xref: /openbmc/u-boot/common/dlmalloc.c (revision 5d27e02c)
1 #include <common.h>
2 
3 #if 0	/* Moved to malloc.h */
4 /* ---------- To make a malloc.h, start cutting here ------------ */
5 
6 /*
7   A version of malloc/free/realloc written by Doug Lea and released to the
8   public domain.  Send questions/comments/complaints/performance data
9   to dl@cs.oswego.edu
10 
11 * VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
12 
13    Note: There may be an updated version of this malloc obtainable at
14 	   ftp://g.oswego.edu/pub/misc/malloc.c
15 	 Check before installing!
16 
17 * Why use this malloc?
18 
19   This is not the fastest, most space-conserving, most portable, or
20   most tunable malloc ever written. However it is among the fastest
21   while also being among the most space-conserving, portable and tunable.
22   Consistent balance across these factors results in a good general-purpose
23   allocator. For a high-level description, see
24      http://g.oswego.edu/dl/html/malloc.html
25 
26 * Synopsis of public routines
27 
28   (Much fuller descriptions are contained in the program documentation below.)
29 
30   malloc(size_t n);
31      Return a pointer to a newly allocated chunk of at least n bytes, or null
32      if no space is available.
33   free(Void_t* p);
34      Release the chunk of memory pointed to by p, or no effect if p is null.
35   realloc(Void_t* p, size_t n);
36      Return a pointer to a chunk of size n that contains the same data
37      as does chunk p up to the minimum of (n, p's size) bytes, or null
38      if no space is available. The returned pointer may or may not be
39      the same as p. If p is null, equivalent to malloc.  Unless the
40      #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
41      size argument of zero (re)allocates a minimum-sized chunk.
42   memalign(size_t alignment, size_t n);
43      Return a pointer to a newly allocated chunk of n bytes, aligned
44      in accord with the alignment argument, which must be a power of
45      two.
46   valloc(size_t n);
47      Equivalent to memalign(pagesize, n), where pagesize is the page
48      size of the system (or as near to this as can be figured out from
49      all the includes/defines below.)
50   pvalloc(size_t n);
51      Equivalent to valloc(minimum-page-that-holds(n)), that is,
52      round up n to nearest pagesize.
53   calloc(size_t unit, size_t quantity);
54      Returns a pointer to quantity * unit bytes, with all locations
55      set to zero.
56   cfree(Void_t* p);
57      Equivalent to free(p).
58   malloc_trim(size_t pad);
59      Release all but pad bytes of freed top-most memory back
60      to the system. Return 1 if successful, else 0.
61   malloc_usable_size(Void_t* p);
62      Report the number usable allocated bytes associated with allocated
63      chunk p. This may or may not report more bytes than were requested,
64      due to alignment and minimum size constraints.
65   malloc_stats();
66      Prints brief summary statistics.
67   mallinfo()
68      Returns (by copy) a struct containing various summary statistics.
69   mallopt(int parameter_number, int parameter_value)
70      Changes one of the tunable parameters described below. Returns
71      1 if successful in changing the parameter, else 0.
72 
73 * Vital statistics:
74 
75   Alignment:                            8-byte
76        8 byte alignment is currently hardwired into the design.  This
77        seems to suffice for all current machines and C compilers.
78 
79   Assumed pointer representation:       4 or 8 bytes
80        Code for 8-byte pointers is untested by me but has worked
81        reliably by Wolfram Gloger, who contributed most of the
82        changes supporting this.
83 
84   Assumed size_t  representation:       4 or 8 bytes
85        Note that size_t is allowed to be 4 bytes even if pointers are 8.
86 
87   Minimum overhead per allocated chunk: 4 or 8 bytes
88        Each malloced chunk has a hidden overhead of 4 bytes holding size
89        and status information.
90 
91   Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
92 			  8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
93 
94        When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
95        ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
96        needed; 4 (8) for a trailing size field
97        and 8 (16) bytes for free list pointers. Thus, the minimum
98        allocatable size is 16/24/32 bytes.
99 
100        Even a request for zero bytes (i.e., malloc(0)) returns a
101        pointer to something of the minimum allocatable size.
102 
103   Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
104 			  8-byte size_t: 2^63 - 16 bytes
105 
106        It is assumed that (possibly signed) size_t bit values suffice to
107        represent chunk sizes. `Possibly signed' is due to the fact
108        that `size_t' may be defined on a system as either a signed or
109        an unsigned type. To be conservative, values that would appear
110        as negative numbers are avoided.
111        Requests for sizes with a negative sign bit when the request
112        size is treaded as a long will return null.
113 
114   Maximum overhead wastage per allocated chunk: normally 15 bytes
115 
116        Alignnment demands, plus the minimum allocatable size restriction
117        make the normal worst-case wastage 15 bytes (i.e., up to 15
118        more bytes will be allocated than were requested in malloc), with
119        two exceptions:
120 	 1. Because requests for zero bytes allocate non-zero space,
121 	    the worst case wastage for a request of zero bytes is 24 bytes.
122 	 2. For requests >= mmap_threshold that are serviced via
123 	    mmap(), the worst case wastage is 8 bytes plus the remainder
124 	    from a system page (the minimal mmap unit); typically 4096 bytes.
125 
126 * Limitations
127 
128     Here are some features that are NOT currently supported
129 
130     * No user-definable hooks for callbacks and the like.
131     * No automated mechanism for fully checking that all accesses
132       to malloced memory stay within their bounds.
133     * No support for compaction.
134 
135 * Synopsis of compile-time options:
136 
137     People have reported using previous versions of this malloc on all
138     versions of Unix, sometimes by tweaking some of the defines
139     below. It has been tested most extensively on Solaris and
140     Linux. It is also reported to work on WIN32 platforms.
141     People have also reported adapting this malloc for use in
142     stand-alone embedded systems.
143 
144     The implementation is in straight, hand-tuned ANSI C.  Among other
145     consequences, it uses a lot of macros.  Because of this, to be at
146     all usable, this code should be compiled using an optimizing compiler
147     (for example gcc -O2) that can simplify expressions and control
148     paths.
149 
150   __STD_C                  (default: derived from C compiler defines)
151      Nonzero if using ANSI-standard C compiler, a C++ compiler, or
152      a C compiler sufficiently close to ANSI to get away with it.
153   DEBUG                    (default: NOT defined)
154      Define to enable debugging. Adds fairly extensive assertion-based
155      checking to help track down memory errors, but noticeably slows down
156      execution.
157   REALLOC_ZERO_BYTES_FREES (default: NOT defined)
158      Define this if you think that realloc(p, 0) should be equivalent
159      to free(p). Otherwise, since malloc returns a unique pointer for
160      malloc(0), so does realloc(p, 0).
161   HAVE_MEMCPY               (default: defined)
162      Define if you are not otherwise using ANSI STD C, but still
163      have memcpy and memset in your C library and want to use them.
164      Otherwise, simple internal versions are supplied.
165   USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
166      Define as 1 if you want the C library versions of memset and
167      memcpy called in realloc and calloc (otherwise macro versions are used).
168      At least on some platforms, the simple macro versions usually
169      outperform libc versions.
170   HAVE_MMAP                 (default: defined as 1)
171      Define to non-zero to optionally make malloc() use mmap() to
172      allocate very large blocks.
173   HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
174      Define to non-zero to optionally make realloc() use mremap() to
175      reallocate very large blocks.
176   malloc_getpagesize        (default: derived from system #includes)
177      Either a constant or routine call returning the system page size.
178   HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
179      Optionally define if you are on a system with a /usr/include/malloc.h
180      that declares struct mallinfo. It is not at all necessary to
181      define this even if you do, but will ensure consistency.
182   INTERNAL_SIZE_T           (default: size_t)
183      Define to a 32-bit type (probably `unsigned int') if you are on a
184      64-bit machine, yet do not want or need to allow malloc requests of
185      greater than 2^31 to be handled. This saves space, especially for
186      very small chunks.
187   INTERNAL_LINUX_C_LIB      (default: NOT defined)
188      Defined only when compiled as part of Linux libc.
189      Also note that there is some odd internal name-mangling via defines
190      (for example, internally, `malloc' is named `mALLOc') needed
191      when compiling in this case. These look funny but don't otherwise
192      affect anything.
193   WIN32                     (default: undefined)
194      Define this on MS win (95, nt) platforms to compile in sbrk emulation.
195   LACKS_UNISTD_H            (default: undefined if not WIN32)
196      Define this if your system does not have a <unistd.h>.
197   LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
198      Define this if your system does not have a <sys/param.h>.
199   MORECORE                  (default: sbrk)
200      The name of the routine to call to obtain more memory from the system.
201   MORECORE_FAILURE          (default: -1)
202      The value returned upon failure of MORECORE.
203   MORECORE_CLEARS           (default 1)
204      True (1) if the routine mapped to MORECORE zeroes out memory (which
205      holds for sbrk).
206   DEFAULT_TRIM_THRESHOLD
207   DEFAULT_TOP_PAD
208   DEFAULT_MMAP_THRESHOLD
209   DEFAULT_MMAP_MAX
210      Default values of tunable parameters (described in detail below)
211      controlling interaction with host system routines (sbrk, mmap, etc).
212      These values may also be changed dynamically via mallopt(). The
213      preset defaults are those that give best performance for typical
214      programs/systems.
215   USE_DL_PREFIX             (default: undefined)
216      Prefix all public routines with the string 'dl'.  Useful to
217      quickly avoid procedure declaration conflicts and linker symbol
218      conflicts with existing memory allocation routines.
219 
220 
221 */
222 
223 
224 
225 /* Preliminaries */
226 
227 #ifndef __STD_C
228 #ifdef __STDC__
229 #define __STD_C     1
230 #else
231 #if __cplusplus
232 #define __STD_C     1
233 #else
234 #define __STD_C     0
235 #endif /*__cplusplus*/
236 #endif /*__STDC__*/
237 #endif /*__STD_C*/
238 
239 #ifndef Void_t
240 #if (__STD_C || defined(WIN32))
241 #define Void_t      void
242 #else
243 #define Void_t      char
244 #endif
245 #endif /*Void_t*/
246 
247 #if __STD_C
248 #include <stddef.h>   /* for size_t */
249 #else
250 #include <sys/types.h>
251 #endif
252 
253 #ifdef __cplusplus
254 extern "C" {
255 #endif
256 
257 #include <stdio.h>    /* needed for malloc_stats */
258 
259 
260 /*
261   Compile-time options
262 */
263 
264 
265 /*
266     Debugging:
267 
268     Because freed chunks may be overwritten with link fields, this
269     malloc will often die when freed memory is overwritten by user
270     programs.  This can be very effective (albeit in an annoying way)
271     in helping track down dangling pointers.
272 
273     If you compile with -DDEBUG, a number of assertion checks are
274     enabled that will catch more memory errors. You probably won't be
275     able to make much sense of the actual assertion errors, but they
276     should help you locate incorrectly overwritten memory.  The
277     checking is fairly extensive, and will slow down execution
278     noticeably. Calling malloc_stats or mallinfo with DEBUG set will
279     attempt to check every non-mmapped allocated and free chunk in the
280     course of computing the summmaries. (By nature, mmapped regions
281     cannot be checked very much automatically.)
282 
283     Setting DEBUG may also be helpful if you are trying to modify
284     this code. The assertions in the check routines spell out in more
285     detail the assumptions and invariants underlying the algorithms.
286 
287 */
288 
289 #ifdef DEBUG
290 #include <assert.h>
291 #else
292 #define assert(x) ((void)0)
293 #endif
294 
295 
296 /*
297   INTERNAL_SIZE_T is the word-size used for internal bookkeeping
298   of chunk sizes. On a 64-bit machine, you can reduce malloc
299   overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
300   at the expense of not being able to handle requests greater than
301   2^31. This limitation is hardly ever a concern; you are encouraged
302   to set this. However, the default version is the same as size_t.
303 */
304 
305 #ifndef INTERNAL_SIZE_T
306 #define INTERNAL_SIZE_T size_t
307 #endif
308 
309 /*
310   REALLOC_ZERO_BYTES_FREES should be set if a call to
311   realloc with zero bytes should be the same as a call to free.
312   Some people think it should. Otherwise, since this malloc
313   returns a unique pointer for malloc(0), so does realloc(p, 0).
314 */
315 
316 
317 /*   #define REALLOC_ZERO_BYTES_FREES */
318 
319 
320 /*
321   WIN32 causes an emulation of sbrk to be compiled in
322   mmap-based options are not currently supported in WIN32.
323 */
324 
325 /* #define WIN32 */
326 #ifdef WIN32
327 #define MORECORE wsbrk
328 #define HAVE_MMAP 0
329 
330 #define LACKS_UNISTD_H
331 #define LACKS_SYS_PARAM_H
332 
333 /*
334   Include 'windows.h' to get the necessary declarations for the
335   Microsoft Visual C++ data structures and routines used in the 'sbrk'
336   emulation.
337 
338   Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
339   Visual C++ header files are included.
340 */
341 #define WIN32_LEAN_AND_MEAN
342 #include <windows.h>
343 #endif
344 
345 
346 /*
347   HAVE_MEMCPY should be defined if you are not otherwise using
348   ANSI STD C, but still have memcpy and memset in your C library
349   and want to use them in calloc and realloc. Otherwise simple
350   macro versions are defined here.
351 
352   USE_MEMCPY should be defined as 1 if you actually want to
353   have memset and memcpy called. People report that the macro
354   versions are often enough faster than libc versions on many
355   systems that it is better to use them.
356 
357 */
358 
359 #define HAVE_MEMCPY
360 
361 #ifndef USE_MEMCPY
362 #ifdef HAVE_MEMCPY
363 #define USE_MEMCPY 1
364 #else
365 #define USE_MEMCPY 0
366 #endif
367 #endif
368 
369 #if (__STD_C || defined(HAVE_MEMCPY))
370 
371 #if __STD_C
372 void* memset(void*, int, size_t);
373 void* memcpy(void*, const void*, size_t);
374 #else
375 #ifdef WIN32
376 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
377 /* 'windows.h' */
378 #else
379 Void_t* memset();
380 Void_t* memcpy();
381 #endif
382 #endif
383 #endif
384 
385 #if USE_MEMCPY
386 
387 /* The following macros are only invoked with (2n+1)-multiples of
388    INTERNAL_SIZE_T units, with a positive integer n. This is exploited
389    for fast inline execution when n is small. */
390 
391 #define MALLOC_ZERO(charp, nbytes)                                            \
392 do {                                                                          \
393   INTERNAL_SIZE_T mzsz = (nbytes);                                            \
394   if(mzsz <= 9*sizeof(mzsz)) {                                                \
395     INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
396     if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
397 				     *mz++ = 0;                               \
398       if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
399 				     *mz++ = 0;                               \
400 	if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
401 				     *mz++ = 0; }}}                           \
402 				     *mz++ = 0;                               \
403 				     *mz++ = 0;                               \
404 				     *mz   = 0;                               \
405   } else memset((charp), 0, mzsz);                                            \
406 } while(0)
407 
408 #define MALLOC_COPY(dest,src,nbytes)                                          \
409 do {                                                                          \
410   INTERNAL_SIZE_T mcsz = (nbytes);                                            \
411   if(mcsz <= 9*sizeof(mcsz)) {                                                \
412     INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
413     INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
414     if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
415 				     *mcdst++ = *mcsrc++;                     \
416       if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
417 				     *mcdst++ = *mcsrc++;                     \
418 	if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
419 				     *mcdst++ = *mcsrc++; }}}                 \
420 				     *mcdst++ = *mcsrc++;                     \
421 				     *mcdst++ = *mcsrc++;                     \
422 				     *mcdst   = *mcsrc  ;                     \
423   } else memcpy(dest, src, mcsz);                                             \
424 } while(0)
425 
426 #else /* !USE_MEMCPY */
427 
428 /* Use Duff's device for good zeroing/copying performance. */
429 
430 #define MALLOC_ZERO(charp, nbytes)                                            \
431 do {                                                                          \
432   INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
433   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
434   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
435   switch (mctmp) {                                                            \
436     case 0: for(;;) { *mzp++ = 0;                                             \
437     case 7:           *mzp++ = 0;                                             \
438     case 6:           *mzp++ = 0;                                             \
439     case 5:           *mzp++ = 0;                                             \
440     case 4:           *mzp++ = 0;                                             \
441     case 3:           *mzp++ = 0;                                             \
442     case 2:           *mzp++ = 0;                                             \
443     case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
444   }                                                                           \
445 } while(0)
446 
447 #define MALLOC_COPY(dest,src,nbytes)                                          \
448 do {                                                                          \
449   INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
450   INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
451   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
452   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
453   switch (mctmp) {                                                            \
454     case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
455     case 7:           *mcdst++ = *mcsrc++;                                    \
456     case 6:           *mcdst++ = *mcsrc++;                                    \
457     case 5:           *mcdst++ = *mcsrc++;                                    \
458     case 4:           *mcdst++ = *mcsrc++;                                    \
459     case 3:           *mcdst++ = *mcsrc++;                                    \
460     case 2:           *mcdst++ = *mcsrc++;                                    \
461     case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
462   }                                                                           \
463 } while(0)
464 
465 #endif
466 
467 
468 /*
469   Define HAVE_MMAP to optionally make malloc() use mmap() to
470   allocate very large blocks.  These will be returned to the
471   operating system immediately after a free().
472 */
473 
474 #ifndef HAVE_MMAP
475 #define HAVE_MMAP 1
476 #endif
477 
478 /*
479   Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
480   large blocks.  This is currently only possible on Linux with
481   kernel versions newer than 1.3.77.
482 */
483 
484 #ifndef HAVE_MREMAP
485 #ifdef INTERNAL_LINUX_C_LIB
486 #define HAVE_MREMAP 1
487 #else
488 #define HAVE_MREMAP 0
489 #endif
490 #endif
491 
492 #if HAVE_MMAP
493 
494 #include <unistd.h>
495 #include <fcntl.h>
496 #include <sys/mman.h>
497 
498 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
499 #define MAP_ANONYMOUS MAP_ANON
500 #endif
501 
502 #endif /* HAVE_MMAP */
503 
504 /*
505   Access to system page size. To the extent possible, this malloc
506   manages memory from the system in page-size units.
507 
508   The following mechanics for getpagesize were adapted from
509   bsd/gnu getpagesize.h
510 */
511 
512 #ifndef LACKS_UNISTD_H
513 #  include <unistd.h>
514 #endif
515 
516 #ifndef malloc_getpagesize
517 #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
518 #    ifndef _SC_PAGE_SIZE
519 #      define _SC_PAGE_SIZE _SC_PAGESIZE
520 #    endif
521 #  endif
522 #  ifdef _SC_PAGE_SIZE
523 #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
524 #  else
525 #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
526        extern size_t getpagesize();
527 #      define malloc_getpagesize getpagesize()
528 #    else
529 #      ifdef WIN32
530 #        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
531 #      else
532 #        ifndef LACKS_SYS_PARAM_H
533 #          include <sys/param.h>
534 #        endif
535 #        ifdef EXEC_PAGESIZE
536 #          define malloc_getpagesize EXEC_PAGESIZE
537 #        else
538 #          ifdef NBPG
539 #            ifndef CLSIZE
540 #              define malloc_getpagesize NBPG
541 #            else
542 #              define malloc_getpagesize (NBPG * CLSIZE)
543 #            endif
544 #          else
545 #            ifdef NBPC
546 #              define malloc_getpagesize NBPC
547 #            else
548 #              ifdef PAGESIZE
549 #                define malloc_getpagesize PAGESIZE
550 #              else
551 #                define malloc_getpagesize (4096) /* just guess */
552 #              endif
553 #            endif
554 #          endif
555 #        endif
556 #      endif
557 #    endif
558 #  endif
559 #endif
560 
561 
562 /*
563 
564   This version of malloc supports the standard SVID/XPG mallinfo
565   routine that returns a struct containing the same kind of
566   information you can get from malloc_stats. It should work on
567   any SVID/XPG compliant system that has a /usr/include/malloc.h
568   defining struct mallinfo. (If you'd like to install such a thing
569   yourself, cut out the preliminary declarations as described above
570   and below and save them in a malloc.h file. But there's no
571   compelling reason to bother to do this.)
572 
573   The main declaration needed is the mallinfo struct that is returned
574   (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
575   bunch of fields, most of which are not even meaningful in this
576   version of malloc. Some of these fields are are instead filled by
577   mallinfo() with other numbers that might possibly be of interest.
578 
579   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
580   /usr/include/malloc.h file that includes a declaration of struct
581   mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
582   version is declared below.  These must be precisely the same for
583   mallinfo() to work.
584 
585 */
586 
587 /* #define HAVE_USR_INCLUDE_MALLOC_H */
588 
589 #if HAVE_USR_INCLUDE_MALLOC_H
590 #include "/usr/include/malloc.h"
591 #else
592 
593 /* SVID2/XPG mallinfo structure */
594 
595 struct mallinfo {
596   int arena;    /* total space allocated from system */
597   int ordblks;  /* number of non-inuse chunks */
598   int smblks;   /* unused -- always zero */
599   int hblks;    /* number of mmapped regions */
600   int hblkhd;   /* total space in mmapped regions */
601   int usmblks;  /* unused -- always zero */
602   int fsmblks;  /* unused -- always zero */
603   int uordblks; /* total allocated space */
604   int fordblks; /* total non-inuse space */
605   int keepcost; /* top-most, releasable (via malloc_trim) space */
606 };
607 
608 /* SVID2/XPG mallopt options */
609 
610 #define M_MXFAST  1    /* UNUSED in this malloc */
611 #define M_NLBLKS  2    /* UNUSED in this malloc */
612 #define M_GRAIN   3    /* UNUSED in this malloc */
613 #define M_KEEP    4    /* UNUSED in this malloc */
614 
615 #endif
616 
617 /* mallopt options that actually do something */
618 
619 #define M_TRIM_THRESHOLD    -1
620 #define M_TOP_PAD           -2
621 #define M_MMAP_THRESHOLD    -3
622 #define M_MMAP_MAX          -4
623 
624 
625 #ifndef DEFAULT_TRIM_THRESHOLD
626 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
627 #endif
628 
629 /*
630     M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
631       to keep before releasing via malloc_trim in free().
632 
633       Automatic trimming is mainly useful in long-lived programs.
634       Because trimming via sbrk can be slow on some systems, and can
635       sometimes be wasteful (in cases where programs immediately
636       afterward allocate more large chunks) the value should be high
637       enough so that your overall system performance would improve by
638       releasing.
639 
640       The trim threshold and the mmap control parameters (see below)
641       can be traded off with one another. Trimming and mmapping are
642       two different ways of releasing unused memory back to the
643       system. Between these two, it is often possible to keep
644       system-level demands of a long-lived program down to a bare
645       minimum. For example, in one test suite of sessions measuring
646       the XF86 X server on Linux, using a trim threshold of 128K and a
647       mmap threshold of 192K led to near-minimal long term resource
648       consumption.
649 
650       If you are using this malloc in a long-lived program, it should
651       pay to experiment with these values.  As a rough guide, you
652       might set to a value close to the average size of a process
653       (program) running on your system.  Releasing this much memory
654       would allow such a process to run in memory.  Generally, it's
655       worth it to tune for trimming rather tham memory mapping when a
656       program undergoes phases where several large chunks are
657       allocated and released in ways that can reuse each other's
658       storage, perhaps mixed with phases where there are no such
659       chunks at all.  And in well-behaved long-lived programs,
660       controlling release of large blocks via trimming versus mapping
661       is usually faster.
662 
663       However, in most programs, these parameters serve mainly as
664       protection against the system-level effects of carrying around
665       massive amounts of unneeded memory. Since frequent calls to
666       sbrk, mmap, and munmap otherwise degrade performance, the default
667       parameters are set to relatively high values that serve only as
668       safeguards.
669 
670       The default trim value is high enough to cause trimming only in
671       fairly extreme (by current memory consumption standards) cases.
672       It must be greater than page size to have any useful effect.  To
673       disable trimming completely, you can set to (unsigned long)(-1);
674 
675 
676 */
677 
678 
679 #ifndef DEFAULT_TOP_PAD
680 #define DEFAULT_TOP_PAD        (0)
681 #endif
682 
683 /*
684     M_TOP_PAD is the amount of extra `padding' space to allocate or
685       retain whenever sbrk is called. It is used in two ways internally:
686 
687       * When sbrk is called to extend the top of the arena to satisfy
688 	a new malloc request, this much padding is added to the sbrk
689 	request.
690 
691       * When malloc_trim is called automatically from free(),
692 	it is used as the `pad' argument.
693 
694       In both cases, the actual amount of padding is rounded
695       so that the end of the arena is always a system page boundary.
696 
697       The main reason for using padding is to avoid calling sbrk so
698       often. Having even a small pad greatly reduces the likelihood
699       that nearly every malloc request during program start-up (or
700       after trimming) will invoke sbrk, which needlessly wastes
701       time.
702 
703       Automatic rounding-up to page-size units is normally sufficient
704       to avoid measurable overhead, so the default is 0.  However, in
705       systems where sbrk is relatively slow, it can pay to increase
706       this value, at the expense of carrying around more memory than
707       the program needs.
708 
709 */
710 
711 
712 #ifndef DEFAULT_MMAP_THRESHOLD
713 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
714 #endif
715 
716 /*
717 
718     M_MMAP_THRESHOLD is the request size threshold for using mmap()
719       to service a request. Requests of at least this size that cannot
720       be allocated using already-existing space will be serviced via mmap.
721       (If enough normal freed space already exists it is used instead.)
722 
723       Using mmap segregates relatively large chunks of memory so that
724       they can be individually obtained and released from the host
725       system. A request serviced through mmap is never reused by any
726       other request (at least not directly; the system may just so
727       happen to remap successive requests to the same locations).
728 
729       Segregating space in this way has the benefit that mmapped space
730       can ALWAYS be individually released back to the system, which
731       helps keep the system level memory demands of a long-lived
732       program low. Mapped memory can never become `locked' between
733       other chunks, as can happen with normally allocated chunks, which
734       menas that even trimming via malloc_trim would not release them.
735 
736       However, it has the disadvantages that:
737 
738 	 1. The space cannot be reclaimed, consolidated, and then
739 	    used to service later requests, as happens with normal chunks.
740 	 2. It can lead to more wastage because of mmap page alignment
741 	    requirements
742 	 3. It causes malloc performance to be more dependent on host
743 	    system memory management support routines which may vary in
744 	    implementation quality and may impose arbitrary
745 	    limitations. Generally, servicing a request via normal
746 	    malloc steps is faster than going through a system's mmap.
747 
748       All together, these considerations should lead you to use mmap
749       only for relatively large requests.
750 
751 
752 */
753 
754 
755 #ifndef DEFAULT_MMAP_MAX
756 #if HAVE_MMAP
757 #define DEFAULT_MMAP_MAX       (64)
758 #else
759 #define DEFAULT_MMAP_MAX       (0)
760 #endif
761 #endif
762 
763 /*
764     M_MMAP_MAX is the maximum number of requests to simultaneously
765       service using mmap. This parameter exists because:
766 
767 	 1. Some systems have a limited number of internal tables for
768 	    use by mmap.
769 	 2. In most systems, overreliance on mmap can degrade overall
770 	    performance.
771 	 3. If a program allocates many large regions, it is probably
772 	    better off using normal sbrk-based allocation routines that
773 	    can reclaim and reallocate normal heap memory. Using a
774 	    small value allows transition into this mode after the
775 	    first few allocations.
776 
777       Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
778       the default value is 0, and attempts to set it to non-zero values
779       in mallopt will fail.
780 */
781 
782 
783 /*
784     USE_DL_PREFIX will prefix all public routines with the string 'dl'.
785       Useful to quickly avoid procedure declaration conflicts and linker
786       symbol conflicts with existing memory allocation routines.
787 
788 */
789 
790 /* #define USE_DL_PREFIX */
791 
792 
793 /*
794 
795   Special defines for linux libc
796 
797   Except when compiled using these special defines for Linux libc
798   using weak aliases, this malloc is NOT designed to work in
799   multithreaded applications.  No semaphores or other concurrency
800   control are provided to ensure that multiple malloc or free calls
801   don't run at the same time, which could be disasterous. A single
802   semaphore could be used across malloc, realloc, and free (which is
803   essentially the effect of the linux weak alias approach). It would
804   be hard to obtain finer granularity.
805 
806 */
807 
808 
809 #ifdef INTERNAL_LINUX_C_LIB
810 
811 #if __STD_C
812 
813 Void_t * __default_morecore_init (ptrdiff_t);
814 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
815 
816 #else
817 
818 Void_t * __default_morecore_init ();
819 Void_t *(*__morecore)() = __default_morecore_init;
820 
821 #endif
822 
823 #define MORECORE (*__morecore)
824 #define MORECORE_FAILURE 0
825 #define MORECORE_CLEARS 1
826 
827 #else /* INTERNAL_LINUX_C_LIB */
828 
829 #if __STD_C
830 extern Void_t*     sbrk(ptrdiff_t);
831 #else
832 extern Void_t*     sbrk();
833 #endif
834 
835 #ifndef MORECORE
836 #define MORECORE sbrk
837 #endif
838 
839 #ifndef MORECORE_FAILURE
840 #define MORECORE_FAILURE -1
841 #endif
842 
843 #ifndef MORECORE_CLEARS
844 #define MORECORE_CLEARS 1
845 #endif
846 
847 #endif /* INTERNAL_LINUX_C_LIB */
848 
849 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
850 
851 #define cALLOc		__libc_calloc
852 #define fREe		__libc_free
853 #define mALLOc		__libc_malloc
854 #define mEMALIGn	__libc_memalign
855 #define rEALLOc		__libc_realloc
856 #define vALLOc		__libc_valloc
857 #define pvALLOc		__libc_pvalloc
858 #define mALLINFo	__libc_mallinfo
859 #define mALLOPt		__libc_mallopt
860 
861 #pragma weak calloc = __libc_calloc
862 #pragma weak free = __libc_free
863 #pragma weak cfree = __libc_free
864 #pragma weak malloc = __libc_malloc
865 #pragma weak memalign = __libc_memalign
866 #pragma weak realloc = __libc_realloc
867 #pragma weak valloc = __libc_valloc
868 #pragma weak pvalloc = __libc_pvalloc
869 #pragma weak mallinfo = __libc_mallinfo
870 #pragma weak mallopt = __libc_mallopt
871 
872 #else
873 
874 #ifdef USE_DL_PREFIX
875 #define cALLOc		dlcalloc
876 #define fREe		dlfree
877 #define mALLOc		dlmalloc
878 #define mEMALIGn	dlmemalign
879 #define rEALLOc		dlrealloc
880 #define vALLOc		dlvalloc
881 #define pvALLOc		dlpvalloc
882 #define mALLINFo	dlmallinfo
883 #define mALLOPt		dlmallopt
884 #else /* USE_DL_PREFIX */
885 #define cALLOc		calloc
886 #define fREe		free
887 #define mALLOc		malloc
888 #define mEMALIGn	memalign
889 #define rEALLOc		realloc
890 #define vALLOc		valloc
891 #define pvALLOc		pvalloc
892 #define mALLINFo	mallinfo
893 #define mALLOPt		mallopt
894 #endif /* USE_DL_PREFIX */
895 
896 #endif
897 
898 /* Public routines */
899 
900 #if __STD_C
901 
902 Void_t* mALLOc(size_t);
903 void    fREe(Void_t*);
904 Void_t* rEALLOc(Void_t*, size_t);
905 Void_t* mEMALIGn(size_t, size_t);
906 Void_t* vALLOc(size_t);
907 Void_t* pvALLOc(size_t);
908 Void_t* cALLOc(size_t, size_t);
909 void    cfree(Void_t*);
910 int     malloc_trim(size_t);
911 size_t  malloc_usable_size(Void_t*);
912 void    malloc_stats();
913 int     mALLOPt(int, int);
914 struct mallinfo mALLINFo(void);
915 #else
916 Void_t* mALLOc();
917 void    fREe();
918 Void_t* rEALLOc();
919 Void_t* mEMALIGn();
920 Void_t* vALLOc();
921 Void_t* pvALLOc();
922 Void_t* cALLOc();
923 void    cfree();
924 int     malloc_trim();
925 size_t  malloc_usable_size();
926 void    malloc_stats();
927 int     mALLOPt();
928 struct mallinfo mALLINFo();
929 #endif
930 
931 
932 #ifdef __cplusplus
933 };  /* end of extern "C" */
934 #endif
935 
936 /* ---------- To make a malloc.h, end cutting here ------------ */
937 #endif	/* 0 */			/* Moved to malloc.h */
938 
939 #include <malloc.h>
940 #ifdef DEBUG
941 #if __STD_C
942 static void malloc_update_mallinfo (void);
943 void malloc_stats (void);
944 #else
945 static void malloc_update_mallinfo ();
946 void malloc_stats();
947 #endif
948 #endif	/* DEBUG */
949 
950 DECLARE_GLOBAL_DATA_PTR;
951 
952 /*
953   Emulation of sbrk for WIN32
954   All code within the ifdef WIN32 is untested by me.
955 
956   Thanks to Martin Fong and others for supplying this.
957 */
958 
959 
960 #ifdef WIN32
961 
962 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
963 ~(malloc_getpagesize-1))
964 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
965 
966 /* resrve 64MB to insure large contiguous space */
967 #define RESERVED_SIZE (1024*1024*64)
968 #define NEXT_SIZE (2048*1024)
969 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
970 
971 struct GmListElement;
972 typedef struct GmListElement GmListElement;
973 
974 struct GmListElement
975 {
976 	GmListElement* next;
977 	void* base;
978 };
979 
980 static GmListElement* head = 0;
981 static unsigned int gNextAddress = 0;
982 static unsigned int gAddressBase = 0;
983 static unsigned int gAllocatedSize = 0;
984 
985 static
986 GmListElement* makeGmListElement (void* bas)
987 {
988 	GmListElement* this;
989 	this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
990 	assert (this);
991 	if (this)
992 	{
993 		this->base = bas;
994 		this->next = head;
995 		head = this;
996 	}
997 	return this;
998 }
999 
1000 void gcleanup ()
1001 {
1002 	BOOL rval;
1003 	assert ( (head == NULL) || (head->base == (void*)gAddressBase));
1004 	if (gAddressBase && (gNextAddress - gAddressBase))
1005 	{
1006 		rval = VirtualFree ((void*)gAddressBase,
1007 							gNextAddress - gAddressBase,
1008 							MEM_DECOMMIT);
1009 	assert (rval);
1010 	}
1011 	while (head)
1012 	{
1013 		GmListElement* next = head->next;
1014 		rval = VirtualFree (head->base, 0, MEM_RELEASE);
1015 		assert (rval);
1016 		LocalFree (head);
1017 		head = next;
1018 	}
1019 }
1020 
1021 static
1022 void* findRegion (void* start_address, unsigned long size)
1023 {
1024 	MEMORY_BASIC_INFORMATION info;
1025 	if (size >= TOP_MEMORY) return NULL;
1026 
1027 	while ((unsigned long)start_address + size < TOP_MEMORY)
1028 	{
1029 		VirtualQuery (start_address, &info, sizeof (info));
1030 		if ((info.State == MEM_FREE) && (info.RegionSize >= size))
1031 			return start_address;
1032 		else
1033 		{
1034 			/* Requested region is not available so see if the */
1035 			/* next region is available.  Set 'start_address' */
1036 			/* to the next region and call 'VirtualQuery()' */
1037 			/* again. */
1038 
1039 			start_address = (char*)info.BaseAddress + info.RegionSize;
1040 
1041 			/* Make sure we start looking for the next region */
1042 			/* on the *next* 64K boundary.  Otherwise, even if */
1043 			/* the new region is free according to */
1044 			/* 'VirtualQuery()', the subsequent call to */
1045 			/* 'VirtualAlloc()' (which follows the call to */
1046 			/* this routine in 'wsbrk()') will round *down* */
1047 			/* the requested address to a 64K boundary which */
1048 			/* we already know is an address in the */
1049 			/* unavailable region.  Thus, the subsequent call */
1050 			/* to 'VirtualAlloc()' will fail and bring us back */
1051 			/* here, causing us to go into an infinite loop. */
1052 
1053 			start_address =
1054 				(void *) AlignPage64K((unsigned long) start_address);
1055 		}
1056 	}
1057 	return NULL;
1058 
1059 }
1060 
1061 
1062 void* wsbrk (long size)
1063 {
1064 	void* tmp;
1065 	if (size > 0)
1066 	{
1067 		if (gAddressBase == 0)
1068 		{
1069 			gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
1070 			gNextAddress = gAddressBase =
1071 				(unsigned int)VirtualAlloc (NULL, gAllocatedSize,
1072 											MEM_RESERVE, PAGE_NOACCESS);
1073 		} else if (AlignPage (gNextAddress + size) > (gAddressBase +
1074 gAllocatedSize))
1075 		{
1076 			long new_size = max (NEXT_SIZE, AlignPage (size));
1077 			void* new_address = (void*)(gAddressBase+gAllocatedSize);
1078 			do
1079 			{
1080 				new_address = findRegion (new_address, new_size);
1081 
1082 				if (new_address == 0)
1083 					return (void*)-1;
1084 
1085 				gAddressBase = gNextAddress =
1086 					(unsigned int)VirtualAlloc (new_address, new_size,
1087 												MEM_RESERVE, PAGE_NOACCESS);
1088 				/* repeat in case of race condition */
1089 				/* The region that we found has been snagged */
1090 				/* by another thread */
1091 			}
1092 			while (gAddressBase == 0);
1093 
1094 			assert (new_address == (void*)gAddressBase);
1095 
1096 			gAllocatedSize = new_size;
1097 
1098 			if (!makeGmListElement ((void*)gAddressBase))
1099 				return (void*)-1;
1100 		}
1101 		if ((size + gNextAddress) > AlignPage (gNextAddress))
1102 		{
1103 			void* res;
1104 			res = VirtualAlloc ((void*)AlignPage (gNextAddress),
1105 								(size + gNextAddress -
1106 								 AlignPage (gNextAddress)),
1107 								MEM_COMMIT, PAGE_READWRITE);
1108 			if (res == 0)
1109 				return (void*)-1;
1110 		}
1111 		tmp = (void*)gNextAddress;
1112 		gNextAddress = (unsigned int)tmp + size;
1113 		return tmp;
1114 	}
1115 	else if (size < 0)
1116 	{
1117 		unsigned int alignedGoal = AlignPage (gNextAddress + size);
1118 		/* Trim by releasing the virtual memory */
1119 		if (alignedGoal >= gAddressBase)
1120 		{
1121 			VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
1122 						 MEM_DECOMMIT);
1123 			gNextAddress = gNextAddress + size;
1124 			return (void*)gNextAddress;
1125 		}
1126 		else
1127 		{
1128 			VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
1129 						 MEM_DECOMMIT);
1130 			gNextAddress = gAddressBase;
1131 			return (void*)-1;
1132 		}
1133 	}
1134 	else
1135 	{
1136 		return (void*)gNextAddress;
1137 	}
1138 }
1139 
1140 #endif
1141 
1142 
1143 
1144 /*
1145   Type declarations
1146 */
1147 
1148 
1149 struct malloc_chunk
1150 {
1151   INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1152   INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
1153   struct malloc_chunk* fd;   /* double links -- used only if free. */
1154   struct malloc_chunk* bk;
1155 } __attribute__((__may_alias__)) ;
1156 
1157 typedef struct malloc_chunk* mchunkptr;
1158 
1159 /*
1160 
1161    malloc_chunk details:
1162 
1163     (The following includes lightly edited explanations by Colin Plumb.)
1164 
1165     Chunks of memory are maintained using a `boundary tag' method as
1166     described in e.g., Knuth or Standish.  (See the paper by Paul
1167     Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1168     survey of such techniques.)  Sizes of free chunks are stored both
1169     in the front of each chunk and at the end.  This makes
1170     consolidating fragmented chunks into bigger chunks very fast.  The
1171     size fields also hold bits representing whether chunks are free or
1172     in use.
1173 
1174     An allocated chunk looks like this:
1175 
1176 
1177     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1178 	    |             Size of previous chunk, if allocated            | |
1179 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1180 	    |             Size of chunk, in bytes                         |P|
1181       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1182 	    |             User data starts here...                          .
1183 	    .                                                               .
1184 	    .             (malloc_usable_space() bytes)                     .
1185 	    .                                                               |
1186 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1187 	    |             Size of chunk                                     |
1188 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1189 
1190 
1191     Where "chunk" is the front of the chunk for the purpose of most of
1192     the malloc code, but "mem" is the pointer that is returned to the
1193     user.  "Nextchunk" is the beginning of the next contiguous chunk.
1194 
1195     Chunks always begin on even word boundries, so the mem portion
1196     (which is returned to the user) is also on an even word boundary, and
1197     thus double-word aligned.
1198 
1199     Free chunks are stored in circular doubly-linked lists, and look like this:
1200 
1201     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1202 	    |             Size of previous chunk                            |
1203 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1204     `head:' |             Size of chunk, in bytes                         |P|
1205       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1206 	    |             Forward pointer to next chunk in list             |
1207 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1208 	    |             Back pointer to previous chunk in list            |
1209 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1210 	    |             Unused space (may be 0 bytes long)                .
1211 	    .                                                               .
1212 	    .                                                               |
1213 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1214     `foot:' |             Size of chunk, in bytes                           |
1215 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1216 
1217     The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1218     chunk size (which is always a multiple of two words), is an in-use
1219     bit for the *previous* chunk.  If that bit is *clear*, then the
1220     word before the current chunk size contains the previous chunk
1221     size, and can be used to find the front of the previous chunk.
1222     (The very first chunk allocated always has this bit set,
1223     preventing access to non-existent (or non-owned) memory.)
1224 
1225     Note that the `foot' of the current chunk is actually represented
1226     as the prev_size of the NEXT chunk. (This makes it easier to
1227     deal with alignments etc).
1228 
1229     The two exceptions to all this are
1230 
1231      1. The special chunk `top', which doesn't bother using the
1232 	trailing size field since there is no
1233 	next contiguous chunk that would have to index off it. (After
1234 	initialization, `top' is forced to always exist.  If it would
1235 	become less than MINSIZE bytes long, it is replenished via
1236 	malloc_extend_top.)
1237 
1238      2. Chunks allocated via mmap, which have the second-lowest-order
1239 	bit (IS_MMAPPED) set in their size fields.  Because they are
1240 	never merged or traversed from any other chunk, they have no
1241 	foot size or inuse information.
1242 
1243     Available chunks are kept in any of several places (all declared below):
1244 
1245     * `av': An array of chunks serving as bin headers for consolidated
1246        chunks. Each bin is doubly linked.  The bins are approximately
1247        proportionally (log) spaced.  There are a lot of these bins
1248        (128). This may look excessive, but works very well in
1249        practice.  All procedures maintain the invariant that no
1250        consolidated chunk physically borders another one. Chunks in
1251        bins are kept in size order, with ties going to the
1252        approximately least recently used chunk.
1253 
1254        The chunks in each bin are maintained in decreasing sorted order by
1255        size.  This is irrelevant for the small bins, which all contain
1256        the same-sized chunks, but facilitates best-fit allocation for
1257        larger chunks. (These lists are just sequential. Keeping them in
1258        order almost never requires enough traversal to warrant using
1259        fancier ordered data structures.)  Chunks of the same size are
1260        linked with the most recently freed at the front, and allocations
1261        are taken from the back.  This results in LRU or FIFO allocation
1262        order, which tends to give each chunk an equal opportunity to be
1263        consolidated with adjacent freed chunks, resulting in larger free
1264        chunks and less fragmentation.
1265 
1266     * `top': The top-most available chunk (i.e., the one bordering the
1267        end of available memory) is treated specially. It is never
1268        included in any bin, is used only if no other chunk is
1269        available, and is released back to the system if it is very
1270        large (see M_TRIM_THRESHOLD).
1271 
1272     * `last_remainder': A bin holding only the remainder of the
1273        most recently split (non-top) chunk. This bin is checked
1274        before other non-fitting chunks, so as to provide better
1275        locality for runs of sequentially allocated chunks.
1276 
1277     *  Implicitly, through the host system's memory mapping tables.
1278        If supported, requests greater than a threshold are usually
1279        serviced via calls to mmap, and then later released via munmap.
1280 
1281 */
1282 
1283 /*  sizes, alignments */
1284 
1285 #define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
1286 #define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
1287 #define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
1288 #define MINSIZE                (sizeof(struct malloc_chunk))
1289 
1290 /* conversion from malloc headers to user pointers, and back */
1291 
1292 #define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1293 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1294 
1295 /* pad request bytes into a usable size */
1296 
1297 #define request2size(req) \
1298  (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1299   (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1300    (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1301 
1302 /* Check if m has acceptable alignment */
1303 
1304 #define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1305 
1306 
1307 
1308 
1309 /*
1310   Physical chunk operations
1311 */
1312 
1313 
1314 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1315 
1316 #define PREV_INUSE 0x1
1317 
1318 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1319 
1320 #define IS_MMAPPED 0x2
1321 
1322 /* Bits to mask off when extracting size */
1323 
1324 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1325 
1326 
1327 /* Ptr to next physical malloc_chunk. */
1328 
1329 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1330 
1331 /* Ptr to previous physical malloc_chunk */
1332 
1333 #define prev_chunk(p)\
1334    ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1335 
1336 
1337 /* Treat space at ptr + offset as a chunk */
1338 
1339 #define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
1340 
1341 
1342 
1343 
1344 /*
1345   Dealing with use bits
1346 */
1347 
1348 /* extract p's inuse bit */
1349 
1350 #define inuse(p)\
1351 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1352 
1353 /* extract inuse bit of previous chunk */
1354 
1355 #define prev_inuse(p)  ((p)->size & PREV_INUSE)
1356 
1357 /* check for mmap()'ed chunk */
1358 
1359 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1360 
1361 /* set/clear chunk as in use without otherwise disturbing */
1362 
1363 #define set_inuse(p)\
1364 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1365 
1366 #define clear_inuse(p)\
1367 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1368 
1369 /* check/set/clear inuse bits in known places */
1370 
1371 #define inuse_bit_at_offset(p, s)\
1372  (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1373 
1374 #define set_inuse_bit_at_offset(p, s)\
1375  (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1376 
1377 #define clear_inuse_bit_at_offset(p, s)\
1378  (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1379 
1380 
1381 
1382 
1383 /*
1384   Dealing with size fields
1385 */
1386 
1387 /* Get size, ignoring use bits */
1388 
1389 #define chunksize(p)          ((p)->size & ~(SIZE_BITS))
1390 
1391 /* Set size at head, without disturbing its use bit */
1392 
1393 #define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1394 
1395 /* Set size/use ignoring previous bits in header */
1396 
1397 #define set_head(p, s)        ((p)->size = (s))
1398 
1399 /* Set size at footer (only when chunk is not in use) */
1400 
1401 #define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1402 
1403 
1404 
1405 
1406 
1407 /*
1408    Bins
1409 
1410     The bins, `av_' are an array of pairs of pointers serving as the
1411     heads of (initially empty) doubly-linked lists of chunks, laid out
1412     in a way so that each pair can be treated as if it were in a
1413     malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1414     and chunks are the same).
1415 
1416     Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1417     8 bytes apart. Larger bins are approximately logarithmically
1418     spaced. (See the table below.) The `av_' array is never mentioned
1419     directly in the code, but instead via bin access macros.
1420 
1421     Bin layout:
1422 
1423     64 bins of size       8
1424     32 bins of size      64
1425     16 bins of size     512
1426      8 bins of size    4096
1427      4 bins of size   32768
1428      2 bins of size  262144
1429      1 bin  of size what's left
1430 
1431     There is actually a little bit of slop in the numbers in bin_index
1432     for the sake of speed. This makes no difference elsewhere.
1433 
1434     The special chunks `top' and `last_remainder' get their own bins,
1435     (this is implemented via yet more trickery with the av_ array),
1436     although `top' is never properly linked to its bin since it is
1437     always handled specially.
1438 
1439 */
1440 
1441 #define NAV             128   /* number of bins */
1442 
1443 typedef struct malloc_chunk* mbinptr;
1444 
1445 /* access macros */
1446 
1447 #define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
1448 #define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1449 #define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1450 
1451 /*
1452    The first 2 bins are never indexed. The corresponding av_ cells are instead
1453    used for bookkeeping. This is not to save space, but to simplify
1454    indexing, maintain locality, and avoid some initialization tests.
1455 */
1456 
1457 #define top            (av_[2])          /* The topmost chunk */
1458 #define last_remainder (bin_at(1))       /* remainder from last split */
1459 
1460 
1461 /*
1462    Because top initially points to its own bin with initial
1463    zero size, thus forcing extension on the first malloc request,
1464    we avoid having any special code in malloc to check whether
1465    it even exists yet. But we still need to in malloc_extend_top.
1466 */
1467 
1468 #define initial_top    ((mchunkptr)(bin_at(0)))
1469 
1470 /* Helper macro to initialize bins */
1471 
1472 #define IAV(i)  bin_at(i), bin_at(i)
1473 
1474 static mbinptr av_[NAV * 2 + 2] = {
1475  0, 0,
1476  IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
1477  IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
1478  IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
1479  IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
1480  IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
1481  IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
1482  IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
1483  IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
1484  IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
1485  IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
1486  IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
1487  IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
1488  IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
1489  IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1490  IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1491  IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1492 };
1493 
1494 #ifdef CONFIG_NEEDS_MANUAL_RELOC
1495 void malloc_bin_reloc (void)
1496 {
1497 	unsigned long *p = (unsigned long *)(&av_[2]);
1498 	int i;
1499 	for (i=2; i<(sizeof(av_)/sizeof(mbinptr)); ++i) {
1500 		*p++ += gd->reloc_off;
1501 	}
1502 }
1503 #endif
1504 
1505 ulong mem_malloc_start = 0;
1506 ulong mem_malloc_end = 0;
1507 ulong mem_malloc_brk = 0;
1508 
1509 void *sbrk(ptrdiff_t increment)
1510 {
1511 	ulong old = mem_malloc_brk;
1512 	ulong new = old + increment;
1513 
1514 	/*
1515 	 * if we are giving memory back make sure we clear it out since
1516 	 * we set MORECORE_CLEARS to 1
1517 	 */
1518 	if (increment < 0)
1519 		memset((void *)new, 0, -increment);
1520 
1521 	if ((new < mem_malloc_start) || (new > mem_malloc_end))
1522 		return (void *)MORECORE_FAILURE;
1523 
1524 	mem_malloc_brk = new;
1525 
1526 	return (void *)old;
1527 }
1528 
1529 void mem_malloc_init(ulong start, ulong size)
1530 {
1531 	mem_malloc_start = start;
1532 	mem_malloc_end = start + size;
1533 	mem_malloc_brk = start;
1534 
1535 	memset((void *)mem_malloc_start, 0, size);
1536 }
1537 
1538 /* field-extraction macros */
1539 
1540 #define first(b) ((b)->fd)
1541 #define last(b)  ((b)->bk)
1542 
1543 /*
1544   Indexing into bins
1545 */
1546 
1547 #define bin_index(sz)                                                          \
1548 (((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
1549  ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
1550  ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
1551  ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
1552  ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
1553  ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
1554 					  126)
1555 /*
1556   bins for chunks < 512 are all spaced 8 bytes apart, and hold
1557   identically sized chunks. This is exploited in malloc.
1558 */
1559 
1560 #define MAX_SMALLBIN         63
1561 #define MAX_SMALLBIN_SIZE   512
1562 #define SMALLBIN_WIDTH        8
1563 
1564 #define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
1565 
1566 /*
1567    Requests are `small' if both the corresponding and the next bin are small
1568 */
1569 
1570 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1571 
1572 
1573 
1574 /*
1575     To help compensate for the large number of bins, a one-level index
1576     structure is used for bin-by-bin searching.  `binblocks' is a
1577     one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1578     have any (possibly) non-empty bins, so they can be skipped over
1579     all at once during during traversals. The bits are NOT always
1580     cleared as soon as all bins in a block are empty, but instead only
1581     when all are noticed to be empty during traversal in malloc.
1582 */
1583 
1584 #define BINBLOCKWIDTH     4   /* bins per block */
1585 
1586 #define binblocks_r     ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
1587 #define binblocks_w     (av_[1])
1588 
1589 /* bin<->block macros */
1590 
1591 #define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
1592 #define mark_binblock(ii)   (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
1593 #define clear_binblock(ii)  (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
1594 
1595 
1596 
1597 
1598 
1599 /*  Other static bookkeeping data */
1600 
1601 /* variables holding tunable values */
1602 
1603 static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
1604 static unsigned long top_pad          = DEFAULT_TOP_PAD;
1605 static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
1606 static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
1607 
1608 /* The first value returned from sbrk */
1609 static char* sbrk_base = (char*)(-1);
1610 
1611 /* The maximum memory obtained from system via sbrk */
1612 static unsigned long max_sbrked_mem = 0;
1613 
1614 /* The maximum via either sbrk or mmap */
1615 static unsigned long max_total_mem = 0;
1616 
1617 /* internal working copy of mallinfo */
1618 static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
1619 
1620 /* The total memory obtained from system via sbrk */
1621 #define sbrked_mem  (current_mallinfo.arena)
1622 
1623 /* Tracking mmaps */
1624 
1625 #ifdef DEBUG
1626 static unsigned int n_mmaps = 0;
1627 #endif	/* DEBUG */
1628 static unsigned long mmapped_mem = 0;
1629 #if HAVE_MMAP
1630 static unsigned int max_n_mmaps = 0;
1631 static unsigned long max_mmapped_mem = 0;
1632 #endif
1633 
1634 
1635 
1636 /*
1637   Debugging support
1638 */
1639 
1640 #ifdef DEBUG
1641 
1642 
1643 /*
1644   These routines make a number of assertions about the states
1645   of data structures that should be true at all times. If any
1646   are not true, it's very likely that a user program has somehow
1647   trashed memory. (It's also possible that there is a coding error
1648   in malloc. In which case, please report it!)
1649 */
1650 
1651 #if __STD_C
1652 static void do_check_chunk(mchunkptr p)
1653 #else
1654 static void do_check_chunk(p) mchunkptr p;
1655 #endif
1656 {
1657 #if 0	/* causes warnings because assert() is off */
1658   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1659 #endif	/* 0 */
1660 
1661   /* No checkable chunk is mmapped */
1662   assert(!chunk_is_mmapped(p));
1663 
1664   /* Check for legal address ... */
1665   assert((char*)p >= sbrk_base);
1666   if (p != top)
1667     assert((char*)p + sz <= (char*)top);
1668   else
1669     assert((char*)p + sz <= sbrk_base + sbrked_mem);
1670 
1671 }
1672 
1673 
1674 #if __STD_C
1675 static void do_check_free_chunk(mchunkptr p)
1676 #else
1677 static void do_check_free_chunk(p) mchunkptr p;
1678 #endif
1679 {
1680   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1681 #if 0	/* causes warnings because assert() is off */
1682   mchunkptr next = chunk_at_offset(p, sz);
1683 #endif	/* 0 */
1684 
1685   do_check_chunk(p);
1686 
1687   /* Check whether it claims to be free ... */
1688   assert(!inuse(p));
1689 
1690   /* Unless a special marker, must have OK fields */
1691   if ((long)sz >= (long)MINSIZE)
1692   {
1693     assert((sz & MALLOC_ALIGN_MASK) == 0);
1694     assert(aligned_OK(chunk2mem(p)));
1695     /* ... matching footer field */
1696     assert(next->prev_size == sz);
1697     /* ... and is fully consolidated */
1698     assert(prev_inuse(p));
1699     assert (next == top || inuse(next));
1700 
1701     /* ... and has minimally sane links */
1702     assert(p->fd->bk == p);
1703     assert(p->bk->fd == p);
1704   }
1705   else /* markers are always of size SIZE_SZ */
1706     assert(sz == SIZE_SZ);
1707 }
1708 
1709 #if __STD_C
1710 static void do_check_inuse_chunk(mchunkptr p)
1711 #else
1712 static void do_check_inuse_chunk(p) mchunkptr p;
1713 #endif
1714 {
1715   mchunkptr next = next_chunk(p);
1716   do_check_chunk(p);
1717 
1718   /* Check whether it claims to be in use ... */
1719   assert(inuse(p));
1720 
1721   /* ... and is surrounded by OK chunks.
1722     Since more things can be checked with free chunks than inuse ones,
1723     if an inuse chunk borders them and debug is on, it's worth doing them.
1724   */
1725   if (!prev_inuse(p))
1726   {
1727     mchunkptr prv = prev_chunk(p);
1728     assert(next_chunk(prv) == p);
1729     do_check_free_chunk(prv);
1730   }
1731   if (next == top)
1732   {
1733     assert(prev_inuse(next));
1734     assert(chunksize(next) >= MINSIZE);
1735   }
1736   else if (!inuse(next))
1737     do_check_free_chunk(next);
1738 
1739 }
1740 
1741 #if __STD_C
1742 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
1743 #else
1744 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
1745 #endif
1746 {
1747 #if 0	/* causes warnings because assert() is off */
1748   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1749   long room = sz - s;
1750 #endif	/* 0 */
1751 
1752   do_check_inuse_chunk(p);
1753 
1754   /* Legal size ... */
1755   assert((long)sz >= (long)MINSIZE);
1756   assert((sz & MALLOC_ALIGN_MASK) == 0);
1757   assert(room >= 0);
1758   assert(room < (long)MINSIZE);
1759 
1760   /* ... and alignment */
1761   assert(aligned_OK(chunk2mem(p)));
1762 
1763 
1764   /* ... and was allocated at front of an available chunk */
1765   assert(prev_inuse(p));
1766 
1767 }
1768 
1769 
1770 #define check_free_chunk(P)  do_check_free_chunk(P)
1771 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
1772 #define check_chunk(P) do_check_chunk(P)
1773 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
1774 #else
1775 #define check_free_chunk(P)
1776 #define check_inuse_chunk(P)
1777 #define check_chunk(P)
1778 #define check_malloced_chunk(P,N)
1779 #endif
1780 
1781 
1782 
1783 /*
1784   Macro-based internal utilities
1785 */
1786 
1787 
1788 /*
1789   Linking chunks in bin lists.
1790   Call these only with variables, not arbitrary expressions, as arguments.
1791 */
1792 
1793 /*
1794   Place chunk p of size s in its bin, in size order,
1795   putting it ahead of others of same size.
1796 */
1797 
1798 
1799 #define frontlink(P, S, IDX, BK, FD)                                          \
1800 {                                                                             \
1801   if (S < MAX_SMALLBIN_SIZE)                                                  \
1802   {                                                                           \
1803     IDX = smallbin_index(S);                                                  \
1804     mark_binblock(IDX);                                                       \
1805     BK = bin_at(IDX);                                                         \
1806     FD = BK->fd;                                                              \
1807     P->bk = BK;                                                               \
1808     P->fd = FD;                                                               \
1809     FD->bk = BK->fd = P;                                                      \
1810   }                                                                           \
1811   else                                                                        \
1812   {                                                                           \
1813     IDX = bin_index(S);                                                       \
1814     BK = bin_at(IDX);                                                         \
1815     FD = BK->fd;                                                              \
1816     if (FD == BK) mark_binblock(IDX);                                         \
1817     else                                                                      \
1818     {                                                                         \
1819       while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
1820       BK = FD->bk;                                                            \
1821     }                                                                         \
1822     P->bk = BK;                                                               \
1823     P->fd = FD;                                                               \
1824     FD->bk = BK->fd = P;                                                      \
1825   }                                                                           \
1826 }
1827 
1828 
1829 /* take a chunk off a list */
1830 
1831 #define unlink(P, BK, FD)                                                     \
1832 {                                                                             \
1833   BK = P->bk;                                                                 \
1834   FD = P->fd;                                                                 \
1835   FD->bk = BK;                                                                \
1836   BK->fd = FD;                                                                \
1837 }                                                                             \
1838 
1839 /* Place p as the last remainder */
1840 
1841 #define link_last_remainder(P)                                                \
1842 {                                                                             \
1843   last_remainder->fd = last_remainder->bk =  P;                               \
1844   P->fd = P->bk = last_remainder;                                             \
1845 }
1846 
1847 /* Clear the last_remainder bin */
1848 
1849 #define clear_last_remainder \
1850   (last_remainder->fd = last_remainder->bk = last_remainder)
1851 
1852 
1853 
1854 
1855 
1856 /* Routines dealing with mmap(). */
1857 
1858 #if HAVE_MMAP
1859 
1860 #if __STD_C
1861 static mchunkptr mmap_chunk(size_t size)
1862 #else
1863 static mchunkptr mmap_chunk(size) size_t size;
1864 #endif
1865 {
1866   size_t page_mask = malloc_getpagesize - 1;
1867   mchunkptr p;
1868 
1869 #ifndef MAP_ANONYMOUS
1870   static int fd = -1;
1871 #endif
1872 
1873   if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1874 
1875   /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1876    * there is no following chunk whose prev_size field could be used.
1877    */
1878   size = (size + SIZE_SZ + page_mask) & ~page_mask;
1879 
1880 #ifdef MAP_ANONYMOUS
1881   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1882 		      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1883 #else /* !MAP_ANONYMOUS */
1884   if (fd < 0)
1885   {
1886     fd = open("/dev/zero", O_RDWR);
1887     if(fd < 0) return 0;
1888   }
1889   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1890 #endif
1891 
1892   if(p == (mchunkptr)-1) return 0;
1893 
1894   n_mmaps++;
1895   if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1896 
1897   /* We demand that eight bytes into a page must be 8-byte aligned. */
1898   assert(aligned_OK(chunk2mem(p)));
1899 
1900   /* The offset to the start of the mmapped region is stored
1901    * in the prev_size field of the chunk; normally it is zero,
1902    * but that can be changed in memalign().
1903    */
1904   p->prev_size = 0;
1905   set_head(p, size|IS_MMAPPED);
1906 
1907   mmapped_mem += size;
1908   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1909     max_mmapped_mem = mmapped_mem;
1910   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1911     max_total_mem = mmapped_mem + sbrked_mem;
1912   return p;
1913 }
1914 
1915 #if __STD_C
1916 static void munmap_chunk(mchunkptr p)
1917 #else
1918 static void munmap_chunk(p) mchunkptr p;
1919 #endif
1920 {
1921   INTERNAL_SIZE_T size = chunksize(p);
1922   int ret;
1923 
1924   assert (chunk_is_mmapped(p));
1925   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1926   assert((n_mmaps > 0));
1927   assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1928 
1929   n_mmaps--;
1930   mmapped_mem -= (size + p->prev_size);
1931 
1932   ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1933 
1934   /* munmap returns non-zero on failure */
1935   assert(ret == 0);
1936 }
1937 
1938 #if HAVE_MREMAP
1939 
1940 #if __STD_C
1941 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1942 #else
1943 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1944 #endif
1945 {
1946   size_t page_mask = malloc_getpagesize - 1;
1947   INTERNAL_SIZE_T offset = p->prev_size;
1948   INTERNAL_SIZE_T size = chunksize(p);
1949   char *cp;
1950 
1951   assert (chunk_is_mmapped(p));
1952   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1953   assert((n_mmaps > 0));
1954   assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1955 
1956   /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1957   new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1958 
1959   cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1960 
1961   if (cp == (char *)-1) return 0;
1962 
1963   p = (mchunkptr)(cp + offset);
1964 
1965   assert(aligned_OK(chunk2mem(p)));
1966 
1967   assert((p->prev_size == offset));
1968   set_head(p, (new_size - offset)|IS_MMAPPED);
1969 
1970   mmapped_mem -= size + offset;
1971   mmapped_mem += new_size;
1972   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1973     max_mmapped_mem = mmapped_mem;
1974   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1975     max_total_mem = mmapped_mem + sbrked_mem;
1976   return p;
1977 }
1978 
1979 #endif /* HAVE_MREMAP */
1980 
1981 #endif /* HAVE_MMAP */
1982 
1983 
1984 
1985 
1986 /*
1987   Extend the top-most chunk by obtaining memory from system.
1988   Main interface to sbrk (but see also malloc_trim).
1989 */
1990 
1991 #if __STD_C
1992 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1993 #else
1994 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1995 #endif
1996 {
1997   char*     brk;                  /* return value from sbrk */
1998   INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1999   INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
2000   char*     new_brk;              /* return of 2nd sbrk call */
2001   INTERNAL_SIZE_T top_size;       /* new size of top chunk */
2002 
2003   mchunkptr old_top     = top;  /* Record state of old top */
2004   INTERNAL_SIZE_T old_top_size = chunksize(old_top);
2005   char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
2006 
2007   /* Pad request with top_pad plus minimal overhead */
2008 
2009   INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
2010   unsigned long pagesz    = malloc_getpagesize;
2011 
2012   /* If not the first time through, round to preserve page boundary */
2013   /* Otherwise, we need to correct to a page size below anyway. */
2014   /* (We also correct below if an intervening foreign sbrk call.) */
2015 
2016   if (sbrk_base != (char*)(-1))
2017     sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
2018 
2019   brk = (char*)(MORECORE (sbrk_size));
2020 
2021   /* Fail if sbrk failed or if a foreign sbrk call killed our space */
2022   if (brk == (char*)(MORECORE_FAILURE) ||
2023       (brk < old_end && old_top != initial_top))
2024     return;
2025 
2026   sbrked_mem += sbrk_size;
2027 
2028   if (brk == old_end) /* can just add bytes to current top */
2029   {
2030     top_size = sbrk_size + old_top_size;
2031     set_head(top, top_size | PREV_INUSE);
2032   }
2033   else
2034   {
2035     if (sbrk_base == (char*)(-1))  /* First time through. Record base */
2036       sbrk_base = brk;
2037     else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
2038       sbrked_mem += brk - (char*)old_end;
2039 
2040     /* Guarantee alignment of first new chunk made from this space */
2041     front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2042     if (front_misalign > 0)
2043     {
2044       correction = (MALLOC_ALIGNMENT) - front_misalign;
2045       brk += correction;
2046     }
2047     else
2048       correction = 0;
2049 
2050     /* Guarantee the next brk will be at a page boundary */
2051 
2052     correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
2053 		   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
2054 
2055     /* Allocate correction */
2056     new_brk = (char*)(MORECORE (correction));
2057     if (new_brk == (char*)(MORECORE_FAILURE)) return;
2058 
2059     sbrked_mem += correction;
2060 
2061     top = (mchunkptr)brk;
2062     top_size = new_brk - brk + correction;
2063     set_head(top, top_size | PREV_INUSE);
2064 
2065     if (old_top != initial_top)
2066     {
2067 
2068       /* There must have been an intervening foreign sbrk call. */
2069       /* A double fencepost is necessary to prevent consolidation */
2070 
2071       /* If not enough space to do this, then user did something very wrong */
2072       if (old_top_size < MINSIZE)
2073       {
2074 	set_head(top, PREV_INUSE); /* will force null return from malloc */
2075 	return;
2076       }
2077 
2078       /* Also keep size a multiple of MALLOC_ALIGNMENT */
2079       old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2080       set_head_size(old_top, old_top_size);
2081       chunk_at_offset(old_top, old_top_size          )->size =
2082 	SIZE_SZ|PREV_INUSE;
2083       chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
2084 	SIZE_SZ|PREV_INUSE;
2085       /* If possible, release the rest. */
2086       if (old_top_size >= MINSIZE)
2087 	fREe(chunk2mem(old_top));
2088     }
2089   }
2090 
2091   if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2092     max_sbrked_mem = sbrked_mem;
2093   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2094     max_total_mem = mmapped_mem + sbrked_mem;
2095 
2096   /* We always land on a page boundary */
2097   assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
2098 }
2099 
2100 
2101 
2102 
2103 /* Main public routines */
2104 
2105 
2106 /*
2107   Malloc Algorthim:
2108 
2109     The requested size is first converted into a usable form, `nb'.
2110     This currently means to add 4 bytes overhead plus possibly more to
2111     obtain 8-byte alignment and/or to obtain a size of at least
2112     MINSIZE (currently 16 bytes), the smallest allocatable size.
2113     (All fits are considered `exact' if they are within MINSIZE bytes.)
2114 
2115     From there, the first successful of the following steps is taken:
2116 
2117       1. The bin corresponding to the request size is scanned, and if
2118 	 a chunk of exactly the right size is found, it is taken.
2119 
2120       2. The most recently remaindered chunk is used if it is big
2121 	 enough.  This is a form of (roving) first fit, used only in
2122 	 the absence of exact fits. Runs of consecutive requests use
2123 	 the remainder of the chunk used for the previous such request
2124 	 whenever possible. This limited use of a first-fit style
2125 	 allocation strategy tends to give contiguous chunks
2126 	 coextensive lifetimes, which improves locality and can reduce
2127 	 fragmentation in the long run.
2128 
2129       3. Other bins are scanned in increasing size order, using a
2130 	 chunk big enough to fulfill the request, and splitting off
2131 	 any remainder.  This search is strictly by best-fit; i.e.,
2132 	 the smallest (with ties going to approximately the least
2133 	 recently used) chunk that fits is selected.
2134 
2135       4. If large enough, the chunk bordering the end of memory
2136 	 (`top') is split off. (This use of `top' is in accord with
2137 	 the best-fit search rule.  In effect, `top' is treated as
2138 	 larger (and thus less well fitting) than any other available
2139 	 chunk since it can be extended to be as large as necessary
2140 	 (up to system limitations).
2141 
2142       5. If the request size meets the mmap threshold and the
2143 	 system supports mmap, and there are few enough currently
2144 	 allocated mmapped regions, and a call to mmap succeeds,
2145 	 the request is allocated via direct memory mapping.
2146 
2147       6. Otherwise, the top of memory is extended by
2148 	 obtaining more space from the system (normally using sbrk,
2149 	 but definable to anything else via the MORECORE macro).
2150 	 Memory is gathered from the system (in system page-sized
2151 	 units) in a way that allows chunks obtained across different
2152 	 sbrk calls to be consolidated, but does not require
2153 	 contiguous memory. Thus, it should be safe to intersperse
2154 	 mallocs with other sbrk calls.
2155 
2156 
2157       All allocations are made from the the `lowest' part of any found
2158       chunk. (The implementation invariant is that prev_inuse is
2159       always true of any allocated chunk; i.e., that each allocated
2160       chunk borders either a previously allocated and still in-use chunk,
2161       or the base of its memory arena.)
2162 
2163 */
2164 
2165 #if __STD_C
2166 Void_t* mALLOc(size_t bytes)
2167 #else
2168 Void_t* mALLOc(bytes) size_t bytes;
2169 #endif
2170 {
2171   mchunkptr victim;                  /* inspected/selected chunk */
2172   INTERNAL_SIZE_T victim_size;       /* its size */
2173   int       idx;                     /* index for bin traversal */
2174   mbinptr   bin;                     /* associated bin */
2175   mchunkptr remainder;               /* remainder from a split */
2176   long      remainder_size;          /* its size */
2177   int       remainder_index;         /* its bin index */
2178   unsigned long block;               /* block traverser bit */
2179   int       startidx;                /* first bin of a traversed block */
2180   mchunkptr fwd;                     /* misc temp for linking */
2181   mchunkptr bck;                     /* misc temp for linking */
2182   mbinptr q;                         /* misc temp */
2183 
2184   INTERNAL_SIZE_T nb;
2185 
2186   /* check if mem_malloc_init() was run */
2187   if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
2188     /* not initialized yet */
2189     return 0;
2190   }
2191 
2192   if ((long)bytes < 0) return 0;
2193 
2194   nb = request2size(bytes);  /* padded request size; */
2195 
2196   /* Check for exact match in a bin */
2197 
2198   if (is_small_request(nb))  /* Faster version for small requests */
2199   {
2200     idx = smallbin_index(nb);
2201 
2202     /* No traversal or size check necessary for small bins.  */
2203 
2204     q = bin_at(idx);
2205     victim = last(q);
2206 
2207     /* Also scan the next one, since it would have a remainder < MINSIZE */
2208     if (victim == q)
2209     {
2210       q = next_bin(q);
2211       victim = last(q);
2212     }
2213     if (victim != q)
2214     {
2215       victim_size = chunksize(victim);
2216       unlink(victim, bck, fwd);
2217       set_inuse_bit_at_offset(victim, victim_size);
2218       check_malloced_chunk(victim, nb);
2219       return chunk2mem(victim);
2220     }
2221 
2222     idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2223 
2224   }
2225   else
2226   {
2227     idx = bin_index(nb);
2228     bin = bin_at(idx);
2229 
2230     for (victim = last(bin); victim != bin; victim = victim->bk)
2231     {
2232       victim_size = chunksize(victim);
2233       remainder_size = victim_size - nb;
2234 
2235       if (remainder_size >= (long)MINSIZE) /* too big */
2236       {
2237 	--idx; /* adjust to rescan below after checking last remainder */
2238 	break;
2239       }
2240 
2241       else if (remainder_size >= 0) /* exact fit */
2242       {
2243 	unlink(victim, bck, fwd);
2244 	set_inuse_bit_at_offset(victim, victim_size);
2245 	check_malloced_chunk(victim, nb);
2246 	return chunk2mem(victim);
2247       }
2248     }
2249 
2250     ++idx;
2251 
2252   }
2253 
2254   /* Try to use the last split-off remainder */
2255 
2256   if ( (victim = last_remainder->fd) != last_remainder)
2257   {
2258     victim_size = chunksize(victim);
2259     remainder_size = victim_size - nb;
2260 
2261     if (remainder_size >= (long)MINSIZE) /* re-split */
2262     {
2263       remainder = chunk_at_offset(victim, nb);
2264       set_head(victim, nb | PREV_INUSE);
2265       link_last_remainder(remainder);
2266       set_head(remainder, remainder_size | PREV_INUSE);
2267       set_foot(remainder, remainder_size);
2268       check_malloced_chunk(victim, nb);
2269       return chunk2mem(victim);
2270     }
2271 
2272     clear_last_remainder;
2273 
2274     if (remainder_size >= 0)  /* exhaust */
2275     {
2276       set_inuse_bit_at_offset(victim, victim_size);
2277       check_malloced_chunk(victim, nb);
2278       return chunk2mem(victim);
2279     }
2280 
2281     /* Else place in bin */
2282 
2283     frontlink(victim, victim_size, remainder_index, bck, fwd);
2284   }
2285 
2286   /*
2287      If there are any possibly nonempty big-enough blocks,
2288      search for best fitting chunk by scanning bins in blockwidth units.
2289   */
2290 
2291   if ( (block = idx2binblock(idx)) <= binblocks_r)
2292   {
2293 
2294     /* Get to the first marked block */
2295 
2296     if ( (block & binblocks_r) == 0)
2297     {
2298       /* force to an even block boundary */
2299       idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2300       block <<= 1;
2301       while ((block & binblocks_r) == 0)
2302       {
2303 	idx += BINBLOCKWIDTH;
2304 	block <<= 1;
2305       }
2306     }
2307 
2308     /* For each possibly nonempty block ... */
2309     for (;;)
2310     {
2311       startidx = idx;          /* (track incomplete blocks) */
2312       q = bin = bin_at(idx);
2313 
2314       /* For each bin in this block ... */
2315       do
2316       {
2317 	/* Find and use first big enough chunk ... */
2318 
2319 	for (victim = last(bin); victim != bin; victim = victim->bk)
2320 	{
2321 	  victim_size = chunksize(victim);
2322 	  remainder_size = victim_size - nb;
2323 
2324 	  if (remainder_size >= (long)MINSIZE) /* split */
2325 	  {
2326 	    remainder = chunk_at_offset(victim, nb);
2327 	    set_head(victim, nb | PREV_INUSE);
2328 	    unlink(victim, bck, fwd);
2329 	    link_last_remainder(remainder);
2330 	    set_head(remainder, remainder_size | PREV_INUSE);
2331 	    set_foot(remainder, remainder_size);
2332 	    check_malloced_chunk(victim, nb);
2333 	    return chunk2mem(victim);
2334 	  }
2335 
2336 	  else if (remainder_size >= 0)  /* take */
2337 	  {
2338 	    set_inuse_bit_at_offset(victim, victim_size);
2339 	    unlink(victim, bck, fwd);
2340 	    check_malloced_chunk(victim, nb);
2341 	    return chunk2mem(victim);
2342 	  }
2343 
2344 	}
2345 
2346        bin = next_bin(bin);
2347 
2348       } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2349 
2350       /* Clear out the block bit. */
2351 
2352       do   /* Possibly backtrack to try to clear a partial block */
2353       {
2354 	if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2355 	{
2356 	  av_[1] = (mbinptr)(binblocks_r & ~block);
2357 	  break;
2358 	}
2359 	--startidx;
2360        q = prev_bin(q);
2361       } while (first(q) == q);
2362 
2363       /* Get to the next possibly nonempty block */
2364 
2365       if ( (block <<= 1) <= binblocks_r && (block != 0) )
2366       {
2367 	while ((block & binblocks_r) == 0)
2368 	{
2369 	  idx += BINBLOCKWIDTH;
2370 	  block <<= 1;
2371 	}
2372       }
2373       else
2374 	break;
2375     }
2376   }
2377 
2378 
2379   /* Try to use top chunk */
2380 
2381   /* Require that there be a remainder, ensuring top always exists  */
2382   if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2383   {
2384 
2385 #if HAVE_MMAP
2386     /* If big and would otherwise need to extend, try to use mmap instead */
2387     if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2388 	(victim = mmap_chunk(nb)) != 0)
2389       return chunk2mem(victim);
2390 #endif
2391 
2392     /* Try to extend */
2393     malloc_extend_top(nb);
2394     if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2395       return 0; /* propagate failure */
2396   }
2397 
2398   victim = top;
2399   set_head(victim, nb | PREV_INUSE);
2400   top = chunk_at_offset(victim, nb);
2401   set_head(top, remainder_size | PREV_INUSE);
2402   check_malloced_chunk(victim, nb);
2403   return chunk2mem(victim);
2404 
2405 }
2406 
2407 
2408 
2409 
2410 /*
2411 
2412   free() algorithm :
2413 
2414     cases:
2415 
2416        1. free(0) has no effect.
2417 
2418        2. If the chunk was allocated via mmap, it is release via munmap().
2419 
2420        3. If a returned chunk borders the current high end of memory,
2421 	  it is consolidated into the top, and if the total unused
2422 	  topmost memory exceeds the trim threshold, malloc_trim is
2423 	  called.
2424 
2425        4. Other chunks are consolidated as they arrive, and
2426 	  placed in corresponding bins. (This includes the case of
2427 	  consolidating with the current `last_remainder').
2428 
2429 */
2430 
2431 
2432 #if __STD_C
2433 void fREe(Void_t* mem)
2434 #else
2435 void fREe(mem) Void_t* mem;
2436 #endif
2437 {
2438   mchunkptr p;         /* chunk corresponding to mem */
2439   INTERNAL_SIZE_T hd;  /* its head field */
2440   INTERNAL_SIZE_T sz;  /* its size */
2441   int       idx;       /* its bin index */
2442   mchunkptr next;      /* next contiguous chunk */
2443   INTERNAL_SIZE_T nextsz; /* its size */
2444   INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2445   mchunkptr bck;       /* misc temp for linking */
2446   mchunkptr fwd;       /* misc temp for linking */
2447   int       islr;      /* track whether merging with last_remainder */
2448 
2449   if (mem == 0)                              /* free(0) has no effect */
2450     return;
2451 
2452   p = mem2chunk(mem);
2453   hd = p->size;
2454 
2455 #if HAVE_MMAP
2456   if (hd & IS_MMAPPED)                       /* release mmapped memory. */
2457   {
2458     munmap_chunk(p);
2459     return;
2460   }
2461 #endif
2462 
2463   check_inuse_chunk(p);
2464 
2465   sz = hd & ~PREV_INUSE;
2466   next = chunk_at_offset(p, sz);
2467   nextsz = chunksize(next);
2468 
2469   if (next == top)                            /* merge with top */
2470   {
2471     sz += nextsz;
2472 
2473     if (!(hd & PREV_INUSE))                    /* consolidate backward */
2474     {
2475       prevsz = p->prev_size;
2476       p = chunk_at_offset(p, -((long) prevsz));
2477       sz += prevsz;
2478       unlink(p, bck, fwd);
2479     }
2480 
2481     set_head(p, sz | PREV_INUSE);
2482     top = p;
2483     if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2484       malloc_trim(top_pad);
2485     return;
2486   }
2487 
2488   set_head(next, nextsz);                    /* clear inuse bit */
2489 
2490   islr = 0;
2491 
2492   if (!(hd & PREV_INUSE))                    /* consolidate backward */
2493   {
2494     prevsz = p->prev_size;
2495     p = chunk_at_offset(p, -((long) prevsz));
2496     sz += prevsz;
2497 
2498     if (p->fd == last_remainder)             /* keep as last_remainder */
2499       islr = 1;
2500     else
2501       unlink(p, bck, fwd);
2502   }
2503 
2504   if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
2505   {
2506     sz += nextsz;
2507 
2508     if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
2509     {
2510       islr = 1;
2511       link_last_remainder(p);
2512     }
2513     else
2514       unlink(next, bck, fwd);
2515   }
2516 
2517 
2518   set_head(p, sz | PREV_INUSE);
2519   set_foot(p, sz);
2520   if (!islr)
2521     frontlink(p, sz, idx, bck, fwd);
2522 }
2523 
2524 
2525 
2526 
2527 
2528 /*
2529 
2530   Realloc algorithm:
2531 
2532     Chunks that were obtained via mmap cannot be extended or shrunk
2533     unless HAVE_MREMAP is defined, in which case mremap is used.
2534     Otherwise, if their reallocation is for additional space, they are
2535     copied.  If for less, they are just left alone.
2536 
2537     Otherwise, if the reallocation is for additional space, and the
2538     chunk can be extended, it is, else a malloc-copy-free sequence is
2539     taken.  There are several different ways that a chunk could be
2540     extended. All are tried:
2541 
2542        * Extending forward into following adjacent free chunk.
2543        * Shifting backwards, joining preceding adjacent space
2544        * Both shifting backwards and extending forward.
2545        * Extending into newly sbrked space
2546 
2547     Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2548     size argument of zero (re)allocates a minimum-sized chunk.
2549 
2550     If the reallocation is for less space, and the new request is for
2551     a `small' (<512 bytes) size, then the newly unused space is lopped
2552     off and freed.
2553 
2554     The old unix realloc convention of allowing the last-free'd chunk
2555     to be used as an argument to realloc is no longer supported.
2556     I don't know of any programs still relying on this feature,
2557     and allowing it would also allow too many other incorrect
2558     usages of realloc to be sensible.
2559 
2560 
2561 */
2562 
2563 
2564 #if __STD_C
2565 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
2566 #else
2567 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
2568 #endif
2569 {
2570   INTERNAL_SIZE_T    nb;      /* padded request size */
2571 
2572   mchunkptr oldp;             /* chunk corresponding to oldmem */
2573   INTERNAL_SIZE_T    oldsize; /* its size */
2574 
2575   mchunkptr newp;             /* chunk to return */
2576   INTERNAL_SIZE_T    newsize; /* its size */
2577   Void_t*   newmem;           /* corresponding user mem */
2578 
2579   mchunkptr next;             /* next contiguous chunk after oldp */
2580   INTERNAL_SIZE_T  nextsize;  /* its size */
2581 
2582   mchunkptr prev;             /* previous contiguous chunk before oldp */
2583   INTERNAL_SIZE_T  prevsize;  /* its size */
2584 
2585   mchunkptr remainder;        /* holds split off extra space from newp */
2586   INTERNAL_SIZE_T  remainder_size;   /* its size */
2587 
2588   mchunkptr bck;              /* misc temp for linking */
2589   mchunkptr fwd;              /* misc temp for linking */
2590 
2591 #ifdef REALLOC_ZERO_BYTES_FREES
2592   if (bytes == 0) { fREe(oldmem); return 0; }
2593 #endif
2594 
2595   if ((long)bytes < 0) return 0;
2596 
2597   /* realloc of null is supposed to be same as malloc */
2598   if (oldmem == 0) return mALLOc(bytes);
2599 
2600   newp    = oldp    = mem2chunk(oldmem);
2601   newsize = oldsize = chunksize(oldp);
2602 
2603 
2604   nb = request2size(bytes);
2605 
2606 #if HAVE_MMAP
2607   if (chunk_is_mmapped(oldp))
2608   {
2609 #if HAVE_MREMAP
2610     newp = mremap_chunk(oldp, nb);
2611     if(newp) return chunk2mem(newp);
2612 #endif
2613     /* Note the extra SIZE_SZ overhead. */
2614     if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2615     /* Must alloc, copy, free. */
2616     newmem = mALLOc(bytes);
2617     if (newmem == 0) return 0; /* propagate failure */
2618     MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2619     munmap_chunk(oldp);
2620     return newmem;
2621   }
2622 #endif
2623 
2624   check_inuse_chunk(oldp);
2625 
2626   if ((long)(oldsize) < (long)(nb))
2627   {
2628 
2629     /* Try expanding forward */
2630 
2631     next = chunk_at_offset(oldp, oldsize);
2632     if (next == top || !inuse(next))
2633     {
2634       nextsize = chunksize(next);
2635 
2636       /* Forward into top only if a remainder */
2637       if (next == top)
2638       {
2639 	if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
2640 	{
2641 	  newsize += nextsize;
2642 	  top = chunk_at_offset(oldp, nb);
2643 	  set_head(top, (newsize - nb) | PREV_INUSE);
2644 	  set_head_size(oldp, nb);
2645 	  return chunk2mem(oldp);
2646 	}
2647       }
2648 
2649       /* Forward into next chunk */
2650       else if (((long)(nextsize + newsize) >= (long)(nb)))
2651       {
2652 	unlink(next, bck, fwd);
2653 	newsize  += nextsize;
2654 	goto split;
2655       }
2656     }
2657     else
2658     {
2659       next = 0;
2660       nextsize = 0;
2661     }
2662 
2663     /* Try shifting backwards. */
2664 
2665     if (!prev_inuse(oldp))
2666     {
2667       prev = prev_chunk(oldp);
2668       prevsize = chunksize(prev);
2669 
2670       /* try forward + backward first to save a later consolidation */
2671 
2672       if (next != 0)
2673       {
2674 	/* into top */
2675 	if (next == top)
2676 	{
2677 	  if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
2678 	  {
2679 	    unlink(prev, bck, fwd);
2680 	    newp = prev;
2681 	    newsize += prevsize + nextsize;
2682 	    newmem = chunk2mem(newp);
2683 	    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2684 	    top = chunk_at_offset(newp, nb);
2685 	    set_head(top, (newsize - nb) | PREV_INUSE);
2686 	    set_head_size(newp, nb);
2687 	    return newmem;
2688 	  }
2689 	}
2690 
2691 	/* into next chunk */
2692 	else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
2693 	{
2694 	  unlink(next, bck, fwd);
2695 	  unlink(prev, bck, fwd);
2696 	  newp = prev;
2697 	  newsize += nextsize + prevsize;
2698 	  newmem = chunk2mem(newp);
2699 	  MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2700 	  goto split;
2701 	}
2702       }
2703 
2704       /* backward only */
2705       if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
2706       {
2707 	unlink(prev, bck, fwd);
2708 	newp = prev;
2709 	newsize += prevsize;
2710 	newmem = chunk2mem(newp);
2711 	MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2712 	goto split;
2713       }
2714     }
2715 
2716     /* Must allocate */
2717 
2718     newmem = mALLOc (bytes);
2719 
2720     if (newmem == 0)  /* propagate failure */
2721       return 0;
2722 
2723     /* Avoid copy if newp is next chunk after oldp. */
2724     /* (This can only happen when new chunk is sbrk'ed.) */
2725 
2726     if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
2727     {
2728       newsize += chunksize(newp);
2729       newp = oldp;
2730       goto split;
2731     }
2732 
2733     /* Otherwise copy, free, and exit */
2734     MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2735     fREe(oldmem);
2736     return newmem;
2737   }
2738 
2739 
2740  split:  /* split off extra room in old or expanded chunk */
2741 
2742   if (newsize - nb >= MINSIZE) /* split off remainder */
2743   {
2744     remainder = chunk_at_offset(newp, nb);
2745     remainder_size = newsize - nb;
2746     set_head_size(newp, nb);
2747     set_head(remainder, remainder_size | PREV_INUSE);
2748     set_inuse_bit_at_offset(remainder, remainder_size);
2749     fREe(chunk2mem(remainder)); /* let free() deal with it */
2750   }
2751   else
2752   {
2753     set_head_size(newp, newsize);
2754     set_inuse_bit_at_offset(newp, newsize);
2755   }
2756 
2757   check_inuse_chunk(newp);
2758   return chunk2mem(newp);
2759 }
2760 
2761 
2762 
2763 
2764 /*
2765 
2766   memalign algorithm:
2767 
2768     memalign requests more than enough space from malloc, finds a spot
2769     within that chunk that meets the alignment request, and then
2770     possibly frees the leading and trailing space.
2771 
2772     The alignment argument must be a power of two. This property is not
2773     checked by memalign, so misuse may result in random runtime errors.
2774 
2775     8-byte alignment is guaranteed by normal malloc calls, so don't
2776     bother calling memalign with an argument of 8 or less.
2777 
2778     Overreliance on memalign is a sure way to fragment space.
2779 
2780 */
2781 
2782 
2783 #if __STD_C
2784 Void_t* mEMALIGn(size_t alignment, size_t bytes)
2785 #else
2786 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
2787 #endif
2788 {
2789   INTERNAL_SIZE_T    nb;      /* padded  request size */
2790   char*     m;                /* memory returned by malloc call */
2791   mchunkptr p;                /* corresponding chunk */
2792   char*     brk;              /* alignment point within p */
2793   mchunkptr newp;             /* chunk to return */
2794   INTERNAL_SIZE_T  newsize;   /* its size */
2795   INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
2796   mchunkptr remainder;        /* spare room at end to split off */
2797   long      remainder_size;   /* its size */
2798 
2799   if ((long)bytes < 0) return 0;
2800 
2801   /* If need less alignment than we give anyway, just relay to malloc */
2802 
2803   if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
2804 
2805   /* Otherwise, ensure that it is at least a minimum chunk size */
2806 
2807   if (alignment <  MINSIZE) alignment = MINSIZE;
2808 
2809   /* Call malloc with worst case padding to hit alignment. */
2810 
2811   nb = request2size(bytes);
2812   m  = (char*)(mALLOc(nb + alignment + MINSIZE));
2813 
2814   if (m == 0) return 0; /* propagate failure */
2815 
2816   p = mem2chunk(m);
2817 
2818   if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2819   {
2820 #if HAVE_MMAP
2821     if(chunk_is_mmapped(p))
2822       return chunk2mem(p); /* nothing more to do */
2823 #endif
2824   }
2825   else /* misaligned */
2826   {
2827     /*
2828       Find an aligned spot inside chunk.
2829       Since we need to give back leading space in a chunk of at
2830       least MINSIZE, if the first calculation places us at
2831       a spot with less than MINSIZE leader, we can move to the
2832       next aligned spot -- we've allocated enough total room so that
2833       this is always possible.
2834     */
2835 
2836     brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2837     if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2838 
2839     newp = (mchunkptr)brk;
2840     leadsize = brk - (char*)(p);
2841     newsize = chunksize(p) - leadsize;
2842 
2843 #if HAVE_MMAP
2844     if(chunk_is_mmapped(p))
2845     {
2846       newp->prev_size = p->prev_size + leadsize;
2847       set_head(newp, newsize|IS_MMAPPED);
2848       return chunk2mem(newp);
2849     }
2850 #endif
2851 
2852     /* give back leader, use the rest */
2853 
2854     set_head(newp, newsize | PREV_INUSE);
2855     set_inuse_bit_at_offset(newp, newsize);
2856     set_head_size(p, leadsize);
2857     fREe(chunk2mem(p));
2858     p = newp;
2859 
2860     assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2861   }
2862 
2863   /* Also give back spare room at the end */
2864 
2865   remainder_size = chunksize(p) - nb;
2866 
2867   if (remainder_size >= (long)MINSIZE)
2868   {
2869     remainder = chunk_at_offset(p, nb);
2870     set_head(remainder, remainder_size | PREV_INUSE);
2871     set_head_size(p, nb);
2872     fREe(chunk2mem(remainder));
2873   }
2874 
2875   check_inuse_chunk(p);
2876   return chunk2mem(p);
2877 
2878 }
2879 
2880 
2881 
2882 
2883 /*
2884     valloc just invokes memalign with alignment argument equal
2885     to the page size of the system (or as near to this as can
2886     be figured out from all the includes/defines above.)
2887 */
2888 
2889 #if __STD_C
2890 Void_t* vALLOc(size_t bytes)
2891 #else
2892 Void_t* vALLOc(bytes) size_t bytes;
2893 #endif
2894 {
2895   return mEMALIGn (malloc_getpagesize, bytes);
2896 }
2897 
2898 /*
2899   pvalloc just invokes valloc for the nearest pagesize
2900   that will accommodate request
2901 */
2902 
2903 
2904 #if __STD_C
2905 Void_t* pvALLOc(size_t bytes)
2906 #else
2907 Void_t* pvALLOc(bytes) size_t bytes;
2908 #endif
2909 {
2910   size_t pagesize = malloc_getpagesize;
2911   return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2912 }
2913 
2914 /*
2915 
2916   calloc calls malloc, then zeroes out the allocated chunk.
2917 
2918 */
2919 
2920 #if __STD_C
2921 Void_t* cALLOc(size_t n, size_t elem_size)
2922 #else
2923 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2924 #endif
2925 {
2926   mchunkptr p;
2927   INTERNAL_SIZE_T csz;
2928 
2929   INTERNAL_SIZE_T sz = n * elem_size;
2930 
2931 
2932   /* check if expand_top called, in which case don't need to clear */
2933 #if MORECORE_CLEARS
2934   mchunkptr oldtop = top;
2935   INTERNAL_SIZE_T oldtopsize = chunksize(top);
2936 #endif
2937   Void_t* mem = mALLOc (sz);
2938 
2939   if ((long)n < 0) return 0;
2940 
2941   if (mem == 0)
2942     return 0;
2943   else
2944   {
2945     p = mem2chunk(mem);
2946 
2947     /* Two optional cases in which clearing not necessary */
2948 
2949 
2950 #if HAVE_MMAP
2951     if (chunk_is_mmapped(p)) return mem;
2952 #endif
2953 
2954     csz = chunksize(p);
2955 
2956 #if MORECORE_CLEARS
2957     if (p == oldtop && csz > oldtopsize)
2958     {
2959       /* clear only the bytes from non-freshly-sbrked memory */
2960       csz = oldtopsize;
2961     }
2962 #endif
2963 
2964     MALLOC_ZERO(mem, csz - SIZE_SZ);
2965     return mem;
2966   }
2967 }
2968 
2969 /*
2970 
2971   cfree just calls free. It is needed/defined on some systems
2972   that pair it with calloc, presumably for odd historical reasons.
2973 
2974 */
2975 
2976 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2977 #if __STD_C
2978 void cfree(Void_t *mem)
2979 #else
2980 void cfree(mem) Void_t *mem;
2981 #endif
2982 {
2983   fREe(mem);
2984 }
2985 #endif
2986 
2987 
2988 
2989 /*
2990 
2991     Malloc_trim gives memory back to the system (via negative
2992     arguments to sbrk) if there is unused memory at the `high' end of
2993     the malloc pool. You can call this after freeing large blocks of
2994     memory to potentially reduce the system-level memory requirements
2995     of a program. However, it cannot guarantee to reduce memory. Under
2996     some allocation patterns, some large free blocks of memory will be
2997     locked between two used chunks, so they cannot be given back to
2998     the system.
2999 
3000     The `pad' argument to malloc_trim represents the amount of free
3001     trailing space to leave untrimmed. If this argument is zero,
3002     only the minimum amount of memory to maintain internal data
3003     structures will be left (one page or less). Non-zero arguments
3004     can be supplied to maintain enough trailing space to service
3005     future expected allocations without having to re-obtain memory
3006     from the system.
3007 
3008     Malloc_trim returns 1 if it actually released any memory, else 0.
3009 
3010 */
3011 
3012 #if __STD_C
3013 int malloc_trim(size_t pad)
3014 #else
3015 int malloc_trim(pad) size_t pad;
3016 #endif
3017 {
3018   long  top_size;        /* Amount of top-most memory */
3019   long  extra;           /* Amount to release */
3020   char* current_brk;     /* address returned by pre-check sbrk call */
3021   char* new_brk;         /* address returned by negative sbrk call */
3022 
3023   unsigned long pagesz = malloc_getpagesize;
3024 
3025   top_size = chunksize(top);
3026   extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3027 
3028   if (extra < (long)pagesz)  /* Not enough memory to release */
3029     return 0;
3030 
3031   else
3032   {
3033     /* Test to make sure no one else called sbrk */
3034     current_brk = (char*)(MORECORE (0));
3035     if (current_brk != (char*)(top) + top_size)
3036       return 0;     /* Apparently we don't own memory; must fail */
3037 
3038     else
3039     {
3040       new_brk = (char*)(MORECORE (-extra));
3041 
3042       if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
3043       {
3044 	/* Try to figure out what we have */
3045 	current_brk = (char*)(MORECORE (0));
3046 	top_size = current_brk - (char*)top;
3047 	if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3048 	{
3049 	  sbrked_mem = current_brk - sbrk_base;
3050 	  set_head(top, top_size | PREV_INUSE);
3051 	}
3052 	check_chunk(top);
3053 	return 0;
3054       }
3055 
3056       else
3057       {
3058 	/* Success. Adjust top accordingly. */
3059 	set_head(top, (top_size - extra) | PREV_INUSE);
3060 	sbrked_mem -= extra;
3061 	check_chunk(top);
3062 	return 1;
3063       }
3064     }
3065   }
3066 }
3067 
3068 
3069 
3070 /*
3071   malloc_usable_size:
3072 
3073     This routine tells you how many bytes you can actually use in an
3074     allocated chunk, which may be more than you requested (although
3075     often not). You can use this many bytes without worrying about
3076     overwriting other allocated objects. Not a particularly great
3077     programming practice, but still sometimes useful.
3078 
3079 */
3080 
3081 #if __STD_C
3082 size_t malloc_usable_size(Void_t* mem)
3083 #else
3084 size_t malloc_usable_size(mem) Void_t* mem;
3085 #endif
3086 {
3087   mchunkptr p;
3088   if (mem == 0)
3089     return 0;
3090   else
3091   {
3092     p = mem2chunk(mem);
3093     if(!chunk_is_mmapped(p))
3094     {
3095       if (!inuse(p)) return 0;
3096       check_inuse_chunk(p);
3097       return chunksize(p) - SIZE_SZ;
3098     }
3099     return chunksize(p) - 2*SIZE_SZ;
3100   }
3101 }
3102 
3103 
3104 
3105 
3106 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
3107 
3108 #ifdef DEBUG
3109 static void malloc_update_mallinfo()
3110 {
3111   int i;
3112   mbinptr b;
3113   mchunkptr p;
3114 #ifdef DEBUG
3115   mchunkptr q;
3116 #endif
3117 
3118   INTERNAL_SIZE_T avail = chunksize(top);
3119   int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3120 
3121   for (i = 1; i < NAV; ++i)
3122   {
3123     b = bin_at(i);
3124     for (p = last(b); p != b; p = p->bk)
3125     {
3126 #ifdef DEBUG
3127       check_free_chunk(p);
3128       for (q = next_chunk(p);
3129 	   q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
3130 	   q = next_chunk(q))
3131 	check_inuse_chunk(q);
3132 #endif
3133       avail += chunksize(p);
3134       navail++;
3135     }
3136   }
3137 
3138   current_mallinfo.ordblks = navail;
3139   current_mallinfo.uordblks = sbrked_mem - avail;
3140   current_mallinfo.fordblks = avail;
3141   current_mallinfo.hblks = n_mmaps;
3142   current_mallinfo.hblkhd = mmapped_mem;
3143   current_mallinfo.keepcost = chunksize(top);
3144 
3145 }
3146 #endif	/* DEBUG */
3147 
3148 
3149 
3150 /*
3151 
3152   malloc_stats:
3153 
3154     Prints on the amount of space obtain from the system (both
3155     via sbrk and mmap), the maximum amount (which may be more than
3156     current if malloc_trim and/or munmap got called), the maximum
3157     number of simultaneous mmap regions used, and the current number
3158     of bytes allocated via malloc (or realloc, etc) but not yet
3159     freed. (Note that this is the number of bytes allocated, not the
3160     number requested. It will be larger than the number requested
3161     because of alignment and bookkeeping overhead.)
3162 
3163 */
3164 
3165 #ifdef DEBUG
3166 void malloc_stats()
3167 {
3168   malloc_update_mallinfo();
3169   printf("max system bytes = %10u\n",
3170 	  (unsigned int)(max_total_mem));
3171   printf("system bytes     = %10u\n",
3172 	  (unsigned int)(sbrked_mem + mmapped_mem));
3173   printf("in use bytes     = %10u\n",
3174 	  (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
3175 #if HAVE_MMAP
3176   printf("max mmap regions = %10u\n",
3177 	  (unsigned int)max_n_mmaps);
3178 #endif
3179 }
3180 #endif	/* DEBUG */
3181 
3182 /*
3183   mallinfo returns a copy of updated current mallinfo.
3184 */
3185 
3186 #ifdef DEBUG
3187 struct mallinfo mALLINFo()
3188 {
3189   malloc_update_mallinfo();
3190   return current_mallinfo;
3191 }
3192 #endif	/* DEBUG */
3193 
3194 
3195 
3196 
3197 /*
3198   mallopt:
3199 
3200     mallopt is the general SVID/XPG interface to tunable parameters.
3201     The format is to provide a (parameter-number, parameter-value) pair.
3202     mallopt then sets the corresponding parameter to the argument
3203     value if it can (i.e., so long as the value is meaningful),
3204     and returns 1 if successful else 0.
3205 
3206     See descriptions of tunable parameters above.
3207 
3208 */
3209 
3210 #if __STD_C
3211 int mALLOPt(int param_number, int value)
3212 #else
3213 int mALLOPt(param_number, value) int param_number; int value;
3214 #endif
3215 {
3216   switch(param_number)
3217   {
3218     case M_TRIM_THRESHOLD:
3219       trim_threshold = value; return 1;
3220     case M_TOP_PAD:
3221       top_pad = value; return 1;
3222     case M_MMAP_THRESHOLD:
3223       mmap_threshold = value; return 1;
3224     case M_MMAP_MAX:
3225 #if HAVE_MMAP
3226       n_mmaps_max = value; return 1;
3227 #else
3228       if (value != 0) return 0; else  n_mmaps_max = value; return 1;
3229 #endif
3230 
3231     default:
3232       return 0;
3233   }
3234 }
3235 
3236 /*
3237 
3238 History:
3239 
3240     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
3241       * return null for negative arguments
3242       * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
3243 	 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
3244 	  (e.g. WIN32 platforms)
3245 	 * Cleanup up header file inclusion for WIN32 platforms
3246 	 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
3247 	 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
3248 	   memory allocation routines
3249 	 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
3250 	 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
3251 	   usage of 'assert' in non-WIN32 code
3252 	 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
3253 	   avoid infinite loop
3254       * Always call 'fREe()' rather than 'free()'
3255 
3256     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
3257       * Fixed ordering problem with boundary-stamping
3258 
3259     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
3260       * Added pvalloc, as recommended by H.J. Liu
3261       * Added 64bit pointer support mainly from Wolfram Gloger
3262       * Added anonymously donated WIN32 sbrk emulation
3263       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
3264       * malloc_extend_top: fix mask error that caused wastage after
3265 	foreign sbrks
3266       * Add linux mremap support code from HJ Liu
3267 
3268     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
3269       * Integrated most documentation with the code.
3270       * Add support for mmap, with help from
3271 	Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3272       * Use last_remainder in more cases.
3273       * Pack bins using idea from  colin@nyx10.cs.du.edu
3274       * Use ordered bins instead of best-fit threshhold
3275       * Eliminate block-local decls to simplify tracing and debugging.
3276       * Support another case of realloc via move into top
3277       * Fix error occuring when initial sbrk_base not word-aligned.
3278       * Rely on page size for units instead of SBRK_UNIT to
3279 	avoid surprises about sbrk alignment conventions.
3280       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
3281 	(raymond@es.ele.tue.nl) for the suggestion.
3282       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
3283       * More precautions for cases where other routines call sbrk,
3284 	courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3285       * Added macros etc., allowing use in linux libc from
3286 	H.J. Lu (hjl@gnu.ai.mit.edu)
3287       * Inverted this history list
3288 
3289     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
3290       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
3291       * Removed all preallocation code since under current scheme
3292 	the work required to undo bad preallocations exceeds
3293 	the work saved in good cases for most test programs.
3294       * No longer use return list or unconsolidated bins since
3295 	no scheme using them consistently outperforms those that don't
3296 	given above changes.
3297       * Use best fit for very large chunks to prevent some worst-cases.
3298       * Added some support for debugging
3299 
3300     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
3301       * Removed footers when chunks are in use. Thanks to
3302 	Paul Wilson (wilson@cs.texas.edu) for the suggestion.
3303 
3304     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
3305       * Added malloc_trim, with help from Wolfram Gloger
3306 	(wmglo@Dent.MED.Uni-Muenchen.DE).
3307 
3308     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
3309 
3310     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
3311       * realloc: try to expand in both directions
3312       * malloc: swap order of clean-bin strategy;
3313       * realloc: only conditionally expand backwards
3314       * Try not to scavenge used bins
3315       * Use bin counts as a guide to preallocation
3316       * Occasionally bin return list chunks in first scan
3317       * Add a few optimizations from colin@nyx10.cs.du.edu
3318 
3319     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
3320       * faster bin computation & slightly different binning
3321       * merged all consolidations to one part of malloc proper
3322 	 (eliminating old malloc_find_space & malloc_clean_bin)
3323       * Scan 2 returns chunks (not just 1)
3324       * Propagate failure in realloc if malloc returns 0
3325       * Add stuff to allow compilation on non-ANSI compilers
3326 	  from kpv@research.att.com
3327 
3328     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
3329       * removed potential for odd address access in prev_chunk
3330       * removed dependency on getpagesize.h
3331       * misc cosmetics and a bit more internal documentation
3332       * anticosmetics: mangled names in macros to evade debugger strangeness
3333       * tested on sparc, hp-700, dec-mips, rs6000
3334 	  with gcc & native cc (hp, dec only) allowing
3335 	  Detlefs & Zorn comparison study (in SIGPLAN Notices.)
3336 
3337     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
3338       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
3339 	 structure of old version,  but most details differ.)
3340 
3341 */
3342