xref: /openbmc/u-boot/common/dlmalloc.c (revision 9973e3c6)
1 #include <common.h>
2 
3 #if 0	/* Moved to malloc.h */
4 /* ---------- To make a malloc.h, start cutting here ------------ */
5 
6 /*
7   A version of malloc/free/realloc written by Doug Lea and released to the
8   public domain.  Send questions/comments/complaints/performance data
9   to dl@cs.oswego.edu
10 
11 * VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
12 
13    Note: There may be an updated version of this malloc obtainable at
14 	   ftp://g.oswego.edu/pub/misc/malloc.c
15 	 Check before installing!
16 
17 * Why use this malloc?
18 
19   This is not the fastest, most space-conserving, most portable, or
20   most tunable malloc ever written. However it is among the fastest
21   while also being among the most space-conserving, portable and tunable.
22   Consistent balance across these factors results in a good general-purpose
23   allocator. For a high-level description, see
24      http://g.oswego.edu/dl/html/malloc.html
25 
26 * Synopsis of public routines
27 
28   (Much fuller descriptions are contained in the program documentation below.)
29 
30   malloc(size_t n);
31      Return a pointer to a newly allocated chunk of at least n bytes, or null
32      if no space is available.
33   free(Void_t* p);
34      Release the chunk of memory pointed to by p, or no effect if p is null.
35   realloc(Void_t* p, size_t n);
36      Return a pointer to a chunk of size n that contains the same data
37      as does chunk p up to the minimum of (n, p's size) bytes, or null
38      if no space is available. The returned pointer may or may not be
39      the same as p. If p is null, equivalent to malloc.  Unless the
40      #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
41      size argument of zero (re)allocates a minimum-sized chunk.
42   memalign(size_t alignment, size_t n);
43      Return a pointer to a newly allocated chunk of n bytes, aligned
44      in accord with the alignment argument, which must be a power of
45      two.
46   valloc(size_t n);
47      Equivalent to memalign(pagesize, n), where pagesize is the page
48      size of the system (or as near to this as can be figured out from
49      all the includes/defines below.)
50   pvalloc(size_t n);
51      Equivalent to valloc(minimum-page-that-holds(n)), that is,
52      round up n to nearest pagesize.
53   calloc(size_t unit, size_t quantity);
54      Returns a pointer to quantity * unit bytes, with all locations
55      set to zero.
56   cfree(Void_t* p);
57      Equivalent to free(p).
58   malloc_trim(size_t pad);
59      Release all but pad bytes of freed top-most memory back
60      to the system. Return 1 if successful, else 0.
61   malloc_usable_size(Void_t* p);
62      Report the number usable allocated bytes associated with allocated
63      chunk p. This may or may not report more bytes than were requested,
64      due to alignment and minimum size constraints.
65   malloc_stats();
66      Prints brief summary statistics.
67   mallinfo()
68      Returns (by copy) a struct containing various summary statistics.
69   mallopt(int parameter_number, int parameter_value)
70      Changes one of the tunable parameters described below. Returns
71      1 if successful in changing the parameter, else 0.
72 
73 * Vital statistics:
74 
75   Alignment:                            8-byte
76        8 byte alignment is currently hardwired into the design.  This
77        seems to suffice for all current machines and C compilers.
78 
79   Assumed pointer representation:       4 or 8 bytes
80        Code for 8-byte pointers is untested by me but has worked
81        reliably by Wolfram Gloger, who contributed most of the
82        changes supporting this.
83 
84   Assumed size_t  representation:       4 or 8 bytes
85        Note that size_t is allowed to be 4 bytes even if pointers are 8.
86 
87   Minimum overhead per allocated chunk: 4 or 8 bytes
88        Each malloced chunk has a hidden overhead of 4 bytes holding size
89        and status information.
90 
91   Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
92 			  8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
93 
94        When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
95        ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
96        needed; 4 (8) for a trailing size field
97        and 8 (16) bytes for free list pointers. Thus, the minimum
98        allocatable size is 16/24/32 bytes.
99 
100        Even a request for zero bytes (i.e., malloc(0)) returns a
101        pointer to something of the minimum allocatable size.
102 
103   Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
104 			  8-byte size_t: 2^63 - 16 bytes
105 
106        It is assumed that (possibly signed) size_t bit values suffice to
107        represent chunk sizes. `Possibly signed' is due to the fact
108        that `size_t' may be defined on a system as either a signed or
109        an unsigned type. To be conservative, values that would appear
110        as negative numbers are avoided.
111        Requests for sizes with a negative sign bit when the request
112        size is treaded as a long will return null.
113 
114   Maximum overhead wastage per allocated chunk: normally 15 bytes
115 
116        Alignnment demands, plus the minimum allocatable size restriction
117        make the normal worst-case wastage 15 bytes (i.e., up to 15
118        more bytes will be allocated than were requested in malloc), with
119        two exceptions:
120 	 1. Because requests for zero bytes allocate non-zero space,
121 	    the worst case wastage for a request of zero bytes is 24 bytes.
122 	 2. For requests >= mmap_threshold that are serviced via
123 	    mmap(), the worst case wastage is 8 bytes plus the remainder
124 	    from a system page (the minimal mmap unit); typically 4096 bytes.
125 
126 * Limitations
127 
128     Here are some features that are NOT currently supported
129 
130     * No user-definable hooks for callbacks and the like.
131     * No automated mechanism for fully checking that all accesses
132       to malloced memory stay within their bounds.
133     * No support for compaction.
134 
135 * Synopsis of compile-time options:
136 
137     People have reported using previous versions of this malloc on all
138     versions of Unix, sometimes by tweaking some of the defines
139     below. It has been tested most extensively on Solaris and
140     Linux. It is also reported to work on WIN32 platforms.
141     People have also reported adapting this malloc for use in
142     stand-alone embedded systems.
143 
144     The implementation is in straight, hand-tuned ANSI C.  Among other
145     consequences, it uses a lot of macros.  Because of this, to be at
146     all usable, this code should be compiled using an optimizing compiler
147     (for example gcc -O2) that can simplify expressions and control
148     paths.
149 
150   __STD_C                  (default: derived from C compiler defines)
151      Nonzero if using ANSI-standard C compiler, a C++ compiler, or
152      a C compiler sufficiently close to ANSI to get away with it.
153   DEBUG                    (default: NOT defined)
154      Define to enable debugging. Adds fairly extensive assertion-based
155      checking to help track down memory errors, but noticeably slows down
156      execution.
157   REALLOC_ZERO_BYTES_FREES (default: NOT defined)
158      Define this if you think that realloc(p, 0) should be equivalent
159      to free(p). Otherwise, since malloc returns a unique pointer for
160      malloc(0), so does realloc(p, 0).
161   HAVE_MEMCPY               (default: defined)
162      Define if you are not otherwise using ANSI STD C, but still
163      have memcpy and memset in your C library and want to use them.
164      Otherwise, simple internal versions are supplied.
165   USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
166      Define as 1 if you want the C library versions of memset and
167      memcpy called in realloc and calloc (otherwise macro versions are used).
168      At least on some platforms, the simple macro versions usually
169      outperform libc versions.
170   HAVE_MMAP                 (default: defined as 1)
171      Define to non-zero to optionally make malloc() use mmap() to
172      allocate very large blocks.
173   HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
174      Define to non-zero to optionally make realloc() use mremap() to
175      reallocate very large blocks.
176   malloc_getpagesize        (default: derived from system #includes)
177      Either a constant or routine call returning the system page size.
178   HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
179      Optionally define if you are on a system with a /usr/include/malloc.h
180      that declares struct mallinfo. It is not at all necessary to
181      define this even if you do, but will ensure consistency.
182   INTERNAL_SIZE_T           (default: size_t)
183      Define to a 32-bit type (probably `unsigned int') if you are on a
184      64-bit machine, yet do not want or need to allow malloc requests of
185      greater than 2^31 to be handled. This saves space, especially for
186      very small chunks.
187   INTERNAL_LINUX_C_LIB      (default: NOT defined)
188      Defined only when compiled as part of Linux libc.
189      Also note that there is some odd internal name-mangling via defines
190      (for example, internally, `malloc' is named `mALLOc') needed
191      when compiling in this case. These look funny but don't otherwise
192      affect anything.
193   WIN32                     (default: undefined)
194      Define this on MS win (95, nt) platforms to compile in sbrk emulation.
195   LACKS_UNISTD_H            (default: undefined if not WIN32)
196      Define this if your system does not have a <unistd.h>.
197   LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
198      Define this if your system does not have a <sys/param.h>.
199   MORECORE                  (default: sbrk)
200      The name of the routine to call to obtain more memory from the system.
201   MORECORE_FAILURE          (default: -1)
202      The value returned upon failure of MORECORE.
203   MORECORE_CLEARS           (default 1)
204      True (1) if the routine mapped to MORECORE zeroes out memory (which
205      holds for sbrk).
206   DEFAULT_TRIM_THRESHOLD
207   DEFAULT_TOP_PAD
208   DEFAULT_MMAP_THRESHOLD
209   DEFAULT_MMAP_MAX
210      Default values of tunable parameters (described in detail below)
211      controlling interaction with host system routines (sbrk, mmap, etc).
212      These values may also be changed dynamically via mallopt(). The
213      preset defaults are those that give best performance for typical
214      programs/systems.
215   USE_DL_PREFIX             (default: undefined)
216      Prefix all public routines with the string 'dl'.  Useful to
217      quickly avoid procedure declaration conflicts and linker symbol
218      conflicts with existing memory allocation routines.
219 
220 
221 */
222 
223 
224 
225 
226 /* Preliminaries */
227 
228 #ifndef __STD_C
229 #ifdef __STDC__
230 #define __STD_C     1
231 #else
232 #if __cplusplus
233 #define __STD_C     1
234 #else
235 #define __STD_C     0
236 #endif /*__cplusplus*/
237 #endif /*__STDC__*/
238 #endif /*__STD_C*/
239 
240 #ifndef Void_t
241 #if (__STD_C || defined(WIN32))
242 #define Void_t      void
243 #else
244 #define Void_t      char
245 #endif
246 #endif /*Void_t*/
247 
248 #if __STD_C
249 #include <stddef.h>   /* for size_t */
250 #else
251 #include <sys/types.h>
252 #endif
253 
254 #ifdef __cplusplus
255 extern "C" {
256 #endif
257 
258 #include <stdio.h>    /* needed for malloc_stats */
259 
260 
261 /*
262   Compile-time options
263 */
264 
265 
266 /*
267     Debugging:
268 
269     Because freed chunks may be overwritten with link fields, this
270     malloc will often die when freed memory is overwritten by user
271     programs.  This can be very effective (albeit in an annoying way)
272     in helping track down dangling pointers.
273 
274     If you compile with -DDEBUG, a number of assertion checks are
275     enabled that will catch more memory errors. You probably won't be
276     able to make much sense of the actual assertion errors, but they
277     should help you locate incorrectly overwritten memory.  The
278     checking is fairly extensive, and will slow down execution
279     noticeably. Calling malloc_stats or mallinfo with DEBUG set will
280     attempt to check every non-mmapped allocated and free chunk in the
281     course of computing the summmaries. (By nature, mmapped regions
282     cannot be checked very much automatically.)
283 
284     Setting DEBUG may also be helpful if you are trying to modify
285     this code. The assertions in the check routines spell out in more
286     detail the assumptions and invariants underlying the algorithms.
287 
288 */
289 
290 #ifdef DEBUG
291 #include <assert.h>
292 #else
293 #define assert(x) ((void)0)
294 #endif
295 
296 
297 /*
298   INTERNAL_SIZE_T is the word-size used for internal bookkeeping
299   of chunk sizes. On a 64-bit machine, you can reduce malloc
300   overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
301   at the expense of not being able to handle requests greater than
302   2^31. This limitation is hardly ever a concern; you are encouraged
303   to set this. However, the default version is the same as size_t.
304 */
305 
306 #ifndef INTERNAL_SIZE_T
307 #define INTERNAL_SIZE_T size_t
308 #endif
309 
310 /*
311   REALLOC_ZERO_BYTES_FREES should be set if a call to
312   realloc with zero bytes should be the same as a call to free.
313   Some people think it should. Otherwise, since this malloc
314   returns a unique pointer for malloc(0), so does realloc(p, 0).
315 */
316 
317 
318 /*   #define REALLOC_ZERO_BYTES_FREES */
319 
320 
321 /*
322   WIN32 causes an emulation of sbrk to be compiled in
323   mmap-based options are not currently supported in WIN32.
324 */
325 
326 /* #define WIN32 */
327 #ifdef WIN32
328 #define MORECORE wsbrk
329 #define HAVE_MMAP 0
330 
331 #define LACKS_UNISTD_H
332 #define LACKS_SYS_PARAM_H
333 
334 /*
335   Include 'windows.h' to get the necessary declarations for the
336   Microsoft Visual C++ data structures and routines used in the 'sbrk'
337   emulation.
338 
339   Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
340   Visual C++ header files are included.
341 */
342 #define WIN32_LEAN_AND_MEAN
343 #include <windows.h>
344 #endif
345 
346 
347 /*
348   HAVE_MEMCPY should be defined if you are not otherwise using
349   ANSI STD C, but still have memcpy and memset in your C library
350   and want to use them in calloc and realloc. Otherwise simple
351   macro versions are defined here.
352 
353   USE_MEMCPY should be defined as 1 if you actually want to
354   have memset and memcpy called. People report that the macro
355   versions are often enough faster than libc versions on many
356   systems that it is better to use them.
357 
358 */
359 
360 #define HAVE_MEMCPY
361 
362 #ifndef USE_MEMCPY
363 #ifdef HAVE_MEMCPY
364 #define USE_MEMCPY 1
365 #else
366 #define USE_MEMCPY 0
367 #endif
368 #endif
369 
370 #if (__STD_C || defined(HAVE_MEMCPY))
371 
372 #if __STD_C
373 void* memset(void*, int, size_t);
374 void* memcpy(void*, const void*, size_t);
375 #else
376 #ifdef WIN32
377 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
378 /* 'windows.h' */
379 #else
380 Void_t* memset();
381 Void_t* memcpy();
382 #endif
383 #endif
384 #endif
385 
386 #if USE_MEMCPY
387 
388 /* The following macros are only invoked with (2n+1)-multiples of
389    INTERNAL_SIZE_T units, with a positive integer n. This is exploited
390    for fast inline execution when n is small. */
391 
392 #define MALLOC_ZERO(charp, nbytes)                                            \
393 do {                                                                          \
394   INTERNAL_SIZE_T mzsz = (nbytes);                                            \
395   if(mzsz <= 9*sizeof(mzsz)) {                                                \
396     INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
397     if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
398 				     *mz++ = 0;                               \
399       if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
400 				     *mz++ = 0;                               \
401 	if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
402 				     *mz++ = 0; }}}                           \
403 				     *mz++ = 0;                               \
404 				     *mz++ = 0;                               \
405 				     *mz   = 0;                               \
406   } else memset((charp), 0, mzsz);                                            \
407 } while(0)
408 
409 #define MALLOC_COPY(dest,src,nbytes)                                          \
410 do {                                                                          \
411   INTERNAL_SIZE_T mcsz = (nbytes);                                            \
412   if(mcsz <= 9*sizeof(mcsz)) {                                                \
413     INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
414     INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
415     if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
416 				     *mcdst++ = *mcsrc++;                     \
417       if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
418 				     *mcdst++ = *mcsrc++;                     \
419 	if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
420 				     *mcdst++ = *mcsrc++; }}}                 \
421 				     *mcdst++ = *mcsrc++;                     \
422 				     *mcdst++ = *mcsrc++;                     \
423 				     *mcdst   = *mcsrc  ;                     \
424   } else memcpy(dest, src, mcsz);                                             \
425 } while(0)
426 
427 #else /* !USE_MEMCPY */
428 
429 /* Use Duff's device for good zeroing/copying performance. */
430 
431 #define MALLOC_ZERO(charp, nbytes)                                            \
432 do {                                                                          \
433   INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
434   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
435   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
436   switch (mctmp) {                                                            \
437     case 0: for(;;) { *mzp++ = 0;                                             \
438     case 7:           *mzp++ = 0;                                             \
439     case 6:           *mzp++ = 0;                                             \
440     case 5:           *mzp++ = 0;                                             \
441     case 4:           *mzp++ = 0;                                             \
442     case 3:           *mzp++ = 0;                                             \
443     case 2:           *mzp++ = 0;                                             \
444     case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
445   }                                                                           \
446 } while(0)
447 
448 #define MALLOC_COPY(dest,src,nbytes)                                          \
449 do {                                                                          \
450   INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
451   INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
452   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
453   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
454   switch (mctmp) {                                                            \
455     case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
456     case 7:           *mcdst++ = *mcsrc++;                                    \
457     case 6:           *mcdst++ = *mcsrc++;                                    \
458     case 5:           *mcdst++ = *mcsrc++;                                    \
459     case 4:           *mcdst++ = *mcsrc++;                                    \
460     case 3:           *mcdst++ = *mcsrc++;                                    \
461     case 2:           *mcdst++ = *mcsrc++;                                    \
462     case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
463   }                                                                           \
464 } while(0)
465 
466 #endif
467 
468 
469 /*
470   Define HAVE_MMAP to optionally make malloc() use mmap() to
471   allocate very large blocks.  These will be returned to the
472   operating system immediately after a free().
473 */
474 
475 #ifndef HAVE_MMAP
476 #define HAVE_MMAP 1
477 #endif
478 
479 /*
480   Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
481   large blocks.  This is currently only possible on Linux with
482   kernel versions newer than 1.3.77.
483 */
484 
485 #ifndef HAVE_MREMAP
486 #ifdef INTERNAL_LINUX_C_LIB
487 #define HAVE_MREMAP 1
488 #else
489 #define HAVE_MREMAP 0
490 #endif
491 #endif
492 
493 #if HAVE_MMAP
494 
495 #include <unistd.h>
496 #include <fcntl.h>
497 #include <sys/mman.h>
498 
499 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
500 #define MAP_ANONYMOUS MAP_ANON
501 #endif
502 
503 #endif /* HAVE_MMAP */
504 
505 /*
506   Access to system page size. To the extent possible, this malloc
507   manages memory from the system in page-size units.
508 
509   The following mechanics for getpagesize were adapted from
510   bsd/gnu getpagesize.h
511 */
512 
513 #ifndef LACKS_UNISTD_H
514 #  include <unistd.h>
515 #endif
516 
517 #ifndef malloc_getpagesize
518 #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
519 #    ifndef _SC_PAGE_SIZE
520 #      define _SC_PAGE_SIZE _SC_PAGESIZE
521 #    endif
522 #  endif
523 #  ifdef _SC_PAGE_SIZE
524 #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
525 #  else
526 #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
527        extern size_t getpagesize();
528 #      define malloc_getpagesize getpagesize()
529 #    else
530 #      ifdef WIN32
531 #        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
532 #      else
533 #        ifndef LACKS_SYS_PARAM_H
534 #          include <sys/param.h>
535 #        endif
536 #        ifdef EXEC_PAGESIZE
537 #          define malloc_getpagesize EXEC_PAGESIZE
538 #        else
539 #          ifdef NBPG
540 #            ifndef CLSIZE
541 #              define malloc_getpagesize NBPG
542 #            else
543 #              define malloc_getpagesize (NBPG * CLSIZE)
544 #            endif
545 #          else
546 #            ifdef NBPC
547 #              define malloc_getpagesize NBPC
548 #            else
549 #              ifdef PAGESIZE
550 #                define malloc_getpagesize PAGESIZE
551 #              else
552 #                define malloc_getpagesize (4096) /* just guess */
553 #              endif
554 #            endif
555 #          endif
556 #        endif
557 #      endif
558 #    endif
559 #  endif
560 #endif
561 
562 
563 /*
564 
565   This version of malloc supports the standard SVID/XPG mallinfo
566   routine that returns a struct containing the same kind of
567   information you can get from malloc_stats. It should work on
568   any SVID/XPG compliant system that has a /usr/include/malloc.h
569   defining struct mallinfo. (If you'd like to install such a thing
570   yourself, cut out the preliminary declarations as described above
571   and below and save them in a malloc.h file. But there's no
572   compelling reason to bother to do this.)
573 
574   The main declaration needed is the mallinfo struct that is returned
575   (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
576   bunch of fields, most of which are not even meaningful in this
577   version of malloc. Some of these fields are are instead filled by
578   mallinfo() with other numbers that might possibly be of interest.
579 
580   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
581   /usr/include/malloc.h file that includes a declaration of struct
582   mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
583   version is declared below.  These must be precisely the same for
584   mallinfo() to work.
585 
586 */
587 
588 /* #define HAVE_USR_INCLUDE_MALLOC_H */
589 
590 #if HAVE_USR_INCLUDE_MALLOC_H
591 #include "/usr/include/malloc.h"
592 #else
593 
594 /* SVID2/XPG mallinfo structure */
595 
596 struct mallinfo {
597   int arena;    /* total space allocated from system */
598   int ordblks;  /* number of non-inuse chunks */
599   int smblks;   /* unused -- always zero */
600   int hblks;    /* number of mmapped regions */
601   int hblkhd;   /* total space in mmapped regions */
602   int usmblks;  /* unused -- always zero */
603   int fsmblks;  /* unused -- always zero */
604   int uordblks; /* total allocated space */
605   int fordblks; /* total non-inuse space */
606   int keepcost; /* top-most, releasable (via malloc_trim) space */
607 };
608 
609 /* SVID2/XPG mallopt options */
610 
611 #define M_MXFAST  1    /* UNUSED in this malloc */
612 #define M_NLBLKS  2    /* UNUSED in this malloc */
613 #define M_GRAIN   3    /* UNUSED in this malloc */
614 #define M_KEEP    4    /* UNUSED in this malloc */
615 
616 #endif
617 
618 /* mallopt options that actually do something */
619 
620 #define M_TRIM_THRESHOLD    -1
621 #define M_TOP_PAD           -2
622 #define M_MMAP_THRESHOLD    -3
623 #define M_MMAP_MAX          -4
624 
625 
626 #ifndef DEFAULT_TRIM_THRESHOLD
627 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
628 #endif
629 
630 /*
631     M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
632       to keep before releasing via malloc_trim in free().
633 
634       Automatic trimming is mainly useful in long-lived programs.
635       Because trimming via sbrk can be slow on some systems, and can
636       sometimes be wasteful (in cases where programs immediately
637       afterward allocate more large chunks) the value should be high
638       enough so that your overall system performance would improve by
639       releasing.
640 
641       The trim threshold and the mmap control parameters (see below)
642       can be traded off with one another. Trimming and mmapping are
643       two different ways of releasing unused memory back to the
644       system. Between these two, it is often possible to keep
645       system-level demands of a long-lived program down to a bare
646       minimum. For example, in one test suite of sessions measuring
647       the XF86 X server on Linux, using a trim threshold of 128K and a
648       mmap threshold of 192K led to near-minimal long term resource
649       consumption.
650 
651       If you are using this malloc in a long-lived program, it should
652       pay to experiment with these values.  As a rough guide, you
653       might set to a value close to the average size of a process
654       (program) running on your system.  Releasing this much memory
655       would allow such a process to run in memory.  Generally, it's
656       worth it to tune for trimming rather tham memory mapping when a
657       program undergoes phases where several large chunks are
658       allocated and released in ways that can reuse each other's
659       storage, perhaps mixed with phases where there are no such
660       chunks at all.  And in well-behaved long-lived programs,
661       controlling release of large blocks via trimming versus mapping
662       is usually faster.
663 
664       However, in most programs, these parameters serve mainly as
665       protection against the system-level effects of carrying around
666       massive amounts of unneeded memory. Since frequent calls to
667       sbrk, mmap, and munmap otherwise degrade performance, the default
668       parameters are set to relatively high values that serve only as
669       safeguards.
670 
671       The default trim value is high enough to cause trimming only in
672       fairly extreme (by current memory consumption standards) cases.
673       It must be greater than page size to have any useful effect.  To
674       disable trimming completely, you can set to (unsigned long)(-1);
675 
676 
677 */
678 
679 
680 #ifndef DEFAULT_TOP_PAD
681 #define DEFAULT_TOP_PAD        (0)
682 #endif
683 
684 /*
685     M_TOP_PAD is the amount of extra `padding' space to allocate or
686       retain whenever sbrk is called. It is used in two ways internally:
687 
688       * When sbrk is called to extend the top of the arena to satisfy
689 	a new malloc request, this much padding is added to the sbrk
690 	request.
691 
692       * When malloc_trim is called automatically from free(),
693 	it is used as the `pad' argument.
694 
695       In both cases, the actual amount of padding is rounded
696       so that the end of the arena is always a system page boundary.
697 
698       The main reason for using padding is to avoid calling sbrk so
699       often. Having even a small pad greatly reduces the likelihood
700       that nearly every malloc request during program start-up (or
701       after trimming) will invoke sbrk, which needlessly wastes
702       time.
703 
704       Automatic rounding-up to page-size units is normally sufficient
705       to avoid measurable overhead, so the default is 0.  However, in
706       systems where sbrk is relatively slow, it can pay to increase
707       this value, at the expense of carrying around more memory than
708       the program needs.
709 
710 */
711 
712 
713 #ifndef DEFAULT_MMAP_THRESHOLD
714 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
715 #endif
716 
717 /*
718 
719     M_MMAP_THRESHOLD is the request size threshold for using mmap()
720       to service a request. Requests of at least this size that cannot
721       be allocated using already-existing space will be serviced via mmap.
722       (If enough normal freed space already exists it is used instead.)
723 
724       Using mmap segregates relatively large chunks of memory so that
725       they can be individually obtained and released from the host
726       system. A request serviced through mmap is never reused by any
727       other request (at least not directly; the system may just so
728       happen to remap successive requests to the same locations).
729 
730       Segregating space in this way has the benefit that mmapped space
731       can ALWAYS be individually released back to the system, which
732       helps keep the system level memory demands of a long-lived
733       program low. Mapped memory can never become `locked' between
734       other chunks, as can happen with normally allocated chunks, which
735       menas that even trimming via malloc_trim would not release them.
736 
737       However, it has the disadvantages that:
738 
739 	 1. The space cannot be reclaimed, consolidated, and then
740 	    used to service later requests, as happens with normal chunks.
741 	 2. It can lead to more wastage because of mmap page alignment
742 	    requirements
743 	 3. It causes malloc performance to be more dependent on host
744 	    system memory management support routines which may vary in
745 	    implementation quality and may impose arbitrary
746 	    limitations. Generally, servicing a request via normal
747 	    malloc steps is faster than going through a system's mmap.
748 
749       All together, these considerations should lead you to use mmap
750       only for relatively large requests.
751 
752 
753 */
754 
755 
756 #ifndef DEFAULT_MMAP_MAX
757 #if HAVE_MMAP
758 #define DEFAULT_MMAP_MAX       (64)
759 #else
760 #define DEFAULT_MMAP_MAX       (0)
761 #endif
762 #endif
763 
764 /*
765     M_MMAP_MAX is the maximum number of requests to simultaneously
766       service using mmap. This parameter exists because:
767 
768 	 1. Some systems have a limited number of internal tables for
769 	    use by mmap.
770 	 2. In most systems, overreliance on mmap can degrade overall
771 	    performance.
772 	 3. If a program allocates many large regions, it is probably
773 	    better off using normal sbrk-based allocation routines that
774 	    can reclaim and reallocate normal heap memory. Using a
775 	    small value allows transition into this mode after the
776 	    first few allocations.
777 
778       Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
779       the default value is 0, and attempts to set it to non-zero values
780       in mallopt will fail.
781 */
782 
783 
784 /*
785     USE_DL_PREFIX will prefix all public routines with the string 'dl'.
786       Useful to quickly avoid procedure declaration conflicts and linker
787       symbol conflicts with existing memory allocation routines.
788 
789 */
790 
791 /* #define USE_DL_PREFIX */
792 
793 
794 /*
795 
796   Special defines for linux libc
797 
798   Except when compiled using these special defines for Linux libc
799   using weak aliases, this malloc is NOT designed to work in
800   multithreaded applications.  No semaphores or other concurrency
801   control are provided to ensure that multiple malloc or free calls
802   don't run at the same time, which could be disasterous. A single
803   semaphore could be used across malloc, realloc, and free (which is
804   essentially the effect of the linux weak alias approach). It would
805   be hard to obtain finer granularity.
806 
807 */
808 
809 
810 #ifdef INTERNAL_LINUX_C_LIB
811 
812 #if __STD_C
813 
814 Void_t * __default_morecore_init (ptrdiff_t);
815 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
816 
817 #else
818 
819 Void_t * __default_morecore_init ();
820 Void_t *(*__morecore)() = __default_morecore_init;
821 
822 #endif
823 
824 #define MORECORE (*__morecore)
825 #define MORECORE_FAILURE 0
826 #define MORECORE_CLEARS 1
827 
828 #else /* INTERNAL_LINUX_C_LIB */
829 
830 #if __STD_C
831 extern Void_t*     sbrk(ptrdiff_t);
832 #else
833 extern Void_t*     sbrk();
834 #endif
835 
836 #ifndef MORECORE
837 #define MORECORE sbrk
838 #endif
839 
840 #ifndef MORECORE_FAILURE
841 #define MORECORE_FAILURE -1
842 #endif
843 
844 #ifndef MORECORE_CLEARS
845 #define MORECORE_CLEARS 1
846 #endif
847 
848 #endif /* INTERNAL_LINUX_C_LIB */
849 
850 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
851 
852 #define cALLOc		__libc_calloc
853 #define fREe		__libc_free
854 #define mALLOc		__libc_malloc
855 #define mEMALIGn	__libc_memalign
856 #define rEALLOc		__libc_realloc
857 #define vALLOc		__libc_valloc
858 #define pvALLOc		__libc_pvalloc
859 #define mALLINFo	__libc_mallinfo
860 #define mALLOPt		__libc_mallopt
861 
862 #pragma weak calloc = __libc_calloc
863 #pragma weak free = __libc_free
864 #pragma weak cfree = __libc_free
865 #pragma weak malloc = __libc_malloc
866 #pragma weak memalign = __libc_memalign
867 #pragma weak realloc = __libc_realloc
868 #pragma weak valloc = __libc_valloc
869 #pragma weak pvalloc = __libc_pvalloc
870 #pragma weak mallinfo = __libc_mallinfo
871 #pragma weak mallopt = __libc_mallopt
872 
873 #else
874 
875 #ifdef USE_DL_PREFIX
876 #define cALLOc		dlcalloc
877 #define fREe		dlfree
878 #define mALLOc		dlmalloc
879 #define mEMALIGn	dlmemalign
880 #define rEALLOc		dlrealloc
881 #define vALLOc		dlvalloc
882 #define pvALLOc		dlpvalloc
883 #define mALLINFo	dlmallinfo
884 #define mALLOPt		dlmallopt
885 #else /* USE_DL_PREFIX */
886 #define cALLOc		calloc
887 #define fREe		free
888 #define mALLOc		malloc
889 #define mEMALIGn	memalign
890 #define rEALLOc		realloc
891 #define vALLOc		valloc
892 #define pvALLOc		pvalloc
893 #define mALLINFo	mallinfo
894 #define mALLOPt		mallopt
895 #endif /* USE_DL_PREFIX */
896 
897 #endif
898 
899 /* Public routines */
900 
901 #if __STD_C
902 
903 Void_t* mALLOc(size_t);
904 void    fREe(Void_t*);
905 Void_t* rEALLOc(Void_t*, size_t);
906 Void_t* mEMALIGn(size_t, size_t);
907 Void_t* vALLOc(size_t);
908 Void_t* pvALLOc(size_t);
909 Void_t* cALLOc(size_t, size_t);
910 void    cfree(Void_t*);
911 int     malloc_trim(size_t);
912 size_t  malloc_usable_size(Void_t*);
913 void    malloc_stats();
914 int     mALLOPt(int, int);
915 struct mallinfo mALLINFo(void);
916 #else
917 Void_t* mALLOc();
918 void    fREe();
919 Void_t* rEALLOc();
920 Void_t* mEMALIGn();
921 Void_t* vALLOc();
922 Void_t* pvALLOc();
923 Void_t* cALLOc();
924 void    cfree();
925 int     malloc_trim();
926 size_t  malloc_usable_size();
927 void    malloc_stats();
928 int     mALLOPt();
929 struct mallinfo mALLINFo();
930 #endif
931 
932 
933 #ifdef __cplusplus
934 };  /* end of extern "C" */
935 #endif
936 
937 /* ---------- To make a malloc.h, end cutting here ------------ */
938 #else				/* Moved to malloc.h */
939 
940 #include <malloc.h>
941 #if 0
942 #if __STD_C
943 static void malloc_update_mallinfo (void);
944 void malloc_stats (void);
945 #else
946 static void malloc_update_mallinfo ();
947 void malloc_stats();
948 #endif
949 #endif	/* 0 */
950 
951 #endif	/* 0 */			/* Moved to malloc.h */
952 
953 DECLARE_GLOBAL_DATA_PTR;
954 
955 /*
956   Emulation of sbrk for WIN32
957   All code within the ifdef WIN32 is untested by me.
958 
959   Thanks to Martin Fong and others for supplying this.
960 */
961 
962 
963 #ifdef WIN32
964 
965 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
966 ~(malloc_getpagesize-1))
967 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
968 
969 /* resrve 64MB to insure large contiguous space */
970 #define RESERVED_SIZE (1024*1024*64)
971 #define NEXT_SIZE (2048*1024)
972 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
973 
974 struct GmListElement;
975 typedef struct GmListElement GmListElement;
976 
977 struct GmListElement
978 {
979 	GmListElement* next;
980 	void* base;
981 };
982 
983 static GmListElement* head = 0;
984 static unsigned int gNextAddress = 0;
985 static unsigned int gAddressBase = 0;
986 static unsigned int gAllocatedSize = 0;
987 
988 static
989 GmListElement* makeGmListElement (void* bas)
990 {
991 	GmListElement* this;
992 	this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
993 	assert (this);
994 	if (this)
995 	{
996 		this->base = bas;
997 		this->next = head;
998 		head = this;
999 	}
1000 	return this;
1001 }
1002 
1003 void gcleanup ()
1004 {
1005 	BOOL rval;
1006 	assert ( (head == NULL) || (head->base == (void*)gAddressBase));
1007 	if (gAddressBase && (gNextAddress - gAddressBase))
1008 	{
1009 		rval = VirtualFree ((void*)gAddressBase,
1010 							gNextAddress - gAddressBase,
1011 							MEM_DECOMMIT);
1012 	assert (rval);
1013 	}
1014 	while (head)
1015 	{
1016 		GmListElement* next = head->next;
1017 		rval = VirtualFree (head->base, 0, MEM_RELEASE);
1018 		assert (rval);
1019 		LocalFree (head);
1020 		head = next;
1021 	}
1022 }
1023 
1024 static
1025 void* findRegion (void* start_address, unsigned long size)
1026 {
1027 	MEMORY_BASIC_INFORMATION info;
1028 	if (size >= TOP_MEMORY) return NULL;
1029 
1030 	while ((unsigned long)start_address + size < TOP_MEMORY)
1031 	{
1032 		VirtualQuery (start_address, &info, sizeof (info));
1033 		if ((info.State == MEM_FREE) && (info.RegionSize >= size))
1034 			return start_address;
1035 		else
1036 		{
1037 			/* Requested region is not available so see if the */
1038 			/* next region is available.  Set 'start_address' */
1039 			/* to the next region and call 'VirtualQuery()' */
1040 			/* again. */
1041 
1042 			start_address = (char*)info.BaseAddress + info.RegionSize;
1043 
1044 			/* Make sure we start looking for the next region */
1045 			/* on the *next* 64K boundary.  Otherwise, even if */
1046 			/* the new region is free according to */
1047 			/* 'VirtualQuery()', the subsequent call to */
1048 			/* 'VirtualAlloc()' (which follows the call to */
1049 			/* this routine in 'wsbrk()') will round *down* */
1050 			/* the requested address to a 64K boundary which */
1051 			/* we already know is an address in the */
1052 			/* unavailable region.  Thus, the subsequent call */
1053 			/* to 'VirtualAlloc()' will fail and bring us back */
1054 			/* here, causing us to go into an infinite loop. */
1055 
1056 			start_address =
1057 				(void *) AlignPage64K((unsigned long) start_address);
1058 		}
1059 	}
1060 	return NULL;
1061 
1062 }
1063 
1064 
1065 void* wsbrk (long size)
1066 {
1067 	void* tmp;
1068 	if (size > 0)
1069 	{
1070 		if (gAddressBase == 0)
1071 		{
1072 			gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
1073 			gNextAddress = gAddressBase =
1074 				(unsigned int)VirtualAlloc (NULL, gAllocatedSize,
1075 											MEM_RESERVE, PAGE_NOACCESS);
1076 		} else if (AlignPage (gNextAddress + size) > (gAddressBase +
1077 gAllocatedSize))
1078 		{
1079 			long new_size = max (NEXT_SIZE, AlignPage (size));
1080 			void* new_address = (void*)(gAddressBase+gAllocatedSize);
1081 			do
1082 			{
1083 				new_address = findRegion (new_address, new_size);
1084 
1085 				if (new_address == 0)
1086 					return (void*)-1;
1087 
1088 				gAddressBase = gNextAddress =
1089 					(unsigned int)VirtualAlloc (new_address, new_size,
1090 												MEM_RESERVE, PAGE_NOACCESS);
1091 				/* repeat in case of race condition */
1092 				/* The region that we found has been snagged */
1093 				/* by another thread */
1094 			}
1095 			while (gAddressBase == 0);
1096 
1097 			assert (new_address == (void*)gAddressBase);
1098 
1099 			gAllocatedSize = new_size;
1100 
1101 			if (!makeGmListElement ((void*)gAddressBase))
1102 				return (void*)-1;
1103 		}
1104 		if ((size + gNextAddress) > AlignPage (gNextAddress))
1105 		{
1106 			void* res;
1107 			res = VirtualAlloc ((void*)AlignPage (gNextAddress),
1108 								(size + gNextAddress -
1109 								 AlignPage (gNextAddress)),
1110 								MEM_COMMIT, PAGE_READWRITE);
1111 			if (res == 0)
1112 				return (void*)-1;
1113 		}
1114 		tmp = (void*)gNextAddress;
1115 		gNextAddress = (unsigned int)tmp + size;
1116 		return tmp;
1117 	}
1118 	else if (size < 0)
1119 	{
1120 		unsigned int alignedGoal = AlignPage (gNextAddress + size);
1121 		/* Trim by releasing the virtual memory */
1122 		if (alignedGoal >= gAddressBase)
1123 		{
1124 			VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
1125 						 MEM_DECOMMIT);
1126 			gNextAddress = gNextAddress + size;
1127 			return (void*)gNextAddress;
1128 		}
1129 		else
1130 		{
1131 			VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
1132 						 MEM_DECOMMIT);
1133 			gNextAddress = gAddressBase;
1134 			return (void*)-1;
1135 		}
1136 	}
1137 	else
1138 	{
1139 		return (void*)gNextAddress;
1140 	}
1141 }
1142 
1143 #endif
1144 
1145 
1146 
1147 /*
1148   Type declarations
1149 */
1150 
1151 
1152 struct malloc_chunk
1153 {
1154   INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1155   INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
1156   struct malloc_chunk* fd;   /* double links -- used only if free. */
1157   struct malloc_chunk* bk;
1158 };
1159 
1160 typedef struct malloc_chunk* mchunkptr;
1161 
1162 /*
1163 
1164    malloc_chunk details:
1165 
1166     (The following includes lightly edited explanations by Colin Plumb.)
1167 
1168     Chunks of memory are maintained using a `boundary tag' method as
1169     described in e.g., Knuth or Standish.  (See the paper by Paul
1170     Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1171     survey of such techniques.)  Sizes of free chunks are stored both
1172     in the front of each chunk and at the end.  This makes
1173     consolidating fragmented chunks into bigger chunks very fast.  The
1174     size fields also hold bits representing whether chunks are free or
1175     in use.
1176 
1177     An allocated chunk looks like this:
1178 
1179 
1180     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1181 	    |             Size of previous chunk, if allocated            | |
1182 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1183 	    |             Size of chunk, in bytes                         |P|
1184       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1185 	    |             User data starts here...                          .
1186 	    .                                                               .
1187 	    .             (malloc_usable_space() bytes)                     .
1188 	    .                                                               |
1189 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1190 	    |             Size of chunk                                     |
1191 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1192 
1193 
1194     Where "chunk" is the front of the chunk for the purpose of most of
1195     the malloc code, but "mem" is the pointer that is returned to the
1196     user.  "Nextchunk" is the beginning of the next contiguous chunk.
1197 
1198     Chunks always begin on even word boundries, so the mem portion
1199     (which is returned to the user) is also on an even word boundary, and
1200     thus double-word aligned.
1201 
1202     Free chunks are stored in circular doubly-linked lists, and look like this:
1203 
1204     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1205 	    |             Size of previous chunk                            |
1206 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1207     `head:' |             Size of chunk, in bytes                         |P|
1208       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1209 	    |             Forward pointer to next chunk in list             |
1210 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1211 	    |             Back pointer to previous chunk in list            |
1212 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1213 	    |             Unused space (may be 0 bytes long)                .
1214 	    .                                                               .
1215 	    .                                                               |
1216 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1217     `foot:' |             Size of chunk, in bytes                           |
1218 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1219 
1220     The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1221     chunk size (which is always a multiple of two words), is an in-use
1222     bit for the *previous* chunk.  If that bit is *clear*, then the
1223     word before the current chunk size contains the previous chunk
1224     size, and can be used to find the front of the previous chunk.
1225     (The very first chunk allocated always has this bit set,
1226     preventing access to non-existent (or non-owned) memory.)
1227 
1228     Note that the `foot' of the current chunk is actually represented
1229     as the prev_size of the NEXT chunk. (This makes it easier to
1230     deal with alignments etc).
1231 
1232     The two exceptions to all this are
1233 
1234      1. The special chunk `top', which doesn't bother using the
1235 	trailing size field since there is no
1236 	next contiguous chunk that would have to index off it. (After
1237 	initialization, `top' is forced to always exist.  If it would
1238 	become less than MINSIZE bytes long, it is replenished via
1239 	malloc_extend_top.)
1240 
1241      2. Chunks allocated via mmap, which have the second-lowest-order
1242 	bit (IS_MMAPPED) set in their size fields.  Because they are
1243 	never merged or traversed from any other chunk, they have no
1244 	foot size or inuse information.
1245 
1246     Available chunks are kept in any of several places (all declared below):
1247 
1248     * `av': An array of chunks serving as bin headers for consolidated
1249        chunks. Each bin is doubly linked.  The bins are approximately
1250        proportionally (log) spaced.  There are a lot of these bins
1251        (128). This may look excessive, but works very well in
1252        practice.  All procedures maintain the invariant that no
1253        consolidated chunk physically borders another one. Chunks in
1254        bins are kept in size order, with ties going to the
1255        approximately least recently used chunk.
1256 
1257        The chunks in each bin are maintained in decreasing sorted order by
1258        size.  This is irrelevant for the small bins, which all contain
1259        the same-sized chunks, but facilitates best-fit allocation for
1260        larger chunks. (These lists are just sequential. Keeping them in
1261        order almost never requires enough traversal to warrant using
1262        fancier ordered data structures.)  Chunks of the same size are
1263        linked with the most recently freed at the front, and allocations
1264        are taken from the back.  This results in LRU or FIFO allocation
1265        order, which tends to give each chunk an equal opportunity to be
1266        consolidated with adjacent freed chunks, resulting in larger free
1267        chunks and less fragmentation.
1268 
1269     * `top': The top-most available chunk (i.e., the one bordering the
1270        end of available memory) is treated specially. It is never
1271        included in any bin, is used only if no other chunk is
1272        available, and is released back to the system if it is very
1273        large (see M_TRIM_THRESHOLD).
1274 
1275     * `last_remainder': A bin holding only the remainder of the
1276        most recently split (non-top) chunk. This bin is checked
1277        before other non-fitting chunks, so as to provide better
1278        locality for runs of sequentially allocated chunks.
1279 
1280     *  Implicitly, through the host system's memory mapping tables.
1281        If supported, requests greater than a threshold are usually
1282        serviced via calls to mmap, and then later released via munmap.
1283 
1284 */
1285 
1286 /*  sizes, alignments */
1287 
1288 #define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
1289 #define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
1290 #define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
1291 #define MINSIZE                (sizeof(struct malloc_chunk))
1292 
1293 /* conversion from malloc headers to user pointers, and back */
1294 
1295 #define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1296 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1297 
1298 /* pad request bytes into a usable size */
1299 
1300 #define request2size(req) \
1301  (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1302   (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1303    (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1304 
1305 /* Check if m has acceptable alignment */
1306 
1307 #define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1308 
1309 
1310 
1311 
1312 /*
1313   Physical chunk operations
1314 */
1315 
1316 
1317 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1318 
1319 #define PREV_INUSE 0x1
1320 
1321 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1322 
1323 #define IS_MMAPPED 0x2
1324 
1325 /* Bits to mask off when extracting size */
1326 
1327 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1328 
1329 
1330 /* Ptr to next physical malloc_chunk. */
1331 
1332 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1333 
1334 /* Ptr to previous physical malloc_chunk */
1335 
1336 #define prev_chunk(p)\
1337    ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1338 
1339 
1340 /* Treat space at ptr + offset as a chunk */
1341 
1342 #define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
1343 
1344 
1345 
1346 
1347 /*
1348   Dealing with use bits
1349 */
1350 
1351 /* extract p's inuse bit */
1352 
1353 #define inuse(p)\
1354 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1355 
1356 /* extract inuse bit of previous chunk */
1357 
1358 #define prev_inuse(p)  ((p)->size & PREV_INUSE)
1359 
1360 /* check for mmap()'ed chunk */
1361 
1362 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1363 
1364 /* set/clear chunk as in use without otherwise disturbing */
1365 
1366 #define set_inuse(p)\
1367 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1368 
1369 #define clear_inuse(p)\
1370 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1371 
1372 /* check/set/clear inuse bits in known places */
1373 
1374 #define inuse_bit_at_offset(p, s)\
1375  (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1376 
1377 #define set_inuse_bit_at_offset(p, s)\
1378  (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1379 
1380 #define clear_inuse_bit_at_offset(p, s)\
1381  (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1382 
1383 
1384 
1385 
1386 /*
1387   Dealing with size fields
1388 */
1389 
1390 /* Get size, ignoring use bits */
1391 
1392 #define chunksize(p)          ((p)->size & ~(SIZE_BITS))
1393 
1394 /* Set size at head, without disturbing its use bit */
1395 
1396 #define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1397 
1398 /* Set size/use ignoring previous bits in header */
1399 
1400 #define set_head(p, s)        ((p)->size = (s))
1401 
1402 /* Set size at footer (only when chunk is not in use) */
1403 
1404 #define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1405 
1406 
1407 
1408 
1409 
1410 /*
1411    Bins
1412 
1413     The bins, `av_' are an array of pairs of pointers serving as the
1414     heads of (initially empty) doubly-linked lists of chunks, laid out
1415     in a way so that each pair can be treated as if it were in a
1416     malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1417     and chunks are the same).
1418 
1419     Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1420     8 bytes apart. Larger bins are approximately logarithmically
1421     spaced. (See the table below.) The `av_' array is never mentioned
1422     directly in the code, but instead via bin access macros.
1423 
1424     Bin layout:
1425 
1426     64 bins of size       8
1427     32 bins of size      64
1428     16 bins of size     512
1429      8 bins of size    4096
1430      4 bins of size   32768
1431      2 bins of size  262144
1432      1 bin  of size what's left
1433 
1434     There is actually a little bit of slop in the numbers in bin_index
1435     for the sake of speed. This makes no difference elsewhere.
1436 
1437     The special chunks `top' and `last_remainder' get their own bins,
1438     (this is implemented via yet more trickery with the av_ array),
1439     although `top' is never properly linked to its bin since it is
1440     always handled specially.
1441 
1442 */
1443 
1444 #define NAV             128   /* number of bins */
1445 
1446 typedef struct malloc_chunk* mbinptr;
1447 
1448 /* access macros */
1449 
1450 #define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
1451 #define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1452 #define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1453 
1454 /*
1455    The first 2 bins are never indexed. The corresponding av_ cells are instead
1456    used for bookkeeping. This is not to save space, but to simplify
1457    indexing, maintain locality, and avoid some initialization tests.
1458 */
1459 
1460 #define top            (bin_at(0)->fd)   /* The topmost chunk */
1461 #define last_remainder (bin_at(1))       /* remainder from last split */
1462 
1463 
1464 /*
1465    Because top initially points to its own bin with initial
1466    zero size, thus forcing extension on the first malloc request,
1467    we avoid having any special code in malloc to check whether
1468    it even exists yet. But we still need to in malloc_extend_top.
1469 */
1470 
1471 #define initial_top    ((mchunkptr)(bin_at(0)))
1472 
1473 /* Helper macro to initialize bins */
1474 
1475 #define IAV(i)  bin_at(i), bin_at(i)
1476 
1477 static mbinptr av_[NAV * 2 + 2] = {
1478  0, 0,
1479  IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
1480  IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
1481  IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
1482  IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
1483  IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
1484  IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
1485  IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
1486  IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
1487  IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
1488  IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
1489  IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
1490  IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
1491  IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
1492  IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1493  IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1494  IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1495 };
1496 
1497 void malloc_bin_reloc (void)
1498 {
1499 	unsigned long *p = (unsigned long *)(&av_[2]);
1500 	int i;
1501 	for (i=2; i<(sizeof(av_)/sizeof(mbinptr)); ++i) {
1502 		*p++ += gd->reloc_off;
1503 	}
1504 }
1505 
1506 
1507 /* field-extraction macros */
1508 
1509 #define first(b) ((b)->fd)
1510 #define last(b)  ((b)->bk)
1511 
1512 /*
1513   Indexing into bins
1514 */
1515 
1516 #define bin_index(sz)                                                          \
1517 (((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
1518  ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
1519  ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
1520  ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
1521  ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
1522  ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
1523 					  126)
1524 /*
1525   bins for chunks < 512 are all spaced 8 bytes apart, and hold
1526   identically sized chunks. This is exploited in malloc.
1527 */
1528 
1529 #define MAX_SMALLBIN         63
1530 #define MAX_SMALLBIN_SIZE   512
1531 #define SMALLBIN_WIDTH        8
1532 
1533 #define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
1534 
1535 /*
1536    Requests are `small' if both the corresponding and the next bin are small
1537 */
1538 
1539 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1540 
1541 
1542 
1543 /*
1544     To help compensate for the large number of bins, a one-level index
1545     structure is used for bin-by-bin searching.  `binblocks' is a
1546     one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1547     have any (possibly) non-empty bins, so they can be skipped over
1548     all at once during during traversals. The bits are NOT always
1549     cleared as soon as all bins in a block are empty, but instead only
1550     when all are noticed to be empty during traversal in malloc.
1551 */
1552 
1553 #define BINBLOCKWIDTH     4   /* bins per block */
1554 
1555 #define binblocks      (bin_at(0)->size) /* bitvector of nonempty blocks */
1556 
1557 /* bin<->block macros */
1558 
1559 #define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
1560 #define mark_binblock(ii)   (binblocks |= idx2binblock(ii))
1561 #define clear_binblock(ii)  (binblocks &= ~(idx2binblock(ii)))
1562 
1563 
1564 
1565 
1566 
1567 /*  Other static bookkeeping data */
1568 
1569 /* variables holding tunable values */
1570 
1571 static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
1572 static unsigned long top_pad          = DEFAULT_TOP_PAD;
1573 static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
1574 static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
1575 
1576 /* The first value returned from sbrk */
1577 static char* sbrk_base = (char*)(-1);
1578 
1579 /* The maximum memory obtained from system via sbrk */
1580 static unsigned long max_sbrked_mem = 0;
1581 
1582 /* The maximum via either sbrk or mmap */
1583 static unsigned long max_total_mem = 0;
1584 
1585 /* internal working copy of mallinfo */
1586 static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
1587 
1588 /* The total memory obtained from system via sbrk */
1589 #define sbrked_mem  (current_mallinfo.arena)
1590 
1591 /* Tracking mmaps */
1592 
1593 #if 0
1594 static unsigned int n_mmaps = 0;
1595 #endif	/* 0 */
1596 static unsigned long mmapped_mem = 0;
1597 #if HAVE_MMAP
1598 static unsigned int max_n_mmaps = 0;
1599 static unsigned long max_mmapped_mem = 0;
1600 #endif
1601 
1602 
1603 
1604 /*
1605   Debugging support
1606 */
1607 
1608 #ifdef DEBUG
1609 
1610 
1611 /*
1612   These routines make a number of assertions about the states
1613   of data structures that should be true at all times. If any
1614   are not true, it's very likely that a user program has somehow
1615   trashed memory. (It's also possible that there is a coding error
1616   in malloc. In which case, please report it!)
1617 */
1618 
1619 #if __STD_C
1620 static void do_check_chunk(mchunkptr p)
1621 #else
1622 static void do_check_chunk(p) mchunkptr p;
1623 #endif
1624 {
1625 #if 0	/* causes warnings because assert() is off */
1626   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1627 #endif	/* 0 */
1628 
1629   /* No checkable chunk is mmapped */
1630   assert(!chunk_is_mmapped(p));
1631 
1632   /* Check for legal address ... */
1633   assert((char*)p >= sbrk_base);
1634   if (p != top)
1635     assert((char*)p + sz <= (char*)top);
1636   else
1637     assert((char*)p + sz <= sbrk_base + sbrked_mem);
1638 
1639 }
1640 
1641 
1642 #if __STD_C
1643 static void do_check_free_chunk(mchunkptr p)
1644 #else
1645 static void do_check_free_chunk(p) mchunkptr p;
1646 #endif
1647 {
1648   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1649 #if 0	/* causes warnings because assert() is off */
1650   mchunkptr next = chunk_at_offset(p, sz);
1651 #endif	/* 0 */
1652 
1653   do_check_chunk(p);
1654 
1655   /* Check whether it claims to be free ... */
1656   assert(!inuse(p));
1657 
1658   /* Unless a special marker, must have OK fields */
1659   if ((long)sz >= (long)MINSIZE)
1660   {
1661     assert((sz & MALLOC_ALIGN_MASK) == 0);
1662     assert(aligned_OK(chunk2mem(p)));
1663     /* ... matching footer field */
1664     assert(next->prev_size == sz);
1665     /* ... and is fully consolidated */
1666     assert(prev_inuse(p));
1667     assert (next == top || inuse(next));
1668 
1669     /* ... and has minimally sane links */
1670     assert(p->fd->bk == p);
1671     assert(p->bk->fd == p);
1672   }
1673   else /* markers are always of size SIZE_SZ */
1674     assert(sz == SIZE_SZ);
1675 }
1676 
1677 #if __STD_C
1678 static void do_check_inuse_chunk(mchunkptr p)
1679 #else
1680 static void do_check_inuse_chunk(p) mchunkptr p;
1681 #endif
1682 {
1683   mchunkptr next = next_chunk(p);
1684   do_check_chunk(p);
1685 
1686   /* Check whether it claims to be in use ... */
1687   assert(inuse(p));
1688 
1689   /* ... and is surrounded by OK chunks.
1690     Since more things can be checked with free chunks than inuse ones,
1691     if an inuse chunk borders them and debug is on, it's worth doing them.
1692   */
1693   if (!prev_inuse(p))
1694   {
1695     mchunkptr prv = prev_chunk(p);
1696     assert(next_chunk(prv) == p);
1697     do_check_free_chunk(prv);
1698   }
1699   if (next == top)
1700   {
1701     assert(prev_inuse(next));
1702     assert(chunksize(next) >= MINSIZE);
1703   }
1704   else if (!inuse(next))
1705     do_check_free_chunk(next);
1706 
1707 }
1708 
1709 #if __STD_C
1710 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
1711 #else
1712 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
1713 #endif
1714 {
1715 #if 0	/* causes warnings because assert() is off */
1716   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1717   long room = sz - s;
1718 #endif	/* 0 */
1719 
1720   do_check_inuse_chunk(p);
1721 
1722   /* Legal size ... */
1723   assert((long)sz >= (long)MINSIZE);
1724   assert((sz & MALLOC_ALIGN_MASK) == 0);
1725   assert(room >= 0);
1726   assert(room < (long)MINSIZE);
1727 
1728   /* ... and alignment */
1729   assert(aligned_OK(chunk2mem(p)));
1730 
1731 
1732   /* ... and was allocated at front of an available chunk */
1733   assert(prev_inuse(p));
1734 
1735 }
1736 
1737 
1738 #define check_free_chunk(P)  do_check_free_chunk(P)
1739 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
1740 #define check_chunk(P) do_check_chunk(P)
1741 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
1742 #else
1743 #define check_free_chunk(P)
1744 #define check_inuse_chunk(P)
1745 #define check_chunk(P)
1746 #define check_malloced_chunk(P,N)
1747 #endif
1748 
1749 
1750 
1751 /*
1752   Macro-based internal utilities
1753 */
1754 
1755 
1756 /*
1757   Linking chunks in bin lists.
1758   Call these only with variables, not arbitrary expressions, as arguments.
1759 */
1760 
1761 /*
1762   Place chunk p of size s in its bin, in size order,
1763   putting it ahead of others of same size.
1764 */
1765 
1766 
1767 #define frontlink(P, S, IDX, BK, FD)                                          \
1768 {                                                                             \
1769   if (S < MAX_SMALLBIN_SIZE)                                                  \
1770   {                                                                           \
1771     IDX = smallbin_index(S);                                                  \
1772     mark_binblock(IDX);                                                       \
1773     BK = bin_at(IDX);                                                         \
1774     FD = BK->fd;                                                              \
1775     P->bk = BK;                                                               \
1776     P->fd = FD;                                                               \
1777     FD->bk = BK->fd = P;                                                      \
1778   }                                                                           \
1779   else                                                                        \
1780   {                                                                           \
1781     IDX = bin_index(S);                                                       \
1782     BK = bin_at(IDX);                                                         \
1783     FD = BK->fd;                                                              \
1784     if (FD == BK) mark_binblock(IDX);                                         \
1785     else                                                                      \
1786     {                                                                         \
1787       while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
1788       BK = FD->bk;                                                            \
1789     }                                                                         \
1790     P->bk = BK;                                                               \
1791     P->fd = FD;                                                               \
1792     FD->bk = BK->fd = P;                                                      \
1793   }                                                                           \
1794 }
1795 
1796 
1797 /* take a chunk off a list */
1798 
1799 #define unlink(P, BK, FD)                                                     \
1800 {                                                                             \
1801   BK = P->bk;                                                                 \
1802   FD = P->fd;                                                                 \
1803   FD->bk = BK;                                                                \
1804   BK->fd = FD;                                                                \
1805 }                                                                             \
1806 
1807 /* Place p as the last remainder */
1808 
1809 #define link_last_remainder(P)                                                \
1810 {                                                                             \
1811   last_remainder->fd = last_remainder->bk =  P;                               \
1812   P->fd = P->bk = last_remainder;                                             \
1813 }
1814 
1815 /* Clear the last_remainder bin */
1816 
1817 #define clear_last_remainder \
1818   (last_remainder->fd = last_remainder->bk = last_remainder)
1819 
1820 
1821 
1822 
1823 
1824 /* Routines dealing with mmap(). */
1825 
1826 #if HAVE_MMAP
1827 
1828 #if __STD_C
1829 static mchunkptr mmap_chunk(size_t size)
1830 #else
1831 static mchunkptr mmap_chunk(size) size_t size;
1832 #endif
1833 {
1834   size_t page_mask = malloc_getpagesize - 1;
1835   mchunkptr p;
1836 
1837 #ifndef MAP_ANONYMOUS
1838   static int fd = -1;
1839 #endif
1840 
1841   if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1842 
1843   /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1844    * there is no following chunk whose prev_size field could be used.
1845    */
1846   size = (size + SIZE_SZ + page_mask) & ~page_mask;
1847 
1848 #ifdef MAP_ANONYMOUS
1849   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1850 		      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1851 #else /* !MAP_ANONYMOUS */
1852   if (fd < 0)
1853   {
1854     fd = open("/dev/zero", O_RDWR);
1855     if(fd < 0) return 0;
1856   }
1857   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1858 #endif
1859 
1860   if(p == (mchunkptr)-1) return 0;
1861 
1862   n_mmaps++;
1863   if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1864 
1865   /* We demand that eight bytes into a page must be 8-byte aligned. */
1866   assert(aligned_OK(chunk2mem(p)));
1867 
1868   /* The offset to the start of the mmapped region is stored
1869    * in the prev_size field of the chunk; normally it is zero,
1870    * but that can be changed in memalign().
1871    */
1872   p->prev_size = 0;
1873   set_head(p, size|IS_MMAPPED);
1874 
1875   mmapped_mem += size;
1876   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1877     max_mmapped_mem = mmapped_mem;
1878   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1879     max_total_mem = mmapped_mem + sbrked_mem;
1880   return p;
1881 }
1882 
1883 #if __STD_C
1884 static void munmap_chunk(mchunkptr p)
1885 #else
1886 static void munmap_chunk(p) mchunkptr p;
1887 #endif
1888 {
1889   INTERNAL_SIZE_T size = chunksize(p);
1890   int ret;
1891 
1892   assert (chunk_is_mmapped(p));
1893   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1894   assert((n_mmaps > 0));
1895   assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1896 
1897   n_mmaps--;
1898   mmapped_mem -= (size + p->prev_size);
1899 
1900   ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1901 
1902   /* munmap returns non-zero on failure */
1903   assert(ret == 0);
1904 }
1905 
1906 #if HAVE_MREMAP
1907 
1908 #if __STD_C
1909 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1910 #else
1911 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1912 #endif
1913 {
1914   size_t page_mask = malloc_getpagesize - 1;
1915   INTERNAL_SIZE_T offset = p->prev_size;
1916   INTERNAL_SIZE_T size = chunksize(p);
1917   char *cp;
1918 
1919   assert (chunk_is_mmapped(p));
1920   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1921   assert((n_mmaps > 0));
1922   assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1923 
1924   /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1925   new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1926 
1927   cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1928 
1929   if (cp == (char *)-1) return 0;
1930 
1931   p = (mchunkptr)(cp + offset);
1932 
1933   assert(aligned_OK(chunk2mem(p)));
1934 
1935   assert((p->prev_size == offset));
1936   set_head(p, (new_size - offset)|IS_MMAPPED);
1937 
1938   mmapped_mem -= size + offset;
1939   mmapped_mem += new_size;
1940   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1941     max_mmapped_mem = mmapped_mem;
1942   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1943     max_total_mem = mmapped_mem + sbrked_mem;
1944   return p;
1945 }
1946 
1947 #endif /* HAVE_MREMAP */
1948 
1949 #endif /* HAVE_MMAP */
1950 
1951 
1952 
1953 
1954 /*
1955   Extend the top-most chunk by obtaining memory from system.
1956   Main interface to sbrk (but see also malloc_trim).
1957 */
1958 
1959 #if __STD_C
1960 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1961 #else
1962 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1963 #endif
1964 {
1965   char*     brk;                  /* return value from sbrk */
1966   INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1967   INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
1968   char*     new_brk;              /* return of 2nd sbrk call */
1969   INTERNAL_SIZE_T top_size;       /* new size of top chunk */
1970 
1971   mchunkptr old_top     = top;  /* Record state of old top */
1972   INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1973   char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
1974 
1975   /* Pad request with top_pad plus minimal overhead */
1976 
1977   INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
1978   unsigned long pagesz    = malloc_getpagesize;
1979 
1980   /* If not the first time through, round to preserve page boundary */
1981   /* Otherwise, we need to correct to a page size below anyway. */
1982   /* (We also correct below if an intervening foreign sbrk call.) */
1983 
1984   if (sbrk_base != (char*)(-1))
1985     sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1986 
1987   brk = (char*)(MORECORE (sbrk_size));
1988 
1989   /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1990   if (brk == (char*)(MORECORE_FAILURE) ||
1991       (brk < old_end && old_top != initial_top))
1992     return;
1993 
1994   sbrked_mem += sbrk_size;
1995 
1996   if (brk == old_end) /* can just add bytes to current top */
1997   {
1998     top_size = sbrk_size + old_top_size;
1999     set_head(top, top_size | PREV_INUSE);
2000   }
2001   else
2002   {
2003     if (sbrk_base == (char*)(-1))  /* First time through. Record base */
2004       sbrk_base = brk;
2005     else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
2006       sbrked_mem += brk - (char*)old_end;
2007 
2008     /* Guarantee alignment of first new chunk made from this space */
2009     front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2010     if (front_misalign > 0)
2011     {
2012       correction = (MALLOC_ALIGNMENT) - front_misalign;
2013       brk += correction;
2014     }
2015     else
2016       correction = 0;
2017 
2018     /* Guarantee the next brk will be at a page boundary */
2019 
2020     correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
2021 		   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
2022 
2023     /* Allocate correction */
2024     new_brk = (char*)(MORECORE (correction));
2025     if (new_brk == (char*)(MORECORE_FAILURE)) return;
2026 
2027     sbrked_mem += correction;
2028 
2029     top = (mchunkptr)brk;
2030     top_size = new_brk - brk + correction;
2031     set_head(top, top_size | PREV_INUSE);
2032 
2033     if (old_top != initial_top)
2034     {
2035 
2036       /* There must have been an intervening foreign sbrk call. */
2037       /* A double fencepost is necessary to prevent consolidation */
2038 
2039       /* If not enough space to do this, then user did something very wrong */
2040       if (old_top_size < MINSIZE)
2041       {
2042 	set_head(top, PREV_INUSE); /* will force null return from malloc */
2043 	return;
2044       }
2045 
2046       /* Also keep size a multiple of MALLOC_ALIGNMENT */
2047       old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2048       set_head_size(old_top, old_top_size);
2049       chunk_at_offset(old_top, old_top_size          )->size =
2050 	SIZE_SZ|PREV_INUSE;
2051       chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
2052 	SIZE_SZ|PREV_INUSE;
2053       /* If possible, release the rest. */
2054       if (old_top_size >= MINSIZE)
2055 	fREe(chunk2mem(old_top));
2056     }
2057   }
2058 
2059   if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2060     max_sbrked_mem = sbrked_mem;
2061   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2062     max_total_mem = mmapped_mem + sbrked_mem;
2063 
2064   /* We always land on a page boundary */
2065   assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
2066 }
2067 
2068 
2069 
2070 
2071 /* Main public routines */
2072 
2073 
2074 /*
2075   Malloc Algorthim:
2076 
2077     The requested size is first converted into a usable form, `nb'.
2078     This currently means to add 4 bytes overhead plus possibly more to
2079     obtain 8-byte alignment and/or to obtain a size of at least
2080     MINSIZE (currently 16 bytes), the smallest allocatable size.
2081     (All fits are considered `exact' if they are within MINSIZE bytes.)
2082 
2083     From there, the first successful of the following steps is taken:
2084 
2085       1. The bin corresponding to the request size is scanned, and if
2086 	 a chunk of exactly the right size is found, it is taken.
2087 
2088       2. The most recently remaindered chunk is used if it is big
2089 	 enough.  This is a form of (roving) first fit, used only in
2090 	 the absence of exact fits. Runs of consecutive requests use
2091 	 the remainder of the chunk used for the previous such request
2092 	 whenever possible. This limited use of a first-fit style
2093 	 allocation strategy tends to give contiguous chunks
2094 	 coextensive lifetimes, which improves locality and can reduce
2095 	 fragmentation in the long run.
2096 
2097       3. Other bins are scanned in increasing size order, using a
2098 	 chunk big enough to fulfill the request, and splitting off
2099 	 any remainder.  This search is strictly by best-fit; i.e.,
2100 	 the smallest (with ties going to approximately the least
2101 	 recently used) chunk that fits is selected.
2102 
2103       4. If large enough, the chunk bordering the end of memory
2104 	 (`top') is split off. (This use of `top' is in accord with
2105 	 the best-fit search rule.  In effect, `top' is treated as
2106 	 larger (and thus less well fitting) than any other available
2107 	 chunk since it can be extended to be as large as necessary
2108 	 (up to system limitations).
2109 
2110       5. If the request size meets the mmap threshold and the
2111 	 system supports mmap, and there are few enough currently
2112 	 allocated mmapped regions, and a call to mmap succeeds,
2113 	 the request is allocated via direct memory mapping.
2114 
2115       6. Otherwise, the top of memory is extended by
2116 	 obtaining more space from the system (normally using sbrk,
2117 	 but definable to anything else via the MORECORE macro).
2118 	 Memory is gathered from the system (in system page-sized
2119 	 units) in a way that allows chunks obtained across different
2120 	 sbrk calls to be consolidated, but does not require
2121 	 contiguous memory. Thus, it should be safe to intersperse
2122 	 mallocs with other sbrk calls.
2123 
2124 
2125       All allocations are made from the the `lowest' part of any found
2126       chunk. (The implementation invariant is that prev_inuse is
2127       always true of any allocated chunk; i.e., that each allocated
2128       chunk borders either a previously allocated and still in-use chunk,
2129       or the base of its memory arena.)
2130 
2131 */
2132 
2133 #if __STD_C
2134 Void_t* mALLOc(size_t bytes)
2135 #else
2136 Void_t* mALLOc(bytes) size_t bytes;
2137 #endif
2138 {
2139   mchunkptr victim;                  /* inspected/selected chunk */
2140   INTERNAL_SIZE_T victim_size;       /* its size */
2141   int       idx;                     /* index for bin traversal */
2142   mbinptr   bin;                     /* associated bin */
2143   mchunkptr remainder;               /* remainder from a split */
2144   long      remainder_size;          /* its size */
2145   int       remainder_index;         /* its bin index */
2146   unsigned long block;               /* block traverser bit */
2147   int       startidx;                /* first bin of a traversed block */
2148   mchunkptr fwd;                     /* misc temp for linking */
2149   mchunkptr bck;                     /* misc temp for linking */
2150   mbinptr q;                         /* misc temp */
2151 
2152   INTERNAL_SIZE_T nb;
2153 
2154   if ((long)bytes < 0) return 0;
2155 
2156   nb = request2size(bytes);  /* padded request size; */
2157 
2158   /* Check for exact match in a bin */
2159 
2160   if (is_small_request(nb))  /* Faster version for small requests */
2161   {
2162     idx = smallbin_index(nb);
2163 
2164     /* No traversal or size check necessary for small bins.  */
2165 
2166     q = bin_at(idx);
2167     victim = last(q);
2168 
2169     /* Also scan the next one, since it would have a remainder < MINSIZE */
2170     if (victim == q)
2171     {
2172       q = next_bin(q);
2173       victim = last(q);
2174     }
2175     if (victim != q)
2176     {
2177       victim_size = chunksize(victim);
2178       unlink(victim, bck, fwd);
2179       set_inuse_bit_at_offset(victim, victim_size);
2180       check_malloced_chunk(victim, nb);
2181       return chunk2mem(victim);
2182     }
2183 
2184     idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2185 
2186   }
2187   else
2188   {
2189     idx = bin_index(nb);
2190     bin = bin_at(idx);
2191 
2192     for (victim = last(bin); victim != bin; victim = victim->bk)
2193     {
2194       victim_size = chunksize(victim);
2195       remainder_size = victim_size - nb;
2196 
2197       if (remainder_size >= (long)MINSIZE) /* too big */
2198       {
2199 	--idx; /* adjust to rescan below after checking last remainder */
2200 	break;
2201       }
2202 
2203       else if (remainder_size >= 0) /* exact fit */
2204       {
2205 	unlink(victim, bck, fwd);
2206 	set_inuse_bit_at_offset(victim, victim_size);
2207 	check_malloced_chunk(victim, nb);
2208 	return chunk2mem(victim);
2209       }
2210     }
2211 
2212     ++idx;
2213 
2214   }
2215 
2216   /* Try to use the last split-off remainder */
2217 
2218   if ( (victim = last_remainder->fd) != last_remainder)
2219   {
2220     victim_size = chunksize(victim);
2221     remainder_size = victim_size - nb;
2222 
2223     if (remainder_size >= (long)MINSIZE) /* re-split */
2224     {
2225       remainder = chunk_at_offset(victim, nb);
2226       set_head(victim, nb | PREV_INUSE);
2227       link_last_remainder(remainder);
2228       set_head(remainder, remainder_size | PREV_INUSE);
2229       set_foot(remainder, remainder_size);
2230       check_malloced_chunk(victim, nb);
2231       return chunk2mem(victim);
2232     }
2233 
2234     clear_last_remainder;
2235 
2236     if (remainder_size >= 0)  /* exhaust */
2237     {
2238       set_inuse_bit_at_offset(victim, victim_size);
2239       check_malloced_chunk(victim, nb);
2240       return chunk2mem(victim);
2241     }
2242 
2243     /* Else place in bin */
2244 
2245     frontlink(victim, victim_size, remainder_index, bck, fwd);
2246   }
2247 
2248   /*
2249      If there are any possibly nonempty big-enough blocks,
2250      search for best fitting chunk by scanning bins in blockwidth units.
2251   */
2252 
2253   if ( (block = idx2binblock(idx)) <= binblocks)
2254   {
2255 
2256     /* Get to the first marked block */
2257 
2258     if ( (block & binblocks) == 0)
2259     {
2260       /* force to an even block boundary */
2261       idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2262       block <<= 1;
2263       while ((block & binblocks) == 0)
2264       {
2265 	idx += BINBLOCKWIDTH;
2266 	block <<= 1;
2267       }
2268     }
2269 
2270     /* For each possibly nonempty block ... */
2271     for (;;)
2272     {
2273       startidx = idx;          /* (track incomplete blocks) */
2274       q = bin = bin_at(idx);
2275 
2276       /* For each bin in this block ... */
2277       do
2278       {
2279 	/* Find and use first big enough chunk ... */
2280 
2281 	for (victim = last(bin); victim != bin; victim = victim->bk)
2282 	{
2283 	  victim_size = chunksize(victim);
2284 	  remainder_size = victim_size - nb;
2285 
2286 	  if (remainder_size >= (long)MINSIZE) /* split */
2287 	  {
2288 	    remainder = chunk_at_offset(victim, nb);
2289 	    set_head(victim, nb | PREV_INUSE);
2290 	    unlink(victim, bck, fwd);
2291 	    link_last_remainder(remainder);
2292 	    set_head(remainder, remainder_size | PREV_INUSE);
2293 	    set_foot(remainder, remainder_size);
2294 	    check_malloced_chunk(victim, nb);
2295 	    return chunk2mem(victim);
2296 	  }
2297 
2298 	  else if (remainder_size >= 0)  /* take */
2299 	  {
2300 	    set_inuse_bit_at_offset(victim, victim_size);
2301 	    unlink(victim, bck, fwd);
2302 	    check_malloced_chunk(victim, nb);
2303 	    return chunk2mem(victim);
2304 	  }
2305 
2306 	}
2307 
2308        bin = next_bin(bin);
2309 
2310       } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2311 
2312       /* Clear out the block bit. */
2313 
2314       do   /* Possibly backtrack to try to clear a partial block */
2315       {
2316 	if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2317 	{
2318 	  binblocks &= ~block;
2319 	  break;
2320 	}
2321 	--startidx;
2322        q = prev_bin(q);
2323       } while (first(q) == q);
2324 
2325       /* Get to the next possibly nonempty block */
2326 
2327       if ( (block <<= 1) <= binblocks && (block != 0) )
2328       {
2329 	while ((block & binblocks) == 0)
2330 	{
2331 	  idx += BINBLOCKWIDTH;
2332 	  block <<= 1;
2333 	}
2334       }
2335       else
2336 	break;
2337     }
2338   }
2339 
2340 
2341   /* Try to use top chunk */
2342 
2343   /* Require that there be a remainder, ensuring top always exists  */
2344   if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2345   {
2346 
2347 #if HAVE_MMAP
2348     /* If big and would otherwise need to extend, try to use mmap instead */
2349     if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2350 	(victim = mmap_chunk(nb)) != 0)
2351       return chunk2mem(victim);
2352 #endif
2353 
2354     /* Try to extend */
2355     malloc_extend_top(nb);
2356     if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2357       return 0; /* propagate failure */
2358   }
2359 
2360   victim = top;
2361   set_head(victim, nb | PREV_INUSE);
2362   top = chunk_at_offset(victim, nb);
2363   set_head(top, remainder_size | PREV_INUSE);
2364   check_malloced_chunk(victim, nb);
2365   return chunk2mem(victim);
2366 
2367 }
2368 
2369 
2370 
2371 
2372 /*
2373 
2374   free() algorithm :
2375 
2376     cases:
2377 
2378        1. free(0) has no effect.
2379 
2380        2. If the chunk was allocated via mmap, it is release via munmap().
2381 
2382        3. If a returned chunk borders the current high end of memory,
2383 	  it is consolidated into the top, and if the total unused
2384 	  topmost memory exceeds the trim threshold, malloc_trim is
2385 	  called.
2386 
2387        4. Other chunks are consolidated as they arrive, and
2388 	  placed in corresponding bins. (This includes the case of
2389 	  consolidating with the current `last_remainder').
2390 
2391 */
2392 
2393 
2394 #if __STD_C
2395 void fREe(Void_t* mem)
2396 #else
2397 void fREe(mem) Void_t* mem;
2398 #endif
2399 {
2400   mchunkptr p;         /* chunk corresponding to mem */
2401   INTERNAL_SIZE_T hd;  /* its head field */
2402   INTERNAL_SIZE_T sz;  /* its size */
2403   int       idx;       /* its bin index */
2404   mchunkptr next;      /* next contiguous chunk */
2405   INTERNAL_SIZE_T nextsz; /* its size */
2406   INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2407   mchunkptr bck;       /* misc temp for linking */
2408   mchunkptr fwd;       /* misc temp for linking */
2409   int       islr;      /* track whether merging with last_remainder */
2410 
2411   if (mem == 0)                              /* free(0) has no effect */
2412     return;
2413 
2414   p = mem2chunk(mem);
2415   hd = p->size;
2416 
2417 #if HAVE_MMAP
2418   if (hd & IS_MMAPPED)                       /* release mmapped memory. */
2419   {
2420     munmap_chunk(p);
2421     return;
2422   }
2423 #endif
2424 
2425   check_inuse_chunk(p);
2426 
2427   sz = hd & ~PREV_INUSE;
2428   next = chunk_at_offset(p, sz);
2429   nextsz = chunksize(next);
2430 
2431   if (next == top)                            /* merge with top */
2432   {
2433     sz += nextsz;
2434 
2435     if (!(hd & PREV_INUSE))                    /* consolidate backward */
2436     {
2437       prevsz = p->prev_size;
2438       p = chunk_at_offset(p, -((long) prevsz));
2439       sz += prevsz;
2440       unlink(p, bck, fwd);
2441     }
2442 
2443     set_head(p, sz | PREV_INUSE);
2444     top = p;
2445     if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2446       malloc_trim(top_pad);
2447     return;
2448   }
2449 
2450   set_head(next, nextsz);                    /* clear inuse bit */
2451 
2452   islr = 0;
2453 
2454   if (!(hd & PREV_INUSE))                    /* consolidate backward */
2455   {
2456     prevsz = p->prev_size;
2457     p = chunk_at_offset(p, -((long) prevsz));
2458     sz += prevsz;
2459 
2460     if (p->fd == last_remainder)             /* keep as last_remainder */
2461       islr = 1;
2462     else
2463       unlink(p, bck, fwd);
2464   }
2465 
2466   if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
2467   {
2468     sz += nextsz;
2469 
2470     if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
2471     {
2472       islr = 1;
2473       link_last_remainder(p);
2474     }
2475     else
2476       unlink(next, bck, fwd);
2477   }
2478 
2479 
2480   set_head(p, sz | PREV_INUSE);
2481   set_foot(p, sz);
2482   if (!islr)
2483     frontlink(p, sz, idx, bck, fwd);
2484 }
2485 
2486 
2487 
2488 
2489 
2490 /*
2491 
2492   Realloc algorithm:
2493 
2494     Chunks that were obtained via mmap cannot be extended or shrunk
2495     unless HAVE_MREMAP is defined, in which case mremap is used.
2496     Otherwise, if their reallocation is for additional space, they are
2497     copied.  If for less, they are just left alone.
2498 
2499     Otherwise, if the reallocation is for additional space, and the
2500     chunk can be extended, it is, else a malloc-copy-free sequence is
2501     taken.  There are several different ways that a chunk could be
2502     extended. All are tried:
2503 
2504        * Extending forward into following adjacent free chunk.
2505        * Shifting backwards, joining preceding adjacent space
2506        * Both shifting backwards and extending forward.
2507        * Extending into newly sbrked space
2508 
2509     Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2510     size argument of zero (re)allocates a minimum-sized chunk.
2511 
2512     If the reallocation is for less space, and the new request is for
2513     a `small' (<512 bytes) size, then the newly unused space is lopped
2514     off and freed.
2515 
2516     The old unix realloc convention of allowing the last-free'd chunk
2517     to be used as an argument to realloc is no longer supported.
2518     I don't know of any programs still relying on this feature,
2519     and allowing it would also allow too many other incorrect
2520     usages of realloc to be sensible.
2521 
2522 
2523 */
2524 
2525 
2526 #if __STD_C
2527 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
2528 #else
2529 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
2530 #endif
2531 {
2532   INTERNAL_SIZE_T    nb;      /* padded request size */
2533 
2534   mchunkptr oldp;             /* chunk corresponding to oldmem */
2535   INTERNAL_SIZE_T    oldsize; /* its size */
2536 
2537   mchunkptr newp;             /* chunk to return */
2538   INTERNAL_SIZE_T    newsize; /* its size */
2539   Void_t*   newmem;           /* corresponding user mem */
2540 
2541   mchunkptr next;             /* next contiguous chunk after oldp */
2542   INTERNAL_SIZE_T  nextsize;  /* its size */
2543 
2544   mchunkptr prev;             /* previous contiguous chunk before oldp */
2545   INTERNAL_SIZE_T  prevsize;  /* its size */
2546 
2547   mchunkptr remainder;        /* holds split off extra space from newp */
2548   INTERNAL_SIZE_T  remainder_size;   /* its size */
2549 
2550   mchunkptr bck;              /* misc temp for linking */
2551   mchunkptr fwd;              /* misc temp for linking */
2552 
2553 #ifdef REALLOC_ZERO_BYTES_FREES
2554   if (bytes == 0) { fREe(oldmem); return 0; }
2555 #endif
2556 
2557   if ((long)bytes < 0) return 0;
2558 
2559   /* realloc of null is supposed to be same as malloc */
2560   if (oldmem == 0) return mALLOc(bytes);
2561 
2562   newp    = oldp    = mem2chunk(oldmem);
2563   newsize = oldsize = chunksize(oldp);
2564 
2565 
2566   nb = request2size(bytes);
2567 
2568 #if HAVE_MMAP
2569   if (chunk_is_mmapped(oldp))
2570   {
2571 #if HAVE_MREMAP
2572     newp = mremap_chunk(oldp, nb);
2573     if(newp) return chunk2mem(newp);
2574 #endif
2575     /* Note the extra SIZE_SZ overhead. */
2576     if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2577     /* Must alloc, copy, free. */
2578     newmem = mALLOc(bytes);
2579     if (newmem == 0) return 0; /* propagate failure */
2580     MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2581     munmap_chunk(oldp);
2582     return newmem;
2583   }
2584 #endif
2585 
2586   check_inuse_chunk(oldp);
2587 
2588   if ((long)(oldsize) < (long)(nb))
2589   {
2590 
2591     /* Try expanding forward */
2592 
2593     next = chunk_at_offset(oldp, oldsize);
2594     if (next == top || !inuse(next))
2595     {
2596       nextsize = chunksize(next);
2597 
2598       /* Forward into top only if a remainder */
2599       if (next == top)
2600       {
2601 	if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
2602 	{
2603 	  newsize += nextsize;
2604 	  top = chunk_at_offset(oldp, nb);
2605 	  set_head(top, (newsize - nb) | PREV_INUSE);
2606 	  set_head_size(oldp, nb);
2607 	  return chunk2mem(oldp);
2608 	}
2609       }
2610 
2611       /* Forward into next chunk */
2612       else if (((long)(nextsize + newsize) >= (long)(nb)))
2613       {
2614 	unlink(next, bck, fwd);
2615 	newsize  += nextsize;
2616 	goto split;
2617       }
2618     }
2619     else
2620     {
2621       next = 0;
2622       nextsize = 0;
2623     }
2624 
2625     /* Try shifting backwards. */
2626 
2627     if (!prev_inuse(oldp))
2628     {
2629       prev = prev_chunk(oldp);
2630       prevsize = chunksize(prev);
2631 
2632       /* try forward + backward first to save a later consolidation */
2633 
2634       if (next != 0)
2635       {
2636 	/* into top */
2637 	if (next == top)
2638 	{
2639 	  if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
2640 	  {
2641 	    unlink(prev, bck, fwd);
2642 	    newp = prev;
2643 	    newsize += prevsize + nextsize;
2644 	    newmem = chunk2mem(newp);
2645 	    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2646 	    top = chunk_at_offset(newp, nb);
2647 	    set_head(top, (newsize - nb) | PREV_INUSE);
2648 	    set_head_size(newp, nb);
2649 	    return newmem;
2650 	  }
2651 	}
2652 
2653 	/* into next chunk */
2654 	else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
2655 	{
2656 	  unlink(next, bck, fwd);
2657 	  unlink(prev, bck, fwd);
2658 	  newp = prev;
2659 	  newsize += nextsize + prevsize;
2660 	  newmem = chunk2mem(newp);
2661 	  MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2662 	  goto split;
2663 	}
2664       }
2665 
2666       /* backward only */
2667       if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
2668       {
2669 	unlink(prev, bck, fwd);
2670 	newp = prev;
2671 	newsize += prevsize;
2672 	newmem = chunk2mem(newp);
2673 	MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2674 	goto split;
2675       }
2676     }
2677 
2678     /* Must allocate */
2679 
2680     newmem = mALLOc (bytes);
2681 
2682     if (newmem == 0)  /* propagate failure */
2683       return 0;
2684 
2685     /* Avoid copy if newp is next chunk after oldp. */
2686     /* (This can only happen when new chunk is sbrk'ed.) */
2687 
2688     if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
2689     {
2690       newsize += chunksize(newp);
2691       newp = oldp;
2692       goto split;
2693     }
2694 
2695     /* Otherwise copy, free, and exit */
2696     MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2697     fREe(oldmem);
2698     return newmem;
2699   }
2700 
2701 
2702  split:  /* split off extra room in old or expanded chunk */
2703 
2704   if (newsize - nb >= MINSIZE) /* split off remainder */
2705   {
2706     remainder = chunk_at_offset(newp, nb);
2707     remainder_size = newsize - nb;
2708     set_head_size(newp, nb);
2709     set_head(remainder, remainder_size | PREV_INUSE);
2710     set_inuse_bit_at_offset(remainder, remainder_size);
2711     fREe(chunk2mem(remainder)); /* let free() deal with it */
2712   }
2713   else
2714   {
2715     set_head_size(newp, newsize);
2716     set_inuse_bit_at_offset(newp, newsize);
2717   }
2718 
2719   check_inuse_chunk(newp);
2720   return chunk2mem(newp);
2721 }
2722 
2723 
2724 
2725 
2726 /*
2727 
2728   memalign algorithm:
2729 
2730     memalign requests more than enough space from malloc, finds a spot
2731     within that chunk that meets the alignment request, and then
2732     possibly frees the leading and trailing space.
2733 
2734     The alignment argument must be a power of two. This property is not
2735     checked by memalign, so misuse may result in random runtime errors.
2736 
2737     8-byte alignment is guaranteed by normal malloc calls, so don't
2738     bother calling memalign with an argument of 8 or less.
2739 
2740     Overreliance on memalign is a sure way to fragment space.
2741 
2742 */
2743 
2744 
2745 #if __STD_C
2746 Void_t* mEMALIGn(size_t alignment, size_t bytes)
2747 #else
2748 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
2749 #endif
2750 {
2751   INTERNAL_SIZE_T    nb;      /* padded  request size */
2752   char*     m;                /* memory returned by malloc call */
2753   mchunkptr p;                /* corresponding chunk */
2754   char*     brk;              /* alignment point within p */
2755   mchunkptr newp;             /* chunk to return */
2756   INTERNAL_SIZE_T  newsize;   /* its size */
2757   INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
2758   mchunkptr remainder;        /* spare room at end to split off */
2759   long      remainder_size;   /* its size */
2760 
2761   if ((long)bytes < 0) return 0;
2762 
2763   /* If need less alignment than we give anyway, just relay to malloc */
2764 
2765   if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
2766 
2767   /* Otherwise, ensure that it is at least a minimum chunk size */
2768 
2769   if (alignment <  MINSIZE) alignment = MINSIZE;
2770 
2771   /* Call malloc with worst case padding to hit alignment. */
2772 
2773   nb = request2size(bytes);
2774   m  = (char*)(mALLOc(nb + alignment + MINSIZE));
2775 
2776   if (m == 0) return 0; /* propagate failure */
2777 
2778   p = mem2chunk(m);
2779 
2780   if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2781   {
2782 #if HAVE_MMAP
2783     if(chunk_is_mmapped(p))
2784       return chunk2mem(p); /* nothing more to do */
2785 #endif
2786   }
2787   else /* misaligned */
2788   {
2789     /*
2790       Find an aligned spot inside chunk.
2791       Since we need to give back leading space in a chunk of at
2792       least MINSIZE, if the first calculation places us at
2793       a spot with less than MINSIZE leader, we can move to the
2794       next aligned spot -- we've allocated enough total room so that
2795       this is always possible.
2796     */
2797 
2798     brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2799     if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2800 
2801     newp = (mchunkptr)brk;
2802     leadsize = brk - (char*)(p);
2803     newsize = chunksize(p) - leadsize;
2804 
2805 #if HAVE_MMAP
2806     if(chunk_is_mmapped(p))
2807     {
2808       newp->prev_size = p->prev_size + leadsize;
2809       set_head(newp, newsize|IS_MMAPPED);
2810       return chunk2mem(newp);
2811     }
2812 #endif
2813 
2814     /* give back leader, use the rest */
2815 
2816     set_head(newp, newsize | PREV_INUSE);
2817     set_inuse_bit_at_offset(newp, newsize);
2818     set_head_size(p, leadsize);
2819     fREe(chunk2mem(p));
2820     p = newp;
2821 
2822     assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2823   }
2824 
2825   /* Also give back spare room at the end */
2826 
2827   remainder_size = chunksize(p) - nb;
2828 
2829   if (remainder_size >= (long)MINSIZE)
2830   {
2831     remainder = chunk_at_offset(p, nb);
2832     set_head(remainder, remainder_size | PREV_INUSE);
2833     set_head_size(p, nb);
2834     fREe(chunk2mem(remainder));
2835   }
2836 
2837   check_inuse_chunk(p);
2838   return chunk2mem(p);
2839 
2840 }
2841 
2842 
2843 
2844 
2845 /*
2846     valloc just invokes memalign with alignment argument equal
2847     to the page size of the system (or as near to this as can
2848     be figured out from all the includes/defines above.)
2849 */
2850 
2851 #if __STD_C
2852 Void_t* vALLOc(size_t bytes)
2853 #else
2854 Void_t* vALLOc(bytes) size_t bytes;
2855 #endif
2856 {
2857   return mEMALIGn (malloc_getpagesize, bytes);
2858 }
2859 
2860 /*
2861   pvalloc just invokes valloc for the nearest pagesize
2862   that will accommodate request
2863 */
2864 
2865 
2866 #if __STD_C
2867 Void_t* pvALLOc(size_t bytes)
2868 #else
2869 Void_t* pvALLOc(bytes) size_t bytes;
2870 #endif
2871 {
2872   size_t pagesize = malloc_getpagesize;
2873   return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2874 }
2875 
2876 /*
2877 
2878   calloc calls malloc, then zeroes out the allocated chunk.
2879 
2880 */
2881 
2882 #if __STD_C
2883 Void_t* cALLOc(size_t n, size_t elem_size)
2884 #else
2885 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2886 #endif
2887 {
2888   mchunkptr p;
2889   INTERNAL_SIZE_T csz;
2890 
2891   INTERNAL_SIZE_T sz = n * elem_size;
2892 
2893 
2894   /* check if expand_top called, in which case don't need to clear */
2895 #if MORECORE_CLEARS
2896   mchunkptr oldtop = top;
2897   INTERNAL_SIZE_T oldtopsize = chunksize(top);
2898 #endif
2899   Void_t* mem = mALLOc (sz);
2900 
2901   if ((long)n < 0) return 0;
2902 
2903   if (mem == 0)
2904     return 0;
2905   else
2906   {
2907     p = mem2chunk(mem);
2908 
2909     /* Two optional cases in which clearing not necessary */
2910 
2911 
2912 #if HAVE_MMAP
2913     if (chunk_is_mmapped(p)) return mem;
2914 #endif
2915 
2916     csz = chunksize(p);
2917 
2918 #if MORECORE_CLEARS
2919     if (p == oldtop && csz > oldtopsize)
2920     {
2921       /* clear only the bytes from non-freshly-sbrked memory */
2922       csz = oldtopsize;
2923     }
2924 #endif
2925 
2926     MALLOC_ZERO(mem, csz - SIZE_SZ);
2927     return mem;
2928   }
2929 }
2930 
2931 /*
2932 
2933   cfree just calls free. It is needed/defined on some systems
2934   that pair it with calloc, presumably for odd historical reasons.
2935 
2936 */
2937 
2938 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2939 #if __STD_C
2940 void cfree(Void_t *mem)
2941 #else
2942 void cfree(mem) Void_t *mem;
2943 #endif
2944 {
2945   fREe(mem);
2946 }
2947 #endif
2948 
2949 
2950 
2951 /*
2952 
2953     Malloc_trim gives memory back to the system (via negative
2954     arguments to sbrk) if there is unused memory at the `high' end of
2955     the malloc pool. You can call this after freeing large blocks of
2956     memory to potentially reduce the system-level memory requirements
2957     of a program. However, it cannot guarantee to reduce memory. Under
2958     some allocation patterns, some large free blocks of memory will be
2959     locked between two used chunks, so they cannot be given back to
2960     the system.
2961 
2962     The `pad' argument to malloc_trim represents the amount of free
2963     trailing space to leave untrimmed. If this argument is zero,
2964     only the minimum amount of memory to maintain internal data
2965     structures will be left (one page or less). Non-zero arguments
2966     can be supplied to maintain enough trailing space to service
2967     future expected allocations without having to re-obtain memory
2968     from the system.
2969 
2970     Malloc_trim returns 1 if it actually released any memory, else 0.
2971 
2972 */
2973 
2974 #if __STD_C
2975 int malloc_trim(size_t pad)
2976 #else
2977 int malloc_trim(pad) size_t pad;
2978 #endif
2979 {
2980   long  top_size;        /* Amount of top-most memory */
2981   long  extra;           /* Amount to release */
2982   char* current_brk;     /* address returned by pre-check sbrk call */
2983   char* new_brk;         /* address returned by negative sbrk call */
2984 
2985   unsigned long pagesz = malloc_getpagesize;
2986 
2987   top_size = chunksize(top);
2988   extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2989 
2990   if (extra < (long)pagesz)  /* Not enough memory to release */
2991     return 0;
2992 
2993   else
2994   {
2995     /* Test to make sure no one else called sbrk */
2996     current_brk = (char*)(MORECORE (0));
2997     if (current_brk != (char*)(top) + top_size)
2998       return 0;     /* Apparently we don't own memory; must fail */
2999 
3000     else
3001     {
3002       new_brk = (char*)(MORECORE (-extra));
3003 
3004       if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
3005       {
3006 	/* Try to figure out what we have */
3007 	current_brk = (char*)(MORECORE (0));
3008 	top_size = current_brk - (char*)top;
3009 	if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3010 	{
3011 	  sbrked_mem = current_brk - sbrk_base;
3012 	  set_head(top, top_size | PREV_INUSE);
3013 	}
3014 	check_chunk(top);
3015 	return 0;
3016       }
3017 
3018       else
3019       {
3020 	/* Success. Adjust top accordingly. */
3021 	set_head(top, (top_size - extra) | PREV_INUSE);
3022 	sbrked_mem -= extra;
3023 	check_chunk(top);
3024 	return 1;
3025       }
3026     }
3027   }
3028 }
3029 
3030 
3031 
3032 /*
3033   malloc_usable_size:
3034 
3035     This routine tells you how many bytes you can actually use in an
3036     allocated chunk, which may be more than you requested (although
3037     often not). You can use this many bytes without worrying about
3038     overwriting other allocated objects. Not a particularly great
3039     programming practice, but still sometimes useful.
3040 
3041 */
3042 
3043 #if __STD_C
3044 size_t malloc_usable_size(Void_t* mem)
3045 #else
3046 size_t malloc_usable_size(mem) Void_t* mem;
3047 #endif
3048 {
3049   mchunkptr p;
3050   if (mem == 0)
3051     return 0;
3052   else
3053   {
3054     p = mem2chunk(mem);
3055     if(!chunk_is_mmapped(p))
3056     {
3057       if (!inuse(p)) return 0;
3058       check_inuse_chunk(p);
3059       return chunksize(p) - SIZE_SZ;
3060     }
3061     return chunksize(p) - 2*SIZE_SZ;
3062   }
3063 }
3064 
3065 
3066 
3067 
3068 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
3069 
3070 #if 0
3071 static void malloc_update_mallinfo()
3072 {
3073   int i;
3074   mbinptr b;
3075   mchunkptr p;
3076 #ifdef DEBUG
3077   mchunkptr q;
3078 #endif
3079 
3080   INTERNAL_SIZE_T avail = chunksize(top);
3081   int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3082 
3083   for (i = 1; i < NAV; ++i)
3084   {
3085     b = bin_at(i);
3086     for (p = last(b); p != b; p = p->bk)
3087     {
3088 #ifdef DEBUG
3089       check_free_chunk(p);
3090       for (q = next_chunk(p);
3091 	   q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
3092 	   q = next_chunk(q))
3093 	check_inuse_chunk(q);
3094 #endif
3095       avail += chunksize(p);
3096       navail++;
3097     }
3098   }
3099 
3100   current_mallinfo.ordblks = navail;
3101   current_mallinfo.uordblks = sbrked_mem - avail;
3102   current_mallinfo.fordblks = avail;
3103   current_mallinfo.hblks = n_mmaps;
3104   current_mallinfo.hblkhd = mmapped_mem;
3105   current_mallinfo.keepcost = chunksize(top);
3106 
3107 }
3108 #endif	/* 0 */
3109 
3110 
3111 
3112 /*
3113 
3114   malloc_stats:
3115 
3116     Prints on the amount of space obtain from the system (both
3117     via sbrk and mmap), the maximum amount (which may be more than
3118     current if malloc_trim and/or munmap got called), the maximum
3119     number of simultaneous mmap regions used, and the current number
3120     of bytes allocated via malloc (or realloc, etc) but not yet
3121     freed. (Note that this is the number of bytes allocated, not the
3122     number requested. It will be larger than the number requested
3123     because of alignment and bookkeeping overhead.)
3124 
3125 */
3126 
3127 #if 0
3128 void malloc_stats()
3129 {
3130   malloc_update_mallinfo();
3131   printf("max system bytes = %10u\n",
3132 	  (unsigned int)(max_total_mem));
3133   printf("system bytes     = %10u\n",
3134 	  (unsigned int)(sbrked_mem + mmapped_mem));
3135   printf("in use bytes     = %10u\n",
3136 	  (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
3137 #if HAVE_MMAP
3138   printf("max mmap regions = %10u\n",
3139 	  (unsigned int)max_n_mmaps);
3140 #endif
3141 }
3142 #endif	/* 0 */
3143 
3144 /*
3145   mallinfo returns a copy of updated current mallinfo.
3146 */
3147 
3148 #if 0
3149 struct mallinfo mALLINFo()
3150 {
3151   malloc_update_mallinfo();
3152   return current_mallinfo;
3153 }
3154 #endif	/* 0 */
3155 
3156 
3157 
3158 
3159 /*
3160   mallopt:
3161 
3162     mallopt is the general SVID/XPG interface to tunable parameters.
3163     The format is to provide a (parameter-number, parameter-value) pair.
3164     mallopt then sets the corresponding parameter to the argument
3165     value if it can (i.e., so long as the value is meaningful),
3166     and returns 1 if successful else 0.
3167 
3168     See descriptions of tunable parameters above.
3169 
3170 */
3171 
3172 #if __STD_C
3173 int mALLOPt(int param_number, int value)
3174 #else
3175 int mALLOPt(param_number, value) int param_number; int value;
3176 #endif
3177 {
3178   switch(param_number)
3179   {
3180     case M_TRIM_THRESHOLD:
3181       trim_threshold = value; return 1;
3182     case M_TOP_PAD:
3183       top_pad = value; return 1;
3184     case M_MMAP_THRESHOLD:
3185       mmap_threshold = value; return 1;
3186     case M_MMAP_MAX:
3187 #if HAVE_MMAP
3188       n_mmaps_max = value; return 1;
3189 #else
3190       if (value != 0) return 0; else  n_mmaps_max = value; return 1;
3191 #endif
3192 
3193     default:
3194       return 0;
3195   }
3196 }
3197 
3198 /*
3199 
3200 History:
3201 
3202     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
3203       * return null for negative arguments
3204       * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
3205 	 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
3206 	  (e.g. WIN32 platforms)
3207 	 * Cleanup up header file inclusion for WIN32 platforms
3208 	 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
3209 	 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
3210 	   memory allocation routines
3211 	 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
3212 	 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
3213 	   usage of 'assert' in non-WIN32 code
3214 	 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
3215 	   avoid infinite loop
3216       * Always call 'fREe()' rather than 'free()'
3217 
3218     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
3219       * Fixed ordering problem with boundary-stamping
3220 
3221     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
3222       * Added pvalloc, as recommended by H.J. Liu
3223       * Added 64bit pointer support mainly from Wolfram Gloger
3224       * Added anonymously donated WIN32 sbrk emulation
3225       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
3226       * malloc_extend_top: fix mask error that caused wastage after
3227 	foreign sbrks
3228       * Add linux mremap support code from HJ Liu
3229 
3230     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
3231       * Integrated most documentation with the code.
3232       * Add support for mmap, with help from
3233 	Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3234       * Use last_remainder in more cases.
3235       * Pack bins using idea from  colin@nyx10.cs.du.edu
3236       * Use ordered bins instead of best-fit threshhold
3237       * Eliminate block-local decls to simplify tracing and debugging.
3238       * Support another case of realloc via move into top
3239       * Fix error occuring when initial sbrk_base not word-aligned.
3240       * Rely on page size for units instead of SBRK_UNIT to
3241 	avoid surprises about sbrk alignment conventions.
3242       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
3243 	(raymond@es.ele.tue.nl) for the suggestion.
3244       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
3245       * More precautions for cases where other routines call sbrk,
3246 	courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3247       * Added macros etc., allowing use in linux libc from
3248 	H.J. Lu (hjl@gnu.ai.mit.edu)
3249       * Inverted this history list
3250 
3251     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
3252       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
3253       * Removed all preallocation code since under current scheme
3254 	the work required to undo bad preallocations exceeds
3255 	the work saved in good cases for most test programs.
3256       * No longer use return list or unconsolidated bins since
3257 	no scheme using them consistently outperforms those that don't
3258 	given above changes.
3259       * Use best fit for very large chunks to prevent some worst-cases.
3260       * Added some support for debugging
3261 
3262     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
3263       * Removed footers when chunks are in use. Thanks to
3264 	Paul Wilson (wilson@cs.texas.edu) for the suggestion.
3265 
3266     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
3267       * Added malloc_trim, with help from Wolfram Gloger
3268 	(wmglo@Dent.MED.Uni-Muenchen.DE).
3269 
3270     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
3271 
3272     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
3273       * realloc: try to expand in both directions
3274       * malloc: swap order of clean-bin strategy;
3275       * realloc: only conditionally expand backwards
3276       * Try not to scavenge used bins
3277       * Use bin counts as a guide to preallocation
3278       * Occasionally bin return list chunks in first scan
3279       * Add a few optimizations from colin@nyx10.cs.du.edu
3280 
3281     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
3282       * faster bin computation & slightly different binning
3283       * merged all consolidations to one part of malloc proper
3284 	 (eliminating old malloc_find_space & malloc_clean_bin)
3285       * Scan 2 returns chunks (not just 1)
3286       * Propagate failure in realloc if malloc returns 0
3287       * Add stuff to allow compilation on non-ANSI compilers
3288 	  from kpv@research.att.com
3289 
3290     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
3291       * removed potential for odd address access in prev_chunk
3292       * removed dependency on getpagesize.h
3293       * misc cosmetics and a bit more internal documentation
3294       * anticosmetics: mangled names in macros to evade debugger strangeness
3295       * tested on sparc, hp-700, dec-mips, rs6000
3296 	  with gcc & native cc (hp, dec only) allowing
3297 	  Detlefs & Zorn comparison study (in SIGPLAN Notices.)
3298 
3299     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
3300       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
3301 	 structure of old version,  but most details differ.)
3302 
3303 */
3304