xref: /openbmc/u-boot/common/dlmalloc.c (revision 8e6f1a8e)
1 #if 0	/* Moved to malloc.h */
2 /* ---------- To make a malloc.h, start cutting here ------------ */
3 
4 /*
5   A version of malloc/free/realloc written by Doug Lea and released to the
6   public domain.  Send questions/comments/complaints/performance data
7   to dl@cs.oswego.edu
8 
9 * VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
10 
11    Note: There may be an updated version of this malloc obtainable at
12 	   ftp://g.oswego.edu/pub/misc/malloc.c
13 	 Check before installing!
14 
15 * Why use this malloc?
16 
17   This is not the fastest, most space-conserving, most portable, or
18   most tunable malloc ever written. However it is among the fastest
19   while also being among the most space-conserving, portable and tunable.
20   Consistent balance across these factors results in a good general-purpose
21   allocator. For a high-level description, see
22      http://g.oswego.edu/dl/html/malloc.html
23 
24 * Synopsis of public routines
25 
26   (Much fuller descriptions are contained in the program documentation below.)
27 
28   malloc(size_t n);
29      Return a pointer to a newly allocated chunk of at least n bytes, or null
30      if no space is available.
31   free(Void_t* p);
32      Release the chunk of memory pointed to by p, or no effect if p is null.
33   realloc(Void_t* p, size_t n);
34      Return a pointer to a chunk of size n that contains the same data
35      as does chunk p up to the minimum of (n, p's size) bytes, or null
36      if no space is available. The returned pointer may or may not be
37      the same as p. If p is null, equivalent to malloc.  Unless the
38      #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
39      size argument of zero (re)allocates a minimum-sized chunk.
40   memalign(size_t alignment, size_t n);
41      Return a pointer to a newly allocated chunk of n bytes, aligned
42      in accord with the alignment argument, which must be a power of
43      two.
44   valloc(size_t n);
45      Equivalent to memalign(pagesize, n), where pagesize is the page
46      size of the system (or as near to this as can be figured out from
47      all the includes/defines below.)
48   pvalloc(size_t n);
49      Equivalent to valloc(minimum-page-that-holds(n)), that is,
50      round up n to nearest pagesize.
51   calloc(size_t unit, size_t quantity);
52      Returns a pointer to quantity * unit bytes, with all locations
53      set to zero.
54   cfree(Void_t* p);
55      Equivalent to free(p).
56   malloc_trim(size_t pad);
57      Release all but pad bytes of freed top-most memory back
58      to the system. Return 1 if successful, else 0.
59   malloc_usable_size(Void_t* p);
60      Report the number usable allocated bytes associated with allocated
61      chunk p. This may or may not report more bytes than were requested,
62      due to alignment and minimum size constraints.
63   malloc_stats();
64      Prints brief summary statistics.
65   mallinfo()
66      Returns (by copy) a struct containing various summary statistics.
67   mallopt(int parameter_number, int parameter_value)
68      Changes one of the tunable parameters described below. Returns
69      1 if successful in changing the parameter, else 0.
70 
71 * Vital statistics:
72 
73   Alignment:                            8-byte
74        8 byte alignment is currently hardwired into the design.  This
75        seems to suffice for all current machines and C compilers.
76 
77   Assumed pointer representation:       4 or 8 bytes
78        Code for 8-byte pointers is untested by me but has worked
79        reliably by Wolfram Gloger, who contributed most of the
80        changes supporting this.
81 
82   Assumed size_t  representation:       4 or 8 bytes
83        Note that size_t is allowed to be 4 bytes even if pointers are 8.
84 
85   Minimum overhead per allocated chunk: 4 or 8 bytes
86        Each malloced chunk has a hidden overhead of 4 bytes holding size
87        and status information.
88 
89   Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
90 			  8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
91 
92        When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
93        ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
94        needed; 4 (8) for a trailing size field
95        and 8 (16) bytes for free list pointers. Thus, the minimum
96        allocatable size is 16/24/32 bytes.
97 
98        Even a request for zero bytes (i.e., malloc(0)) returns a
99        pointer to something of the minimum allocatable size.
100 
101   Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
102 			  8-byte size_t: 2^63 - 16 bytes
103 
104        It is assumed that (possibly signed) size_t bit values suffice to
105        represent chunk sizes. `Possibly signed' is due to the fact
106        that `size_t' may be defined on a system as either a signed or
107        an unsigned type. To be conservative, values that would appear
108        as negative numbers are avoided.
109        Requests for sizes with a negative sign bit when the request
110        size is treaded as a long will return null.
111 
112   Maximum overhead wastage per allocated chunk: normally 15 bytes
113 
114        Alignnment demands, plus the minimum allocatable size restriction
115        make the normal worst-case wastage 15 bytes (i.e., up to 15
116        more bytes will be allocated than were requested in malloc), with
117        two exceptions:
118 	 1. Because requests for zero bytes allocate non-zero space,
119 	    the worst case wastage for a request of zero bytes is 24 bytes.
120 	 2. For requests >= mmap_threshold that are serviced via
121 	    mmap(), the worst case wastage is 8 bytes plus the remainder
122 	    from a system page (the minimal mmap unit); typically 4096 bytes.
123 
124 * Limitations
125 
126     Here are some features that are NOT currently supported
127 
128     * No user-definable hooks for callbacks and the like.
129     * No automated mechanism for fully checking that all accesses
130       to malloced memory stay within their bounds.
131     * No support for compaction.
132 
133 * Synopsis of compile-time options:
134 
135     People have reported using previous versions of this malloc on all
136     versions of Unix, sometimes by tweaking some of the defines
137     below. It has been tested most extensively on Solaris and
138     Linux. It is also reported to work on WIN32 platforms.
139     People have also reported adapting this malloc for use in
140     stand-alone embedded systems.
141 
142     The implementation is in straight, hand-tuned ANSI C.  Among other
143     consequences, it uses a lot of macros.  Because of this, to be at
144     all usable, this code should be compiled using an optimizing compiler
145     (for example gcc -O2) that can simplify expressions and control
146     paths.
147 
148   __STD_C                  (default: derived from C compiler defines)
149      Nonzero if using ANSI-standard C compiler, a C++ compiler, or
150      a C compiler sufficiently close to ANSI to get away with it.
151   DEBUG                    (default: NOT defined)
152      Define to enable debugging. Adds fairly extensive assertion-based
153      checking to help track down memory errors, but noticeably slows down
154      execution.
155   REALLOC_ZERO_BYTES_FREES (default: NOT defined)
156      Define this if you think that realloc(p, 0) should be equivalent
157      to free(p). Otherwise, since malloc returns a unique pointer for
158      malloc(0), so does realloc(p, 0).
159   HAVE_MEMCPY               (default: defined)
160      Define if you are not otherwise using ANSI STD C, but still
161      have memcpy and memset in your C library and want to use them.
162      Otherwise, simple internal versions are supplied.
163   USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
164      Define as 1 if you want the C library versions of memset and
165      memcpy called in realloc and calloc (otherwise macro versions are used).
166      At least on some platforms, the simple macro versions usually
167      outperform libc versions.
168   HAVE_MMAP                 (default: defined as 1)
169      Define to non-zero to optionally make malloc() use mmap() to
170      allocate very large blocks.
171   HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
172      Define to non-zero to optionally make realloc() use mremap() to
173      reallocate very large blocks.
174   malloc_getpagesize        (default: derived from system #includes)
175      Either a constant or routine call returning the system page size.
176   HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
177      Optionally define if you are on a system with a /usr/include/malloc.h
178      that declares struct mallinfo. It is not at all necessary to
179      define this even if you do, but will ensure consistency.
180   INTERNAL_SIZE_T           (default: size_t)
181      Define to a 32-bit type (probably `unsigned int') if you are on a
182      64-bit machine, yet do not want or need to allow malloc requests of
183      greater than 2^31 to be handled. This saves space, especially for
184      very small chunks.
185   INTERNAL_LINUX_C_LIB      (default: NOT defined)
186      Defined only when compiled as part of Linux libc.
187      Also note that there is some odd internal name-mangling via defines
188      (for example, internally, `malloc' is named `mALLOc') needed
189      when compiling in this case. These look funny but don't otherwise
190      affect anything.
191   WIN32                     (default: undefined)
192      Define this on MS win (95, nt) platforms to compile in sbrk emulation.
193   LACKS_UNISTD_H            (default: undefined if not WIN32)
194      Define this if your system does not have a <unistd.h>.
195   LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
196      Define this if your system does not have a <sys/param.h>.
197   MORECORE                  (default: sbrk)
198      The name of the routine to call to obtain more memory from the system.
199   MORECORE_FAILURE          (default: -1)
200      The value returned upon failure of MORECORE.
201   MORECORE_CLEARS           (default 1)
202      True (1) if the routine mapped to MORECORE zeroes out memory (which
203      holds for sbrk).
204   DEFAULT_TRIM_THRESHOLD
205   DEFAULT_TOP_PAD
206   DEFAULT_MMAP_THRESHOLD
207   DEFAULT_MMAP_MAX
208      Default values of tunable parameters (described in detail below)
209      controlling interaction with host system routines (sbrk, mmap, etc).
210      These values may also be changed dynamically via mallopt(). The
211      preset defaults are those that give best performance for typical
212      programs/systems.
213   USE_DL_PREFIX             (default: undefined)
214      Prefix all public routines with the string 'dl'.  Useful to
215      quickly avoid procedure declaration conflicts and linker symbol
216      conflicts with existing memory allocation routines.
217 
218 
219 */
220 
221 
222 
223 
224 /* Preliminaries */
225 
226 #ifndef __STD_C
227 #ifdef __STDC__
228 #define __STD_C     1
229 #else
230 #if __cplusplus
231 #define __STD_C     1
232 #else
233 #define __STD_C     0
234 #endif /*__cplusplus*/
235 #endif /*__STDC__*/
236 #endif /*__STD_C*/
237 
238 #ifndef Void_t
239 #if (__STD_C || defined(WIN32))
240 #define Void_t      void
241 #else
242 #define Void_t      char
243 #endif
244 #endif /*Void_t*/
245 
246 #if __STD_C
247 #include <stddef.h>   /* for size_t */
248 #else
249 #include <sys/types.h>
250 #endif
251 
252 #ifdef __cplusplus
253 extern "C" {
254 #endif
255 
256 #include <stdio.h>    /* needed for malloc_stats */
257 
258 
259 /*
260   Compile-time options
261 */
262 
263 
264 /*
265     Debugging:
266 
267     Because freed chunks may be overwritten with link fields, this
268     malloc will often die when freed memory is overwritten by user
269     programs.  This can be very effective (albeit in an annoying way)
270     in helping track down dangling pointers.
271 
272     If you compile with -DDEBUG, a number of assertion checks are
273     enabled that will catch more memory errors. You probably won't be
274     able to make much sense of the actual assertion errors, but they
275     should help you locate incorrectly overwritten memory.  The
276     checking is fairly extensive, and will slow down execution
277     noticeably. Calling malloc_stats or mallinfo with DEBUG set will
278     attempt to check every non-mmapped allocated and free chunk in the
279     course of computing the summmaries. (By nature, mmapped regions
280     cannot be checked very much automatically.)
281 
282     Setting DEBUG may also be helpful if you are trying to modify
283     this code. The assertions in the check routines spell out in more
284     detail the assumptions and invariants underlying the algorithms.
285 
286 */
287 
288 #ifdef DEBUG
289 #include <assert.h>
290 #else
291 #define assert(x) ((void)0)
292 #endif
293 
294 
295 /*
296   INTERNAL_SIZE_T is the word-size used for internal bookkeeping
297   of chunk sizes. On a 64-bit machine, you can reduce malloc
298   overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
299   at the expense of not being able to handle requests greater than
300   2^31. This limitation is hardly ever a concern; you are encouraged
301   to set this. However, the default version is the same as size_t.
302 */
303 
304 #ifndef INTERNAL_SIZE_T
305 #define INTERNAL_SIZE_T size_t
306 #endif
307 
308 /*
309   REALLOC_ZERO_BYTES_FREES should be set if a call to
310   realloc with zero bytes should be the same as a call to free.
311   Some people think it should. Otherwise, since this malloc
312   returns a unique pointer for malloc(0), so does realloc(p, 0).
313 */
314 
315 
316 /*   #define REALLOC_ZERO_BYTES_FREES */
317 
318 
319 /*
320   WIN32 causes an emulation of sbrk to be compiled in
321   mmap-based options are not currently supported in WIN32.
322 */
323 
324 /* #define WIN32 */
325 #ifdef WIN32
326 #define MORECORE wsbrk
327 #define HAVE_MMAP 0
328 
329 #define LACKS_UNISTD_H
330 #define LACKS_SYS_PARAM_H
331 
332 /*
333   Include 'windows.h' to get the necessary declarations for the
334   Microsoft Visual C++ data structures and routines used in the 'sbrk'
335   emulation.
336 
337   Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
338   Visual C++ header files are included.
339 */
340 #define WIN32_LEAN_AND_MEAN
341 #include <windows.h>
342 #endif
343 
344 
345 /*
346   HAVE_MEMCPY should be defined if you are not otherwise using
347   ANSI STD C, but still have memcpy and memset in your C library
348   and want to use them in calloc and realloc. Otherwise simple
349   macro versions are defined here.
350 
351   USE_MEMCPY should be defined as 1 if you actually want to
352   have memset and memcpy called. People report that the macro
353   versions are often enough faster than libc versions on many
354   systems that it is better to use them.
355 
356 */
357 
358 #define HAVE_MEMCPY
359 
360 #ifndef USE_MEMCPY
361 #ifdef HAVE_MEMCPY
362 #define USE_MEMCPY 1
363 #else
364 #define USE_MEMCPY 0
365 #endif
366 #endif
367 
368 #if (__STD_C || defined(HAVE_MEMCPY))
369 
370 #if __STD_C
371 void* memset(void*, int, size_t);
372 void* memcpy(void*, const void*, size_t);
373 #else
374 #ifdef WIN32
375 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
376 /* 'windows.h' */
377 #else
378 Void_t* memset();
379 Void_t* memcpy();
380 #endif
381 #endif
382 #endif
383 
384 #if USE_MEMCPY
385 
386 /* The following macros are only invoked with (2n+1)-multiples of
387    INTERNAL_SIZE_T units, with a positive integer n. This is exploited
388    for fast inline execution when n is small. */
389 
390 #define MALLOC_ZERO(charp, nbytes)                                            \
391 do {                                                                          \
392   INTERNAL_SIZE_T mzsz = (nbytes);                                            \
393   if(mzsz <= 9*sizeof(mzsz)) {                                                \
394     INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
395     if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
396 				     *mz++ = 0;                               \
397       if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
398 				     *mz++ = 0;                               \
399 	if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
400 				     *mz++ = 0; }}}                           \
401 				     *mz++ = 0;                               \
402 				     *mz++ = 0;                               \
403 				     *mz   = 0;                               \
404   } else memset((charp), 0, mzsz);                                            \
405 } while(0)
406 
407 #define MALLOC_COPY(dest,src,nbytes)                                          \
408 do {                                                                          \
409   INTERNAL_SIZE_T mcsz = (nbytes);                                            \
410   if(mcsz <= 9*sizeof(mcsz)) {                                                \
411     INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
412     INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
413     if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
414 				     *mcdst++ = *mcsrc++;                     \
415       if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
416 				     *mcdst++ = *mcsrc++;                     \
417 	if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
418 				     *mcdst++ = *mcsrc++; }}}                 \
419 				     *mcdst++ = *mcsrc++;                     \
420 				     *mcdst++ = *mcsrc++;                     \
421 				     *mcdst   = *mcsrc  ;                     \
422   } else memcpy(dest, src, mcsz);                                             \
423 } while(0)
424 
425 #else /* !USE_MEMCPY */
426 
427 /* Use Duff's device for good zeroing/copying performance. */
428 
429 #define MALLOC_ZERO(charp, nbytes)                                            \
430 do {                                                                          \
431   INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
432   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
433   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
434   switch (mctmp) {                                                            \
435     case 0: for(;;) { *mzp++ = 0;                                             \
436     case 7:           *mzp++ = 0;                                             \
437     case 6:           *mzp++ = 0;                                             \
438     case 5:           *mzp++ = 0;                                             \
439     case 4:           *mzp++ = 0;                                             \
440     case 3:           *mzp++ = 0;                                             \
441     case 2:           *mzp++ = 0;                                             \
442     case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
443   }                                                                           \
444 } while(0)
445 
446 #define MALLOC_COPY(dest,src,nbytes)                                          \
447 do {                                                                          \
448   INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
449   INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
450   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
451   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
452   switch (mctmp) {                                                            \
453     case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
454     case 7:           *mcdst++ = *mcsrc++;                                    \
455     case 6:           *mcdst++ = *mcsrc++;                                    \
456     case 5:           *mcdst++ = *mcsrc++;                                    \
457     case 4:           *mcdst++ = *mcsrc++;                                    \
458     case 3:           *mcdst++ = *mcsrc++;                                    \
459     case 2:           *mcdst++ = *mcsrc++;                                    \
460     case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
461   }                                                                           \
462 } while(0)
463 
464 #endif
465 
466 
467 /*
468   Define HAVE_MMAP to optionally make malloc() use mmap() to
469   allocate very large blocks.  These will be returned to the
470   operating system immediately after a free().
471 */
472 
473 #ifndef HAVE_MMAP
474 #define HAVE_MMAP 1
475 #endif
476 
477 /*
478   Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
479   large blocks.  This is currently only possible on Linux with
480   kernel versions newer than 1.3.77.
481 */
482 
483 #ifndef HAVE_MREMAP
484 #ifdef INTERNAL_LINUX_C_LIB
485 #define HAVE_MREMAP 1
486 #else
487 #define HAVE_MREMAP 0
488 #endif
489 #endif
490 
491 #if HAVE_MMAP
492 
493 #include <unistd.h>
494 #include <fcntl.h>
495 #include <sys/mman.h>
496 
497 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
498 #define MAP_ANONYMOUS MAP_ANON
499 #endif
500 
501 #endif /* HAVE_MMAP */
502 
503 /*
504   Access to system page size. To the extent possible, this malloc
505   manages memory from the system in page-size units.
506 
507   The following mechanics for getpagesize were adapted from
508   bsd/gnu getpagesize.h
509 */
510 
511 #ifndef LACKS_UNISTD_H
512 #  include <unistd.h>
513 #endif
514 
515 #ifndef malloc_getpagesize
516 #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
517 #    ifndef _SC_PAGE_SIZE
518 #      define _SC_PAGE_SIZE _SC_PAGESIZE
519 #    endif
520 #  endif
521 #  ifdef _SC_PAGE_SIZE
522 #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
523 #  else
524 #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
525        extern size_t getpagesize();
526 #      define malloc_getpagesize getpagesize()
527 #    else
528 #      ifdef WIN32
529 #        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
530 #      else
531 #        ifndef LACKS_SYS_PARAM_H
532 #          include <sys/param.h>
533 #        endif
534 #        ifdef EXEC_PAGESIZE
535 #          define malloc_getpagesize EXEC_PAGESIZE
536 #        else
537 #          ifdef NBPG
538 #            ifndef CLSIZE
539 #              define malloc_getpagesize NBPG
540 #            else
541 #              define malloc_getpagesize (NBPG * CLSIZE)
542 #            endif
543 #          else
544 #            ifdef NBPC
545 #              define malloc_getpagesize NBPC
546 #            else
547 #              ifdef PAGESIZE
548 #                define malloc_getpagesize PAGESIZE
549 #              else
550 #                define malloc_getpagesize (4096) /* just guess */
551 #              endif
552 #            endif
553 #          endif
554 #        endif
555 #      endif
556 #    endif
557 #  endif
558 #endif
559 
560 
561 /*
562 
563   This version of malloc supports the standard SVID/XPG mallinfo
564   routine that returns a struct containing the same kind of
565   information you can get from malloc_stats. It should work on
566   any SVID/XPG compliant system that has a /usr/include/malloc.h
567   defining struct mallinfo. (If you'd like to install such a thing
568   yourself, cut out the preliminary declarations as described above
569   and below and save them in a malloc.h file. But there's no
570   compelling reason to bother to do this.)
571 
572   The main declaration needed is the mallinfo struct that is returned
573   (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
574   bunch of fields, most of which are not even meaningful in this
575   version of malloc. Some of these fields are are instead filled by
576   mallinfo() with other numbers that might possibly be of interest.
577 
578   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
579   /usr/include/malloc.h file that includes a declaration of struct
580   mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
581   version is declared below.  These must be precisely the same for
582   mallinfo() to work.
583 
584 */
585 
586 /* #define HAVE_USR_INCLUDE_MALLOC_H */
587 
588 #if HAVE_USR_INCLUDE_MALLOC_H
589 #include "/usr/include/malloc.h"
590 #else
591 
592 /* SVID2/XPG mallinfo structure */
593 
594 struct mallinfo {
595   int arena;    /* total space allocated from system */
596   int ordblks;  /* number of non-inuse chunks */
597   int smblks;   /* unused -- always zero */
598   int hblks;    /* number of mmapped regions */
599   int hblkhd;   /* total space in mmapped regions */
600   int usmblks;  /* unused -- always zero */
601   int fsmblks;  /* unused -- always zero */
602   int uordblks; /* total allocated space */
603   int fordblks; /* total non-inuse space */
604   int keepcost; /* top-most, releasable (via malloc_trim) space */
605 };
606 
607 /* SVID2/XPG mallopt options */
608 
609 #define M_MXFAST  1    /* UNUSED in this malloc */
610 #define M_NLBLKS  2    /* UNUSED in this malloc */
611 #define M_GRAIN   3    /* UNUSED in this malloc */
612 #define M_KEEP    4    /* UNUSED in this malloc */
613 
614 #endif
615 
616 /* mallopt options that actually do something */
617 
618 #define M_TRIM_THRESHOLD    -1
619 #define M_TOP_PAD           -2
620 #define M_MMAP_THRESHOLD    -3
621 #define M_MMAP_MAX          -4
622 
623 
624 #ifndef DEFAULT_TRIM_THRESHOLD
625 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
626 #endif
627 
628 /*
629     M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
630       to keep before releasing via malloc_trim in free().
631 
632       Automatic trimming is mainly useful in long-lived programs.
633       Because trimming via sbrk can be slow on some systems, and can
634       sometimes be wasteful (in cases where programs immediately
635       afterward allocate more large chunks) the value should be high
636       enough so that your overall system performance would improve by
637       releasing.
638 
639       The trim threshold and the mmap control parameters (see below)
640       can be traded off with one another. Trimming and mmapping are
641       two different ways of releasing unused memory back to the
642       system. Between these two, it is often possible to keep
643       system-level demands of a long-lived program down to a bare
644       minimum. For example, in one test suite of sessions measuring
645       the XF86 X server on Linux, using a trim threshold of 128K and a
646       mmap threshold of 192K led to near-minimal long term resource
647       consumption.
648 
649       If you are using this malloc in a long-lived program, it should
650       pay to experiment with these values.  As a rough guide, you
651       might set to a value close to the average size of a process
652       (program) running on your system.  Releasing this much memory
653       would allow such a process to run in memory.  Generally, it's
654       worth it to tune for trimming rather tham memory mapping when a
655       program undergoes phases where several large chunks are
656       allocated and released in ways that can reuse each other's
657       storage, perhaps mixed with phases where there are no such
658       chunks at all.  And in well-behaved long-lived programs,
659       controlling release of large blocks via trimming versus mapping
660       is usually faster.
661 
662       However, in most programs, these parameters serve mainly as
663       protection against the system-level effects of carrying around
664       massive amounts of unneeded memory. Since frequent calls to
665       sbrk, mmap, and munmap otherwise degrade performance, the default
666       parameters are set to relatively high values that serve only as
667       safeguards.
668 
669       The default trim value is high enough to cause trimming only in
670       fairly extreme (by current memory consumption standards) cases.
671       It must be greater than page size to have any useful effect.  To
672       disable trimming completely, you can set to (unsigned long)(-1);
673 
674 
675 */
676 
677 
678 #ifndef DEFAULT_TOP_PAD
679 #define DEFAULT_TOP_PAD        (0)
680 #endif
681 
682 /*
683     M_TOP_PAD is the amount of extra `padding' space to allocate or
684       retain whenever sbrk is called. It is used in two ways internally:
685 
686       * When sbrk is called to extend the top of the arena to satisfy
687 	a new malloc request, this much padding is added to the sbrk
688 	request.
689 
690       * When malloc_trim is called automatically from free(),
691 	it is used as the `pad' argument.
692 
693       In both cases, the actual amount of padding is rounded
694       so that the end of the arena is always a system page boundary.
695 
696       The main reason for using padding is to avoid calling sbrk so
697       often. Having even a small pad greatly reduces the likelihood
698       that nearly every malloc request during program start-up (or
699       after trimming) will invoke sbrk, which needlessly wastes
700       time.
701 
702       Automatic rounding-up to page-size units is normally sufficient
703       to avoid measurable overhead, so the default is 0.  However, in
704       systems where sbrk is relatively slow, it can pay to increase
705       this value, at the expense of carrying around more memory than
706       the program needs.
707 
708 */
709 
710 
711 #ifndef DEFAULT_MMAP_THRESHOLD
712 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
713 #endif
714 
715 /*
716 
717     M_MMAP_THRESHOLD is the request size threshold for using mmap()
718       to service a request. Requests of at least this size that cannot
719       be allocated using already-existing space will be serviced via mmap.
720       (If enough normal freed space already exists it is used instead.)
721 
722       Using mmap segregates relatively large chunks of memory so that
723       they can be individually obtained and released from the host
724       system. A request serviced through mmap is never reused by any
725       other request (at least not directly; the system may just so
726       happen to remap successive requests to the same locations).
727 
728       Segregating space in this way has the benefit that mmapped space
729       can ALWAYS be individually released back to the system, which
730       helps keep the system level memory demands of a long-lived
731       program low. Mapped memory can never become `locked' between
732       other chunks, as can happen with normally allocated chunks, which
733       menas that even trimming via malloc_trim would not release them.
734 
735       However, it has the disadvantages that:
736 
737 	 1. The space cannot be reclaimed, consolidated, and then
738 	    used to service later requests, as happens with normal chunks.
739 	 2. It can lead to more wastage because of mmap page alignment
740 	    requirements
741 	 3. It causes malloc performance to be more dependent on host
742 	    system memory management support routines which may vary in
743 	    implementation quality and may impose arbitrary
744 	    limitations. Generally, servicing a request via normal
745 	    malloc steps is faster than going through a system's mmap.
746 
747       All together, these considerations should lead you to use mmap
748       only for relatively large requests.
749 
750 
751 */
752 
753 
754 #ifndef DEFAULT_MMAP_MAX
755 #if HAVE_MMAP
756 #define DEFAULT_MMAP_MAX       (64)
757 #else
758 #define DEFAULT_MMAP_MAX       (0)
759 #endif
760 #endif
761 
762 /*
763     M_MMAP_MAX is the maximum number of requests to simultaneously
764       service using mmap. This parameter exists because:
765 
766 	 1. Some systems have a limited number of internal tables for
767 	    use by mmap.
768 	 2. In most systems, overreliance on mmap can degrade overall
769 	    performance.
770 	 3. If a program allocates many large regions, it is probably
771 	    better off using normal sbrk-based allocation routines that
772 	    can reclaim and reallocate normal heap memory. Using a
773 	    small value allows transition into this mode after the
774 	    first few allocations.
775 
776       Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
777       the default value is 0, and attempts to set it to non-zero values
778       in mallopt will fail.
779 */
780 
781 
782 /*
783     USE_DL_PREFIX will prefix all public routines with the string 'dl'.
784       Useful to quickly avoid procedure declaration conflicts and linker
785       symbol conflicts with existing memory allocation routines.
786 
787 */
788 
789 /* #define USE_DL_PREFIX */
790 
791 
792 /*
793 
794   Special defines for linux libc
795 
796   Except when compiled using these special defines for Linux libc
797   using weak aliases, this malloc is NOT designed to work in
798   multithreaded applications.  No semaphores or other concurrency
799   control are provided to ensure that multiple malloc or free calls
800   don't run at the same time, which could be disasterous. A single
801   semaphore could be used across malloc, realloc, and free (which is
802   essentially the effect of the linux weak alias approach). It would
803   be hard to obtain finer granularity.
804 
805 */
806 
807 
808 #ifdef INTERNAL_LINUX_C_LIB
809 
810 #if __STD_C
811 
812 Void_t * __default_morecore_init (ptrdiff_t);
813 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
814 
815 #else
816 
817 Void_t * __default_morecore_init ();
818 Void_t *(*__morecore)() = __default_morecore_init;
819 
820 #endif
821 
822 #define MORECORE (*__morecore)
823 #define MORECORE_FAILURE 0
824 #define MORECORE_CLEARS 1
825 
826 #else /* INTERNAL_LINUX_C_LIB */
827 
828 #if __STD_C
829 extern Void_t*     sbrk(ptrdiff_t);
830 #else
831 extern Void_t*     sbrk();
832 #endif
833 
834 #ifndef MORECORE
835 #define MORECORE sbrk
836 #endif
837 
838 #ifndef MORECORE_FAILURE
839 #define MORECORE_FAILURE -1
840 #endif
841 
842 #ifndef MORECORE_CLEARS
843 #define MORECORE_CLEARS 1
844 #endif
845 
846 #endif /* INTERNAL_LINUX_C_LIB */
847 
848 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
849 
850 #define cALLOc		__libc_calloc
851 #define fREe		__libc_free
852 #define mALLOc		__libc_malloc
853 #define mEMALIGn	__libc_memalign
854 #define rEALLOc		__libc_realloc
855 #define vALLOc		__libc_valloc
856 #define pvALLOc		__libc_pvalloc
857 #define mALLINFo	__libc_mallinfo
858 #define mALLOPt		__libc_mallopt
859 
860 #pragma weak calloc = __libc_calloc
861 #pragma weak free = __libc_free
862 #pragma weak cfree = __libc_free
863 #pragma weak malloc = __libc_malloc
864 #pragma weak memalign = __libc_memalign
865 #pragma weak realloc = __libc_realloc
866 #pragma weak valloc = __libc_valloc
867 #pragma weak pvalloc = __libc_pvalloc
868 #pragma weak mallinfo = __libc_mallinfo
869 #pragma weak mallopt = __libc_mallopt
870 
871 #else
872 
873 #ifdef USE_DL_PREFIX
874 #define cALLOc		dlcalloc
875 #define fREe		dlfree
876 #define mALLOc		dlmalloc
877 #define mEMALIGn	dlmemalign
878 #define rEALLOc		dlrealloc
879 #define vALLOc		dlvalloc
880 #define pvALLOc		dlpvalloc
881 #define mALLINFo	dlmallinfo
882 #define mALLOPt		dlmallopt
883 #else /* USE_DL_PREFIX */
884 #define cALLOc		calloc
885 #define fREe		free
886 #define mALLOc		malloc
887 #define mEMALIGn	memalign
888 #define rEALLOc		realloc
889 #define vALLOc		valloc
890 #define pvALLOc		pvalloc
891 #define mALLINFo	mallinfo
892 #define mALLOPt		mallopt
893 #endif /* USE_DL_PREFIX */
894 
895 #endif
896 
897 /* Public routines */
898 
899 #if __STD_C
900 
901 Void_t* mALLOc(size_t);
902 void    fREe(Void_t*);
903 Void_t* rEALLOc(Void_t*, size_t);
904 Void_t* mEMALIGn(size_t, size_t);
905 Void_t* vALLOc(size_t);
906 Void_t* pvALLOc(size_t);
907 Void_t* cALLOc(size_t, size_t);
908 void    cfree(Void_t*);
909 int     malloc_trim(size_t);
910 size_t  malloc_usable_size(Void_t*);
911 void    malloc_stats();
912 int     mALLOPt(int, int);
913 struct mallinfo mALLINFo(void);
914 #else
915 Void_t* mALLOc();
916 void    fREe();
917 Void_t* rEALLOc();
918 Void_t* mEMALIGn();
919 Void_t* vALLOc();
920 Void_t* pvALLOc();
921 Void_t* cALLOc();
922 void    cfree();
923 int     malloc_trim();
924 size_t  malloc_usable_size();
925 void    malloc_stats();
926 int     mALLOPt();
927 struct mallinfo mALLINFo();
928 #endif
929 
930 
931 #ifdef __cplusplus
932 };  /* end of extern "C" */
933 #endif
934 
935 /* ---------- To make a malloc.h, end cutting here ------------ */
936 #else				/* Moved to malloc.h */
937 
938 #include <malloc.h>
939 #if 0
940 #if __STD_C
941 static void malloc_update_mallinfo (void);
942 void malloc_stats (void);
943 #else
944 static void malloc_update_mallinfo ();
945 void malloc_stats();
946 #endif
947 #endif	/* 0 */
948 
949 #endif	/* 0 */			/* Moved to malloc.h */
950 #include <common.h>
951 
952 /*
953   Emulation of sbrk for WIN32
954   All code within the ifdef WIN32 is untested by me.
955 
956   Thanks to Martin Fong and others for supplying this.
957 */
958 
959 
960 #ifdef WIN32
961 
962 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
963 ~(malloc_getpagesize-1))
964 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
965 
966 /* resrve 64MB to insure large contiguous space */
967 #define RESERVED_SIZE (1024*1024*64)
968 #define NEXT_SIZE (2048*1024)
969 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
970 
971 struct GmListElement;
972 typedef struct GmListElement GmListElement;
973 
974 struct GmListElement
975 {
976 	GmListElement* next;
977 	void* base;
978 };
979 
980 static GmListElement* head = 0;
981 static unsigned int gNextAddress = 0;
982 static unsigned int gAddressBase = 0;
983 static unsigned int gAllocatedSize = 0;
984 
985 static
986 GmListElement* makeGmListElement (void* bas)
987 {
988 	GmListElement* this;
989 	this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
990 	assert (this);
991 	if (this)
992 	{
993 		this->base = bas;
994 		this->next = head;
995 		head = this;
996 	}
997 	return this;
998 }
999 
1000 void gcleanup ()
1001 {
1002 	BOOL rval;
1003 	assert ( (head == NULL) || (head->base == (void*)gAddressBase));
1004 	if (gAddressBase && (gNextAddress - gAddressBase))
1005 	{
1006 		rval = VirtualFree ((void*)gAddressBase,
1007 							gNextAddress - gAddressBase,
1008 							MEM_DECOMMIT);
1009 	assert (rval);
1010 	}
1011 	while (head)
1012 	{
1013 		GmListElement* next = head->next;
1014 		rval = VirtualFree (head->base, 0, MEM_RELEASE);
1015 		assert (rval);
1016 		LocalFree (head);
1017 		head = next;
1018 	}
1019 }
1020 
1021 static
1022 void* findRegion (void* start_address, unsigned long size)
1023 {
1024 	MEMORY_BASIC_INFORMATION info;
1025 	if (size >= TOP_MEMORY) return NULL;
1026 
1027 	while ((unsigned long)start_address + size < TOP_MEMORY)
1028 	{
1029 		VirtualQuery (start_address, &info, sizeof (info));
1030 		if ((info.State == MEM_FREE) && (info.RegionSize >= size))
1031 			return start_address;
1032 		else
1033 		{
1034 			/* Requested region is not available so see if the */
1035 			/* next region is available.  Set 'start_address' */
1036 			/* to the next region and call 'VirtualQuery()' */
1037 			/* again. */
1038 
1039 			start_address = (char*)info.BaseAddress + info.RegionSize;
1040 
1041 			/* Make sure we start looking for the next region */
1042 			/* on the *next* 64K boundary.  Otherwise, even if */
1043 			/* the new region is free according to */
1044 			/* 'VirtualQuery()', the subsequent call to */
1045 			/* 'VirtualAlloc()' (which follows the call to */
1046 			/* this routine in 'wsbrk()') will round *down* */
1047 			/* the requested address to a 64K boundary which */
1048 			/* we already know is an address in the */
1049 			/* unavailable region.  Thus, the subsequent call */
1050 			/* to 'VirtualAlloc()' will fail and bring us back */
1051 			/* here, causing us to go into an infinite loop. */
1052 
1053 			start_address =
1054 				(void *) AlignPage64K((unsigned long) start_address);
1055 		}
1056 	}
1057 	return NULL;
1058 
1059 }
1060 
1061 
1062 void* wsbrk (long size)
1063 {
1064 	void* tmp;
1065 	if (size > 0)
1066 	{
1067 		if (gAddressBase == 0)
1068 		{
1069 			gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
1070 			gNextAddress = gAddressBase =
1071 				(unsigned int)VirtualAlloc (NULL, gAllocatedSize,
1072 											MEM_RESERVE, PAGE_NOACCESS);
1073 		} else if (AlignPage (gNextAddress + size) > (gAddressBase +
1074 gAllocatedSize))
1075 		{
1076 			long new_size = max (NEXT_SIZE, AlignPage (size));
1077 			void* new_address = (void*)(gAddressBase+gAllocatedSize);
1078 			do
1079 			{
1080 				new_address = findRegion (new_address, new_size);
1081 
1082 				if (new_address == 0)
1083 					return (void*)-1;
1084 
1085 				gAddressBase = gNextAddress =
1086 					(unsigned int)VirtualAlloc (new_address, new_size,
1087 												MEM_RESERVE, PAGE_NOACCESS);
1088 				/* repeat in case of race condition */
1089 				/* The region that we found has been snagged */
1090 				/* by another thread */
1091 			}
1092 			while (gAddressBase == 0);
1093 
1094 			assert (new_address == (void*)gAddressBase);
1095 
1096 			gAllocatedSize = new_size;
1097 
1098 			if (!makeGmListElement ((void*)gAddressBase))
1099 				return (void*)-1;
1100 		}
1101 		if ((size + gNextAddress) > AlignPage (gNextAddress))
1102 		{
1103 			void* res;
1104 			res = VirtualAlloc ((void*)AlignPage (gNextAddress),
1105 								(size + gNextAddress -
1106 								 AlignPage (gNextAddress)),
1107 								MEM_COMMIT, PAGE_READWRITE);
1108 			if (res == 0)
1109 				return (void*)-1;
1110 		}
1111 		tmp = (void*)gNextAddress;
1112 		gNextAddress = (unsigned int)tmp + size;
1113 		return tmp;
1114 	}
1115 	else if (size < 0)
1116 	{
1117 		unsigned int alignedGoal = AlignPage (gNextAddress + size);
1118 		/* Trim by releasing the virtual memory */
1119 		if (alignedGoal >= gAddressBase)
1120 		{
1121 			VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
1122 						 MEM_DECOMMIT);
1123 			gNextAddress = gNextAddress + size;
1124 			return (void*)gNextAddress;
1125 		}
1126 		else
1127 		{
1128 			VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
1129 						 MEM_DECOMMIT);
1130 			gNextAddress = gAddressBase;
1131 			return (void*)-1;
1132 		}
1133 	}
1134 	else
1135 	{
1136 		return (void*)gNextAddress;
1137 	}
1138 }
1139 
1140 #endif
1141 
1142 
1143 
1144 /*
1145   Type declarations
1146 */
1147 
1148 
1149 struct malloc_chunk
1150 {
1151   INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1152   INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
1153   struct malloc_chunk* fd;   /* double links -- used only if free. */
1154   struct malloc_chunk* bk;
1155 };
1156 
1157 typedef struct malloc_chunk* mchunkptr;
1158 
1159 /*
1160 
1161    malloc_chunk details:
1162 
1163     (The following includes lightly edited explanations by Colin Plumb.)
1164 
1165     Chunks of memory are maintained using a `boundary tag' method as
1166     described in e.g., Knuth or Standish.  (See the paper by Paul
1167     Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1168     survey of such techniques.)  Sizes of free chunks are stored both
1169     in the front of each chunk and at the end.  This makes
1170     consolidating fragmented chunks into bigger chunks very fast.  The
1171     size fields also hold bits representing whether chunks are free or
1172     in use.
1173 
1174     An allocated chunk looks like this:
1175 
1176 
1177     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1178 	    |             Size of previous chunk, if allocated            | |
1179 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1180 	    |             Size of chunk, in bytes                         |P|
1181       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1182 	    |             User data starts here...                          .
1183 	    .                                                               .
1184 	    .             (malloc_usable_space() bytes)                     .
1185 	    .                                                               |
1186 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1187 	    |             Size of chunk                                     |
1188 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1189 
1190 
1191     Where "chunk" is the front of the chunk for the purpose of most of
1192     the malloc code, but "mem" is the pointer that is returned to the
1193     user.  "Nextchunk" is the beginning of the next contiguous chunk.
1194 
1195     Chunks always begin on even word boundries, so the mem portion
1196     (which is returned to the user) is also on an even word boundary, and
1197     thus double-word aligned.
1198 
1199     Free chunks are stored in circular doubly-linked lists, and look like this:
1200 
1201     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1202 	    |             Size of previous chunk                            |
1203 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1204     `head:' |             Size of chunk, in bytes                         |P|
1205       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1206 	    |             Forward pointer to next chunk in list             |
1207 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1208 	    |             Back pointer to previous chunk in list            |
1209 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1210 	    |             Unused space (may be 0 bytes long)                .
1211 	    .                                                               .
1212 	    .                                                               |
1213 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1214     `foot:' |             Size of chunk, in bytes                           |
1215 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1216 
1217     The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1218     chunk size (which is always a multiple of two words), is an in-use
1219     bit for the *previous* chunk.  If that bit is *clear*, then the
1220     word before the current chunk size contains the previous chunk
1221     size, and can be used to find the front of the previous chunk.
1222     (The very first chunk allocated always has this bit set,
1223     preventing access to non-existent (or non-owned) memory.)
1224 
1225     Note that the `foot' of the current chunk is actually represented
1226     as the prev_size of the NEXT chunk. (This makes it easier to
1227     deal with alignments etc).
1228 
1229     The two exceptions to all this are
1230 
1231      1. The special chunk `top', which doesn't bother using the
1232 	trailing size field since there is no
1233 	next contiguous chunk that would have to index off it. (After
1234 	initialization, `top' is forced to always exist.  If it would
1235 	become less than MINSIZE bytes long, it is replenished via
1236 	malloc_extend_top.)
1237 
1238      2. Chunks allocated via mmap, which have the second-lowest-order
1239 	bit (IS_MMAPPED) set in their size fields.  Because they are
1240 	never merged or traversed from any other chunk, they have no
1241 	foot size or inuse information.
1242 
1243     Available chunks are kept in any of several places (all declared below):
1244 
1245     * `av': An array of chunks serving as bin headers for consolidated
1246        chunks. Each bin is doubly linked.  The bins are approximately
1247        proportionally (log) spaced.  There are a lot of these bins
1248        (128). This may look excessive, but works very well in
1249        practice.  All procedures maintain the invariant that no
1250        consolidated chunk physically borders another one. Chunks in
1251        bins are kept in size order, with ties going to the
1252        approximately least recently used chunk.
1253 
1254        The chunks in each bin are maintained in decreasing sorted order by
1255        size.  This is irrelevant for the small bins, which all contain
1256        the same-sized chunks, but facilitates best-fit allocation for
1257        larger chunks. (These lists are just sequential. Keeping them in
1258        order almost never requires enough traversal to warrant using
1259        fancier ordered data structures.)  Chunks of the same size are
1260        linked with the most recently freed at the front, and allocations
1261        are taken from the back.  This results in LRU or FIFO allocation
1262        order, which tends to give each chunk an equal opportunity to be
1263        consolidated with adjacent freed chunks, resulting in larger free
1264        chunks and less fragmentation.
1265 
1266     * `top': The top-most available chunk (i.e., the one bordering the
1267        end of available memory) is treated specially. It is never
1268        included in any bin, is used only if no other chunk is
1269        available, and is released back to the system if it is very
1270        large (see M_TRIM_THRESHOLD).
1271 
1272     * `last_remainder': A bin holding only the remainder of the
1273        most recently split (non-top) chunk. This bin is checked
1274        before other non-fitting chunks, so as to provide better
1275        locality for runs of sequentially allocated chunks.
1276 
1277     *  Implicitly, through the host system's memory mapping tables.
1278        If supported, requests greater than a threshold are usually
1279        serviced via calls to mmap, and then later released via munmap.
1280 
1281 */
1282 
1283 /*  sizes, alignments */
1284 
1285 #define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
1286 #define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
1287 #define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
1288 #define MINSIZE                (sizeof(struct malloc_chunk))
1289 
1290 /* conversion from malloc headers to user pointers, and back */
1291 
1292 #define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1293 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1294 
1295 /* pad request bytes into a usable size */
1296 
1297 #define request2size(req) \
1298  (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1299   (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1300    (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1301 
1302 /* Check if m has acceptable alignment */
1303 
1304 #define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1305 
1306 
1307 
1308 
1309 /*
1310   Physical chunk operations
1311 */
1312 
1313 
1314 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1315 
1316 #define PREV_INUSE 0x1
1317 
1318 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1319 
1320 #define IS_MMAPPED 0x2
1321 
1322 /* Bits to mask off when extracting size */
1323 
1324 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1325 
1326 
1327 /* Ptr to next physical malloc_chunk. */
1328 
1329 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1330 
1331 /* Ptr to previous physical malloc_chunk */
1332 
1333 #define prev_chunk(p)\
1334    ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1335 
1336 
1337 /* Treat space at ptr + offset as a chunk */
1338 
1339 #define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
1340 
1341 
1342 
1343 
1344 /*
1345   Dealing with use bits
1346 */
1347 
1348 /* extract p's inuse bit */
1349 
1350 #define inuse(p)\
1351 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1352 
1353 /* extract inuse bit of previous chunk */
1354 
1355 #define prev_inuse(p)  ((p)->size & PREV_INUSE)
1356 
1357 /* check for mmap()'ed chunk */
1358 
1359 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1360 
1361 /* set/clear chunk as in use without otherwise disturbing */
1362 
1363 #define set_inuse(p)\
1364 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1365 
1366 #define clear_inuse(p)\
1367 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1368 
1369 /* check/set/clear inuse bits in known places */
1370 
1371 #define inuse_bit_at_offset(p, s)\
1372  (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1373 
1374 #define set_inuse_bit_at_offset(p, s)\
1375  (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1376 
1377 #define clear_inuse_bit_at_offset(p, s)\
1378  (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1379 
1380 
1381 
1382 
1383 /*
1384   Dealing with size fields
1385 */
1386 
1387 /* Get size, ignoring use bits */
1388 
1389 #define chunksize(p)          ((p)->size & ~(SIZE_BITS))
1390 
1391 /* Set size at head, without disturbing its use bit */
1392 
1393 #define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1394 
1395 /* Set size/use ignoring previous bits in header */
1396 
1397 #define set_head(p, s)        ((p)->size = (s))
1398 
1399 /* Set size at footer (only when chunk is not in use) */
1400 
1401 #define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1402 
1403 
1404 
1405 
1406 
1407 /*
1408    Bins
1409 
1410     The bins, `av_' are an array of pairs of pointers serving as the
1411     heads of (initially empty) doubly-linked lists of chunks, laid out
1412     in a way so that each pair can be treated as if it were in a
1413     malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1414     and chunks are the same).
1415 
1416     Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1417     8 bytes apart. Larger bins are approximately logarithmically
1418     spaced. (See the table below.) The `av_' array is never mentioned
1419     directly in the code, but instead via bin access macros.
1420 
1421     Bin layout:
1422 
1423     64 bins of size       8
1424     32 bins of size      64
1425     16 bins of size     512
1426      8 bins of size    4096
1427      4 bins of size   32768
1428      2 bins of size  262144
1429      1 bin  of size what's left
1430 
1431     There is actually a little bit of slop in the numbers in bin_index
1432     for the sake of speed. This makes no difference elsewhere.
1433 
1434     The special chunks `top' and `last_remainder' get their own bins,
1435     (this is implemented via yet more trickery with the av_ array),
1436     although `top' is never properly linked to its bin since it is
1437     always handled specially.
1438 
1439 */
1440 
1441 #define NAV             128   /* number of bins */
1442 
1443 typedef struct malloc_chunk* mbinptr;
1444 
1445 /* access macros */
1446 
1447 #define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
1448 #define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1449 #define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1450 
1451 /*
1452    The first 2 bins are never indexed. The corresponding av_ cells are instead
1453    used for bookkeeping. This is not to save space, but to simplify
1454    indexing, maintain locality, and avoid some initialization tests.
1455 */
1456 
1457 #define top            (bin_at(0)->fd)   /* The topmost chunk */
1458 #define last_remainder (bin_at(1))       /* remainder from last split */
1459 
1460 
1461 /*
1462    Because top initially points to its own bin with initial
1463    zero size, thus forcing extension on the first malloc request,
1464    we avoid having any special code in malloc to check whether
1465    it even exists yet. But we still need to in malloc_extend_top.
1466 */
1467 
1468 #define initial_top    ((mchunkptr)(bin_at(0)))
1469 
1470 /* Helper macro to initialize bins */
1471 
1472 #define IAV(i)  bin_at(i), bin_at(i)
1473 
1474 static mbinptr av_[NAV * 2 + 2] = {
1475  0, 0,
1476  IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
1477  IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
1478  IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
1479  IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
1480  IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
1481  IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
1482  IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
1483  IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
1484  IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
1485  IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
1486  IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
1487  IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
1488  IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
1489  IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1490  IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1491  IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1492 };
1493 
1494 void malloc_bin_reloc (void)
1495 {
1496 	DECLARE_GLOBAL_DATA_PTR;
1497 
1498 	unsigned long *p = (unsigned long *)(&av_[2]);
1499 	int i;
1500 	for (i=2; i<(sizeof(av_)/sizeof(mbinptr)); ++i) {
1501 		*p++ += gd->reloc_off;
1502 	}
1503 }
1504 
1505 
1506 /* field-extraction macros */
1507 
1508 #define first(b) ((b)->fd)
1509 #define last(b)  ((b)->bk)
1510 
1511 /*
1512   Indexing into bins
1513 */
1514 
1515 #define bin_index(sz)                                                          \
1516 (((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
1517  ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
1518  ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
1519  ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
1520  ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
1521  ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
1522 					  126)
1523 /*
1524   bins for chunks < 512 are all spaced 8 bytes apart, and hold
1525   identically sized chunks. This is exploited in malloc.
1526 */
1527 
1528 #define MAX_SMALLBIN         63
1529 #define MAX_SMALLBIN_SIZE   512
1530 #define SMALLBIN_WIDTH        8
1531 
1532 #define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
1533 
1534 /*
1535    Requests are `small' if both the corresponding and the next bin are small
1536 */
1537 
1538 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1539 
1540 
1541 
1542 /*
1543     To help compensate for the large number of bins, a one-level index
1544     structure is used for bin-by-bin searching.  `binblocks' is a
1545     one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1546     have any (possibly) non-empty bins, so they can be skipped over
1547     all at once during during traversals. The bits are NOT always
1548     cleared as soon as all bins in a block are empty, but instead only
1549     when all are noticed to be empty during traversal in malloc.
1550 */
1551 
1552 #define BINBLOCKWIDTH     4   /* bins per block */
1553 
1554 #define binblocks      (bin_at(0)->size) /* bitvector of nonempty blocks */
1555 
1556 /* bin<->block macros */
1557 
1558 #define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
1559 #define mark_binblock(ii)   (binblocks |= idx2binblock(ii))
1560 #define clear_binblock(ii)  (binblocks &= ~(idx2binblock(ii)))
1561 
1562 
1563 
1564 
1565 
1566 /*  Other static bookkeeping data */
1567 
1568 /* variables holding tunable values */
1569 
1570 static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
1571 static unsigned long top_pad          = DEFAULT_TOP_PAD;
1572 static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
1573 static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
1574 
1575 /* The first value returned from sbrk */
1576 static char* sbrk_base = (char*)(-1);
1577 
1578 /* The maximum memory obtained from system via sbrk */
1579 static unsigned long max_sbrked_mem = 0;
1580 
1581 /* The maximum via either sbrk or mmap */
1582 static unsigned long max_total_mem = 0;
1583 
1584 /* internal working copy of mallinfo */
1585 static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
1586 
1587 /* The total memory obtained from system via sbrk */
1588 #define sbrked_mem  (current_mallinfo.arena)
1589 
1590 /* Tracking mmaps */
1591 
1592 #if 0
1593 static unsigned int n_mmaps = 0;
1594 #endif	/* 0 */
1595 static unsigned long mmapped_mem = 0;
1596 #if HAVE_MMAP
1597 static unsigned int max_n_mmaps = 0;
1598 static unsigned long max_mmapped_mem = 0;
1599 #endif
1600 
1601 
1602 
1603 /*
1604   Debugging support
1605 */
1606 
1607 #ifdef DEBUG
1608 
1609 
1610 /*
1611   These routines make a number of assertions about the states
1612   of data structures that should be true at all times. If any
1613   are not true, it's very likely that a user program has somehow
1614   trashed memory. (It's also possible that there is a coding error
1615   in malloc. In which case, please report it!)
1616 */
1617 
1618 #if __STD_C
1619 static void do_check_chunk(mchunkptr p)
1620 #else
1621 static void do_check_chunk(p) mchunkptr p;
1622 #endif
1623 {
1624 #if 0	/* causes warnings because assert() is off */
1625   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1626 #endif	/* 0 */
1627 
1628   /* No checkable chunk is mmapped */
1629   assert(!chunk_is_mmapped(p));
1630 
1631   /* Check for legal address ... */
1632   assert((char*)p >= sbrk_base);
1633   if (p != top)
1634     assert((char*)p + sz <= (char*)top);
1635   else
1636     assert((char*)p + sz <= sbrk_base + sbrked_mem);
1637 
1638 }
1639 
1640 
1641 #if __STD_C
1642 static void do_check_free_chunk(mchunkptr p)
1643 #else
1644 static void do_check_free_chunk(p) mchunkptr p;
1645 #endif
1646 {
1647   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1648 #if 0	/* causes warnings because assert() is off */
1649   mchunkptr next = chunk_at_offset(p, sz);
1650 #endif	/* 0 */
1651 
1652   do_check_chunk(p);
1653 
1654   /* Check whether it claims to be free ... */
1655   assert(!inuse(p));
1656 
1657   /* Unless a special marker, must have OK fields */
1658   if ((long)sz >= (long)MINSIZE)
1659   {
1660     assert((sz & MALLOC_ALIGN_MASK) == 0);
1661     assert(aligned_OK(chunk2mem(p)));
1662     /* ... matching footer field */
1663     assert(next->prev_size == sz);
1664     /* ... and is fully consolidated */
1665     assert(prev_inuse(p));
1666     assert (next == top || inuse(next));
1667 
1668     /* ... and has minimally sane links */
1669     assert(p->fd->bk == p);
1670     assert(p->bk->fd == p);
1671   }
1672   else /* markers are always of size SIZE_SZ */
1673     assert(sz == SIZE_SZ);
1674 }
1675 
1676 #if __STD_C
1677 static void do_check_inuse_chunk(mchunkptr p)
1678 #else
1679 static void do_check_inuse_chunk(p) mchunkptr p;
1680 #endif
1681 {
1682   mchunkptr next = next_chunk(p);
1683   do_check_chunk(p);
1684 
1685   /* Check whether it claims to be in use ... */
1686   assert(inuse(p));
1687 
1688   /* ... and is surrounded by OK chunks.
1689     Since more things can be checked with free chunks than inuse ones,
1690     if an inuse chunk borders them and debug is on, it's worth doing them.
1691   */
1692   if (!prev_inuse(p))
1693   {
1694     mchunkptr prv = prev_chunk(p);
1695     assert(next_chunk(prv) == p);
1696     do_check_free_chunk(prv);
1697   }
1698   if (next == top)
1699   {
1700     assert(prev_inuse(next));
1701     assert(chunksize(next) >= MINSIZE);
1702   }
1703   else if (!inuse(next))
1704     do_check_free_chunk(next);
1705 
1706 }
1707 
1708 #if __STD_C
1709 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
1710 #else
1711 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
1712 #endif
1713 {
1714 #if 0	/* causes warnings because assert() is off */
1715   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1716   long room = sz - s;
1717 #endif	/* 0 */
1718 
1719   do_check_inuse_chunk(p);
1720 
1721   /* Legal size ... */
1722   assert((long)sz >= (long)MINSIZE);
1723   assert((sz & MALLOC_ALIGN_MASK) == 0);
1724   assert(room >= 0);
1725   assert(room < (long)MINSIZE);
1726 
1727   /* ... and alignment */
1728   assert(aligned_OK(chunk2mem(p)));
1729 
1730 
1731   /* ... and was allocated at front of an available chunk */
1732   assert(prev_inuse(p));
1733 
1734 }
1735 
1736 
1737 #define check_free_chunk(P)  do_check_free_chunk(P)
1738 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
1739 #define check_chunk(P) do_check_chunk(P)
1740 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
1741 #else
1742 #define check_free_chunk(P)
1743 #define check_inuse_chunk(P)
1744 #define check_chunk(P)
1745 #define check_malloced_chunk(P,N)
1746 #endif
1747 
1748 
1749 
1750 /*
1751   Macro-based internal utilities
1752 */
1753 
1754 
1755 /*
1756   Linking chunks in bin lists.
1757   Call these only with variables, not arbitrary expressions, as arguments.
1758 */
1759 
1760 /*
1761   Place chunk p of size s in its bin, in size order,
1762   putting it ahead of others of same size.
1763 */
1764 
1765 
1766 #define frontlink(P, S, IDX, BK, FD)                                          \
1767 {                                                                             \
1768   if (S < MAX_SMALLBIN_SIZE)                                                  \
1769   {                                                                           \
1770     IDX = smallbin_index(S);                                                  \
1771     mark_binblock(IDX);                                                       \
1772     BK = bin_at(IDX);                                                         \
1773     FD = BK->fd;                                                              \
1774     P->bk = BK;                                                               \
1775     P->fd = FD;                                                               \
1776     FD->bk = BK->fd = P;                                                      \
1777   }                                                                           \
1778   else                                                                        \
1779   {                                                                           \
1780     IDX = bin_index(S);                                                       \
1781     BK = bin_at(IDX);                                                         \
1782     FD = BK->fd;                                                              \
1783     if (FD == BK) mark_binblock(IDX);                                         \
1784     else                                                                      \
1785     {                                                                         \
1786       while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
1787       BK = FD->bk;                                                            \
1788     }                                                                         \
1789     P->bk = BK;                                                               \
1790     P->fd = FD;                                                               \
1791     FD->bk = BK->fd = P;                                                      \
1792   }                                                                           \
1793 }
1794 
1795 
1796 /* take a chunk off a list */
1797 
1798 #define unlink(P, BK, FD)                                                     \
1799 {                                                                             \
1800   BK = P->bk;                                                                 \
1801   FD = P->fd;                                                                 \
1802   FD->bk = BK;                                                                \
1803   BK->fd = FD;                                                                \
1804 }                                                                             \
1805 
1806 /* Place p as the last remainder */
1807 
1808 #define link_last_remainder(P)                                                \
1809 {                                                                             \
1810   last_remainder->fd = last_remainder->bk =  P;                               \
1811   P->fd = P->bk = last_remainder;                                             \
1812 }
1813 
1814 /* Clear the last_remainder bin */
1815 
1816 #define clear_last_remainder \
1817   (last_remainder->fd = last_remainder->bk = last_remainder)
1818 
1819 
1820 
1821 
1822 
1823 /* Routines dealing with mmap(). */
1824 
1825 #if HAVE_MMAP
1826 
1827 #if __STD_C
1828 static mchunkptr mmap_chunk(size_t size)
1829 #else
1830 static mchunkptr mmap_chunk(size) size_t size;
1831 #endif
1832 {
1833   size_t page_mask = malloc_getpagesize - 1;
1834   mchunkptr p;
1835 
1836 #ifndef MAP_ANONYMOUS
1837   static int fd = -1;
1838 #endif
1839 
1840   if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1841 
1842   /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1843    * there is no following chunk whose prev_size field could be used.
1844    */
1845   size = (size + SIZE_SZ + page_mask) & ~page_mask;
1846 
1847 #ifdef MAP_ANONYMOUS
1848   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1849 		      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1850 #else /* !MAP_ANONYMOUS */
1851   if (fd < 0)
1852   {
1853     fd = open("/dev/zero", O_RDWR);
1854     if(fd < 0) return 0;
1855   }
1856   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1857 #endif
1858 
1859   if(p == (mchunkptr)-1) return 0;
1860 
1861   n_mmaps++;
1862   if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1863 
1864   /* We demand that eight bytes into a page must be 8-byte aligned. */
1865   assert(aligned_OK(chunk2mem(p)));
1866 
1867   /* The offset to the start of the mmapped region is stored
1868    * in the prev_size field of the chunk; normally it is zero,
1869    * but that can be changed in memalign().
1870    */
1871   p->prev_size = 0;
1872   set_head(p, size|IS_MMAPPED);
1873 
1874   mmapped_mem += size;
1875   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1876     max_mmapped_mem = mmapped_mem;
1877   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1878     max_total_mem = mmapped_mem + sbrked_mem;
1879   return p;
1880 }
1881 
1882 #if __STD_C
1883 static void munmap_chunk(mchunkptr p)
1884 #else
1885 static void munmap_chunk(p) mchunkptr p;
1886 #endif
1887 {
1888   INTERNAL_SIZE_T size = chunksize(p);
1889   int ret;
1890 
1891   assert (chunk_is_mmapped(p));
1892   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1893   assert((n_mmaps > 0));
1894   assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1895 
1896   n_mmaps--;
1897   mmapped_mem -= (size + p->prev_size);
1898 
1899   ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1900 
1901   /* munmap returns non-zero on failure */
1902   assert(ret == 0);
1903 }
1904 
1905 #if HAVE_MREMAP
1906 
1907 #if __STD_C
1908 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1909 #else
1910 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1911 #endif
1912 {
1913   size_t page_mask = malloc_getpagesize - 1;
1914   INTERNAL_SIZE_T offset = p->prev_size;
1915   INTERNAL_SIZE_T size = chunksize(p);
1916   char *cp;
1917 
1918   assert (chunk_is_mmapped(p));
1919   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1920   assert((n_mmaps > 0));
1921   assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1922 
1923   /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1924   new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1925 
1926   cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1927 
1928   if (cp == (char *)-1) return 0;
1929 
1930   p = (mchunkptr)(cp + offset);
1931 
1932   assert(aligned_OK(chunk2mem(p)));
1933 
1934   assert((p->prev_size == offset));
1935   set_head(p, (new_size - offset)|IS_MMAPPED);
1936 
1937   mmapped_mem -= size + offset;
1938   mmapped_mem += new_size;
1939   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1940     max_mmapped_mem = mmapped_mem;
1941   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1942     max_total_mem = mmapped_mem + sbrked_mem;
1943   return p;
1944 }
1945 
1946 #endif /* HAVE_MREMAP */
1947 
1948 #endif /* HAVE_MMAP */
1949 
1950 
1951 
1952 
1953 /*
1954   Extend the top-most chunk by obtaining memory from system.
1955   Main interface to sbrk (but see also malloc_trim).
1956 */
1957 
1958 #if __STD_C
1959 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1960 #else
1961 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1962 #endif
1963 {
1964   char*     brk;                  /* return value from sbrk */
1965   INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1966   INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
1967   char*     new_brk;              /* return of 2nd sbrk call */
1968   INTERNAL_SIZE_T top_size;       /* new size of top chunk */
1969 
1970   mchunkptr old_top     = top;  /* Record state of old top */
1971   INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1972   char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
1973 
1974   /* Pad request with top_pad plus minimal overhead */
1975 
1976   INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
1977   unsigned long pagesz    = malloc_getpagesize;
1978 
1979   /* If not the first time through, round to preserve page boundary */
1980   /* Otherwise, we need to correct to a page size below anyway. */
1981   /* (We also correct below if an intervening foreign sbrk call.) */
1982 
1983   if (sbrk_base != (char*)(-1))
1984     sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1985 
1986   brk = (char*)(MORECORE (sbrk_size));
1987 
1988   /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1989   if (brk == (char*)(MORECORE_FAILURE) ||
1990       (brk < old_end && old_top != initial_top))
1991     return;
1992 
1993   sbrked_mem += sbrk_size;
1994 
1995   if (brk == old_end) /* can just add bytes to current top */
1996   {
1997     top_size = sbrk_size + old_top_size;
1998     set_head(top, top_size | PREV_INUSE);
1999   }
2000   else
2001   {
2002     if (sbrk_base == (char*)(-1))  /* First time through. Record base */
2003       sbrk_base = brk;
2004     else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
2005       sbrked_mem += brk - (char*)old_end;
2006 
2007     /* Guarantee alignment of first new chunk made from this space */
2008     front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2009     if (front_misalign > 0)
2010     {
2011       correction = (MALLOC_ALIGNMENT) - front_misalign;
2012       brk += correction;
2013     }
2014     else
2015       correction = 0;
2016 
2017     /* Guarantee the next brk will be at a page boundary */
2018 
2019     correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
2020 		   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
2021 
2022     /* Allocate correction */
2023     new_brk = (char*)(MORECORE (correction));
2024     if (new_brk == (char*)(MORECORE_FAILURE)) return;
2025 
2026     sbrked_mem += correction;
2027 
2028     top = (mchunkptr)brk;
2029     top_size = new_brk - brk + correction;
2030     set_head(top, top_size | PREV_INUSE);
2031 
2032     if (old_top != initial_top)
2033     {
2034 
2035       /* There must have been an intervening foreign sbrk call. */
2036       /* A double fencepost is necessary to prevent consolidation */
2037 
2038       /* If not enough space to do this, then user did something very wrong */
2039       if (old_top_size < MINSIZE)
2040       {
2041 	set_head(top, PREV_INUSE); /* will force null return from malloc */
2042 	return;
2043       }
2044 
2045       /* Also keep size a multiple of MALLOC_ALIGNMENT */
2046       old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2047       set_head_size(old_top, old_top_size);
2048       chunk_at_offset(old_top, old_top_size          )->size =
2049 	SIZE_SZ|PREV_INUSE;
2050       chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
2051 	SIZE_SZ|PREV_INUSE;
2052       /* If possible, release the rest. */
2053       if (old_top_size >= MINSIZE)
2054 	fREe(chunk2mem(old_top));
2055     }
2056   }
2057 
2058   if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2059     max_sbrked_mem = sbrked_mem;
2060   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2061     max_total_mem = mmapped_mem + sbrked_mem;
2062 
2063   /* We always land on a page boundary */
2064   assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
2065 }
2066 
2067 
2068 
2069 
2070 /* Main public routines */
2071 
2072 
2073 /*
2074   Malloc Algorthim:
2075 
2076     The requested size is first converted into a usable form, `nb'.
2077     This currently means to add 4 bytes overhead plus possibly more to
2078     obtain 8-byte alignment and/or to obtain a size of at least
2079     MINSIZE (currently 16 bytes), the smallest allocatable size.
2080     (All fits are considered `exact' if they are within MINSIZE bytes.)
2081 
2082     From there, the first successful of the following steps is taken:
2083 
2084       1. The bin corresponding to the request size is scanned, and if
2085 	 a chunk of exactly the right size is found, it is taken.
2086 
2087       2. The most recently remaindered chunk is used if it is big
2088 	 enough.  This is a form of (roving) first fit, used only in
2089 	 the absence of exact fits. Runs of consecutive requests use
2090 	 the remainder of the chunk used for the previous such request
2091 	 whenever possible. This limited use of a first-fit style
2092 	 allocation strategy tends to give contiguous chunks
2093 	 coextensive lifetimes, which improves locality and can reduce
2094 	 fragmentation in the long run.
2095 
2096       3. Other bins are scanned in increasing size order, using a
2097 	 chunk big enough to fulfill the request, and splitting off
2098 	 any remainder.  This search is strictly by best-fit; i.e.,
2099 	 the smallest (with ties going to approximately the least
2100 	 recently used) chunk that fits is selected.
2101 
2102       4. If large enough, the chunk bordering the end of memory
2103 	 (`top') is split off. (This use of `top' is in accord with
2104 	 the best-fit search rule.  In effect, `top' is treated as
2105 	 larger (and thus less well fitting) than any other available
2106 	 chunk since it can be extended to be as large as necessary
2107 	 (up to system limitations).
2108 
2109       5. If the request size meets the mmap threshold and the
2110 	 system supports mmap, and there are few enough currently
2111 	 allocated mmapped regions, and a call to mmap succeeds,
2112 	 the request is allocated via direct memory mapping.
2113 
2114       6. Otherwise, the top of memory is extended by
2115 	 obtaining more space from the system (normally using sbrk,
2116 	 but definable to anything else via the MORECORE macro).
2117 	 Memory is gathered from the system (in system page-sized
2118 	 units) in a way that allows chunks obtained across different
2119 	 sbrk calls to be consolidated, but does not require
2120 	 contiguous memory. Thus, it should be safe to intersperse
2121 	 mallocs with other sbrk calls.
2122 
2123 
2124       All allocations are made from the the `lowest' part of any found
2125       chunk. (The implementation invariant is that prev_inuse is
2126       always true of any allocated chunk; i.e., that each allocated
2127       chunk borders either a previously allocated and still in-use chunk,
2128       or the base of its memory arena.)
2129 
2130 */
2131 
2132 #if __STD_C
2133 Void_t* mALLOc(size_t bytes)
2134 #else
2135 Void_t* mALLOc(bytes) size_t bytes;
2136 #endif
2137 {
2138   mchunkptr victim;                  /* inspected/selected chunk */
2139   INTERNAL_SIZE_T victim_size;       /* its size */
2140   int       idx;                     /* index for bin traversal */
2141   mbinptr   bin;                     /* associated bin */
2142   mchunkptr remainder;               /* remainder from a split */
2143   long      remainder_size;          /* its size */
2144   int       remainder_index;         /* its bin index */
2145   unsigned long block;               /* block traverser bit */
2146   int       startidx;                /* first bin of a traversed block */
2147   mchunkptr fwd;                     /* misc temp for linking */
2148   mchunkptr bck;                     /* misc temp for linking */
2149   mbinptr q;                         /* misc temp */
2150 
2151   INTERNAL_SIZE_T nb;
2152 
2153   if ((long)bytes < 0) return 0;
2154 
2155   nb = request2size(bytes);  /* padded request size; */
2156 
2157   /* Check for exact match in a bin */
2158 
2159   if (is_small_request(nb))  /* Faster version for small requests */
2160   {
2161     idx = smallbin_index(nb);
2162 
2163     /* No traversal or size check necessary for small bins.  */
2164 
2165     q = bin_at(idx);
2166     victim = last(q);
2167 
2168     /* Also scan the next one, since it would have a remainder < MINSIZE */
2169     if (victim == q)
2170     {
2171       q = next_bin(q);
2172       victim = last(q);
2173     }
2174     if (victim != q)
2175     {
2176       victim_size = chunksize(victim);
2177       unlink(victim, bck, fwd);
2178       set_inuse_bit_at_offset(victim, victim_size);
2179       check_malloced_chunk(victim, nb);
2180       return chunk2mem(victim);
2181     }
2182 
2183     idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2184 
2185   }
2186   else
2187   {
2188     idx = bin_index(nb);
2189     bin = bin_at(idx);
2190 
2191     for (victim = last(bin); victim != bin; victim = victim->bk)
2192     {
2193       victim_size = chunksize(victim);
2194       remainder_size = victim_size - nb;
2195 
2196       if (remainder_size >= (long)MINSIZE) /* too big */
2197       {
2198 	--idx; /* adjust to rescan below after checking last remainder */
2199 	break;
2200       }
2201 
2202       else if (remainder_size >= 0) /* exact fit */
2203       {
2204 	unlink(victim, bck, fwd);
2205 	set_inuse_bit_at_offset(victim, victim_size);
2206 	check_malloced_chunk(victim, nb);
2207 	return chunk2mem(victim);
2208       }
2209     }
2210 
2211     ++idx;
2212 
2213   }
2214 
2215   /* Try to use the last split-off remainder */
2216 
2217   if ( (victim = last_remainder->fd) != last_remainder)
2218   {
2219     victim_size = chunksize(victim);
2220     remainder_size = victim_size - nb;
2221 
2222     if (remainder_size >= (long)MINSIZE) /* re-split */
2223     {
2224       remainder = chunk_at_offset(victim, nb);
2225       set_head(victim, nb | PREV_INUSE);
2226       link_last_remainder(remainder);
2227       set_head(remainder, remainder_size | PREV_INUSE);
2228       set_foot(remainder, remainder_size);
2229       check_malloced_chunk(victim, nb);
2230       return chunk2mem(victim);
2231     }
2232 
2233     clear_last_remainder;
2234 
2235     if (remainder_size >= 0)  /* exhaust */
2236     {
2237       set_inuse_bit_at_offset(victim, victim_size);
2238       check_malloced_chunk(victim, nb);
2239       return chunk2mem(victim);
2240     }
2241 
2242     /* Else place in bin */
2243 
2244     frontlink(victim, victim_size, remainder_index, bck, fwd);
2245   }
2246 
2247   /*
2248      If there are any possibly nonempty big-enough blocks,
2249      search for best fitting chunk by scanning bins in blockwidth units.
2250   */
2251 
2252   if ( (block = idx2binblock(idx)) <= binblocks)
2253   {
2254 
2255     /* Get to the first marked block */
2256 
2257     if ( (block & binblocks) == 0)
2258     {
2259       /* force to an even block boundary */
2260       idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2261       block <<= 1;
2262       while ((block & binblocks) == 0)
2263       {
2264 	idx += BINBLOCKWIDTH;
2265 	block <<= 1;
2266       }
2267     }
2268 
2269     /* For each possibly nonempty block ... */
2270     for (;;)
2271     {
2272       startidx = idx;          /* (track incomplete blocks) */
2273       q = bin = bin_at(idx);
2274 
2275       /* For each bin in this block ... */
2276       do
2277       {
2278 	/* Find and use first big enough chunk ... */
2279 
2280 	for (victim = last(bin); victim != bin; victim = victim->bk)
2281 	{
2282 	  victim_size = chunksize(victim);
2283 	  remainder_size = victim_size - nb;
2284 
2285 	  if (remainder_size >= (long)MINSIZE) /* split */
2286 	  {
2287 	    remainder = chunk_at_offset(victim, nb);
2288 	    set_head(victim, nb | PREV_INUSE);
2289 	    unlink(victim, bck, fwd);
2290 	    link_last_remainder(remainder);
2291 	    set_head(remainder, remainder_size | PREV_INUSE);
2292 	    set_foot(remainder, remainder_size);
2293 	    check_malloced_chunk(victim, nb);
2294 	    return chunk2mem(victim);
2295 	  }
2296 
2297 	  else if (remainder_size >= 0)  /* take */
2298 	  {
2299 	    set_inuse_bit_at_offset(victim, victim_size);
2300 	    unlink(victim, bck, fwd);
2301 	    check_malloced_chunk(victim, nb);
2302 	    return chunk2mem(victim);
2303 	  }
2304 
2305 	}
2306 
2307        bin = next_bin(bin);
2308 
2309       } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2310 
2311       /* Clear out the block bit. */
2312 
2313       do   /* Possibly backtrack to try to clear a partial block */
2314       {
2315 	if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2316 	{
2317 	  binblocks &= ~block;
2318 	  break;
2319 	}
2320 	--startidx;
2321        q = prev_bin(q);
2322       } while (first(q) == q);
2323 
2324       /* Get to the next possibly nonempty block */
2325 
2326       if ( (block <<= 1) <= binblocks && (block != 0) )
2327       {
2328 	while ((block & binblocks) == 0)
2329 	{
2330 	  idx += BINBLOCKWIDTH;
2331 	  block <<= 1;
2332 	}
2333       }
2334       else
2335 	break;
2336     }
2337   }
2338 
2339 
2340   /* Try to use top chunk */
2341 
2342   /* Require that there be a remainder, ensuring top always exists  */
2343   if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2344   {
2345 
2346 #if HAVE_MMAP
2347     /* If big and would otherwise need to extend, try to use mmap instead */
2348     if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2349 	(victim = mmap_chunk(nb)) != 0)
2350       return chunk2mem(victim);
2351 #endif
2352 
2353     /* Try to extend */
2354     malloc_extend_top(nb);
2355     if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2356       return 0; /* propagate failure */
2357   }
2358 
2359   victim = top;
2360   set_head(victim, nb | PREV_INUSE);
2361   top = chunk_at_offset(victim, nb);
2362   set_head(top, remainder_size | PREV_INUSE);
2363   check_malloced_chunk(victim, nb);
2364   return chunk2mem(victim);
2365 
2366 }
2367 
2368 
2369 
2370 
2371 /*
2372 
2373   free() algorithm :
2374 
2375     cases:
2376 
2377        1. free(0) has no effect.
2378 
2379        2. If the chunk was allocated via mmap, it is release via munmap().
2380 
2381        3. If a returned chunk borders the current high end of memory,
2382 	  it is consolidated into the top, and if the total unused
2383 	  topmost memory exceeds the trim threshold, malloc_trim is
2384 	  called.
2385 
2386        4. Other chunks are consolidated as they arrive, and
2387 	  placed in corresponding bins. (This includes the case of
2388 	  consolidating with the current `last_remainder').
2389 
2390 */
2391 
2392 
2393 #if __STD_C
2394 void fREe(Void_t* mem)
2395 #else
2396 void fREe(mem) Void_t* mem;
2397 #endif
2398 {
2399   mchunkptr p;         /* chunk corresponding to mem */
2400   INTERNAL_SIZE_T hd;  /* its head field */
2401   INTERNAL_SIZE_T sz;  /* its size */
2402   int       idx;       /* its bin index */
2403   mchunkptr next;      /* next contiguous chunk */
2404   INTERNAL_SIZE_T nextsz; /* its size */
2405   INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2406   mchunkptr bck;       /* misc temp for linking */
2407   mchunkptr fwd;       /* misc temp for linking */
2408   int       islr;      /* track whether merging with last_remainder */
2409 
2410   if (mem == 0)                              /* free(0) has no effect */
2411     return;
2412 
2413   p = mem2chunk(mem);
2414   hd = p->size;
2415 
2416 #if HAVE_MMAP
2417   if (hd & IS_MMAPPED)                       /* release mmapped memory. */
2418   {
2419     munmap_chunk(p);
2420     return;
2421   }
2422 #endif
2423 
2424   check_inuse_chunk(p);
2425 
2426   sz = hd & ~PREV_INUSE;
2427   next = chunk_at_offset(p, sz);
2428   nextsz = chunksize(next);
2429 
2430   if (next == top)                            /* merge with top */
2431   {
2432     sz += nextsz;
2433 
2434     if (!(hd & PREV_INUSE))                    /* consolidate backward */
2435     {
2436       prevsz = p->prev_size;
2437       p = chunk_at_offset(p, -((long) prevsz));
2438       sz += prevsz;
2439       unlink(p, bck, fwd);
2440     }
2441 
2442     set_head(p, sz | PREV_INUSE);
2443     top = p;
2444     if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2445       malloc_trim(top_pad);
2446     return;
2447   }
2448 
2449   set_head(next, nextsz);                    /* clear inuse bit */
2450 
2451   islr = 0;
2452 
2453   if (!(hd & PREV_INUSE))                    /* consolidate backward */
2454   {
2455     prevsz = p->prev_size;
2456     p = chunk_at_offset(p, -((long) prevsz));
2457     sz += prevsz;
2458 
2459     if (p->fd == last_remainder)             /* keep as last_remainder */
2460       islr = 1;
2461     else
2462       unlink(p, bck, fwd);
2463   }
2464 
2465   if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
2466   {
2467     sz += nextsz;
2468 
2469     if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
2470     {
2471       islr = 1;
2472       link_last_remainder(p);
2473     }
2474     else
2475       unlink(next, bck, fwd);
2476   }
2477 
2478 
2479   set_head(p, sz | PREV_INUSE);
2480   set_foot(p, sz);
2481   if (!islr)
2482     frontlink(p, sz, idx, bck, fwd);
2483 }
2484 
2485 
2486 
2487 
2488 
2489 /*
2490 
2491   Realloc algorithm:
2492 
2493     Chunks that were obtained via mmap cannot be extended or shrunk
2494     unless HAVE_MREMAP is defined, in which case mremap is used.
2495     Otherwise, if their reallocation is for additional space, they are
2496     copied.  If for less, they are just left alone.
2497 
2498     Otherwise, if the reallocation is for additional space, and the
2499     chunk can be extended, it is, else a malloc-copy-free sequence is
2500     taken.  There are several different ways that a chunk could be
2501     extended. All are tried:
2502 
2503        * Extending forward into following adjacent free chunk.
2504        * Shifting backwards, joining preceding adjacent space
2505        * Both shifting backwards and extending forward.
2506        * Extending into newly sbrked space
2507 
2508     Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2509     size argument of zero (re)allocates a minimum-sized chunk.
2510 
2511     If the reallocation is for less space, and the new request is for
2512     a `small' (<512 bytes) size, then the newly unused space is lopped
2513     off and freed.
2514 
2515     The old unix realloc convention of allowing the last-free'd chunk
2516     to be used as an argument to realloc is no longer supported.
2517     I don't know of any programs still relying on this feature,
2518     and allowing it would also allow too many other incorrect
2519     usages of realloc to be sensible.
2520 
2521 
2522 */
2523 
2524 
2525 #if __STD_C
2526 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
2527 #else
2528 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
2529 #endif
2530 {
2531   INTERNAL_SIZE_T    nb;      /* padded request size */
2532 
2533   mchunkptr oldp;             /* chunk corresponding to oldmem */
2534   INTERNAL_SIZE_T    oldsize; /* its size */
2535 
2536   mchunkptr newp;             /* chunk to return */
2537   INTERNAL_SIZE_T    newsize; /* its size */
2538   Void_t*   newmem;           /* corresponding user mem */
2539 
2540   mchunkptr next;             /* next contiguous chunk after oldp */
2541   INTERNAL_SIZE_T  nextsize;  /* its size */
2542 
2543   mchunkptr prev;             /* previous contiguous chunk before oldp */
2544   INTERNAL_SIZE_T  prevsize;  /* its size */
2545 
2546   mchunkptr remainder;        /* holds split off extra space from newp */
2547   INTERNAL_SIZE_T  remainder_size;   /* its size */
2548 
2549   mchunkptr bck;              /* misc temp for linking */
2550   mchunkptr fwd;              /* misc temp for linking */
2551 
2552 #ifdef REALLOC_ZERO_BYTES_FREES
2553   if (bytes == 0) { fREe(oldmem); return 0; }
2554 #endif
2555 
2556   if ((long)bytes < 0) return 0;
2557 
2558   /* realloc of null is supposed to be same as malloc */
2559   if (oldmem == 0) return mALLOc(bytes);
2560 
2561   newp    = oldp    = mem2chunk(oldmem);
2562   newsize = oldsize = chunksize(oldp);
2563 
2564 
2565   nb = request2size(bytes);
2566 
2567 #if HAVE_MMAP
2568   if (chunk_is_mmapped(oldp))
2569   {
2570 #if HAVE_MREMAP
2571     newp = mremap_chunk(oldp, nb);
2572     if(newp) return chunk2mem(newp);
2573 #endif
2574     /* Note the extra SIZE_SZ overhead. */
2575     if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2576     /* Must alloc, copy, free. */
2577     newmem = mALLOc(bytes);
2578     if (newmem == 0) return 0; /* propagate failure */
2579     MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2580     munmap_chunk(oldp);
2581     return newmem;
2582   }
2583 #endif
2584 
2585   check_inuse_chunk(oldp);
2586 
2587   if ((long)(oldsize) < (long)(nb))
2588   {
2589 
2590     /* Try expanding forward */
2591 
2592     next = chunk_at_offset(oldp, oldsize);
2593     if (next == top || !inuse(next))
2594     {
2595       nextsize = chunksize(next);
2596 
2597       /* Forward into top only if a remainder */
2598       if (next == top)
2599       {
2600 	if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
2601 	{
2602 	  newsize += nextsize;
2603 	  top = chunk_at_offset(oldp, nb);
2604 	  set_head(top, (newsize - nb) | PREV_INUSE);
2605 	  set_head_size(oldp, nb);
2606 	  return chunk2mem(oldp);
2607 	}
2608       }
2609 
2610       /* Forward into next chunk */
2611       else if (((long)(nextsize + newsize) >= (long)(nb)))
2612       {
2613 	unlink(next, bck, fwd);
2614 	newsize  += nextsize;
2615 	goto split;
2616       }
2617     }
2618     else
2619     {
2620       next = 0;
2621       nextsize = 0;
2622     }
2623 
2624     /* Try shifting backwards. */
2625 
2626     if (!prev_inuse(oldp))
2627     {
2628       prev = prev_chunk(oldp);
2629       prevsize = chunksize(prev);
2630 
2631       /* try forward + backward first to save a later consolidation */
2632 
2633       if (next != 0)
2634       {
2635 	/* into top */
2636 	if (next == top)
2637 	{
2638 	  if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
2639 	  {
2640 	    unlink(prev, bck, fwd);
2641 	    newp = prev;
2642 	    newsize += prevsize + nextsize;
2643 	    newmem = chunk2mem(newp);
2644 	    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2645 	    top = chunk_at_offset(newp, nb);
2646 	    set_head(top, (newsize - nb) | PREV_INUSE);
2647 	    set_head_size(newp, nb);
2648 	    return newmem;
2649 	  }
2650 	}
2651 
2652 	/* into next chunk */
2653 	else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
2654 	{
2655 	  unlink(next, bck, fwd);
2656 	  unlink(prev, bck, fwd);
2657 	  newp = prev;
2658 	  newsize += nextsize + prevsize;
2659 	  newmem = chunk2mem(newp);
2660 	  MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2661 	  goto split;
2662 	}
2663       }
2664 
2665       /* backward only */
2666       if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
2667       {
2668 	unlink(prev, bck, fwd);
2669 	newp = prev;
2670 	newsize += prevsize;
2671 	newmem = chunk2mem(newp);
2672 	MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2673 	goto split;
2674       }
2675     }
2676 
2677     /* Must allocate */
2678 
2679     newmem = mALLOc (bytes);
2680 
2681     if (newmem == 0)  /* propagate failure */
2682       return 0;
2683 
2684     /* Avoid copy if newp is next chunk after oldp. */
2685     /* (This can only happen when new chunk is sbrk'ed.) */
2686 
2687     if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
2688     {
2689       newsize += chunksize(newp);
2690       newp = oldp;
2691       goto split;
2692     }
2693 
2694     /* Otherwise copy, free, and exit */
2695     MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2696     fREe(oldmem);
2697     return newmem;
2698   }
2699 
2700 
2701  split:  /* split off extra room in old or expanded chunk */
2702 
2703   if (newsize - nb >= MINSIZE) /* split off remainder */
2704   {
2705     remainder = chunk_at_offset(newp, nb);
2706     remainder_size = newsize - nb;
2707     set_head_size(newp, nb);
2708     set_head(remainder, remainder_size | PREV_INUSE);
2709     set_inuse_bit_at_offset(remainder, remainder_size);
2710     fREe(chunk2mem(remainder)); /* let free() deal with it */
2711   }
2712   else
2713   {
2714     set_head_size(newp, newsize);
2715     set_inuse_bit_at_offset(newp, newsize);
2716   }
2717 
2718   check_inuse_chunk(newp);
2719   return chunk2mem(newp);
2720 }
2721 
2722 
2723 
2724 
2725 /*
2726 
2727   memalign algorithm:
2728 
2729     memalign requests more than enough space from malloc, finds a spot
2730     within that chunk that meets the alignment request, and then
2731     possibly frees the leading and trailing space.
2732 
2733     The alignment argument must be a power of two. This property is not
2734     checked by memalign, so misuse may result in random runtime errors.
2735 
2736     8-byte alignment is guaranteed by normal malloc calls, so don't
2737     bother calling memalign with an argument of 8 or less.
2738 
2739     Overreliance on memalign is a sure way to fragment space.
2740 
2741 */
2742 
2743 
2744 #if __STD_C
2745 Void_t* mEMALIGn(size_t alignment, size_t bytes)
2746 #else
2747 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
2748 #endif
2749 {
2750   INTERNAL_SIZE_T    nb;      /* padded  request size */
2751   char*     m;                /* memory returned by malloc call */
2752   mchunkptr p;                /* corresponding chunk */
2753   char*     brk;              /* alignment point within p */
2754   mchunkptr newp;             /* chunk to return */
2755   INTERNAL_SIZE_T  newsize;   /* its size */
2756   INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
2757   mchunkptr remainder;        /* spare room at end to split off */
2758   long      remainder_size;   /* its size */
2759 
2760   if ((long)bytes < 0) return 0;
2761 
2762   /* If need less alignment than we give anyway, just relay to malloc */
2763 
2764   if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
2765 
2766   /* Otherwise, ensure that it is at least a minimum chunk size */
2767 
2768   if (alignment <  MINSIZE) alignment = MINSIZE;
2769 
2770   /* Call malloc with worst case padding to hit alignment. */
2771 
2772   nb = request2size(bytes);
2773   m  = (char*)(mALLOc(nb + alignment + MINSIZE));
2774 
2775   if (m == 0) return 0; /* propagate failure */
2776 
2777   p = mem2chunk(m);
2778 
2779   if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2780   {
2781 #if HAVE_MMAP
2782     if(chunk_is_mmapped(p))
2783       return chunk2mem(p); /* nothing more to do */
2784 #endif
2785   }
2786   else /* misaligned */
2787   {
2788     /*
2789       Find an aligned spot inside chunk.
2790       Since we need to give back leading space in a chunk of at
2791       least MINSIZE, if the first calculation places us at
2792       a spot with less than MINSIZE leader, we can move to the
2793       next aligned spot -- we've allocated enough total room so that
2794       this is always possible.
2795     */
2796 
2797     brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2798     if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2799 
2800     newp = (mchunkptr)brk;
2801     leadsize = brk - (char*)(p);
2802     newsize = chunksize(p) - leadsize;
2803 
2804 #if HAVE_MMAP
2805     if(chunk_is_mmapped(p))
2806     {
2807       newp->prev_size = p->prev_size + leadsize;
2808       set_head(newp, newsize|IS_MMAPPED);
2809       return chunk2mem(newp);
2810     }
2811 #endif
2812 
2813     /* give back leader, use the rest */
2814 
2815     set_head(newp, newsize | PREV_INUSE);
2816     set_inuse_bit_at_offset(newp, newsize);
2817     set_head_size(p, leadsize);
2818     fREe(chunk2mem(p));
2819     p = newp;
2820 
2821     assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2822   }
2823 
2824   /* Also give back spare room at the end */
2825 
2826   remainder_size = chunksize(p) - nb;
2827 
2828   if (remainder_size >= (long)MINSIZE)
2829   {
2830     remainder = chunk_at_offset(p, nb);
2831     set_head(remainder, remainder_size | PREV_INUSE);
2832     set_head_size(p, nb);
2833     fREe(chunk2mem(remainder));
2834   }
2835 
2836   check_inuse_chunk(p);
2837   return chunk2mem(p);
2838 
2839 }
2840 
2841 
2842 
2843 
2844 /*
2845     valloc just invokes memalign with alignment argument equal
2846     to the page size of the system (or as near to this as can
2847     be figured out from all the includes/defines above.)
2848 */
2849 
2850 #if __STD_C
2851 Void_t* vALLOc(size_t bytes)
2852 #else
2853 Void_t* vALLOc(bytes) size_t bytes;
2854 #endif
2855 {
2856   return mEMALIGn (malloc_getpagesize, bytes);
2857 }
2858 
2859 /*
2860   pvalloc just invokes valloc for the nearest pagesize
2861   that will accommodate request
2862 */
2863 
2864 
2865 #if __STD_C
2866 Void_t* pvALLOc(size_t bytes)
2867 #else
2868 Void_t* pvALLOc(bytes) size_t bytes;
2869 #endif
2870 {
2871   size_t pagesize = malloc_getpagesize;
2872   return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2873 }
2874 
2875 /*
2876 
2877   calloc calls malloc, then zeroes out the allocated chunk.
2878 
2879 */
2880 
2881 #if __STD_C
2882 Void_t* cALLOc(size_t n, size_t elem_size)
2883 #else
2884 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2885 #endif
2886 {
2887   mchunkptr p;
2888   INTERNAL_SIZE_T csz;
2889 
2890   INTERNAL_SIZE_T sz = n * elem_size;
2891 
2892 
2893   /* check if expand_top called, in which case don't need to clear */
2894 #if MORECORE_CLEARS
2895   mchunkptr oldtop = top;
2896   INTERNAL_SIZE_T oldtopsize = chunksize(top);
2897 #endif
2898   Void_t* mem = mALLOc (sz);
2899 
2900   if ((long)n < 0) return 0;
2901 
2902   if (mem == 0)
2903     return 0;
2904   else
2905   {
2906     p = mem2chunk(mem);
2907 
2908     /* Two optional cases in which clearing not necessary */
2909 
2910 
2911 #if HAVE_MMAP
2912     if (chunk_is_mmapped(p)) return mem;
2913 #endif
2914 
2915     csz = chunksize(p);
2916 
2917 #if MORECORE_CLEARS
2918     if (p == oldtop && csz > oldtopsize)
2919     {
2920       /* clear only the bytes from non-freshly-sbrked memory */
2921       csz = oldtopsize;
2922     }
2923 #endif
2924 
2925     MALLOC_ZERO(mem, csz - SIZE_SZ);
2926     return mem;
2927   }
2928 }
2929 
2930 /*
2931 
2932   cfree just calls free. It is needed/defined on some systems
2933   that pair it with calloc, presumably for odd historical reasons.
2934 
2935 */
2936 
2937 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2938 #if __STD_C
2939 void cfree(Void_t *mem)
2940 #else
2941 void cfree(mem) Void_t *mem;
2942 #endif
2943 {
2944   fREe(mem);
2945 }
2946 #endif
2947 
2948 
2949 
2950 /*
2951 
2952     Malloc_trim gives memory back to the system (via negative
2953     arguments to sbrk) if there is unused memory at the `high' end of
2954     the malloc pool. You can call this after freeing large blocks of
2955     memory to potentially reduce the system-level memory requirements
2956     of a program. However, it cannot guarantee to reduce memory. Under
2957     some allocation patterns, some large free blocks of memory will be
2958     locked between two used chunks, so they cannot be given back to
2959     the system.
2960 
2961     The `pad' argument to malloc_trim represents the amount of free
2962     trailing space to leave untrimmed. If this argument is zero,
2963     only the minimum amount of memory to maintain internal data
2964     structures will be left (one page or less). Non-zero arguments
2965     can be supplied to maintain enough trailing space to service
2966     future expected allocations without having to re-obtain memory
2967     from the system.
2968 
2969     Malloc_trim returns 1 if it actually released any memory, else 0.
2970 
2971 */
2972 
2973 #if __STD_C
2974 int malloc_trim(size_t pad)
2975 #else
2976 int malloc_trim(pad) size_t pad;
2977 #endif
2978 {
2979   long  top_size;        /* Amount of top-most memory */
2980   long  extra;           /* Amount to release */
2981   char* current_brk;     /* address returned by pre-check sbrk call */
2982   char* new_brk;         /* address returned by negative sbrk call */
2983 
2984   unsigned long pagesz = malloc_getpagesize;
2985 
2986   top_size = chunksize(top);
2987   extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2988 
2989   if (extra < (long)pagesz)  /* Not enough memory to release */
2990     return 0;
2991 
2992   else
2993   {
2994     /* Test to make sure no one else called sbrk */
2995     current_brk = (char*)(MORECORE (0));
2996     if (current_brk != (char*)(top) + top_size)
2997       return 0;     /* Apparently we don't own memory; must fail */
2998 
2999     else
3000     {
3001       new_brk = (char*)(MORECORE (-extra));
3002 
3003       if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
3004       {
3005 	/* Try to figure out what we have */
3006 	current_brk = (char*)(MORECORE (0));
3007 	top_size = current_brk - (char*)top;
3008 	if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3009 	{
3010 	  sbrked_mem = current_brk - sbrk_base;
3011 	  set_head(top, top_size | PREV_INUSE);
3012 	}
3013 	check_chunk(top);
3014 	return 0;
3015       }
3016 
3017       else
3018       {
3019 	/* Success. Adjust top accordingly. */
3020 	set_head(top, (top_size - extra) | PREV_INUSE);
3021 	sbrked_mem -= extra;
3022 	check_chunk(top);
3023 	return 1;
3024       }
3025     }
3026   }
3027 }
3028 
3029 
3030 
3031 /*
3032   malloc_usable_size:
3033 
3034     This routine tells you how many bytes you can actually use in an
3035     allocated chunk, which may be more than you requested (although
3036     often not). You can use this many bytes without worrying about
3037     overwriting other allocated objects. Not a particularly great
3038     programming practice, but still sometimes useful.
3039 
3040 */
3041 
3042 #if __STD_C
3043 size_t malloc_usable_size(Void_t* mem)
3044 #else
3045 size_t malloc_usable_size(mem) Void_t* mem;
3046 #endif
3047 {
3048   mchunkptr p;
3049   if (mem == 0)
3050     return 0;
3051   else
3052   {
3053     p = mem2chunk(mem);
3054     if(!chunk_is_mmapped(p))
3055     {
3056       if (!inuse(p)) return 0;
3057       check_inuse_chunk(p);
3058       return chunksize(p) - SIZE_SZ;
3059     }
3060     return chunksize(p) - 2*SIZE_SZ;
3061   }
3062 }
3063 
3064 
3065 
3066 
3067 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
3068 
3069 #if 0
3070 static void malloc_update_mallinfo()
3071 {
3072   int i;
3073   mbinptr b;
3074   mchunkptr p;
3075 #ifdef DEBUG
3076   mchunkptr q;
3077 #endif
3078 
3079   INTERNAL_SIZE_T avail = chunksize(top);
3080   int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3081 
3082   for (i = 1; i < NAV; ++i)
3083   {
3084     b = bin_at(i);
3085     for (p = last(b); p != b; p = p->bk)
3086     {
3087 #ifdef DEBUG
3088       check_free_chunk(p);
3089       for (q = next_chunk(p);
3090 	   q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
3091 	   q = next_chunk(q))
3092 	check_inuse_chunk(q);
3093 #endif
3094       avail += chunksize(p);
3095       navail++;
3096     }
3097   }
3098 
3099   current_mallinfo.ordblks = navail;
3100   current_mallinfo.uordblks = sbrked_mem - avail;
3101   current_mallinfo.fordblks = avail;
3102   current_mallinfo.hblks = n_mmaps;
3103   current_mallinfo.hblkhd = mmapped_mem;
3104   current_mallinfo.keepcost = chunksize(top);
3105 
3106 }
3107 #endif	/* 0 */
3108 
3109 
3110 
3111 /*
3112 
3113   malloc_stats:
3114 
3115     Prints on the amount of space obtain from the system (both
3116     via sbrk and mmap), the maximum amount (which may be more than
3117     current if malloc_trim and/or munmap got called), the maximum
3118     number of simultaneous mmap regions used, and the current number
3119     of bytes allocated via malloc (or realloc, etc) but not yet
3120     freed. (Note that this is the number of bytes allocated, not the
3121     number requested. It will be larger than the number requested
3122     because of alignment and bookkeeping overhead.)
3123 
3124 */
3125 
3126 #if 0
3127 void malloc_stats()
3128 {
3129   malloc_update_mallinfo();
3130   printf("max system bytes = %10u\n",
3131 	  (unsigned int)(max_total_mem));
3132   printf("system bytes     = %10u\n",
3133 	  (unsigned int)(sbrked_mem + mmapped_mem));
3134   printf("in use bytes     = %10u\n",
3135 	  (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
3136 #if HAVE_MMAP
3137   printf("max mmap regions = %10u\n",
3138 	  (unsigned int)max_n_mmaps);
3139 #endif
3140 }
3141 #endif	/* 0 */
3142 
3143 /*
3144   mallinfo returns a copy of updated current mallinfo.
3145 */
3146 
3147 #if 0
3148 struct mallinfo mALLINFo()
3149 {
3150   malloc_update_mallinfo();
3151   return current_mallinfo;
3152 }
3153 #endif	/* 0 */
3154 
3155 
3156 
3157 
3158 /*
3159   mallopt:
3160 
3161     mallopt is the general SVID/XPG interface to tunable parameters.
3162     The format is to provide a (parameter-number, parameter-value) pair.
3163     mallopt then sets the corresponding parameter to the argument
3164     value if it can (i.e., so long as the value is meaningful),
3165     and returns 1 if successful else 0.
3166 
3167     See descriptions of tunable parameters above.
3168 
3169 */
3170 
3171 #if __STD_C
3172 int mALLOPt(int param_number, int value)
3173 #else
3174 int mALLOPt(param_number, value) int param_number; int value;
3175 #endif
3176 {
3177   switch(param_number)
3178   {
3179     case M_TRIM_THRESHOLD:
3180       trim_threshold = value; return 1;
3181     case M_TOP_PAD:
3182       top_pad = value; return 1;
3183     case M_MMAP_THRESHOLD:
3184       mmap_threshold = value; return 1;
3185     case M_MMAP_MAX:
3186 #if HAVE_MMAP
3187       n_mmaps_max = value; return 1;
3188 #else
3189       if (value != 0) return 0; else  n_mmaps_max = value; return 1;
3190 #endif
3191 
3192     default:
3193       return 0;
3194   }
3195 }
3196 
3197 /*
3198 
3199 History:
3200 
3201     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
3202       * return null for negative arguments
3203       * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
3204 	 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
3205 	  (e.g. WIN32 platforms)
3206 	 * Cleanup up header file inclusion for WIN32 platforms
3207 	 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
3208 	 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
3209 	   memory allocation routines
3210 	 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
3211 	 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
3212 	   usage of 'assert' in non-WIN32 code
3213 	 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
3214 	   avoid infinite loop
3215       * Always call 'fREe()' rather than 'free()'
3216 
3217     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
3218       * Fixed ordering problem with boundary-stamping
3219 
3220     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
3221       * Added pvalloc, as recommended by H.J. Liu
3222       * Added 64bit pointer support mainly from Wolfram Gloger
3223       * Added anonymously donated WIN32 sbrk emulation
3224       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
3225       * malloc_extend_top: fix mask error that caused wastage after
3226 	foreign sbrks
3227       * Add linux mremap support code from HJ Liu
3228 
3229     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
3230       * Integrated most documentation with the code.
3231       * Add support for mmap, with help from
3232 	Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3233       * Use last_remainder in more cases.
3234       * Pack bins using idea from  colin@nyx10.cs.du.edu
3235       * Use ordered bins instead of best-fit threshhold
3236       * Eliminate block-local decls to simplify tracing and debugging.
3237       * Support another case of realloc via move into top
3238       * Fix error occuring when initial sbrk_base not word-aligned.
3239       * Rely on page size for units instead of SBRK_UNIT to
3240 	avoid surprises about sbrk alignment conventions.
3241       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
3242 	(raymond@es.ele.tue.nl) for the suggestion.
3243       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
3244       * More precautions for cases where other routines call sbrk,
3245 	courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3246       * Added macros etc., allowing use in linux libc from
3247 	H.J. Lu (hjl@gnu.ai.mit.edu)
3248       * Inverted this history list
3249 
3250     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
3251       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
3252       * Removed all preallocation code since under current scheme
3253 	the work required to undo bad preallocations exceeds
3254 	the work saved in good cases for most test programs.
3255       * No longer use return list or unconsolidated bins since
3256 	no scheme using them consistently outperforms those that don't
3257 	given above changes.
3258       * Use best fit for very large chunks to prevent some worst-cases.
3259       * Added some support for debugging
3260 
3261     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
3262       * Removed footers when chunks are in use. Thanks to
3263 	Paul Wilson (wilson@cs.texas.edu) for the suggestion.
3264 
3265     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
3266       * Added malloc_trim, with help from Wolfram Gloger
3267 	(wmglo@Dent.MED.Uni-Muenchen.DE).
3268 
3269     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
3270 
3271     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
3272       * realloc: try to expand in both directions
3273       * malloc: swap order of clean-bin strategy;
3274       * realloc: only conditionally expand backwards
3275       * Try not to scavenge used bins
3276       * Use bin counts as a guide to preallocation
3277       * Occasionally bin return list chunks in first scan
3278       * Add a few optimizations from colin@nyx10.cs.du.edu
3279 
3280     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
3281       * faster bin computation & slightly different binning
3282       * merged all consolidations to one part of malloc proper
3283 	 (eliminating old malloc_find_space & malloc_clean_bin)
3284       * Scan 2 returns chunks (not just 1)
3285       * Propagate failure in realloc if malloc returns 0
3286       * Add stuff to allow compilation on non-ANSI compilers
3287 	  from kpv@research.att.com
3288 
3289     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
3290       * removed potential for odd address access in prev_chunk
3291       * removed dependency on getpagesize.h
3292       * misc cosmetics and a bit more internal documentation
3293       * anticosmetics: mangled names in macros to evade debugger strangeness
3294       * tested on sparc, hp-700, dec-mips, rs6000
3295 	  with gcc & native cc (hp, dec only) allowing
3296 	  Detlefs & Zorn comparison study (in SIGPLAN Notices.)
3297 
3298     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
3299       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
3300 	 structure of old version,  but most details differ.)
3301 
3302 */
3303