)brk; 1981 leadsize = brk - (char*)(p); 1982 newsize = chunksize(p) - leadsize; 1983 1984 #if HAVE_MMAP 1985 if(chunk_is_mmapped(p)) 1986 { 1987 newp->prev_size = p->prev_size + leadsize; 1988 set_head(newp, newsize|IS_MMAPPED); 1989 return chunk2mem(newp); 1990 } 1991 #endif 1992 1993 /* give back leader, use the rest */ 1994 1995 set_head(newp, newsize | PREV_INUSE); 1996 set_inuse_bit_at_offset(newp, newsize); 1997 set_head_size(p, leadsize); 1998 fREe(chunk2mem(p)); 1999 p = newp; 2000 2001 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0); 2002 } 2003 2004 /* Also give back spare room at the end */ 2005 2006 remainder_size = chunksize(p) - nb; 2007 2008 if (remainder_size >= (long)MINSIZE) 2009 { 2010 remainder = chunk_at_offset(p, nb); 2011 set_head(remainder, remainder_size | PREV_INUSE); 2012 set_head_size(p, nb); 2013 fREe(chunk2mem(remainder)); 2014 } 2015 2016 check_inuse_chunk(p); 2017 return chunk2mem(p); 2018 2019 } 2020 2021 2022 2023 2024 /* 2025 valloc just invokes memalign with alignment argument equal 2026 to the page size of the system (or as near to this as can 2027 be figured out from all the includes/defines above.) 2028 */ 2029 2030 #if __STD_C 2031 Void_t* vALLOc(size_t bytes) 2032 #else 2033 Void_t* vALLOc(bytes) size_t bytes; 2034 #endif 2035 { 2036 return mEMALIGn (malloc_getpagesize, bytes); 2037 } 2038 2039 /* 2040 pvalloc just invokes valloc for the nearest pagesize 2041 that will accommodate request 2042 */ 2043 2044 2045 #if __STD_C 2046 Void_t* pvALLOc(size_t bytes) 2047 #else 2048 Void_t* pvALLOc(bytes) size_t bytes; 2049 #endif 2050 { 2051 size_t pagesize = malloc_getpagesize; 2052 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1)); 2053 } 2054 2055 /* 2056 2057 calloc calls malloc, then zeroes out the allocated chunk. 2058 2059 */ 2060 2061 #if __STD_C 2062 Void_t* cALLOc(size_t n, size_t elem_size) 2063 #else 2064 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size; 2065 #endif 2066 { 2067 mchunkptr p; 2068 INTERNAL_SIZE_T csz; 2069 2070 INTERNAL_SIZE_T sz = n * elem_size; 2071 2072 2073 /* check if expand_top called, in which case don't need to clear */ 2074 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT 2075 #if MORECORE_CLEARS 2076 mchunkptr oldtop = top; 2077 INTERNAL_SIZE_T oldtopsize = chunksize(top); 2078 #endif 2079 #endif 2080 Void_t* mem = mALLOc (sz); 2081 2082 if ((long)n < 0) return NULL; 2083 2084 if (mem == NULL) 2085 return NULL; 2086 else 2087 { 2088 #if CONFIG_VAL(SYS_MALLOC_F_LEN) 2089 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) { 2090 MALLOC_ZERO(mem, sz); 2091 return mem; 2092 } 2093 #endif 2094 p = mem2chunk(mem); 2095 2096 /* Two optional cases in which clearing not necessary */ 2097 2098 2099 #if HAVE_MMAP 2100 if (chunk_is_mmapped(p)) return mem; 2101 #endif 2102 2103 csz = chunksize(p); 2104 2105 #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT 2106 #if MORECORE_CLEARS 2107 if (p == oldtop && csz > oldtopsize) 2108 { 2109 /* clear only the bytes from non-freshly-sbrked memory */ 2110 csz = oldtopsize; 2111 } 2112 #endif 2113 #endif 2114 2115 MALLOC_ZERO(mem, csz - SIZE_SZ); 2116 return mem; 2117 } 2118 } 2119 2120 /* 2121 2122 cfree just calls free. It is needed/defined on some systems 2123 that pair it with calloc, presumably for odd historical reasons. 2124 2125 */ 2126 2127 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__) 2128 #if __STD_C 2129 void cfree(Void_t *mem) 2130 #else 2131 void cfree(mem) Void_t *mem; 2132 #endif 2133 { 2134 fREe(mem); 2135 } 2136 #endif 2137 2138 2139 2140 /* 2141 2142 Malloc_trim gives memory back to the system (via negative 2143 arguments to sbrk) if there is unused memory at the `high' end of 2144 the malloc pool. You can call this after freeing large blocks of 2145 memory to potentially reduce the system-level memory requirements 2146 of a program. However, it cannot guarantee to reduce memory. Under 2147 some allocation patterns, some large free blocks of memory will be 2148 locked between two used chunks, so they cannot be given back to 2149 the system. 2150 2151 The `pad' argument to malloc_trim represents the amount of free 2152 trailing space to leave untrimmed. If this argument is zero, 2153 only the minimum amount of memory to maintain internal data 2154 structures will be left (one page or less). Non-zero arguments 2155 can be supplied to maintain enough trailing space to service 2156 future expected allocations without having to re-obtain memory 2157 from the system. 2158 2159 Malloc_trim returns 1 if it actually released any memory, else 0. 2160 2161 */ 2162 2163 #if __STD_C 2164 int malloc_trim(size_t pad) 2165 #else 2166 int malloc_trim(pad) size_t pad; 2167 #endif 2168 { 2169 long top_size; /* Amount of top-most memory */ 2170 long extra; /* Amount to release */ 2171 char* current_brk; /* address returned by pre-check sbrk call */ 2172 char* new_brk; /* address returned by negative sbrk call */ 2173 2174 unsigned long pagesz = malloc_getpagesize; 2175 2176 top_size = chunksize(top); 2177 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz; 2178 2179 if (extra < (long)pagesz) /* Not enough memory to release */ 2180 return 0; 2181 2182 else 2183 { 2184 /* Test to make sure no one else called sbrk */ 2185 current_brk = (char*)(MORECORE (0)); 2186 if (current_brk != (char*)(top) + top_size) 2187 return 0; /* Apparently we don't own memory; must fail */ 2188 2189 else 2190 { 2191 new_brk = (char*)(MORECORE (-extra)); 2192 2193 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */ 2194 { 2195 /* Try to figure out what we have */ 2196 current_brk = (char*)(MORECORE (0)); 2197 top_size = current_brk - (char*)top; 2198 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */ 2199 { 2200 sbrked_mem = current_brk - sbrk_base; 2201 set_head(top, top_size | PREV_INUSE); 2202 } 2203 check_chunk(top); 2204 return 0; 2205 } 2206 2207 else 2208 { 2209 /* Success. Adjust top accordingly. */ 2210 set_head(top, (top_size - extra) | PREV_INUSE); 2211 sbrked_mem -= extra; 2212 check_chunk(top); 2213 return 1; 2214 } 2215 } 2216 } 2217 } 2218 2219 2220 2221 /* 2222 malloc_usable_size: 2223 2224 This routine tells you how many bytes you can actually use in an 2225 allocated chunk, which may be more than you requested (although 2226 often not). You can use this many bytes without worrying about 2227 overwriting other allocated objects. Not a particularly great 2228 programming practice, but still sometimes useful. 2229 2230 */ 2231 2232 #if __STD_C 2233 size_t malloc_usable_size(Void_t* mem) 2234 #else 2235 size_t malloc_usable_size(mem) Void_t* mem; 2236 #endif 2237 { 2238 mchunkptr p; 2239 if (mem == NULL) 2240 return 0; 2241 else 2242 { 2243 p = mem2chunk(mem); 2244 if(!chunk_is_mmapped(p)) 2245 { 2246 if (!inuse(p)) return 0; 2247 check_inuse_chunk(p); 2248 return chunksize(p) - SIZE_SZ; 2249 } 2250 return chunksize(p) - 2*SIZE_SZ; 2251 } 2252 } 2253 2254 2255 2256 2257 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */ 2258 2259 #ifdef DEBUG 2260 static void malloc_update_mallinfo() 2261 { 2262 int i; 2263 mbinptr b; 2264 mchunkptr p; 2265 #ifdef DEBUG 2266 mchunkptr q; 2267 #endif 2268 2269 INTERNAL_SIZE_T avail = chunksize(top); 2270 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0; 2271 2272 for (i = 1; i < NAV; ++i) 2273 { 2274 b = bin_at(i); 2275 for (p = last(b); p != b; p = p->bk) 2276 { 2277 #ifdef DEBUG 2278 check_free_chunk(p); 2279 for (q = next_chunk(p); 2280 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE; 2281 q = next_chunk(q)) 2282 check_inuse_chunk(q); 2283 #endif 2284 avail += chunksize(p); 2285 navail++; 2286 } 2287 } 2288 2289 current_mallinfo.ordblks = navail; 2290 current_mallinfo.uordblks = sbrked_mem - avail; 2291 current_mallinfo.fordblks = avail; 2292 current_mallinfo.hblks = n_mmaps; 2293 current_mallinfo.hblkhd = mmapped_mem; 2294 current_mallinfo.keepcost = chunksize(top); 2295 2296 } 2297 #endif /* DEBUG */ 2298 2299 2300 2301 /* 2302 2303 malloc_stats: 2304 2305 Prints on the amount of space obtain from the system (both 2306 via sbrk and mmap), the maximum amount (which may be more than 2307 current if malloc_trim and/or munmap got called), the maximum 2308 number of simultaneous mmap regions used, and the current number 2309 of bytes allocated via malloc (or realloc, etc) but not yet 2310 freed. (Note that this is the number of bytes allocated, not the 2311 number requested. It will be larger than the number requested 2312 because of alignment and bookkeeping overhead.) 2313 2314 */ 2315 2316 #ifdef DEBUG 2317 void malloc_stats() 2318 { 2319 malloc_update_mallinfo(); 2320 printf("max system bytes = %10u\n", 2321 (unsigned int)(max_total_mem)); 2322 printf("system bytes = %10u\n", 2323 (unsigned int)(sbrked_mem + mmapped_mem)); 2324 printf("in use bytes = %10u\n", 2325 (unsigned int)(current_mallinfo.uordblks + mmapped_mem)); 2326 #if HAVE_MMAP 2327 printf("max mmap regions = %10u\n", 2328 (unsigned int)max_n_mmaps); 2329 #endif 2330 } 2331 #endif /* DEBUG */ 2332 2333 /* 2334 mallinfo returns a copy of updated current mallinfo. 2335 */ 2336 2337 #ifdef DEBUG 2338 struct mallinfo mALLINFo() 2339 { 2340 malloc_update_mallinfo(); 2341 return current_mallinfo; 2342 } 2343 #endif /* DEBUG */ 2344 2345 2346 2347 2348 /* 2349 mallopt: 2350 2351 mallopt is the general SVID/XPG interface to tunable parameters. 2352 The format is to provide a (parameter-number, parameter-value) pair. 2353 mallopt then sets the corresponding parameter to the argument 2354 value if it can (i.e., so long as the value is meaningful), 2355 and returns 1 if successful else 0. 2356 2357 See descriptions of tunable parameters above. 2358 2359 */ 2360 2361 #if __STD_C 2362 int mALLOPt(int param_number, int value) 2363 #else 2364 int mALLOPt(param_number, value) int param_number; int value; 2365 #endif 2366 { 2367 switch(param_number) 2368 { 2369 case M_TRIM_THRESHOLD: 2370 trim_threshold = value; return 1; 2371 case M_TOP_PAD: 2372 top_pad = value; return 1; 2373 case M_MMAP_THRESHOLD: 2374 mmap_threshold = value; return 1; 2375 case M_MMAP_MAX: 2376 #if HAVE_MMAP 2377 n_mmaps_max = value; return 1; 2378 #else 2379 if (value != 0) return 0; else n_mmaps_max = value; return 1; 2380 #endif 2381 2382 default: 2383 return 0; 2384 } 2385 } 2386 2387 int initf_malloc(void) 2388 { 2389 #if CONFIG_VAL(SYS_MALLOC_F_LEN) 2390 assert(gd->malloc_base); /* Set up by crt0.S */ 2391 gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN); 2392 gd->malloc_ptr = 0; 2393 #endif 2394 2395 return 0; 2396 } 2397 2398 /* 2399 2400 History: 2401 2402 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) 2403 * return null for negative arguments 2404 * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com> 2405 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' 2406 (e.g. WIN32 platforms) 2407 * Cleanup up header file inclusion for WIN32 platforms 2408 * Cleanup code to avoid Microsoft Visual C++ compiler complaints 2409 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing 2410 memory allocation routines 2411 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) 2412 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to 2413 usage of 'assert' in non-WIN32 code 2414 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to 2415 avoid infinite loop 2416 * Always call 'fREe()' rather than 'free()' 2417 2418 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) 2419 * Fixed ordering problem with boundary-stamping 2420 2421 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) 2422 * Added pvalloc, as recommended by H.J. Liu 2423 * Added 64bit pointer support mainly from Wolfram Gloger 2424 * Added anonymously donated WIN32 sbrk emulation 2425 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen 2426 * malloc_extend_top: fix mask error that caused wastage after 2427 foreign sbrks 2428 * Add linux mremap support code from HJ Liu 2429 2430 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) 2431 * Integrated most documentation with the code. 2432 * Add support for mmap, with help from 2433 Wolfram Gloger (Gloger@lrz.uni-muenchen.de). 2434 * Use last_remainder in more cases. 2435 * Pack bins using idea from colin@nyx10.cs.du.edu 2436 * Use ordered bins instead of best-fit threshhold 2437 * Eliminate block-local decls to simplify tracing and debugging. 2438 * Support another case of realloc via move into top 2439 * Fix error occuring when initial sbrk_base not word-aligned. 2440 * Rely on page size for units instead of SBRK_UNIT to 2441 avoid surprises about sbrk alignment conventions. 2442 * Add mallinfo, mallopt. Thanks to Raymond Nijssen 2443 (raymond@es.ele.tue.nl) for the suggestion. 2444 * Add `pad' argument to malloc_trim and top_pad mallopt parameter. 2445 * More precautions for cases where other routines call sbrk, 2446 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). 2447 * Added macros etc., allowing use in linux libc from 2448 H.J. Lu (hjl@gnu.ai.mit.edu) 2449 * Inverted this history list 2450 2451 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) 2452 * Re-tuned and fixed to behave more nicely with V2.6.0 changes. 2453 * Removed all preallocation code since under current scheme 2454 the work required to undo bad preallocations exceeds 2455 the work saved in good cases for most test programs. 2456 * No longer use return list or unconsolidated bins since 2457 no scheme using them consistently outperforms those that don't 2458 given above changes. 2459 * Use best fit for very large chunks to prevent some worst-cases. 2460 * Added some support for debugging 2461 2462 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) 2463 * Removed footers when chunks are in use. Thanks to 2464 Paul Wilson (wilson@cs.texas.edu) for the suggestion. 2465 2466 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) 2467 * Added malloc_trim, with help from Wolfram Gloger 2468 (wmglo@Dent.MED.Uni-Muenchen.DE). 2469 2470 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) 2471 2472 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) 2473 * realloc: try to expand in both directions 2474 * malloc: swap order of clean-bin strategy; 2475 * realloc: only conditionally expand backwards 2476 * Try not to scavenge used bins 2477 * Use bin counts as a guide to preallocation 2478 * Occasionally bin return list chunks in first scan 2479 * Add a few optimizations from colin@nyx10.cs.du.edu 2480 2481 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) 2482 * faster bin computation & slightly different binning 2483 * merged all consolidations to one part of malloc proper 2484 (eliminating old malloc_find_space & malloc_clean_bin) 2485 * Scan 2 returns chunks (not just 1) 2486 * Propagate failure in realloc if malloc returns 0 2487 * Add stuff to allow compilation on non-ANSI compilers 2488 from kpv@research.att.com 2489 2490 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) 2491 * removed potential for odd address access in prev_chunk 2492 * removed dependency on getpagesize.h 2493 * misc cosmetics and a bit more internal documentation 2494 * anticosmetics: mangled names in macros to evade debugger strangeness 2495 * tested on sparc, hp-700, dec-mips, rs6000 2496 with gcc & native cc (hp, dec only) allowing 2497 Detlefs & Zorn comparison study (in SIGPLAN Notices.) 2498 2499 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) 2500 * Based loosely on libg++-1.2X malloc. (It retains some of the overall 2501 structure of old version, but most details differ.) 2502 2503 */ 2504