1 #if 0 /* Moved to malloc.h */ 2 /* ---------- To make a malloc.h, start cutting here ------------ */ 3 4 /* 5 A version of malloc/free/realloc written by Doug Lea and released to the 6 public domain. Send questions/comments/complaints/performance data 7 to dl@cs.oswego.edu 8 9 * VERSION 2.6.6 Sun Mar 5 19:10:03 2000 Doug Lea (dl at gee) 10 11 Note: There may be an updated version of this malloc obtainable at 12 ftp://g.oswego.edu/pub/misc/malloc.c 13 Check before installing! 14 15 * Why use this malloc? 16 17 This is not the fastest, most space-conserving, most portable, or 18 most tunable malloc ever written. However it is among the fastest 19 while also being among the most space-conserving, portable and tunable. 20 Consistent balance across these factors results in a good general-purpose 21 allocator. For a high-level description, see 22 http://g.oswego.edu/dl/html/malloc.html 23 24 * Synopsis of public routines 25 26 (Much fuller descriptions are contained in the program documentation below.) 27 28 malloc(size_t n); 29 Return a pointer to a newly allocated chunk of at least n bytes, or null 30 if no space is available. 31 free(Void_t* p); 32 Release the chunk of memory pointed to by p, or no effect if p is null. 33 realloc(Void_t* p, size_t n); 34 Return a pointer to a chunk of size n that contains the same data 35 as does chunk p up to the minimum of (n, p's size) bytes, or null 36 if no space is available. The returned pointer may or may not be 37 the same as p. If p is null, equivalent to malloc. Unless the 38 #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a 39 size argument of zero (re)allocates a minimum-sized chunk. 40 memalign(size_t alignment, size_t n); 41 Return a pointer to a newly allocated chunk of n bytes, aligned 42 in accord with the alignment argument, which must be a power of 43 two. 44 valloc(size_t n); 45 Equivalent to memalign(pagesize, n), where pagesize is the page 46 size of the system (or as near to this as can be figured out from 47 all the includes/defines below.) 48 pvalloc(size_t n); 49 Equivalent to valloc(minimum-page-that-holds(n)), that is, 50 round up n to nearest pagesize. 51 calloc(size_t unit, size_t quantity); 52 Returns a pointer to quantity * unit bytes, with all locations 53 set to zero. 54 cfree(Void_t* p); 55 Equivalent to free(p). 56 malloc_trim(size_t pad); 57 Release all but pad bytes of freed top-most memory back 58 to the system. Return 1 if successful, else 0. 59 malloc_usable_size(Void_t* p); 60 Report the number usable allocated bytes associated with allocated 61 chunk p. This may or may not report more bytes than were requested, 62 due to alignment and minimum size constraints. 63 malloc_stats(); 64 Prints brief summary statistics. 65 mallinfo() 66 Returns (by copy) a struct containing various summary statistics. 67 mallopt(int parameter_number, int parameter_value) 68 Changes one of the tunable parameters described below. Returns 69 1 if successful in changing the parameter, else 0. 70 71 * Vital statistics: 72 73 Alignment: 8-byte 74 8 byte alignment is currently hardwired into the design. This 75 seems to suffice for all current machines and C compilers. 76 77 Assumed pointer representation: 4 or 8 bytes 78 Code for 8-byte pointers is untested by me but has worked 79 reliably by Wolfram Gloger, who contributed most of the 80 changes supporting this. 81 82 Assumed size_t representation: 4 or 8 bytes 83 Note that size_t is allowed to be 4 bytes even if pointers are 8. 84 85 Minimum overhead per allocated chunk: 4 or 8 bytes 86 Each malloced chunk has a hidden overhead of 4 bytes holding size 87 and status information. 88 89 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead) 90 8-byte ptrs: 24/32 bytes (including, 4/8 overhead) 91 92 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte 93 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are 94 needed; 4 (8) for a trailing size field 95 and 8 (16) bytes for free list pointers. Thus, the minimum 96 allocatable size is 16/24/32 bytes. 97 98 Even a request for zero bytes (i.e., malloc(0)) returns a 99 pointer to something of the minimum allocatable size. 100 101 Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes 102 8-byte size_t: 2^63 - 16 bytes 103 104 It is assumed that (possibly signed) size_t bit values suffice to 105 represent chunk sizes. `Possibly signed' is due to the fact 106 that `size_t' may be defined on a system as either a signed or 107 an unsigned type. To be conservative, values that would appear 108 as negative numbers are avoided. 109 Requests for sizes with a negative sign bit when the request 110 size is treaded as a long will return null. 111 112 Maximum overhead wastage per allocated chunk: normally 15 bytes 113 114 Alignnment demands, plus the minimum allocatable size restriction 115 make the normal worst-case wastage 15 bytes (i.e., up to 15 116 more bytes will be allocated than were requested in malloc), with 117 two exceptions: 118 1. Because requests for zero bytes allocate non-zero space, 119 the worst case wastage for a request of zero bytes is 24 bytes. 120 2. For requests >= mmap_threshold that are serviced via 121 mmap(), the worst case wastage is 8 bytes plus the remainder 122 from a system page (the minimal mmap unit); typically 4096 bytes. 123 124 * Limitations 125 126 Here are some features that are NOT currently supported 127 128 * No user-definable hooks for callbacks and the like. 129 * No automated mechanism for fully checking that all accesses 130 to malloced memory stay within their bounds. 131 * No support for compaction. 132 133 * Synopsis of compile-time options: 134 135 People have reported using previous versions of this malloc on all 136 versions of Unix, sometimes by tweaking some of the defines 137 below. It has been tested most extensively on Solaris and 138 Linux. It is also reported to work on WIN32 platforms. 139 People have also reported adapting this malloc for use in 140 stand-alone embedded systems. 141 142 The implementation is in straight, hand-tuned ANSI C. Among other 143 consequences, it uses a lot of macros. Because of this, to be at 144 all usable, this code should be compiled using an optimizing compiler 145 (for example gcc -O2) that can simplify expressions and control 146 paths. 147 148 __STD_C (default: derived from C compiler defines) 149 Nonzero if using ANSI-standard C compiler, a C++ compiler, or 150 a C compiler sufficiently close to ANSI to get away with it. 151 DEBUG (default: NOT defined) 152 Define to enable debugging. Adds fairly extensive assertion-based 153 checking to help track down memory errors, but noticeably slows down 154 execution. 155 REALLOC_ZERO_BYTES_FREES (default: NOT defined) 156 Define this if you think that realloc(p, 0) should be equivalent 157 to free(p). Otherwise, since malloc returns a unique pointer for 158 malloc(0), so does realloc(p, 0). 159 HAVE_MEMCPY (default: defined) 160 Define if you are not otherwise using ANSI STD C, but still 161 have memcpy and memset in your C library and want to use them. 162 Otherwise, simple internal versions are supplied. 163 USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise) 164 Define as 1 if you want the C library versions of memset and 165 memcpy called in realloc and calloc (otherwise macro versions are used). 166 At least on some platforms, the simple macro versions usually 167 outperform libc versions. 168 HAVE_MMAP (default: defined as 1) 169 Define to non-zero to optionally make malloc() use mmap() to 170 allocate very large blocks. 171 HAVE_MREMAP (default: defined as 0 unless Linux libc set) 172 Define to non-zero to optionally make realloc() use mremap() to 173 reallocate very large blocks. 174 malloc_getpagesize (default: derived from system #includes) 175 Either a constant or routine call returning the system page size. 176 HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined) 177 Optionally define if you are on a system with a /usr/include/malloc.h 178 that declares struct mallinfo. It is not at all necessary to 179 define this even if you do, but will ensure consistency. 180 INTERNAL_SIZE_T (default: size_t) 181 Define to a 32-bit type (probably `unsigned int') if you are on a 182 64-bit machine, yet do not want or need to allow malloc requests of 183 greater than 2^31 to be handled. This saves space, especially for 184 very small chunks. 185 INTERNAL_LINUX_C_LIB (default: NOT defined) 186 Defined only when compiled as part of Linux libc. 187 Also note that there is some odd internal name-mangling via defines 188 (for example, internally, `malloc' is named `mALLOc') needed 189 when compiling in this case. These look funny but don't otherwise 190 affect anything. 191 WIN32 (default: undefined) 192 Define this on MS win (95, nt) platforms to compile in sbrk emulation. 193 LACKS_UNISTD_H (default: undefined if not WIN32) 194 Define this if your system does not have a <unistd.h>. 195 LACKS_SYS_PARAM_H (default: undefined if not WIN32) 196 Define this if your system does not have a <sys/param.h>. 197 MORECORE (default: sbrk) 198 The name of the routine to call to obtain more memory from the system. 199 MORECORE_FAILURE (default: -1) 200 The value returned upon failure of MORECORE. 201 MORECORE_CLEARS (default 1) 202 True (1) if the routine mapped to MORECORE zeroes out memory (which 203 holds for sbrk). 204 DEFAULT_TRIM_THRESHOLD 205 DEFAULT_TOP_PAD 206 DEFAULT_MMAP_THRESHOLD 207 DEFAULT_MMAP_MAX 208 Default values of tunable parameters (described in detail below) 209 controlling interaction with host system routines (sbrk, mmap, etc). 210 These values may also be changed dynamically via mallopt(). The 211 preset defaults are those that give best performance for typical 212 programs/systems. 213 USE_DL_PREFIX (default: undefined) 214 Prefix all public routines with the string 'dl'. Useful to 215 quickly avoid procedure declaration conflicts and linker symbol 216 conflicts with existing memory allocation routines. 217 218 219 */ 220 221 222 223 224 /* Preliminaries */ 225 226 #ifndef __STD_C 227 #ifdef __STDC__ 228 #define __STD_C 1 229 #else 230 #if __cplusplus 231 #define __STD_C 1 232 #else 233 #define __STD_C 0 234 #endif /*__cplusplus*/ 235 #endif /*__STDC__*/ 236 #endif /*__STD_C*/ 237 238 #ifndef Void_t 239 #if (__STD_C || defined(WIN32)) 240 #define Void_t void 241 #else 242 #define Void_t char 243 #endif 244 #endif /*Void_t*/ 245 246 #if __STD_C 247 #include <stddef.h> /* for size_t */ 248 #else 249 #include <sys/types.h> 250 #endif 251 252 #ifdef __cplusplus 253 extern "C" { 254 #endif 255 256 #include <stdio.h> /* needed for malloc_stats */ 257 258 259 /* 260 Compile-time options 261 */ 262 263 264 /* 265 Debugging: 266 267 Because freed chunks may be overwritten with link fields, this 268 malloc will often die when freed memory is overwritten by user 269 programs. This can be very effective (albeit in an annoying way) 270 in helping track down dangling pointers. 271 272 If you compile with -DDEBUG, a number of assertion checks are 273 enabled that will catch more memory errors. You probably won't be 274 able to make much sense of the actual assertion errors, but they 275 should help you locate incorrectly overwritten memory. The 276 checking is fairly extensive, and will slow down execution 277 noticeably. Calling malloc_stats or mallinfo with DEBUG set will 278 attempt to check every non-mmapped allocated and free chunk in the 279 course of computing the summmaries. (By nature, mmapped regions 280 cannot be checked very much automatically.) 281 282 Setting DEBUG may also be helpful if you are trying to modify 283 this code. The assertions in the check routines spell out in more 284 detail the assumptions and invariants underlying the algorithms. 285 286 */ 287 288 #ifdef DEBUG 289 #include <assert.h> 290 #else 291 #define assert(x) ((void)0) 292 #endif 293 294 295 /* 296 INTERNAL_SIZE_T is the word-size used for internal bookkeeping 297 of chunk sizes. On a 64-bit machine, you can reduce malloc 298 overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' 299 at the expense of not being able to handle requests greater than 300 2^31. This limitation is hardly ever a concern; you are encouraged 301 to set this. However, the default version is the same as size_t. 302 */ 303 304 #ifndef INTERNAL_SIZE_T 305 #define INTERNAL_SIZE_T size_t 306 #endif 307 308 /* 309 REALLOC_ZERO_BYTES_FREES should be set if a call to 310 realloc with zero bytes should be the same as a call to free. 311 Some people think it should. Otherwise, since this malloc 312 returns a unique pointer for malloc(0), so does realloc(p, 0). 313 */ 314 315 316 /* #define REALLOC_ZERO_BYTES_FREES */ 317 318 319 /* 320 WIN32 causes an emulation of sbrk to be compiled in 321 mmap-based options are not currently supported in WIN32. 322 */ 323 324 /* #define WIN32 */ 325 #ifdef WIN32 326 #define MORECORE wsbrk 327 #define HAVE_MMAP 0 328 329 #define LACKS_UNISTD_H 330 #define LACKS_SYS_PARAM_H 331 332 /* 333 Include 'windows.h' to get the necessary declarations for the 334 Microsoft Visual C++ data structures and routines used in the 'sbrk' 335 emulation. 336 337 Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft 338 Visual C++ header files are included. 339 */ 340 #define WIN32_LEAN_AND_MEAN 341 #include <windows.h> 342 #endif 343 344 345 /* 346 HAVE_MEMCPY should be defined if you are not otherwise using 347 ANSI STD C, but still have memcpy and memset in your C library 348 and want to use them in calloc and realloc. Otherwise simple 349 macro versions are defined here. 350 351 USE_MEMCPY should be defined as 1 if you actually want to 352 have memset and memcpy called. People report that the macro 353 versions are often enough faster than libc versions on many 354 systems that it is better to use them. 355 356 */ 357 358 #define HAVE_MEMCPY 359 360 #ifndef USE_MEMCPY 361 #ifdef HAVE_MEMCPY 362 #define USE_MEMCPY 1 363 #else 364 #define USE_MEMCPY 0 365 #endif 366 #endif 367 368 #if (__STD_C || defined(HAVE_MEMCPY)) 369 370 #if __STD_C 371 void* memset(void*, int, size_t); 372 void* memcpy(void*, const void*, size_t); 373 #else 374 #ifdef WIN32 375 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */ 376 /* 'windows.h' */ 377 #else 378 Void_t* memset(); 379 Void_t* memcpy(); 380 #endif 381 #endif 382 #endif 383 384 #if USE_MEMCPY 385 386 /* The following macros are only invoked with (2n+1)-multiples of 387 INTERNAL_SIZE_T units, with a positive integer n. This is exploited 388 for fast inline execution when n is small. */ 389 390 #define MALLOC_ZERO(charp, nbytes) \ 391 do { \ 392 INTERNAL_SIZE_T mzsz = (nbytes); \ 393 if(mzsz <= 9*sizeof(mzsz)) { \ 394 INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \ 395 if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \ 396 *mz++ = 0; \ 397 if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \ 398 *mz++ = 0; \ 399 if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \ 400 *mz++ = 0; }}} \ 401 *mz++ = 0; \ 402 *mz++ = 0; \ 403 *mz = 0; \ 404 } else memset((charp), 0, mzsz); \ 405 } while(0) 406 407 #define MALLOC_COPY(dest,src,nbytes) \ 408 do { \ 409 INTERNAL_SIZE_T mcsz = (nbytes); \ 410 if(mcsz <= 9*sizeof(mcsz)) { \ 411 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \ 412 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \ 413 if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ 414 *mcdst++ = *mcsrc++; \ 415 if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ 416 *mcdst++ = *mcsrc++; \ 417 if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ 418 *mcdst++ = *mcsrc++; }}} \ 419 *mcdst++ = *mcsrc++; \ 420 *mcdst++ = *mcsrc++; \ 421 *mcdst = *mcsrc ; \ 422 } else memcpy(dest, src, mcsz); \ 423 } while(0) 424 425 #else /* !USE_MEMCPY */ 426 427 /* Use Duff's device for good zeroing/copying performance. */ 428 429 #define MALLOC_ZERO(charp, nbytes) \ 430 do { \ 431 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \ 432 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \ 433 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \ 434 switch (mctmp) { \ 435 case 0: for(;;) { *mzp++ = 0; \ 436 case 7: *mzp++ = 0; \ 437 case 6: *mzp++ = 0; \ 438 case 5: *mzp++ = 0; \ 439 case 4: *mzp++ = 0; \ 440 case 3: *mzp++ = 0; \ 441 case 2: *mzp++ = 0; \ 442 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \ 443 } \ 444 } while(0) 445 446 #define MALLOC_COPY(dest,src,nbytes) \ 447 do { \ 448 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \ 449 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \ 450 long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \ 451 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \ 452 switch (mctmp) { \ 453 case 0: for(;;) { *mcdst++ = *mcsrc++; \ 454 case 7: *mcdst++ = *mcsrc++; \ 455 case 6: *mcdst++ = *mcsrc++; \ 456 case 5: *mcdst++ = *mcsrc++; \ 457 case 4: *mcdst++ = *mcsrc++; \ 458 case 3: *mcdst++ = *mcsrc++; \ 459 case 2: *mcdst++ = *mcsrc++; \ 460 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \ 461 } \ 462 } while(0) 463 464 #endif 465 466 467 /* 468 Define HAVE_MMAP to optionally make malloc() use mmap() to 469 allocate very large blocks. These will be returned to the 470 operating system immediately after a free(). 471 */ 472 473 #ifndef HAVE_MMAP 474 #define HAVE_MMAP 1 475 #endif 476 477 /* 478 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate 479 large blocks. This is currently only possible on Linux with 480 kernel versions newer than 1.3.77. 481 */ 482 483 #ifndef HAVE_MREMAP 484 #ifdef INTERNAL_LINUX_C_LIB 485 #define HAVE_MREMAP 1 486 #else 487 #define HAVE_MREMAP 0 488 #endif 489 #endif 490 491 #if HAVE_MMAP 492 493 #include <unistd.h> 494 #include <fcntl.h> 495 #include <sys/mman.h> 496 497 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) 498 #define MAP_ANONYMOUS MAP_ANON 499 #endif 500 501 #endif /* HAVE_MMAP */ 502 503 /* 504 Access to system page size. To the extent possible, this malloc 505 manages memory from the system in page-size units. 506 507 The following mechanics for getpagesize were adapted from 508 bsd/gnu getpagesize.h 509 */ 510 511 #ifndef LACKS_UNISTD_H 512 # include <unistd.h> 513 #endif 514 515 #ifndef malloc_getpagesize 516 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ 517 # ifndef _SC_PAGE_SIZE 518 # define _SC_PAGE_SIZE _SC_PAGESIZE 519 # endif 520 # endif 521 # ifdef _SC_PAGE_SIZE 522 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE) 523 # else 524 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) 525 extern size_t getpagesize(); 526 # define malloc_getpagesize getpagesize() 527 # else 528 # ifdef WIN32 529 # define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */ 530 # else 531 # ifndef LACKS_SYS_PARAM_H 532 # include <sys/param.h> 533 # endif 534 # ifdef EXEC_PAGESIZE 535 # define malloc_getpagesize EXEC_PAGESIZE 536 # else 537 # ifdef NBPG 538 # ifndef CLSIZE 539 # define malloc_getpagesize NBPG 540 # else 541 # define malloc_getpagesize (NBPG * CLSIZE) 542 # endif 543 # else 544 # ifdef NBPC 545 # define malloc_getpagesize NBPC 546 # else 547 # ifdef PAGESIZE 548 # define malloc_getpagesize PAGESIZE 549 # else 550 # define malloc_getpagesize (4096) /* just guess */ 551 # endif 552 # endif 553 # endif 554 # endif 555 # endif 556 # endif 557 # endif 558 #endif 559 560 561 /* 562 563 This version of malloc supports the standard SVID/XPG mallinfo 564 routine that returns a struct containing the same kind of 565 information you can get from malloc_stats. It should work on 566 any SVID/XPG compliant system that has a /usr/include/malloc.h 567 defining struct mallinfo. (If you'd like to install such a thing 568 yourself, cut out the preliminary declarations as described above 569 and below and save them in a malloc.h file. But there's no 570 compelling reason to bother to do this.) 571 572 The main declaration needed is the mallinfo struct that is returned 573 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a 574 bunch of fields, most of which are not even meaningful in this 575 version of malloc. Some of these fields are are instead filled by 576 mallinfo() with other numbers that might possibly be of interest. 577 578 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a 579 /usr/include/malloc.h file that includes a declaration of struct 580 mallinfo. If so, it is included; else an SVID2/XPG2 compliant 581 version is declared below. These must be precisely the same for 582 mallinfo() to work. 583 584 */ 585 586 /* #define HAVE_USR_INCLUDE_MALLOC_H */ 587 588 #if HAVE_USR_INCLUDE_MALLOC_H 589 #include "/usr/include/malloc.h" 590 #else 591 592 /* SVID2/XPG mallinfo structure */ 593 594 struct mallinfo { 595 int arena; /* total space allocated from system */ 596 int ordblks; /* number of non-inuse chunks */ 597 int smblks; /* unused -- always zero */ 598 int hblks; /* number of mmapped regions */ 599 int hblkhd; /* total space in mmapped regions */ 600 int usmblks; /* unused -- always zero */ 601 int fsmblks; /* unused -- always zero */ 602 int uordblks; /* total allocated space */ 603 int fordblks; /* total non-inuse space */ 604 int keepcost; /* top-most, releasable (via malloc_trim) space */ 605 }; 606 607 /* SVID2/XPG mallopt options */ 608 609 #define M_MXFAST 1 /* UNUSED in this malloc */ 610 #define M_NLBLKS 2 /* UNUSED in this malloc */ 611 #define M_GRAIN 3 /* UNUSED in this malloc */ 612 #define M_KEEP 4 /* UNUSED in this malloc */ 613 614 #endif 615 616 /* mallopt options that actually do something */ 617 618 #define M_TRIM_THRESHOLD -1 619 #define M_TOP_PAD -2 620 #define M_MMAP_THRESHOLD -3 621 #define M_MMAP_MAX -4 622 623 624 #ifndef DEFAULT_TRIM_THRESHOLD 625 #define DEFAULT_TRIM_THRESHOLD (128 * 1024) 626 #endif 627 628 /* 629 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory 630 to keep before releasing via malloc_trim in free(). 631 632 Automatic trimming is mainly useful in long-lived programs. 633 Because trimming via sbrk can be slow on some systems, and can 634 sometimes be wasteful (in cases where programs immediately 635 afterward allocate more large chunks) the value should be high 636 enough so that your overall system performance would improve by 637 releasing. 638 639 The trim threshold and the mmap control parameters (see below) 640 can be traded off with one another. Trimming and mmapping are 641 two different ways of releasing unused memory back to the 642 system. Between these two, it is often possible to keep 643 system-level demands of a long-lived program down to a bare 644 minimum. For example, in one test suite of sessions measuring 645 the XF86 X server on Linux, using a trim threshold of 128K and a 646 mmap threshold of 192K led to near-minimal long term resource 647 consumption. 648 649 If you are using this malloc in a long-lived program, it should 650 pay to experiment with these values. As a rough guide, you 651 might set to a value close to the average size of a process 652 (program) running on your system. Releasing this much memory 653 would allow such a process to run in memory. Generally, it's 654 worth it to tune for trimming rather tham memory mapping when a 655 program undergoes phases where several large chunks are 656 allocated and released in ways that can reuse each other's 657 storage, perhaps mixed with phases where there are no such 658 chunks at all. And in well-behaved long-lived programs, 659 controlling release of large blocks via trimming versus mapping 660 is usually faster. 661 662 However, in most programs, these parameters serve mainly as 663 protection against the system-level effects of carrying around 664 massive amounts of unneeded memory. Since frequent calls to 665 sbrk, mmap, and munmap otherwise degrade performance, the default 666 parameters are set to relatively high values that serve only as 667 safeguards. 668 669 The default trim value is high enough to cause trimming only in 670 fairly extreme (by current memory consumption standards) cases. 671 It must be greater than page size to have any useful effect. To 672 disable trimming completely, you can set to (unsigned long)(-1); 673 674 675 */ 676 677 678 #ifndef DEFAULT_TOP_PAD 679 #define DEFAULT_TOP_PAD (0) 680 #endif 681 682 /* 683 M_TOP_PAD is the amount of extra `padding' space to allocate or 684 retain whenever sbrk is called. It is used in two ways internally: 685 686 * When sbrk is called to extend the top of the arena to satisfy 687 a new malloc request, this much padding is added to the sbrk 688 request. 689 690 * When malloc_trim is called automatically from free(), 691 it is used as the `pad' argument. 692 693 In both cases, the actual amount of padding is rounded 694 so that the end of the arena is always a system page boundary. 695 696 The main reason for using padding is to avoid calling sbrk so 697 often. Having even a small pad greatly reduces the likelihood 698 that nearly every malloc request during program start-up (or 699 after trimming) will invoke sbrk, which needlessly wastes 700 time. 701 702 Automatic rounding-up to page-size units is normally sufficient 703 to avoid measurable overhead, so the default is 0. However, in 704 systems where sbrk is relatively slow, it can pay to increase 705 this value, at the expense of carrying around more memory than 706 the program needs. 707 708 */ 709 710 711 #ifndef DEFAULT_MMAP_THRESHOLD 712 #define DEFAULT_MMAP_THRESHOLD (128 * 1024) 713 #endif 714 715 /* 716 717 M_MMAP_THRESHOLD is the request size threshold for using mmap() 718 to service a request. Requests of at least this size that cannot 719 be allocated using already-existing space will be serviced via mmap. 720 (If enough normal freed space already exists it is used instead.) 721 722 Using mmap segregates relatively large chunks of memory so that 723 they can be individually obtained and released from the host 724 system. A request serviced through mmap is never reused by any 725 other request (at least not directly; the system may just so 726 happen to remap successive requests to the same locations). 727 728 Segregating space in this way has the benefit that mmapped space 729 can ALWAYS be individually released back to the system, which 730 helps keep the system level memory demands of a long-lived 731 program low. Mapped memory can never become `locked' between 732 other chunks, as can happen with normally allocated chunks, which 733 menas that even trimming via malloc_trim would not release them. 734 735 However, it has the disadvantages that: 736 737 1. The space cannot be reclaimed, consolidated, and then 738 used to service later requests, as happens with normal chunks. 739 2. It can lead to more wastage because of mmap page alignment 740 requirements 741 3. It causes malloc performance to be more dependent on host 742 system memory management support routines which may vary in 743 implementation quality and may impose arbitrary 744 limitations. Generally, servicing a request via normal 745 malloc steps is faster than going through a system's mmap. 746 747 All together, these considerations should lead you to use mmap 748 only for relatively large requests. 749 750 751 */ 752 753 754 #ifndef DEFAULT_MMAP_MAX 755 #if HAVE_MMAP 756 #define DEFAULT_MMAP_MAX (64) 757 #else 758 #define DEFAULT_MMAP_MAX (0) 759 #endif 760 #endif 761 762 /* 763 M_MMAP_MAX is the maximum number of requests to simultaneously 764 service using mmap. This parameter exists because: 765 766 1. Some systems have a limited number of internal tables for 767 use by mmap. 768 2. In most systems, overreliance on mmap can degrade overall 769 performance. 770 3. If a program allocates many large regions, it is probably 771 better off using normal sbrk-based allocation routines that 772 can reclaim and reallocate normal heap memory. Using a 773 small value allows transition into this mode after the 774 first few allocations. 775 776 Setting to 0 disables all use of mmap. If HAVE_MMAP is not set, 777 the default value is 0, and attempts to set it to non-zero values 778 in mallopt will fail. 779 */ 780 781 782 /* 783 USE_DL_PREFIX will prefix all public routines with the string 'dl'. 784 Useful to quickly avoid procedure declaration conflicts and linker 785 symbol conflicts with existing memory allocation routines. 786 787 */ 788 789 /* #define USE_DL_PREFIX */ 790 791 792 /* 793 794 Special defines for linux libc 795 796 Except when compiled using these special defines for Linux libc 797 using weak aliases, this malloc is NOT designed to work in 798 multithreaded applications. No semaphores or other concurrency 799 control are provided to ensure that multiple malloc or free calls 800 don't run at the same time, which could be disasterous. A single 801 semaphore could be used across malloc, realloc, and free (which is 802 essentially the effect of the linux weak alias approach). It would 803 be hard to obtain finer granularity. 804 805 */ 806 807 808 #ifdef INTERNAL_LINUX_C_LIB 809 810 #if __STD_C 811 812 Void_t * __default_morecore_init (ptrdiff_t); 813 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init; 814 815 #else 816 817 Void_t * __default_morecore_init (); 818 Void_t *(*__morecore)() = __default_morecore_init; 819 820 #endif 821 822 #define MORECORE (*__morecore) 823 #define MORECORE_FAILURE 0 824 #define MORECORE_CLEARS 1 825 826 #else /* INTERNAL_LINUX_C_LIB */ 827 828 #if __STD_C 829 extern Void_t* sbrk(ptrdiff_t); 830 #else 831 extern Void_t* sbrk(); 832 #endif 833 834 #ifndef MORECORE 835 #define MORECORE sbrk 836 #endif 837 838 #ifndef MORECORE_FAILURE 839 #define MORECORE_FAILURE -1 840 #endif 841 842 #ifndef MORECORE_CLEARS 843 #define MORECORE_CLEARS 1 844 #endif 845 846 #endif /* INTERNAL_LINUX_C_LIB */ 847 848 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__) 849 850 #define cALLOc __libc_calloc 851 #define fREe __libc_free 852 #define mALLOc __libc_malloc 853 #define mEMALIGn __libc_memalign 854 #define rEALLOc __libc_realloc 855 #define vALLOc __libc_valloc 856 #define pvALLOc __libc_pvalloc 857 #define mALLINFo __libc_mallinfo 858 #define mALLOPt __libc_mallopt 859 860 #pragma weak calloc = __libc_calloc 861 #pragma weak free = __libc_free 862 #pragma weak cfree = __libc_free 863 #pragma weak malloc = __libc_malloc 864 #pragma weak memalign = __libc_memalign 865 #pragma weak realloc = __libc_realloc 866 #pragma weak valloc = __libc_valloc 867 #pragma weak pvalloc = __libc_pvalloc 868 #pragma weak mallinfo = __libc_mallinfo 869 #pragma weak mallopt = __libc_mallopt 870 871 #else 872 873 #ifdef USE_DL_PREFIX 874 #define cALLOc dlcalloc 875 #define fREe dlfree 876 #define mALLOc dlmalloc 877 #define mEMALIGn dlmemalign 878 #define rEALLOc dlrealloc 879 #define vALLOc dlvalloc 880 #define pvALLOc dlpvalloc 881 #define mALLINFo dlmallinfo 882 #define mALLOPt dlmallopt 883 #else /* USE_DL_PREFIX */ 884 #define cALLOc calloc 885 #define fREe free 886 #define mALLOc malloc 887 #define mEMALIGn memalign 888 #define rEALLOc realloc 889 #define vALLOc valloc 890 #define pvALLOc pvalloc 891 #define mALLINFo mallinfo 892 #define mALLOPt mallopt 893 #endif /* USE_DL_PREFIX */ 894 895 #endif 896 897 /* Public routines */ 898 899 #if __STD_C 900 901 Void_t* mALLOc(size_t); 902 void fREe(Void_t*); 903 Void_t* rEALLOc(Void_t*, size_t); 904 Void_t* mEMALIGn(size_t, size_t); 905 Void_t* vALLOc(size_t); 906 Void_t* pvALLOc(size_t); 907 Void_t* cALLOc(size_t, size_t); 908 void cfree(Void_t*); 909 int malloc_trim(size_t); 910 size_t malloc_usable_size(Void_t*); 911 void malloc_stats(); 912 int mALLOPt(int, int); 913 struct mallinfo mALLINFo(void); 914 #else 915 Void_t* mALLOc(); 916 void fREe(); 917 Void_t* rEALLOc(); 918 Void_t* mEMALIGn(); 919 Void_t* vALLOc(); 920 Void_t* pvALLOc(); 921 Void_t* cALLOc(); 922 void cfree(); 923 int malloc_trim(); 924 size_t malloc_usable_size(); 925 void malloc_stats(); 926 int mALLOPt(); 927 struct mallinfo mALLINFo(); 928 #endif 929 930 931 #ifdef __cplusplus 932 }; /* end of extern "C" */ 933 #endif 934 935 /* ---------- To make a malloc.h, end cutting here ------------ */ 936 #else /* Moved to malloc.h */ 937 938 #include <malloc.h> 939 #if 0 940 #if __STD_C 941 static void malloc_update_mallinfo (void); 942 void malloc_stats (void); 943 #else 944 static void malloc_update_mallinfo (); 945 void malloc_stats(); 946 #endif 947 #endif /* 0 */ 948 949 #endif /* 0 */ /* Moved to malloc.h */ 950 #include <common.h> 951 952 /* 953 Emulation of sbrk for WIN32 954 All code within the ifdef WIN32 is untested by me. 955 956 Thanks to Martin Fong and others for supplying this. 957 */ 958 959 960 #ifdef WIN32 961 962 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \ 963 ~(malloc_getpagesize-1)) 964 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1)) 965 966 /* resrve 64MB to insure large contiguous space */ 967 #define RESERVED_SIZE (1024*1024*64) 968 #define NEXT_SIZE (2048*1024) 969 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024) 970 971 struct GmListElement; 972 typedef struct GmListElement GmListElement; 973 974 struct GmListElement 975 { 976 GmListElement* next; 977 void* base; 978 }; 979 980 static GmListElement* head = 0; 981 static unsigned int gNextAddress = 0; 982 static unsigned int gAddressBase = 0; 983 static unsigned int gAllocatedSize = 0; 984 985 static 986 GmListElement* makeGmListElement (void* bas) 987 { 988 GmListElement* this; 989 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement)); 990 assert (this); 991 if (this) 992 { 993 this->base = bas; 994 this->next = head; 995 head = this; 996 } 997 return this; 998 } 999 1000 void gcleanup () 1001 { 1002 BOOL rval; 1003 assert ( (head == NULL) || (head->base == (void*)gAddressBase)); 1004 if (gAddressBase && (gNextAddress - gAddressBase)) 1005 { 1006 rval = VirtualFree ((void*)gAddressBase, 1007 gNextAddress - gAddressBase, 1008 MEM_DECOMMIT); 1009 assert (rval); 1010 } 1011 while (head) 1012 { 1013 GmListElement* next = head->next; 1014 rval = VirtualFree (head->base, 0, MEM_RELEASE); 1015 assert (rval); 1016 LocalFree (head); 1017 head = next; 1018 } 1019 } 1020 1021 static 1022 void* findRegion (void* start_address, unsigned long size) 1023 { 1024 MEMORY_BASIC_INFORMATION info; 1025 if (size >= TOP_MEMORY) return NULL; 1026 1027 while ((unsigned long)start_address + size < TOP_MEMORY) 1028 { 1029 VirtualQuery (start_address, &info, sizeof (info)); 1030 if ((info.State == MEM_FREE) && (info.RegionSize >= size)) 1031 return start_address; 1032 else 1033 { 1034 /* Requested region is not available so see if the */ 1035 /* next region is available. Set 'start_address' */ 1036 /* to the next region and call 'VirtualQuery()' */ 1037 /* again. */ 1038 1039 start_address = (char*)info.BaseAddress + info.RegionSize; 1040 1041 /* Make sure we start looking for the next region */ 1042 /* on the *next* 64K boundary. Otherwise, even if */ 1043 /* the new region is free according to */ 1044 /* 'VirtualQuery()', the subsequent call to */ 1045 /* 'VirtualAlloc()' (which follows the call to */ 1046 /* this routine in 'wsbrk()') will round *down* */ 1047 /* the requested address to a 64K boundary which */ 1048 /* we already know is an address in the */ 1049 /* unavailable region. Thus, the subsequent call */ 1050 /* to 'VirtualAlloc()' will fail and bring us back */ 1051 /* here, causing us to go into an infinite loop. */ 1052 1053 start_address = 1054 (void *) AlignPage64K((unsigned long) start_address); 1055 } 1056 } 1057 return NULL; 1058 1059 } 1060 1061 1062 void* wsbrk (long size) 1063 { 1064 void* tmp; 1065 if (size > 0) 1066 { 1067 if (gAddressBase == 0) 1068 { 1069 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size)); 1070 gNextAddress = gAddressBase = 1071 (unsigned int)VirtualAlloc (NULL, gAllocatedSize, 1072 MEM_RESERVE, PAGE_NOACCESS); 1073 } else if (AlignPage (gNextAddress + size) > (gAddressBase + 1074 gAllocatedSize)) 1075 { 1076 long new_size = max (NEXT_SIZE, AlignPage (size)); 1077 void* new_address = (void*)(gAddressBase+gAllocatedSize); 1078 do 1079 { 1080 new_address = findRegion (new_address, new_size); 1081 1082 if (new_address == 0) 1083 return (void*)-1; 1084 1085 gAddressBase = gNextAddress = 1086 (unsigned int)VirtualAlloc (new_address, new_size, 1087 MEM_RESERVE, PAGE_NOACCESS); 1088 /* repeat in case of race condition */ 1089 /* The region that we found has been snagged */ 1090 /* by another thread */ 1091 } 1092 while (gAddressBase == 0); 1093 1094 assert (new_address == (void*)gAddressBase); 1095 1096 gAllocatedSize = new_size; 1097 1098 if (!makeGmListElement ((void*)gAddressBase)) 1099 return (void*)-1; 1100 } 1101 if ((size + gNextAddress) > AlignPage (gNextAddress)) 1102 { 1103 void* res; 1104 res = VirtualAlloc ((void*)AlignPage (gNextAddress), 1105 (size + gNextAddress - 1106 AlignPage (gNextAddress)), 1107 MEM_COMMIT, PAGE_READWRITE); 1108 if (res == 0) 1109 return (void*)-1; 1110 } 1111 tmp = (void*)gNextAddress; 1112 gNextAddress = (unsigned int)tmp + size; 1113 return tmp; 1114 } 1115 else if (size < 0) 1116 { 1117 unsigned int alignedGoal = AlignPage (gNextAddress + size); 1118 /* Trim by releasing the virtual memory */ 1119 if (alignedGoal >= gAddressBase) 1120 { 1121 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal, 1122 MEM_DECOMMIT); 1123 gNextAddress = gNextAddress + size; 1124 return (void*)gNextAddress; 1125 } 1126 else 1127 { 1128 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase, 1129 MEM_DECOMMIT); 1130 gNextAddress = gAddressBase; 1131 return (void*)-1; 1132 } 1133 } 1134 else 1135 { 1136 return (void*)gNextAddress; 1137 } 1138 } 1139 1140 #endif 1141 1142 1143 1144 /* 1145 Type declarations 1146 */ 1147 1148 1149 struct malloc_chunk 1150 { 1151 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */ 1152 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */ 1153 struct malloc_chunk* fd; /* double links -- used only if free. */ 1154 struct malloc_chunk* bk; 1155 }; 1156 1157 typedef struct malloc_chunk* mchunkptr; 1158 1159 /* 1160 1161 malloc_chunk details: 1162 1163 (The following includes lightly edited explanations by Colin Plumb.) 1164 1165 Chunks of memory are maintained using a `boundary tag' method as 1166 described in e.g., Knuth or Standish. (See the paper by Paul 1167 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a 1168 survey of such techniques.) Sizes of free chunks are stored both 1169 in the front of each chunk and at the end. This makes 1170 consolidating fragmented chunks into bigger chunks very fast. The 1171 size fields also hold bits representing whether chunks are free or 1172 in use. 1173 1174 An allocated chunk looks like this: 1175 1176 1177 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1178 | Size of previous chunk, if allocated | | 1179 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1180 | Size of chunk, in bytes |P| 1181 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1182 | User data starts here... . 1183 . . 1184 . (malloc_usable_space() bytes) . 1185 . | 1186 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1187 | Size of chunk | 1188 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1189 1190 1191 Where "chunk" is the front of the chunk for the purpose of most of 1192 the malloc code, but "mem" is the pointer that is returned to the 1193 user. "Nextchunk" is the beginning of the next contiguous chunk. 1194 1195 Chunks always begin on even word boundries, so the mem portion 1196 (which is returned to the user) is also on an even word boundary, and 1197 thus double-word aligned. 1198 1199 Free chunks are stored in circular doubly-linked lists, and look like this: 1200 1201 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1202 | Size of previous chunk | 1203 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1204 `head:' | Size of chunk, in bytes |P| 1205 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1206 | Forward pointer to next chunk in list | 1207 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1208 | Back pointer to previous chunk in list | 1209 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1210 | Unused space (may be 0 bytes long) . 1211 . . 1212 . | 1213 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1214 `foot:' | Size of chunk, in bytes | 1215 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1216 1217 The P (PREV_INUSE) bit, stored in the unused low-order bit of the 1218 chunk size (which is always a multiple of two words), is an in-use 1219 bit for the *previous* chunk. If that bit is *clear*, then the 1220 word before the current chunk size contains the previous chunk 1221 size, and can be used to find the front of the previous chunk. 1222 (The very first chunk allocated always has this bit set, 1223 preventing access to non-existent (or non-owned) memory.) 1224 1225 Note that the `foot' of the current chunk is actually represented 1226 as the prev_size of the NEXT chunk. (This makes it easier to 1227 deal with alignments etc). 1228 1229 The two exceptions to all this are 1230 1231 1. The special chunk `top', which doesn't bother using the 1232 trailing size field since there is no 1233 next contiguous chunk that would have to index off it. (After 1234 initialization, `top' is forced to always exist. If it would 1235 become less than MINSIZE bytes long, it is replenished via 1236 malloc_extend_top.) 1237 1238 2. Chunks allocated via mmap, which have the second-lowest-order 1239 bit (IS_MMAPPED) set in their size fields. Because they are 1240 never merged or traversed from any other chunk, they have no 1241 foot size or inuse information. 1242 1243 Available chunks are kept in any of several places (all declared below): 1244 1245 * `av': An array of chunks serving as bin headers for consolidated 1246 chunks. Each bin is doubly linked. The bins are approximately 1247 proportionally (log) spaced. There are a lot of these bins 1248 (128). This may look excessive, but works very well in 1249 practice. All procedures maintain the invariant that no 1250 consolidated chunk physically borders another one. Chunks in 1251 bins are kept in size order, with ties going to the 1252 approximately least recently used chunk. 1253 1254 The chunks in each bin are maintained in decreasing sorted order by 1255 size. This is irrelevant for the small bins, which all contain 1256 the same-sized chunks, but facilitates best-fit allocation for 1257 larger chunks. (These lists are just sequential. Keeping them in 1258 order almost never requires enough traversal to warrant using 1259 fancier ordered data structures.) Chunks of the same size are 1260 linked with the most recently freed at the front, and allocations 1261 are taken from the back. This results in LRU or FIFO allocation 1262 order, which tends to give each chunk an equal opportunity to be 1263 consolidated with adjacent freed chunks, resulting in larger free 1264 chunks and less fragmentation. 1265 1266 * `top': The top-most available chunk (i.e., the one bordering the 1267 end of available memory) is treated specially. It is never 1268 included in any bin, is used only if no other chunk is 1269 available, and is released back to the system if it is very 1270 large (see M_TRIM_THRESHOLD). 1271 1272 * `last_remainder': A bin holding only the remainder of the 1273 most recently split (non-top) chunk. This bin is checked 1274 before other non-fitting chunks, so as to provide better 1275 locality for runs of sequentially allocated chunks. 1276 1277 * Implicitly, through the host system's memory mapping tables. 1278 If supported, requests greater than a threshold are usually 1279 serviced via calls to mmap, and then later released via munmap. 1280 1281 */ 1282 1283 /* sizes, alignments */ 1284 1285 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T)) 1286 #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ) 1287 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1) 1288 #define MINSIZE (sizeof(struct malloc_chunk)) 1289 1290 /* conversion from malloc headers to user pointers, and back */ 1291 1292 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ)) 1293 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ)) 1294 1295 /* pad request bytes into a usable size */ 1296 1297 #define request2size(req) \ 1298 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \ 1299 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \ 1300 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK))) 1301 1302 /* Check if m has acceptable alignment */ 1303 1304 #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0) 1305 1306 1307 1308 1309 /* 1310 Physical chunk operations 1311 */ 1312 1313 1314 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */ 1315 1316 #define PREV_INUSE 0x1 1317 1318 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */ 1319 1320 #define IS_MMAPPED 0x2 1321 1322 /* Bits to mask off when extracting size */ 1323 1324 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED) 1325 1326 1327 /* Ptr to next physical malloc_chunk. */ 1328 1329 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) )) 1330 1331 /* Ptr to previous physical malloc_chunk */ 1332 1333 #define prev_chunk(p)\ 1334 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) )) 1335 1336 1337 /* Treat space at ptr + offset as a chunk */ 1338 1339 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) 1340 1341 1342 1343 1344 /* 1345 Dealing with use bits 1346 */ 1347 1348 /* extract p's inuse bit */ 1349 1350 #define inuse(p)\ 1351 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE) 1352 1353 /* extract inuse bit of previous chunk */ 1354 1355 #define prev_inuse(p) ((p)->size & PREV_INUSE) 1356 1357 /* check for mmap()'ed chunk */ 1358 1359 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED) 1360 1361 /* set/clear chunk as in use without otherwise disturbing */ 1362 1363 #define set_inuse(p)\ 1364 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE 1365 1366 #define clear_inuse(p)\ 1367 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE) 1368 1369 /* check/set/clear inuse bits in known places */ 1370 1371 #define inuse_bit_at_offset(p, s)\ 1372 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE) 1373 1374 #define set_inuse_bit_at_offset(p, s)\ 1375 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE) 1376 1377 #define clear_inuse_bit_at_offset(p, s)\ 1378 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE)) 1379 1380 1381 1382 1383 /* 1384 Dealing with size fields 1385 */ 1386 1387 /* Get size, ignoring use bits */ 1388 1389 #define chunksize(p) ((p)->size & ~(SIZE_BITS)) 1390 1391 /* Set size at head, without disturbing its use bit */ 1392 1393 #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s))) 1394 1395 /* Set size/use ignoring previous bits in header */ 1396 1397 #define set_head(p, s) ((p)->size = (s)) 1398 1399 /* Set size at footer (only when chunk is not in use) */ 1400 1401 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s)) 1402 1403 1404 1405 1406 1407 /* 1408 Bins 1409 1410 The bins, `av_' are an array of pairs of pointers serving as the 1411 heads of (initially empty) doubly-linked lists of chunks, laid out 1412 in a way so that each pair can be treated as if it were in a 1413 malloc_chunk. (This way, the fd/bk offsets for linking bin heads 1414 and chunks are the same). 1415 1416 Bins for sizes < 512 bytes contain chunks of all the same size, spaced 1417 8 bytes apart. Larger bins are approximately logarithmically 1418 spaced. (See the table below.) The `av_' array is never mentioned 1419 directly in the code, but instead via bin access macros. 1420 1421 Bin layout: 1422 1423 64 bins of size 8 1424 32 bins of size 64 1425 16 bins of size 512 1426 8 bins of size 4096 1427 4 bins of size 32768 1428 2 bins of size 262144 1429 1 bin of size what's left 1430 1431 There is actually a little bit of slop in the numbers in bin_index 1432 for the sake of speed. This makes no difference elsewhere. 1433 1434 The special chunks `top' and `last_remainder' get their own bins, 1435 (this is implemented via yet more trickery with the av_ array), 1436 although `top' is never properly linked to its bin since it is 1437 always handled specially. 1438 1439 */ 1440 1441 #define NAV 128 /* number of bins */ 1442 1443 typedef struct malloc_chunk* mbinptr; 1444 1445 /* access macros */ 1446 1447 #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ)) 1448 #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr))) 1449 #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr))) 1450 1451 /* 1452 The first 2 bins are never indexed. The corresponding av_ cells are instead 1453 used for bookkeeping. This is not to save space, but to simplify 1454 indexing, maintain locality, and avoid some initialization tests. 1455 */ 1456 1457 #define top (bin_at(0)->fd) /* The topmost chunk */ 1458 #define last_remainder (bin_at(1)) /* remainder from last split */ 1459 1460 1461 /* 1462 Because top initially points to its own bin with initial 1463 zero size, thus forcing extension on the first malloc request, 1464 we avoid having any special code in malloc to check whether 1465 it even exists yet. But we still need to in malloc_extend_top. 1466 */ 1467 1468 #define initial_top ((mchunkptr)(bin_at(0))) 1469 1470 /* Helper macro to initialize bins */ 1471 1472 #define IAV(i) bin_at(i), bin_at(i) 1473 1474 static mbinptr av_[NAV * 2 + 2] = { 1475 0, 0, 1476 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7), 1477 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15), 1478 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23), 1479 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31), 1480 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39), 1481 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47), 1482 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55), 1483 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63), 1484 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71), 1485 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79), 1486 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87), 1487 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95), 1488 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103), 1489 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111), 1490 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119), 1491 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127) 1492 }; 1493 1494 void malloc_bin_reloc (void) 1495 { 1496 DECLARE_GLOBAL_DATA_PTR; 1497 1498 unsigned long *p = (unsigned long *)(&av_[2]); 1499 int i; 1500 for (i=2; i<(sizeof(av_)/sizeof(mbinptr)); ++i) { 1501 *p++ += gd->reloc_off; 1502 } 1503 } 1504 1505 1506 /* field-extraction macros */ 1507 1508 #define first(b) ((b)->fd) 1509 #define last(b) ((b)->bk) 1510 1511 /* 1512 Indexing into bins 1513 */ 1514 1515 #define bin_index(sz) \ 1516 (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \ 1517 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \ 1518 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \ 1519 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \ 1520 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \ 1521 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \ 1522 126) 1523 /* 1524 bins for chunks < 512 are all spaced 8 bytes apart, and hold 1525 identically sized chunks. This is exploited in malloc. 1526 */ 1527 1528 #define MAX_SMALLBIN 63 1529 #define MAX_SMALLBIN_SIZE 512 1530 #define SMALLBIN_WIDTH 8 1531 1532 #define smallbin_index(sz) (((unsigned long)(sz)) >> 3) 1533 1534 /* 1535 Requests are `small' if both the corresponding and the next bin are small 1536 */ 1537 1538 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH) 1539 1540 1541 1542 /* 1543 To help compensate for the large number of bins, a one-level index 1544 structure is used for bin-by-bin searching. `binblocks' is a 1545 one-word bitvector recording whether groups of BINBLOCKWIDTH bins 1546 have any (possibly) non-empty bins, so they can be skipped over 1547 all at once during during traversals. The bits are NOT always 1548 cleared as soon as all bins in a block are empty, but instead only 1549 when all are noticed to be empty during traversal in malloc. 1550 */ 1551 1552 #define BINBLOCKWIDTH 4 /* bins per block */ 1553 1554 #define binblocks (bin_at(0)->size) /* bitvector of nonempty blocks */ 1555 1556 /* bin<->block macros */ 1557 1558 #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH)) 1559 #define mark_binblock(ii) (binblocks |= idx2binblock(ii)) 1560 #define clear_binblock(ii) (binblocks &= ~(idx2binblock(ii))) 1561 1562 1563 1564 1565 1566 /* Other static bookkeeping data */ 1567 1568 /* variables holding tunable values */ 1569 1570 static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD; 1571 static unsigned long top_pad = DEFAULT_TOP_PAD; 1572 static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX; 1573 static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD; 1574 1575 /* The first value returned from sbrk */ 1576 static char* sbrk_base = (char*)(-1); 1577 1578 /* The maximum memory obtained from system via sbrk */ 1579 static unsigned long max_sbrked_mem = 0; 1580 1581 /* The maximum via either sbrk or mmap */ 1582 static unsigned long max_total_mem = 0; 1583 1584 /* internal working copy of mallinfo */ 1585 static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 1586 1587 /* The total memory obtained from system via sbrk */ 1588 #define sbrked_mem (current_mallinfo.arena) 1589 1590 /* Tracking mmaps */ 1591 1592 #if 0 1593 static unsigned int n_mmaps = 0; 1594 #endif /* 0 */ 1595 static unsigned long mmapped_mem = 0; 1596 #if HAVE_MMAP 1597 static unsigned int max_n_mmaps = 0; 1598 static unsigned long max_mmapped_mem = 0; 1599 #endif 1600 1601 1602 1603 /* 1604 Debugging support 1605 */ 1606 1607 #ifdef DEBUG 1608 1609 1610 /* 1611 These routines make a number of assertions about the states 1612 of data structures that should be true at all times. If any 1613 are not true, it's very likely that a user program has somehow 1614 trashed memory. (It's also possible that there is a coding error 1615 in malloc. In which case, please report it!) 1616 */ 1617 1618 #if __STD_C 1619 static void do_check_chunk(mchunkptr p) 1620 #else 1621 static void do_check_chunk(p) mchunkptr p; 1622 #endif 1623 { 1624 #if 0 /* causes warnings because assert() is off */ 1625 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; 1626 #endif /* 0 */ 1627 1628 /* No checkable chunk is mmapped */ 1629 assert(!chunk_is_mmapped(p)); 1630 1631 /* Check for legal address ... */ 1632 assert((char*)p >= sbrk_base); 1633 if (p != top) 1634 assert((char*)p + sz <= (char*)top); 1635 else 1636 assert((char*)p + sz <= sbrk_base + sbrked_mem); 1637 1638 } 1639 1640 1641 #if __STD_C 1642 static void do_check_free_chunk(mchunkptr p) 1643 #else 1644 static void do_check_free_chunk(p) mchunkptr p; 1645 #endif 1646 { 1647 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; 1648 #if 0 /* causes warnings because assert() is off */ 1649 mchunkptr next = chunk_at_offset(p, sz); 1650 #endif /* 0 */ 1651 1652 do_check_chunk(p); 1653 1654 /* Check whether it claims to be free ... */ 1655 assert(!inuse(p)); 1656 1657 /* Unless a special marker, must have OK fields */ 1658 if ((long)sz >= (long)MINSIZE) 1659 { 1660 assert((sz & MALLOC_ALIGN_MASK) == 0); 1661 assert(aligned_OK(chunk2mem(p))); 1662 /* ... matching footer field */ 1663 assert(next->prev_size == sz); 1664 /* ... and is fully consolidated */ 1665 assert(prev_inuse(p)); 1666 assert (next == top || inuse(next)); 1667 1668 /* ... and has minimally sane links */ 1669 assert(p->fd->bk == p); 1670 assert(p->bk->fd == p); 1671 } 1672 else /* markers are always of size SIZE_SZ */ 1673 assert(sz == SIZE_SZ); 1674 } 1675 1676 #if __STD_C 1677 static void do_check_inuse_chunk(mchunkptr p) 1678 #else 1679 static void do_check_inuse_chunk(p) mchunkptr p; 1680 #endif 1681 { 1682 mchunkptr next = next_chunk(p); 1683 do_check_chunk(p); 1684 1685 /* Check whether it claims to be in use ... */ 1686 assert(inuse(p)); 1687 1688 /* ... and is surrounded by OK chunks. 1689 Since more things can be checked with free chunks than inuse ones, 1690 if an inuse chunk borders them and debug is on, it's worth doing them. 1691 */ 1692 if (!prev_inuse(p)) 1693 { 1694 mchunkptr prv = prev_chunk(p); 1695 assert(next_chunk(prv) == p); 1696 do_check_free_chunk(prv); 1697 } 1698 if (next == top) 1699 { 1700 assert(prev_inuse(next)); 1701 assert(chunksize(next) >= MINSIZE); 1702 } 1703 else if (!inuse(next)) 1704 do_check_free_chunk(next); 1705 1706 } 1707 1708 #if __STD_C 1709 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s) 1710 #else 1711 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s; 1712 #endif 1713 { 1714 #if 0 /* causes warnings because assert() is off */ 1715 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; 1716 long room = sz - s; 1717 #endif /* 0 */ 1718 1719 do_check_inuse_chunk(p); 1720 1721 /* Legal size ... */ 1722 assert((long)sz >= (long)MINSIZE); 1723 assert((sz & MALLOC_ALIGN_MASK) == 0); 1724 assert(room >= 0); 1725 assert(room < (long)MINSIZE); 1726 1727 /* ... and alignment */ 1728 assert(aligned_OK(chunk2mem(p))); 1729 1730 1731 /* ... and was allocated at front of an available chunk */ 1732 assert(prev_inuse(p)); 1733 1734 } 1735 1736 1737 #define check_free_chunk(P) do_check_free_chunk(P) 1738 #define check_inuse_chunk(P) do_check_inuse_chunk(P) 1739 #define check_chunk(P) do_check_chunk(P) 1740 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N) 1741 #else 1742 #define check_free_chunk(P) 1743 #define check_inuse_chunk(P) 1744 #define check_chunk(P) 1745 #define check_malloced_chunk(P,N) 1746 #endif 1747 1748 1749 1750 /* 1751 Macro-based internal utilities 1752 */ 1753 1754 1755 /* 1756 Linking chunks in bin lists. 1757 Call these only with variables, not arbitrary expressions, as arguments. 1758 */ 1759 1760 /* 1761 Place chunk p of size s in its bin, in size order, 1762 putting it ahead of others of same size. 1763 */ 1764 1765 1766 #define frontlink(P, S, IDX, BK, FD) \ 1767 { \ 1768 if (S < MAX_SMALLBIN_SIZE) \ 1769 { \ 1770 IDX = smallbin_index(S); \ 1771 mark_binblock(IDX); \ 1772 BK = bin_at(IDX); \ 1773 FD = BK->fd; \ 1774 P->bk = BK; \ 1775 P->fd = FD; \ 1776 FD->bk = BK->fd = P; \ 1777 } \ 1778 else \ 1779 { \ 1780 IDX = bin_index(S); \ 1781 BK = bin_at(IDX); \ 1782 FD = BK->fd; \ 1783 if (FD == BK) mark_binblock(IDX); \ 1784 else \ 1785 { \ 1786 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \ 1787 BK = FD->bk; \ 1788 } \ 1789 P->bk = BK; \ 1790 P->fd = FD; \ 1791 FD->bk = BK->fd = P; \ 1792 } \ 1793 } 1794 1795 1796 /* take a chunk off a list */ 1797 1798 #define unlink(P, BK, FD) \ 1799 { \ 1800 BK = P->bk; \ 1801 FD = P->fd; \ 1802 FD->bk = BK; \ 1803 BK->fd = FD; \ 1804 } \ 1805 1806 /* Place p as the last remainder */ 1807 1808 #define link_last_remainder(P) \ 1809 { \ 1810 last_remainder->fd = last_remainder->bk = P; \ 1811 P->fd = P->bk = last_remainder; \ 1812 } 1813 1814 /* Clear the last_remainder bin */ 1815 1816 #define clear_last_remainder \ 1817 (last_remainder->fd = last_remainder->bk = last_remainder) 1818 1819 1820 1821 1822 1823 /* Routines dealing with mmap(). */ 1824 1825 #if HAVE_MMAP 1826 1827 #if __STD_C 1828 static mchunkptr mmap_chunk(size_t size) 1829 #else 1830 static mchunkptr mmap_chunk(size) size_t size; 1831 #endif 1832 { 1833 size_t page_mask = malloc_getpagesize - 1; 1834 mchunkptr p; 1835 1836 #ifndef MAP_ANONYMOUS 1837 static int fd = -1; 1838 #endif 1839 1840 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */ 1841 1842 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because 1843 * there is no following chunk whose prev_size field could be used. 1844 */ 1845 size = (size + SIZE_SZ + page_mask) & ~page_mask; 1846 1847 #ifdef MAP_ANONYMOUS 1848 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, 1849 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); 1850 #else /* !MAP_ANONYMOUS */ 1851 if (fd < 0) 1852 { 1853 fd = open("/dev/zero", O_RDWR); 1854 if(fd < 0) return 0; 1855 } 1856 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); 1857 #endif 1858 1859 if(p == (mchunkptr)-1) return 0; 1860 1861 n_mmaps++; 1862 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps; 1863 1864 /* We demand that eight bytes into a page must be 8-byte aligned. */ 1865 assert(aligned_OK(chunk2mem(p))); 1866 1867 /* The offset to the start of the mmapped region is stored 1868 * in the prev_size field of the chunk; normally it is zero, 1869 * but that can be changed in memalign(). 1870 */ 1871 p->prev_size = 0; 1872 set_head(p, size|IS_MMAPPED); 1873 1874 mmapped_mem += size; 1875 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) 1876 max_mmapped_mem = mmapped_mem; 1877 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) 1878 max_total_mem = mmapped_mem + sbrked_mem; 1879 return p; 1880 } 1881 1882 #if __STD_C 1883 static void munmap_chunk(mchunkptr p) 1884 #else 1885 static void munmap_chunk(p) mchunkptr p; 1886 #endif 1887 { 1888 INTERNAL_SIZE_T size = chunksize(p); 1889 int ret; 1890 1891 assert (chunk_is_mmapped(p)); 1892 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); 1893 assert((n_mmaps > 0)); 1894 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0); 1895 1896 n_mmaps--; 1897 mmapped_mem -= (size + p->prev_size); 1898 1899 ret = munmap((char *)p - p->prev_size, size + p->prev_size); 1900 1901 /* munmap returns non-zero on failure */ 1902 assert(ret == 0); 1903 } 1904 1905 #if HAVE_MREMAP 1906 1907 #if __STD_C 1908 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size) 1909 #else 1910 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size; 1911 #endif 1912 { 1913 size_t page_mask = malloc_getpagesize - 1; 1914 INTERNAL_SIZE_T offset = p->prev_size; 1915 INTERNAL_SIZE_T size = chunksize(p); 1916 char *cp; 1917 1918 assert (chunk_is_mmapped(p)); 1919 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); 1920 assert((n_mmaps > 0)); 1921 assert(((size + offset) & (malloc_getpagesize-1)) == 0); 1922 1923 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */ 1924 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask; 1925 1926 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1); 1927 1928 if (cp == (char *)-1) return 0; 1929 1930 p = (mchunkptr)(cp + offset); 1931 1932 assert(aligned_OK(chunk2mem(p))); 1933 1934 assert((p->prev_size == offset)); 1935 set_head(p, (new_size - offset)|IS_MMAPPED); 1936 1937 mmapped_mem -= size + offset; 1938 mmapped_mem += new_size; 1939 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) 1940 max_mmapped_mem = mmapped_mem; 1941 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) 1942 max_total_mem = mmapped_mem + sbrked_mem; 1943 return p; 1944 } 1945 1946 #endif /* HAVE_MREMAP */ 1947 1948 #endif /* HAVE_MMAP */ 1949 1950 1951 1952 1953 /* 1954 Extend the top-most chunk by obtaining memory from system. 1955 Main interface to sbrk (but see also malloc_trim). 1956 */ 1957 1958 #if __STD_C 1959 static void malloc_extend_top(INTERNAL_SIZE_T nb) 1960 #else 1961 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb; 1962 #endif 1963 { 1964 char* brk; /* return value from sbrk */ 1965 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */ 1966 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */ 1967 char* new_brk; /* return of 2nd sbrk call */ 1968 INTERNAL_SIZE_T top_size; /* new size of top chunk */ 1969 1970 mchunkptr old_top = top; /* Record state of old top */ 1971 INTERNAL_SIZE_T old_top_size = chunksize(old_top); 1972 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size)); 1973 1974 /* Pad request with top_pad plus minimal overhead */ 1975 1976 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE; 1977 unsigned long pagesz = malloc_getpagesize; 1978 1979 /* If not the first time through, round to preserve page boundary */ 1980 /* Otherwise, we need to correct to a page size below anyway. */ 1981 /* (We also correct below if an intervening foreign sbrk call.) */ 1982 1983 if (sbrk_base != (char*)(-1)) 1984 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1); 1985 1986 brk = (char*)(MORECORE (sbrk_size)); 1987 1988 /* Fail if sbrk failed or if a foreign sbrk call killed our space */ 1989 if (brk == (char*)(MORECORE_FAILURE) || 1990 (brk < old_end && old_top != initial_top)) 1991 return; 1992 1993 sbrked_mem += sbrk_size; 1994 1995 if (brk == old_end) /* can just add bytes to current top */ 1996 { 1997 top_size = sbrk_size + old_top_size; 1998 set_head(top, top_size | PREV_INUSE); 1999 } 2000 else 2001 { 2002 if (sbrk_base == (char*)(-1)) /* First time through. Record base */ 2003 sbrk_base = brk; 2004 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */ 2005 sbrked_mem += brk - (char*)old_end; 2006 2007 /* Guarantee alignment of first new chunk made from this space */ 2008 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK; 2009 if (front_misalign > 0) 2010 { 2011 correction = (MALLOC_ALIGNMENT) - front_misalign; 2012 brk += correction; 2013 } 2014 else 2015 correction = 0; 2016 2017 /* Guarantee the next brk will be at a page boundary */ 2018 2019 correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) & 2020 ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size)); 2021 2022 /* Allocate correction */ 2023 new_brk = (char*)(MORECORE (correction)); 2024 if (new_brk == (char*)(MORECORE_FAILURE)) return; 2025 2026 sbrked_mem += correction; 2027 2028 top = (mchunkptr)brk; 2029 top_size = new_brk - brk + correction; 2030 set_head(top, top_size | PREV_INUSE); 2031 2032 if (old_top != initial_top) 2033 { 2034 2035 /* There must have been an intervening foreign sbrk call. */ 2036 /* A double fencepost is necessary to prevent consolidation */ 2037 2038 /* If not enough space to do this, then user did something very wrong */ 2039 if (old_top_size < MINSIZE) 2040 { 2041 set_head(top, PREV_INUSE); /* will force null return from malloc */ 2042 return; 2043 } 2044 2045 /* Also keep size a multiple of MALLOC_ALIGNMENT */ 2046 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK; 2047 set_head_size(old_top, old_top_size); 2048 chunk_at_offset(old_top, old_top_size )->size = 2049 SIZE_SZ|PREV_INUSE; 2050 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size = 2051 SIZE_SZ|PREV_INUSE; 2052 /* If possible, release the rest. */ 2053 if (old_top_size >= MINSIZE) 2054 fREe(chunk2mem(old_top)); 2055 } 2056 } 2057 2058 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem) 2059 max_sbrked_mem = sbrked_mem; 2060 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) 2061 max_total_mem = mmapped_mem + sbrked_mem; 2062 2063 /* We always land on a page boundary */ 2064 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0); 2065 } 2066 2067 2068 2069 2070 /* Main public routines */ 2071 2072 2073 /* 2074 Malloc Algorthim: 2075 2076 The requested size is first converted into a usable form, `nb'. 2077 This currently means to add 4 bytes overhead plus possibly more to 2078 obtain 8-byte alignment and/or to obtain a size of at least 2079 MINSIZE (currently 16 bytes), the smallest allocatable size. 2080 (All fits are considered `exact' if they are within MINSIZE bytes.) 2081 2082 From there, the first successful of the following steps is taken: 2083 2084 1. The bin corresponding to the request size is scanned, and if 2085 a chunk of exactly the right size is found, it is taken. 2086 2087 2. The most recently remaindered chunk is used if it is big 2088 enough. This is a form of (roving) first fit, used only in 2089 the absence of exact fits. Runs of consecutive requests use 2090 the remainder of the chunk used for the previous such request 2091 whenever possible. This limited use of a first-fit style 2092 allocation strategy tends to give contiguous chunks 2093 coextensive lifetimes, which improves locality and can reduce 2094 fragmentation in the long run. 2095 2096 3. Other bins are scanned in increasing size order, using a 2097 chunk big enough to fulfill the request, and splitting off 2098 any remainder. This search is strictly by best-fit; i.e., 2099 the smallest (with ties going to approximately the least 2100 recently used) chunk that fits is selected. 2101 2102 4. If large enough, the chunk bordering the end of memory 2103 (`top') is split off. (This use of `top' is in accord with 2104 the best-fit search rule. In effect, `top' is treated as 2105 larger (and thus less well fitting) than any other available 2106 chunk since it can be extended to be as large as necessary 2107 (up to system limitations). 2108 2109 5. If the request size meets the mmap threshold and the 2110 system supports mmap, and there are few enough currently 2111 allocated mmapped regions, and a call to mmap succeeds, 2112 the request is allocated via direct memory mapping. 2113 2114 6. Otherwise, the top of memory is extended by 2115 obtaining more space from the system (normally using sbrk, 2116 but definable to anything else via the MORECORE macro). 2117 Memory is gathered from the system (in system page-sized 2118 units) in a way that allows chunks obtained across different 2119 sbrk calls to be consolidated, but does not require 2120 contiguous memory. Thus, it should be safe to intersperse 2121 mallocs with other sbrk calls. 2122 2123 2124 All allocations are made from the the `lowest' part of any found 2125 chunk. (The implementation invariant is that prev_inuse is 2126 always true of any allocated chunk; i.e., that each allocated 2127 chunk borders either a previously allocated and still in-use chunk, 2128 or the base of its memory arena.) 2129 2130 */ 2131 2132 #if __STD_C 2133 Void_t* mALLOc(size_t bytes) 2134 #else 2135 Void_t* mALLOc(bytes) size_t bytes; 2136 #endif 2137 { 2138 mchunkptr victim; /* inspected/selected chunk */ 2139 INTERNAL_SIZE_T victim_size; /* its size */ 2140 int idx; /* index for bin traversal */ 2141 mbinptr bin; /* associated bin */ 2142 mchunkptr remainder; /* remainder from a split */ 2143 long remainder_size; /* its size */ 2144 int remainder_index; /* its bin index */ 2145 unsigned long block; /* block traverser bit */ 2146 int startidx; /* first bin of a traversed block */ 2147 mchunkptr fwd; /* misc temp for linking */ 2148 mchunkptr bck; /* misc temp for linking */ 2149 mbinptr q; /* misc temp */ 2150 2151 INTERNAL_SIZE_T nb; 2152 2153 if ((long)bytes < 0) return 0; 2154 2155 nb = request2size(bytes); /* padded request size; */ 2156 2157 /* Check for exact match in a bin */ 2158 2159 if (is_small_request(nb)) /* Faster version for small requests */ 2160 { 2161 idx = smallbin_index(nb); 2162 2163 /* No traversal or size check necessary for small bins. */ 2164 2165 q = bin_at(idx); 2166 victim = last(q); 2167 2168 /* Also scan the next one, since it would have a remainder < MINSIZE */ 2169 if (victim == q) 2170 { 2171 q = next_bin(q); 2172 victim = last(q); 2173 } 2174 if (victim != q) 2175 { 2176 victim_size = chunksize(victim); 2177 unlink(victim, bck, fwd); 2178 set_inuse_bit_at_offset(victim, victim_size); 2179 check_malloced_chunk(victim, nb); 2180 return chunk2mem(victim); 2181 } 2182 2183 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */ 2184 2185 } 2186 else 2187 { 2188 idx = bin_index(nb); 2189 bin = bin_at(idx); 2190 2191 for (victim = last(bin); victim != bin; victim = victim->bk) 2192 { 2193 victim_size = chunksize(victim); 2194 remainder_size = victim_size - nb; 2195 2196 if (remainder_size >= (long)MINSIZE) /* too big */ 2197 { 2198 --idx; /* adjust to rescan below after checking last remainder */ 2199 break; 2200 } 2201 2202 else if (remainder_size >= 0) /* exact fit */ 2203 { 2204 unlink(victim, bck, fwd); 2205 set_inuse_bit_at_offset(victim, victim_size); 2206 check_malloced_chunk(victim, nb); 2207 return chunk2mem(victim); 2208 } 2209 } 2210 2211 ++idx; 2212 2213 } 2214 2215 /* Try to use the last split-off remainder */ 2216 2217 if ( (victim = last_remainder->fd) != last_remainder) 2218 { 2219 victim_size = chunksize(victim); 2220 remainder_size = victim_size - nb; 2221 2222 if (remainder_size >= (long)MINSIZE) /* re-split */ 2223 { 2224 remainder = chunk_at_offset(victim, nb); 2225 set_head(victim, nb | PREV_INUSE); 2226 link_last_remainder(remainder); 2227 set_head(remainder, remainder_size | PREV_INUSE); 2228 set_foot(remainder, remainder_size); 2229 check_malloced_chunk(victim, nb); 2230 return chunk2mem(victim); 2231 } 2232 2233 clear_last_remainder; 2234 2235 if (remainder_size >= 0) /* exhaust */ 2236 { 2237 set_inuse_bit_at_offset(victim, victim_size); 2238 check_malloced_chunk(victim, nb); 2239 return chunk2mem(victim); 2240 } 2241 2242 /* Else place in bin */ 2243 2244 frontlink(victim, victim_size, remainder_index, bck, fwd); 2245 } 2246 2247 /* 2248 If there are any possibly nonempty big-enough blocks, 2249 search for best fitting chunk by scanning bins in blockwidth units. 2250 */ 2251 2252 if ( (block = idx2binblock(idx)) <= binblocks) 2253 { 2254 2255 /* Get to the first marked block */ 2256 2257 if ( (block & binblocks) == 0) 2258 { 2259 /* force to an even block boundary */ 2260 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH; 2261 block <<= 1; 2262 while ((block & binblocks) == 0) 2263 { 2264 idx += BINBLOCKWIDTH; 2265 block <<= 1; 2266 } 2267 } 2268 2269 /* For each possibly nonempty block ... */ 2270 for (;;) 2271 { 2272 startidx = idx; /* (track incomplete blocks) */ 2273 q = bin = bin_at(idx); 2274 2275 /* For each bin in this block ... */ 2276 do 2277 { 2278 /* Find and use first big enough chunk ... */ 2279 2280 for (victim = last(bin); victim != bin; victim = victim->bk) 2281 { 2282 victim_size = chunksize(victim); 2283 remainder_size = victim_size - nb; 2284 2285 if (remainder_size >= (long)MINSIZE) /* split */ 2286 { 2287 remainder = chunk_at_offset(victim, nb); 2288 set_head(victim, nb | PREV_INUSE); 2289 unlink(victim, bck, fwd); 2290 link_last_remainder(remainder); 2291 set_head(remainder, remainder_size | PREV_INUSE); 2292 set_foot(remainder, remainder_size); 2293 check_malloced_chunk(victim, nb); 2294 return chunk2mem(victim); 2295 } 2296 2297 else if (remainder_size >= 0) /* take */ 2298 { 2299 set_inuse_bit_at_offset(victim, victim_size); 2300 unlink(victim, bck, fwd); 2301 check_malloced_chunk(victim, nb); 2302 return chunk2mem(victim); 2303 } 2304 2305 } 2306 2307 bin = next_bin(bin); 2308 2309 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0); 2310 2311 /* Clear out the block bit. */ 2312 2313 do /* Possibly backtrack to try to clear a partial block */ 2314 { 2315 if ((startidx & (BINBLOCKWIDTH - 1)) == 0) 2316 { 2317 binblocks &= ~block; 2318 break; 2319 } 2320 --startidx; 2321 q = prev_bin(q); 2322 } while (first(q) == q); 2323 2324 /* Get to the next possibly nonempty block */ 2325 2326 if ( (block <<= 1) <= binblocks && (block != 0) ) 2327 { 2328 while ((block & binblocks) == 0) 2329 { 2330 idx += BINBLOCKWIDTH; 2331 block <<= 1; 2332 } 2333 } 2334 else 2335 break; 2336 } 2337 } 2338 2339 2340 /* Try to use top chunk */ 2341 2342 /* Require that there be a remainder, ensuring top always exists */ 2343 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) 2344 { 2345 2346 #if HAVE_MMAP 2347 /* If big and would otherwise need to extend, try to use mmap instead */ 2348 if ((unsigned long)nb >= (unsigned long)mmap_threshold && 2349 (victim = mmap_chunk(nb)) != 0) 2350 return chunk2mem(victim); 2351 #endif 2352 2353 /* Try to extend */ 2354 malloc_extend_top(nb); 2355 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) 2356 return 0; /* propagate failure */ 2357 } 2358 2359 victim = top; 2360 set_head(victim, nb | PREV_INUSE); 2361 top = chunk_at_offset(victim, nb); 2362 set_head(top, remainder_size | PREV_INUSE); 2363 check_malloced_chunk(victim, nb); 2364 return chunk2mem(victim); 2365 2366 } 2367 2368 2369 2370 2371 /* 2372 2373 free() algorithm : 2374 2375 cases: 2376 2377 1. free(0) has no effect. 2378 2379 2. If the chunk was allocated via mmap, it is release via munmap(). 2380 2381 3. If a returned chunk borders the current high end of memory, 2382 it is consolidated into the top, and if the total unused 2383 topmost memory exceeds the trim threshold, malloc_trim is 2384 called. 2385 2386 4. Other chunks are consolidated as they arrive, and 2387 placed in corresponding bins. (This includes the case of 2388 consolidating with the current `last_remainder'). 2389 2390 */ 2391 2392 2393 #if __STD_C 2394 void fREe(Void_t* mem) 2395 #else 2396 void fREe(mem) Void_t* mem; 2397 #endif 2398 { 2399 mchunkptr p; /* chunk corresponding to mem */ 2400 INTERNAL_SIZE_T hd; /* its head field */ 2401 INTERNAL_SIZE_T sz; /* its size */ 2402 int idx; /* its bin index */ 2403 mchunkptr next; /* next contiguous chunk */ 2404 INTERNAL_SIZE_T nextsz; /* its size */ 2405 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */ 2406 mchunkptr bck; /* misc temp for linking */ 2407 mchunkptr fwd; /* misc temp for linking */ 2408 int islr; /* track whether merging with last_remainder */ 2409 2410 if (mem == 0) /* free(0) has no effect */ 2411 return; 2412 2413 p = mem2chunk(mem); 2414 hd = p->size; 2415 2416 #if HAVE_MMAP 2417 if (hd & IS_MMAPPED) /* release mmapped memory. */ 2418 { 2419 munmap_chunk(p); 2420 return; 2421 } 2422 #endif 2423 2424 check_inuse_chunk(p); 2425 2426 sz = hd & ~PREV_INUSE; 2427 next = chunk_at_offset(p, sz); 2428 nextsz = chunksize(next); 2429 2430 if (next == top) /* merge with top */ 2431 { 2432 sz += nextsz; 2433 2434 if (!(hd & PREV_INUSE)) /* consolidate backward */ 2435 { 2436 prevsz = p->prev_size; 2437 p = chunk_at_offset(p, -((long) prevsz)); 2438 sz += prevsz; 2439 unlink(p, bck, fwd); 2440 } 2441 2442 set_head(p, sz | PREV_INUSE); 2443 top = p; 2444 if ((unsigned long)(sz) >= (unsigned long)trim_threshold) 2445 malloc_trim(top_pad); 2446 return; 2447 } 2448 2449 set_head(next, nextsz); /* clear inuse bit */ 2450 2451 islr = 0; 2452 2453 if (!(hd & PREV_INUSE)) /* consolidate backward */ 2454 { 2455 prevsz = p->prev_size; 2456 p = chunk_at_offset(p, -((long) prevsz)); 2457 sz += prevsz; 2458 2459 if (p->fd == last_remainder) /* keep as last_remainder */ 2460 islr = 1; 2461 else 2462 unlink(p, bck, fwd); 2463 } 2464 2465 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */ 2466 { 2467 sz += nextsz; 2468 2469 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */ 2470 { 2471 islr = 1; 2472 link_last_remainder(p); 2473 } 2474 else 2475 unlink(next, bck, fwd); 2476 } 2477 2478 2479 set_head(p, sz | PREV_INUSE); 2480 set_foot(p, sz); 2481 if (!islr) 2482 frontlink(p, sz, idx, bck, fwd); 2483 } 2484 2485 2486 2487 2488 2489 /* 2490 2491 Realloc algorithm: 2492 2493 Chunks that were obtained via mmap cannot be extended or shrunk 2494 unless HAVE_MREMAP is defined, in which case mremap is used. 2495 Otherwise, if their reallocation is for additional space, they are 2496 copied. If for less, they are just left alone. 2497 2498 Otherwise, if the reallocation is for additional space, and the 2499 chunk can be extended, it is, else a malloc-copy-free sequence is 2500 taken. There are several different ways that a chunk could be 2501 extended. All are tried: 2502 2503 * Extending forward into following adjacent free chunk. 2504 * Shifting backwards, joining preceding adjacent space 2505 * Both shifting backwards and extending forward. 2506 * Extending into newly sbrked space 2507 2508 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a 2509 size argument of zero (re)allocates a minimum-sized chunk. 2510 2511 If the reallocation is for less space, and the new request is for 2512 a `small' (<512 bytes) size, then the newly unused space is lopped 2513 off and freed. 2514 2515 The old unix realloc convention of allowing the last-free'd chunk 2516 to be used as an argument to realloc is no longer supported. 2517 I don't know of any programs still relying on this feature, 2518 and allowing it would also allow too many other incorrect 2519 usages of realloc to be sensible. 2520 2521 2522 */ 2523 2524 2525 #if __STD_C 2526 Void_t* rEALLOc(Void_t* oldmem, size_t bytes) 2527 #else 2528 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes; 2529 #endif 2530 { 2531 INTERNAL_SIZE_T nb; /* padded request size */ 2532 2533 mchunkptr oldp; /* chunk corresponding to oldmem */ 2534 INTERNAL_SIZE_T oldsize; /* its size */ 2535 2536 mchunkptr newp; /* chunk to return */ 2537 INTERNAL_SIZE_T newsize; /* its size */ 2538 Void_t* newmem; /* corresponding user mem */ 2539 2540 mchunkptr next; /* next contiguous chunk after oldp */ 2541 INTERNAL_SIZE_T nextsize; /* its size */ 2542 2543 mchunkptr prev; /* previous contiguous chunk before oldp */ 2544 INTERNAL_SIZE_T prevsize; /* its size */ 2545 2546 mchunkptr remainder; /* holds split off extra space from newp */ 2547 INTERNAL_SIZE_T remainder_size; /* its size */ 2548 2549 mchunkptr bck; /* misc temp for linking */ 2550 mchunkptr fwd; /* misc temp for linking */ 2551 2552 #ifdef REALLOC_ZERO_BYTES_FREES 2553 if (bytes == 0) { fREe(oldmem); return 0; } 2554 #endif 2555 2556 if ((long)bytes < 0) return 0; 2557 2558 /* realloc of null is supposed to be same as malloc */ 2559 if (oldmem == 0) return mALLOc(bytes); 2560 2561 newp = oldp = mem2chunk(oldmem); 2562 newsize = oldsize = chunksize(oldp); 2563 2564 2565 nb = request2size(bytes); 2566 2567 #if HAVE_MMAP 2568 if (chunk_is_mmapped(oldp)) 2569 { 2570 #if HAVE_MREMAP 2571 newp = mremap_chunk(oldp, nb); 2572 if(newp) return chunk2mem(newp); 2573 #endif 2574 /* Note the extra SIZE_SZ overhead. */ 2575 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */ 2576 /* Must alloc, copy, free. */ 2577 newmem = mALLOc(bytes); 2578 if (newmem == 0) return 0; /* propagate failure */ 2579 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ); 2580 munmap_chunk(oldp); 2581 return newmem; 2582 } 2583 #endif 2584 2585 check_inuse_chunk(oldp); 2586 2587 if ((long)(oldsize) < (long)(nb)) 2588 { 2589 2590 /* Try expanding forward */ 2591 2592 next = chunk_at_offset(oldp, oldsize); 2593 if (next == top || !inuse(next)) 2594 { 2595 nextsize = chunksize(next); 2596 2597 /* Forward into top only if a remainder */ 2598 if (next == top) 2599 { 2600 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE)) 2601 { 2602 newsize += nextsize; 2603 top = chunk_at_offset(oldp, nb); 2604 set_head(top, (newsize - nb) | PREV_INUSE); 2605 set_head_size(oldp, nb); 2606 return chunk2mem(oldp); 2607 } 2608 } 2609 2610 /* Forward into next chunk */ 2611 else if (((long)(nextsize + newsize) >= (long)(nb))) 2612 { 2613 unlink(next, bck, fwd); 2614 newsize += nextsize; 2615 goto split; 2616 } 2617 } 2618 else 2619 { 2620 next = 0; 2621 nextsize = 0; 2622 } 2623 2624 /* Try shifting backwards. */ 2625 2626 if (!prev_inuse(oldp)) 2627 { 2628 prev = prev_chunk(oldp); 2629 prevsize = chunksize(prev); 2630 2631 /* try forward + backward first to save a later consolidation */ 2632 2633 if (next != 0) 2634 { 2635 /* into top */ 2636 if (next == top) 2637 { 2638 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE)) 2639 { 2640 unlink(prev, bck, fwd); 2641 newp = prev; 2642 newsize += prevsize + nextsize; 2643 newmem = chunk2mem(newp); 2644 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); 2645 top = chunk_at_offset(newp, nb); 2646 set_head(top, (newsize - nb) | PREV_INUSE); 2647 set_head_size(newp, nb); 2648 return newmem; 2649 } 2650 } 2651 2652 /* into next chunk */ 2653 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb))) 2654 { 2655 unlink(next, bck, fwd); 2656 unlink(prev, bck, fwd); 2657 newp = prev; 2658 newsize += nextsize + prevsize; 2659 newmem = chunk2mem(newp); 2660 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); 2661 goto split; 2662 } 2663 } 2664 2665 /* backward only */ 2666 if (prev != 0 && (long)(prevsize + newsize) >= (long)nb) 2667 { 2668 unlink(prev, bck, fwd); 2669 newp = prev; 2670 newsize += prevsize; 2671 newmem = chunk2mem(newp); 2672 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); 2673 goto split; 2674 } 2675 } 2676 2677 /* Must allocate */ 2678 2679 newmem = mALLOc (bytes); 2680 2681 if (newmem == 0) /* propagate failure */ 2682 return 0; 2683 2684 /* Avoid copy if newp is next chunk after oldp. */ 2685 /* (This can only happen when new chunk is sbrk'ed.) */ 2686 2687 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp)) 2688 { 2689 newsize += chunksize(newp); 2690 newp = oldp; 2691 goto split; 2692 } 2693 2694 /* Otherwise copy, free, and exit */ 2695 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); 2696 fREe(oldmem); 2697 return newmem; 2698 } 2699 2700 2701 split: /* split off extra room in old or expanded chunk */ 2702 2703 if (newsize - nb >= MINSIZE) /* split off remainder */ 2704 { 2705 remainder = chunk_at_offset(newp, nb); 2706 remainder_size = newsize - nb; 2707 set_head_size(newp, nb); 2708 set_head(remainder, remainder_size | PREV_INUSE); 2709 set_inuse_bit_at_offset(remainder, remainder_size); 2710 fREe(chunk2mem(remainder)); /* let free() deal with it */ 2711 } 2712 else 2713 { 2714 set_head_size(newp, newsize); 2715 set_inuse_bit_at_offset(newp, newsize); 2716 } 2717 2718 check_inuse_chunk(newp); 2719 return chunk2mem(newp); 2720 } 2721 2722 2723 2724 2725 /* 2726 2727 memalign algorithm: 2728 2729 memalign requests more than enough space from malloc, finds a spot 2730 within that chunk that meets the alignment request, and then 2731 possibly frees the leading and trailing space. 2732 2733 The alignment argument must be a power of two. This property is not 2734 checked by memalign, so misuse may result in random runtime errors. 2735 2736 8-byte alignment is guaranteed by normal malloc calls, so don't 2737 bother calling memalign with an argument of 8 or less. 2738 2739 Overreliance on memalign is a sure way to fragment space. 2740 2741 */ 2742 2743 2744 #if __STD_C 2745 Void_t* mEMALIGn(size_t alignment, size_t bytes) 2746 #else 2747 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes; 2748 #endif 2749 { 2750 INTERNAL_SIZE_T nb; /* padded request size */ 2751 char* m; /* memory returned by malloc call */ 2752 mchunkptr p; /* corresponding chunk */ 2753 char* brk; /* alignment point within p */ 2754 mchunkptr newp; /* chunk to return */ 2755 INTERNAL_SIZE_T newsize; /* its size */ 2756 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */ 2757 mchunkptr remainder; /* spare room at end to split off */ 2758 long remainder_size; /* its size */ 2759 2760 if ((long)bytes < 0) return 0; 2761 2762 /* If need less alignment than we give anyway, just relay to malloc */ 2763 2764 if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes); 2765 2766 /* Otherwise, ensure that it is at least a minimum chunk size */ 2767 2768 if (alignment < MINSIZE) alignment = MINSIZE; 2769 2770 /* Call malloc with worst case padding to hit alignment. */ 2771 2772 nb = request2size(bytes); 2773 m = (char*)(mALLOc(nb + alignment + MINSIZE)); 2774 2775 if (m == 0) return 0; /* propagate failure */ 2776 2777 p = mem2chunk(m); 2778 2779 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */ 2780 { 2781 #if HAVE_MMAP 2782 if(chunk_is_mmapped(p)) 2783 return chunk2mem(p); /* nothing more to do */ 2784 #endif 2785 } 2786 else /* misaligned */ 2787 { 2788 /* 2789 Find an aligned spot inside chunk. 2790 Since we need to give back leading space in a chunk of at 2791 least MINSIZE, if the first calculation places us at 2792 a spot with less than MINSIZE leader, we can move to the 2793 next aligned spot -- we've allocated enough total room so that 2794 this is always possible. 2795 */ 2796 2797 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment)); 2798 if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment; 2799 2800 newp = (mchunkptr)brk; 2801 leadsize = brk - (char*)(p); 2802 newsize = chunksize(p) - leadsize; 2803 2804 #if HAVE_MMAP 2805 if(chunk_is_mmapped(p)) 2806 { 2807 newp->prev_size = p->prev_size + leadsize; 2808 set_head(newp, newsize|IS_MMAPPED); 2809 return chunk2mem(newp); 2810 } 2811 #endif 2812 2813 /* give back leader, use the rest */ 2814 2815 set_head(newp, newsize | PREV_INUSE); 2816 set_inuse_bit_at_offset(newp, newsize); 2817 set_head_size(p, leadsize); 2818 fREe(chunk2mem(p)); 2819 p = newp; 2820 2821 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0); 2822 } 2823 2824 /* Also give back spare room at the end */ 2825 2826 remainder_size = chunksize(p) - nb; 2827 2828 if (remainder_size >= (long)MINSIZE) 2829 { 2830 remainder = chunk_at_offset(p, nb); 2831 set_head(remainder, remainder_size | PREV_INUSE); 2832 set_head_size(p, nb); 2833 fREe(chunk2mem(remainder)); 2834 } 2835 2836 check_inuse_chunk(p); 2837 return chunk2mem(p); 2838 2839 } 2840 2841 2842 2843 2844 /* 2845 valloc just invokes memalign with alignment argument equal 2846 to the page size of the system (or as near to this as can 2847 be figured out from all the includes/defines above.) 2848 */ 2849 2850 #if __STD_C 2851 Void_t* vALLOc(size_t bytes) 2852 #else 2853 Void_t* vALLOc(bytes) size_t bytes; 2854 #endif 2855 { 2856 return mEMALIGn (malloc_getpagesize, bytes); 2857 } 2858 2859 /* 2860 pvalloc just invokes valloc for the nearest pagesize 2861 that will accommodate request 2862 */ 2863 2864 2865 #if __STD_C 2866 Void_t* pvALLOc(size_t bytes) 2867 #else 2868 Void_t* pvALLOc(bytes) size_t bytes; 2869 #endif 2870 { 2871 size_t pagesize = malloc_getpagesize; 2872 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1)); 2873 } 2874 2875 /* 2876 2877 calloc calls malloc, then zeroes out the allocated chunk. 2878 2879 */ 2880 2881 #if __STD_C 2882 Void_t* cALLOc(size_t n, size_t elem_size) 2883 #else 2884 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size; 2885 #endif 2886 { 2887 mchunkptr p; 2888 INTERNAL_SIZE_T csz; 2889 2890 INTERNAL_SIZE_T sz = n * elem_size; 2891 2892 2893 /* check if expand_top called, in which case don't need to clear */ 2894 #if MORECORE_CLEARS 2895 mchunkptr oldtop = top; 2896 INTERNAL_SIZE_T oldtopsize = chunksize(top); 2897 #endif 2898 Void_t* mem = mALLOc (sz); 2899 2900 if ((long)n < 0) return 0; 2901 2902 if (mem == 0) 2903 return 0; 2904 else 2905 { 2906 p = mem2chunk(mem); 2907 2908 /* Two optional cases in which clearing not necessary */ 2909 2910 2911 #if HAVE_MMAP 2912 if (chunk_is_mmapped(p)) return mem; 2913 #endif 2914 2915 csz = chunksize(p); 2916 2917 #if MORECORE_CLEARS 2918 if (p == oldtop && csz > oldtopsize) 2919 { 2920 /* clear only the bytes from non-freshly-sbrked memory */ 2921 csz = oldtopsize; 2922 } 2923 #endif 2924 2925 MALLOC_ZERO(mem, csz - SIZE_SZ); 2926 return mem; 2927 } 2928 } 2929 2930 /* 2931 2932 cfree just calls free. It is needed/defined on some systems 2933 that pair it with calloc, presumably for odd historical reasons. 2934 2935 */ 2936 2937 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__) 2938 #if __STD_C 2939 void cfree(Void_t *mem) 2940 #else 2941 void cfree(mem) Void_t *mem; 2942 #endif 2943 { 2944 fREe(mem); 2945 } 2946 #endif 2947 2948 2949 2950 /* 2951 2952 Malloc_trim gives memory back to the system (via negative 2953 arguments to sbrk) if there is unused memory at the `high' end of 2954 the malloc pool. You can call this after freeing large blocks of 2955 memory to potentially reduce the system-level memory requirements 2956 of a program. However, it cannot guarantee to reduce memory. Under 2957 some allocation patterns, some large free blocks of memory will be 2958 locked between two used chunks, so they cannot be given back to 2959 the system. 2960 2961 The `pad' argument to malloc_trim represents the amount of free 2962 trailing space to leave untrimmed. If this argument is zero, 2963 only the minimum amount of memory to maintain internal data 2964 structures will be left (one page or less). Non-zero arguments 2965 can be supplied to maintain enough trailing space to service 2966 future expected allocations without having to re-obtain memory 2967 from the system. 2968 2969 Malloc_trim returns 1 if it actually released any memory, else 0. 2970 2971 */ 2972 2973 #if __STD_C 2974 int malloc_trim(size_t pad) 2975 #else 2976 int malloc_trim(pad) size_t pad; 2977 #endif 2978 { 2979 long top_size; /* Amount of top-most memory */ 2980 long extra; /* Amount to release */ 2981 char* current_brk; /* address returned by pre-check sbrk call */ 2982 char* new_brk; /* address returned by negative sbrk call */ 2983 2984 unsigned long pagesz = malloc_getpagesize; 2985 2986 top_size = chunksize(top); 2987 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz; 2988 2989 if (extra < (long)pagesz) /* Not enough memory to release */ 2990 return 0; 2991 2992 else 2993 { 2994 /* Test to make sure no one else called sbrk */ 2995 current_brk = (char*)(MORECORE (0)); 2996 if (current_brk != (char*)(top) + top_size) 2997 return 0; /* Apparently we don't own memory; must fail */ 2998 2999 else 3000 { 3001 new_brk = (char*)(MORECORE (-extra)); 3002 3003 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */ 3004 { 3005 /* Try to figure out what we have */ 3006 current_brk = (char*)(MORECORE (0)); 3007 top_size = current_brk - (char*)top; 3008 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */ 3009 { 3010 sbrked_mem = current_brk - sbrk_base; 3011 set_head(top, top_size | PREV_INUSE); 3012 } 3013 check_chunk(top); 3014 return 0; 3015 } 3016 3017 else 3018 { 3019 /* Success. Adjust top accordingly. */ 3020 set_head(top, (top_size - extra) | PREV_INUSE); 3021 sbrked_mem -= extra; 3022 check_chunk(top); 3023 return 1; 3024 } 3025 } 3026 } 3027 } 3028 3029 3030 3031 /* 3032 malloc_usable_size: 3033 3034 This routine tells you how many bytes you can actually use in an 3035 allocated chunk, which may be more than you requested (although 3036 often not). You can use this many bytes without worrying about 3037 overwriting other allocated objects. Not a particularly great 3038 programming practice, but still sometimes useful. 3039 3040 */ 3041 3042 #if __STD_C 3043 size_t malloc_usable_size(Void_t* mem) 3044 #else 3045 size_t malloc_usable_size(mem) Void_t* mem; 3046 #endif 3047 { 3048 mchunkptr p; 3049 if (mem == 0) 3050 return 0; 3051 else 3052 { 3053 p = mem2chunk(mem); 3054 if(!chunk_is_mmapped(p)) 3055 { 3056 if (!inuse(p)) return 0; 3057 check_inuse_chunk(p); 3058 return chunksize(p) - SIZE_SZ; 3059 } 3060 return chunksize(p) - 2*SIZE_SZ; 3061 } 3062 } 3063 3064 3065 3066 3067 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */ 3068 3069 #if 0 3070 static void malloc_update_mallinfo() 3071 { 3072 int i; 3073 mbinptr b; 3074 mchunkptr p; 3075 #ifdef DEBUG 3076 mchunkptr q; 3077 #endif 3078 3079 INTERNAL_SIZE_T avail = chunksize(top); 3080 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0; 3081 3082 for (i = 1; i < NAV; ++i) 3083 { 3084 b = bin_at(i); 3085 for (p = last(b); p != b; p = p->bk) 3086 { 3087 #ifdef DEBUG 3088 check_free_chunk(p); 3089 for (q = next_chunk(p); 3090 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE; 3091 q = next_chunk(q)) 3092 check_inuse_chunk(q); 3093 #endif 3094 avail += chunksize(p); 3095 navail++; 3096 } 3097 } 3098 3099 current_mallinfo.ordblks = navail; 3100 current_mallinfo.uordblks = sbrked_mem - avail; 3101 current_mallinfo.fordblks = avail; 3102 current_mallinfo.hblks = n_mmaps; 3103 current_mallinfo.hblkhd = mmapped_mem; 3104 current_mallinfo.keepcost = chunksize(top); 3105 3106 } 3107 #endif /* 0 */ 3108 3109 3110 3111 /* 3112 3113 malloc_stats: 3114 3115 Prints on the amount of space obtain from the system (both 3116 via sbrk and mmap), the maximum amount (which may be more than 3117 current if malloc_trim and/or munmap got called), the maximum 3118 number of simultaneous mmap regions used, and the current number 3119 of bytes allocated via malloc (or realloc, etc) but not yet 3120 freed. (Note that this is the number of bytes allocated, not the 3121 number requested. It will be larger than the number requested 3122 because of alignment and bookkeeping overhead.) 3123 3124 */ 3125 3126 #if 0 3127 void malloc_stats() 3128 { 3129 malloc_update_mallinfo(); 3130 printf("max system bytes = %10u\n", 3131 (unsigned int)(max_total_mem)); 3132 printf("system bytes = %10u\n", 3133 (unsigned int)(sbrked_mem + mmapped_mem)); 3134 printf("in use bytes = %10u\n", 3135 (unsigned int)(current_mallinfo.uordblks + mmapped_mem)); 3136 #if HAVE_MMAP 3137 printf("max mmap regions = %10u\n", 3138 (unsigned int)max_n_mmaps); 3139 #endif 3140 } 3141 #endif /* 0 */ 3142 3143 /* 3144 mallinfo returns a copy of updated current mallinfo. 3145 */ 3146 3147 #if 0 3148 struct mallinfo mALLINFo() 3149 { 3150 malloc_update_mallinfo(); 3151 return current_mallinfo; 3152 } 3153 #endif /* 0 */ 3154 3155 3156 3157 3158 /* 3159 mallopt: 3160 3161 mallopt is the general SVID/XPG interface to tunable parameters. 3162 The format is to provide a (parameter-number, parameter-value) pair. 3163 mallopt then sets the corresponding parameter to the argument 3164 value if it can (i.e., so long as the value is meaningful), 3165 and returns 1 if successful else 0. 3166 3167 See descriptions of tunable parameters above. 3168 3169 */ 3170 3171 #if __STD_C 3172 int mALLOPt(int param_number, int value) 3173 #else 3174 int mALLOPt(param_number, value) int param_number; int value; 3175 #endif 3176 { 3177 switch(param_number) 3178 { 3179 case M_TRIM_THRESHOLD: 3180 trim_threshold = value; return 1; 3181 case M_TOP_PAD: 3182 top_pad = value; return 1; 3183 case M_MMAP_THRESHOLD: 3184 mmap_threshold = value; return 1; 3185 case M_MMAP_MAX: 3186 #if HAVE_MMAP 3187 n_mmaps_max = value; return 1; 3188 #else 3189 if (value != 0) return 0; else n_mmaps_max = value; return 1; 3190 #endif 3191 3192 default: 3193 return 0; 3194 } 3195 } 3196 3197 /* 3198 3199 History: 3200 3201 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) 3202 * return null for negative arguments 3203 * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com> 3204 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' 3205 (e.g. WIN32 platforms) 3206 * Cleanup up header file inclusion for WIN32 platforms 3207 * Cleanup code to avoid Microsoft Visual C++ compiler complaints 3208 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing 3209 memory allocation routines 3210 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) 3211 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to 3212 usage of 'assert' in non-WIN32 code 3213 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to 3214 avoid infinite loop 3215 * Always call 'fREe()' rather than 'free()' 3216 3217 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) 3218 * Fixed ordering problem with boundary-stamping 3219 3220 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) 3221 * Added pvalloc, as recommended by H.J. Liu 3222 * Added 64bit pointer support mainly from Wolfram Gloger 3223 * Added anonymously donated WIN32 sbrk emulation 3224 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen 3225 * malloc_extend_top: fix mask error that caused wastage after 3226 foreign sbrks 3227 * Add linux mremap support code from HJ Liu 3228 3229 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) 3230 * Integrated most documentation with the code. 3231 * Add support for mmap, with help from 3232 Wolfram Gloger (Gloger@lrz.uni-muenchen.de). 3233 * Use last_remainder in more cases. 3234 * Pack bins using idea from colin@nyx10.cs.du.edu 3235 * Use ordered bins instead of best-fit threshhold 3236 * Eliminate block-local decls to simplify tracing and debugging. 3237 * Support another case of realloc via move into top 3238 * Fix error occuring when initial sbrk_base not word-aligned. 3239 * Rely on page size for units instead of SBRK_UNIT to 3240 avoid surprises about sbrk alignment conventions. 3241 * Add mallinfo, mallopt. Thanks to Raymond Nijssen 3242 (raymond@es.ele.tue.nl) for the suggestion. 3243 * Add `pad' argument to malloc_trim and top_pad mallopt parameter. 3244 * More precautions for cases where other routines call sbrk, 3245 courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). 3246 * Added macros etc., allowing use in linux libc from 3247 H.J. Lu (hjl@gnu.ai.mit.edu) 3248 * Inverted this history list 3249 3250 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) 3251 * Re-tuned and fixed to behave more nicely with V2.6.0 changes. 3252 * Removed all preallocation code since under current scheme 3253 the work required to undo bad preallocations exceeds 3254 the work saved in good cases for most test programs. 3255 * No longer use return list or unconsolidated bins since 3256 no scheme using them consistently outperforms those that don't 3257 given above changes. 3258 * Use best fit for very large chunks to prevent some worst-cases. 3259 * Added some support for debugging 3260 3261 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) 3262 * Removed footers when chunks are in use. Thanks to 3263 Paul Wilson (wilson@cs.texas.edu) for the suggestion. 3264 3265 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) 3266 * Added malloc_trim, with help from Wolfram Gloger 3267 (wmglo@Dent.MED.Uni-Muenchen.DE). 3268 3269 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) 3270 3271 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) 3272 * realloc: try to expand in both directions 3273 * malloc: swap order of clean-bin strategy; 3274 * realloc: only conditionally expand backwards 3275 * Try not to scavenge used bins 3276 * Use bin counts as a guide to preallocation 3277 * Occasionally bin return list chunks in first scan 3278 * Add a few optimizations from colin@nyx10.cs.du.edu 3279 3280 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) 3281 * faster bin computation & slightly different binning 3282 * merged all consolidations to one part of malloc proper 3283 (eliminating old malloc_find_space & malloc_clean_bin) 3284 * Scan 2 returns chunks (not just 1) 3285 * Propagate failure in realloc if malloc returns 0 3286 * Add stuff to allow compilation on non-ANSI compilers 3287 from kpv@research.att.com 3288 3289 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) 3290 * removed potential for odd address access in prev_chunk 3291 * removed dependency on getpagesize.h 3292 * misc cosmetics and a bit more internal documentation 3293 * anticosmetics: mangled names in macros to evade debugger strangeness 3294 * tested on sparc, hp-700, dec-mips, rs6000 3295 with gcc & native cc (hp, dec only) allowing 3296 Detlefs & Zorn comparison study (in SIGPLAN Notices.) 3297 3298 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) 3299 * Based loosely on libg++-1.2X malloc. (It retains some of the overall 3300 structure of old version, but most details differ.) 3301 3302 */ 3303