xref: /openbmc/u-boot/common/dlmalloc.c (revision 3eb90bad)
1 #include <common.h>
2 
3 #if 0	/* Moved to malloc.h */
4 /* ---------- To make a malloc.h, start cutting here ------------ */
5 
6 /*
7   A version of malloc/free/realloc written by Doug Lea and released to the
8   public domain.  Send questions/comments/complaints/performance data
9   to dl@cs.oswego.edu
10 
11 * VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
12 
13    Note: There may be an updated version of this malloc obtainable at
14 	   ftp://g.oswego.edu/pub/misc/malloc.c
15 	 Check before installing!
16 
17 * Why use this malloc?
18 
19   This is not the fastest, most space-conserving, most portable, or
20   most tunable malloc ever written. However it is among the fastest
21   while also being among the most space-conserving, portable and tunable.
22   Consistent balance across these factors results in a good general-purpose
23   allocator. For a high-level description, see
24      http://g.oswego.edu/dl/html/malloc.html
25 
26 * Synopsis of public routines
27 
28   (Much fuller descriptions are contained in the program documentation below.)
29 
30   malloc(size_t n);
31      Return a pointer to a newly allocated chunk of at least n bytes, or null
32      if no space is available.
33   free(Void_t* p);
34      Release the chunk of memory pointed to by p, or no effect if p is null.
35   realloc(Void_t* p, size_t n);
36      Return a pointer to a chunk of size n that contains the same data
37      as does chunk p up to the minimum of (n, p's size) bytes, or null
38      if no space is available. The returned pointer may or may not be
39      the same as p. If p is null, equivalent to malloc.  Unless the
40      #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
41      size argument of zero (re)allocates a minimum-sized chunk.
42   memalign(size_t alignment, size_t n);
43      Return a pointer to a newly allocated chunk of n bytes, aligned
44      in accord with the alignment argument, which must be a power of
45      two.
46   valloc(size_t n);
47      Equivalent to memalign(pagesize, n), where pagesize is the page
48      size of the system (or as near to this as can be figured out from
49      all the includes/defines below.)
50   pvalloc(size_t n);
51      Equivalent to valloc(minimum-page-that-holds(n)), that is,
52      round up n to nearest pagesize.
53   calloc(size_t unit, size_t quantity);
54      Returns a pointer to quantity * unit bytes, with all locations
55      set to zero.
56   cfree(Void_t* p);
57      Equivalent to free(p).
58   malloc_trim(size_t pad);
59      Release all but pad bytes of freed top-most memory back
60      to the system. Return 1 if successful, else 0.
61   malloc_usable_size(Void_t* p);
62      Report the number usable allocated bytes associated with allocated
63      chunk p. This may or may not report more bytes than were requested,
64      due to alignment and minimum size constraints.
65   malloc_stats();
66      Prints brief summary statistics.
67   mallinfo()
68      Returns (by copy) a struct containing various summary statistics.
69   mallopt(int parameter_number, int parameter_value)
70      Changes one of the tunable parameters described below. Returns
71      1 if successful in changing the parameter, else 0.
72 
73 * Vital statistics:
74 
75   Alignment:                            8-byte
76        8 byte alignment is currently hardwired into the design.  This
77        seems to suffice for all current machines and C compilers.
78 
79   Assumed pointer representation:       4 or 8 bytes
80        Code for 8-byte pointers is untested by me but has worked
81        reliably by Wolfram Gloger, who contributed most of the
82        changes supporting this.
83 
84   Assumed size_t  representation:       4 or 8 bytes
85        Note that size_t is allowed to be 4 bytes even if pointers are 8.
86 
87   Minimum overhead per allocated chunk: 4 or 8 bytes
88        Each malloced chunk has a hidden overhead of 4 bytes holding size
89        and status information.
90 
91   Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
92 			  8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
93 
94        When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
95        ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
96        needed; 4 (8) for a trailing size field
97        and 8 (16) bytes for free list pointers. Thus, the minimum
98        allocatable size is 16/24/32 bytes.
99 
100        Even a request for zero bytes (i.e., malloc(0)) returns a
101        pointer to something of the minimum allocatable size.
102 
103   Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
104 			  8-byte size_t: 2^63 - 16 bytes
105 
106        It is assumed that (possibly signed) size_t bit values suffice to
107        represent chunk sizes. `Possibly signed' is due to the fact
108        that `size_t' may be defined on a system as either a signed or
109        an unsigned type. To be conservative, values that would appear
110        as negative numbers are avoided.
111        Requests for sizes with a negative sign bit when the request
112        size is treaded as a long will return null.
113 
114   Maximum overhead wastage per allocated chunk: normally 15 bytes
115 
116        Alignnment demands, plus the minimum allocatable size restriction
117        make the normal worst-case wastage 15 bytes (i.e., up to 15
118        more bytes will be allocated than were requested in malloc), with
119        two exceptions:
120 	 1. Because requests for zero bytes allocate non-zero space,
121 	    the worst case wastage for a request of zero bytes is 24 bytes.
122 	 2. For requests >= mmap_threshold that are serviced via
123 	    mmap(), the worst case wastage is 8 bytes plus the remainder
124 	    from a system page (the minimal mmap unit); typically 4096 bytes.
125 
126 * Limitations
127 
128     Here are some features that are NOT currently supported
129 
130     * No user-definable hooks for callbacks and the like.
131     * No automated mechanism for fully checking that all accesses
132       to malloced memory stay within their bounds.
133     * No support for compaction.
134 
135 * Synopsis of compile-time options:
136 
137     People have reported using previous versions of this malloc on all
138     versions of Unix, sometimes by tweaking some of the defines
139     below. It has been tested most extensively on Solaris and
140     Linux. It is also reported to work on WIN32 platforms.
141     People have also reported adapting this malloc for use in
142     stand-alone embedded systems.
143 
144     The implementation is in straight, hand-tuned ANSI C.  Among other
145     consequences, it uses a lot of macros.  Because of this, to be at
146     all usable, this code should be compiled using an optimizing compiler
147     (for example gcc -O2) that can simplify expressions and control
148     paths.
149 
150   __STD_C                  (default: derived from C compiler defines)
151      Nonzero if using ANSI-standard C compiler, a C++ compiler, or
152      a C compiler sufficiently close to ANSI to get away with it.
153   DEBUG                    (default: NOT defined)
154      Define to enable debugging. Adds fairly extensive assertion-based
155      checking to help track down memory errors, but noticeably slows down
156      execution.
157   REALLOC_ZERO_BYTES_FREES (default: NOT defined)
158      Define this if you think that realloc(p, 0) should be equivalent
159      to free(p). Otherwise, since malloc returns a unique pointer for
160      malloc(0), so does realloc(p, 0).
161   HAVE_MEMCPY               (default: defined)
162      Define if you are not otherwise using ANSI STD C, but still
163      have memcpy and memset in your C library and want to use them.
164      Otherwise, simple internal versions are supplied.
165   USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
166      Define as 1 if you want the C library versions of memset and
167      memcpy called in realloc and calloc (otherwise macro versions are used).
168      At least on some platforms, the simple macro versions usually
169      outperform libc versions.
170   HAVE_MMAP                 (default: defined as 1)
171      Define to non-zero to optionally make malloc() use mmap() to
172      allocate very large blocks.
173   HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
174      Define to non-zero to optionally make realloc() use mremap() to
175      reallocate very large blocks.
176   malloc_getpagesize        (default: derived from system #includes)
177      Either a constant or routine call returning the system page size.
178   HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
179      Optionally define if you are on a system with a /usr/include/malloc.h
180      that declares struct mallinfo. It is not at all necessary to
181      define this even if you do, but will ensure consistency.
182   INTERNAL_SIZE_T           (default: size_t)
183      Define to a 32-bit type (probably `unsigned int') if you are on a
184      64-bit machine, yet do not want or need to allow malloc requests of
185      greater than 2^31 to be handled. This saves space, especially for
186      very small chunks.
187   INTERNAL_LINUX_C_LIB      (default: NOT defined)
188      Defined only when compiled as part of Linux libc.
189      Also note that there is some odd internal name-mangling via defines
190      (for example, internally, `malloc' is named `mALLOc') needed
191      when compiling in this case. These look funny but don't otherwise
192      affect anything.
193   WIN32                     (default: undefined)
194      Define this on MS win (95, nt) platforms to compile in sbrk emulation.
195   LACKS_UNISTD_H            (default: undefined if not WIN32)
196      Define this if your system does not have a <unistd.h>.
197   LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
198      Define this if your system does not have a <sys/param.h>.
199   MORECORE                  (default: sbrk)
200      The name of the routine to call to obtain more memory from the system.
201   MORECORE_FAILURE          (default: -1)
202      The value returned upon failure of MORECORE.
203   MORECORE_CLEARS           (default 1)
204      True (1) if the routine mapped to MORECORE zeroes out memory (which
205      holds for sbrk).
206   DEFAULT_TRIM_THRESHOLD
207   DEFAULT_TOP_PAD
208   DEFAULT_MMAP_THRESHOLD
209   DEFAULT_MMAP_MAX
210      Default values of tunable parameters (described in detail below)
211      controlling interaction with host system routines (sbrk, mmap, etc).
212      These values may also be changed dynamically via mallopt(). The
213      preset defaults are those that give best performance for typical
214      programs/systems.
215   USE_DL_PREFIX             (default: undefined)
216      Prefix all public routines with the string 'dl'.  Useful to
217      quickly avoid procedure declaration conflicts and linker symbol
218      conflicts with existing memory allocation routines.
219 
220 
221 */
222 
223 
224 
225 
226 /* Preliminaries */
227 
228 #ifndef __STD_C
229 #ifdef __STDC__
230 #define __STD_C     1
231 #else
232 #if __cplusplus
233 #define __STD_C     1
234 #else
235 #define __STD_C     0
236 #endif /*__cplusplus*/
237 #endif /*__STDC__*/
238 #endif /*__STD_C*/
239 
240 #ifndef Void_t
241 #if (__STD_C || defined(WIN32))
242 #define Void_t      void
243 #else
244 #define Void_t      char
245 #endif
246 #endif /*Void_t*/
247 
248 #if __STD_C
249 #include <stddef.h>   /* for size_t */
250 #else
251 #include <sys/types.h>
252 #endif
253 
254 #ifdef __cplusplus
255 extern "C" {
256 #endif
257 
258 #include <stdio.h>    /* needed for malloc_stats */
259 
260 
261 /*
262   Compile-time options
263 */
264 
265 
266 /*
267     Debugging:
268 
269     Because freed chunks may be overwritten with link fields, this
270     malloc will often die when freed memory is overwritten by user
271     programs.  This can be very effective (albeit in an annoying way)
272     in helping track down dangling pointers.
273 
274     If you compile with -DDEBUG, a number of assertion checks are
275     enabled that will catch more memory errors. You probably won't be
276     able to make much sense of the actual assertion errors, but they
277     should help you locate incorrectly overwritten memory.  The
278     checking is fairly extensive, and will slow down execution
279     noticeably. Calling malloc_stats or mallinfo with DEBUG set will
280     attempt to check every non-mmapped allocated and free chunk in the
281     course of computing the summmaries. (By nature, mmapped regions
282     cannot be checked very much automatically.)
283 
284     Setting DEBUG may also be helpful if you are trying to modify
285     this code. The assertions in the check routines spell out in more
286     detail the assumptions and invariants underlying the algorithms.
287 
288 */
289 
290 #ifdef DEBUG
291 #include <assert.h>
292 #else
293 #define assert(x) ((void)0)
294 #endif
295 
296 
297 /*
298   INTERNAL_SIZE_T is the word-size used for internal bookkeeping
299   of chunk sizes. On a 64-bit machine, you can reduce malloc
300   overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
301   at the expense of not being able to handle requests greater than
302   2^31. This limitation is hardly ever a concern; you are encouraged
303   to set this. However, the default version is the same as size_t.
304 */
305 
306 #ifndef INTERNAL_SIZE_T
307 #define INTERNAL_SIZE_T size_t
308 #endif
309 
310 /*
311   REALLOC_ZERO_BYTES_FREES should be set if a call to
312   realloc with zero bytes should be the same as a call to free.
313   Some people think it should. Otherwise, since this malloc
314   returns a unique pointer for malloc(0), so does realloc(p, 0).
315 */
316 
317 
318 /*   #define REALLOC_ZERO_BYTES_FREES */
319 
320 
321 /*
322   WIN32 causes an emulation of sbrk to be compiled in
323   mmap-based options are not currently supported in WIN32.
324 */
325 
326 /* #define WIN32 */
327 #ifdef WIN32
328 #define MORECORE wsbrk
329 #define HAVE_MMAP 0
330 
331 #define LACKS_UNISTD_H
332 #define LACKS_SYS_PARAM_H
333 
334 /*
335   Include 'windows.h' to get the necessary declarations for the
336   Microsoft Visual C++ data structures and routines used in the 'sbrk'
337   emulation.
338 
339   Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
340   Visual C++ header files are included.
341 */
342 #define WIN32_LEAN_AND_MEAN
343 #include <windows.h>
344 #endif
345 
346 
347 /*
348   HAVE_MEMCPY should be defined if you are not otherwise using
349   ANSI STD C, but still have memcpy and memset in your C library
350   and want to use them in calloc and realloc. Otherwise simple
351   macro versions are defined here.
352 
353   USE_MEMCPY should be defined as 1 if you actually want to
354   have memset and memcpy called. People report that the macro
355   versions are often enough faster than libc versions on many
356   systems that it is better to use them.
357 
358 */
359 
360 #define HAVE_MEMCPY
361 
362 #ifndef USE_MEMCPY
363 #ifdef HAVE_MEMCPY
364 #define USE_MEMCPY 1
365 #else
366 #define USE_MEMCPY 0
367 #endif
368 #endif
369 
370 #if (__STD_C || defined(HAVE_MEMCPY))
371 
372 #if __STD_C
373 void* memset(void*, int, size_t);
374 void* memcpy(void*, const void*, size_t);
375 #else
376 #ifdef WIN32
377 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
378 /* 'windows.h' */
379 #else
380 Void_t* memset();
381 Void_t* memcpy();
382 #endif
383 #endif
384 #endif
385 
386 #if USE_MEMCPY
387 
388 /* The following macros are only invoked with (2n+1)-multiples of
389    INTERNAL_SIZE_T units, with a positive integer n. This is exploited
390    for fast inline execution when n is small. */
391 
392 #define MALLOC_ZERO(charp, nbytes)                                            \
393 do {                                                                          \
394   INTERNAL_SIZE_T mzsz = (nbytes);                                            \
395   if(mzsz <= 9*sizeof(mzsz)) {                                                \
396     INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
397     if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
398 				     *mz++ = 0;                               \
399       if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
400 				     *mz++ = 0;                               \
401 	if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
402 				     *mz++ = 0; }}}                           \
403 				     *mz++ = 0;                               \
404 				     *mz++ = 0;                               \
405 				     *mz   = 0;                               \
406   } else memset((charp), 0, mzsz);                                            \
407 } while(0)
408 
409 #define MALLOC_COPY(dest,src,nbytes)                                          \
410 do {                                                                          \
411   INTERNAL_SIZE_T mcsz = (nbytes);                                            \
412   if(mcsz <= 9*sizeof(mcsz)) {                                                \
413     INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
414     INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
415     if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
416 				     *mcdst++ = *mcsrc++;                     \
417       if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
418 				     *mcdst++ = *mcsrc++;                     \
419 	if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
420 				     *mcdst++ = *mcsrc++; }}}                 \
421 				     *mcdst++ = *mcsrc++;                     \
422 				     *mcdst++ = *mcsrc++;                     \
423 				     *mcdst   = *mcsrc  ;                     \
424   } else memcpy(dest, src, mcsz);                                             \
425 } while(0)
426 
427 #else /* !USE_MEMCPY */
428 
429 /* Use Duff's device for good zeroing/copying performance. */
430 
431 #define MALLOC_ZERO(charp, nbytes)                                            \
432 do {                                                                          \
433   INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
434   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
435   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
436   switch (mctmp) {                                                            \
437     case 0: for(;;) { *mzp++ = 0;                                             \
438     case 7:           *mzp++ = 0;                                             \
439     case 6:           *mzp++ = 0;                                             \
440     case 5:           *mzp++ = 0;                                             \
441     case 4:           *mzp++ = 0;                                             \
442     case 3:           *mzp++ = 0;                                             \
443     case 2:           *mzp++ = 0;                                             \
444     case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
445   }                                                                           \
446 } while(0)
447 
448 #define MALLOC_COPY(dest,src,nbytes)                                          \
449 do {                                                                          \
450   INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
451   INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
452   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
453   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
454   switch (mctmp) {                                                            \
455     case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
456     case 7:           *mcdst++ = *mcsrc++;                                    \
457     case 6:           *mcdst++ = *mcsrc++;                                    \
458     case 5:           *mcdst++ = *mcsrc++;                                    \
459     case 4:           *mcdst++ = *mcsrc++;                                    \
460     case 3:           *mcdst++ = *mcsrc++;                                    \
461     case 2:           *mcdst++ = *mcsrc++;                                    \
462     case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
463   }                                                                           \
464 } while(0)
465 
466 #endif
467 
468 
469 /*
470   Define HAVE_MMAP to optionally make malloc() use mmap() to
471   allocate very large blocks.  These will be returned to the
472   operating system immediately after a free().
473 */
474 
475 #ifndef HAVE_MMAP
476 #define HAVE_MMAP 1
477 #endif
478 
479 /*
480   Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
481   large blocks.  This is currently only possible on Linux with
482   kernel versions newer than 1.3.77.
483 */
484 
485 #ifndef HAVE_MREMAP
486 #ifdef INTERNAL_LINUX_C_LIB
487 #define HAVE_MREMAP 1
488 #else
489 #define HAVE_MREMAP 0
490 #endif
491 #endif
492 
493 #if HAVE_MMAP
494 
495 #include <unistd.h>
496 #include <fcntl.h>
497 #include <sys/mman.h>
498 
499 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
500 #define MAP_ANONYMOUS MAP_ANON
501 #endif
502 
503 #endif /* HAVE_MMAP */
504 
505 /*
506   Access to system page size. To the extent possible, this malloc
507   manages memory from the system in page-size units.
508 
509   The following mechanics for getpagesize were adapted from
510   bsd/gnu getpagesize.h
511 */
512 
513 #ifndef LACKS_UNISTD_H
514 #  include <unistd.h>
515 #endif
516 
517 #ifndef malloc_getpagesize
518 #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
519 #    ifndef _SC_PAGE_SIZE
520 #      define _SC_PAGE_SIZE _SC_PAGESIZE
521 #    endif
522 #  endif
523 #  ifdef _SC_PAGE_SIZE
524 #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
525 #  else
526 #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
527        extern size_t getpagesize();
528 #      define malloc_getpagesize getpagesize()
529 #    else
530 #      ifdef WIN32
531 #        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
532 #      else
533 #        ifndef LACKS_SYS_PARAM_H
534 #          include <sys/param.h>
535 #        endif
536 #        ifdef EXEC_PAGESIZE
537 #          define malloc_getpagesize EXEC_PAGESIZE
538 #        else
539 #          ifdef NBPG
540 #            ifndef CLSIZE
541 #              define malloc_getpagesize NBPG
542 #            else
543 #              define malloc_getpagesize (NBPG * CLSIZE)
544 #            endif
545 #          else
546 #            ifdef NBPC
547 #              define malloc_getpagesize NBPC
548 #            else
549 #              ifdef PAGESIZE
550 #                define malloc_getpagesize PAGESIZE
551 #              else
552 #                define malloc_getpagesize (4096) /* just guess */
553 #              endif
554 #            endif
555 #          endif
556 #        endif
557 #      endif
558 #    endif
559 #  endif
560 #endif
561 
562 
563 /*
564 
565   This version of malloc supports the standard SVID/XPG mallinfo
566   routine that returns a struct containing the same kind of
567   information you can get from malloc_stats. It should work on
568   any SVID/XPG compliant system that has a /usr/include/malloc.h
569   defining struct mallinfo. (If you'd like to install such a thing
570   yourself, cut out the preliminary declarations as described above
571   and below and save them in a malloc.h file. But there's no
572   compelling reason to bother to do this.)
573 
574   The main declaration needed is the mallinfo struct that is returned
575   (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
576   bunch of fields, most of which are not even meaningful in this
577   version of malloc. Some of these fields are are instead filled by
578   mallinfo() with other numbers that might possibly be of interest.
579 
580   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
581   /usr/include/malloc.h file that includes a declaration of struct
582   mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
583   version is declared below.  These must be precisely the same for
584   mallinfo() to work.
585 
586 */
587 
588 /* #define HAVE_USR_INCLUDE_MALLOC_H */
589 
590 #if HAVE_USR_INCLUDE_MALLOC_H
591 #include "/usr/include/malloc.h"
592 #else
593 
594 /* SVID2/XPG mallinfo structure */
595 
596 struct mallinfo {
597   int arena;    /* total space allocated from system */
598   int ordblks;  /* number of non-inuse chunks */
599   int smblks;   /* unused -- always zero */
600   int hblks;    /* number of mmapped regions */
601   int hblkhd;   /* total space in mmapped regions */
602   int usmblks;  /* unused -- always zero */
603   int fsmblks;  /* unused -- always zero */
604   int uordblks; /* total allocated space */
605   int fordblks; /* total non-inuse space */
606   int keepcost; /* top-most, releasable (via malloc_trim) space */
607 };
608 
609 /* SVID2/XPG mallopt options */
610 
611 #define M_MXFAST  1    /* UNUSED in this malloc */
612 #define M_NLBLKS  2    /* UNUSED in this malloc */
613 #define M_GRAIN   3    /* UNUSED in this malloc */
614 #define M_KEEP    4    /* UNUSED in this malloc */
615 
616 #endif
617 
618 /* mallopt options that actually do something */
619 
620 #define M_TRIM_THRESHOLD    -1
621 #define M_TOP_PAD           -2
622 #define M_MMAP_THRESHOLD    -3
623 #define M_MMAP_MAX          -4
624 
625 
626 #ifndef DEFAULT_TRIM_THRESHOLD
627 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
628 #endif
629 
630 /*
631     M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
632       to keep before releasing via malloc_trim in free().
633 
634       Automatic trimming is mainly useful in long-lived programs.
635       Because trimming via sbrk can be slow on some systems, and can
636       sometimes be wasteful (in cases where programs immediately
637       afterward allocate more large chunks) the value should be high
638       enough so that your overall system performance would improve by
639       releasing.
640 
641       The trim threshold and the mmap control parameters (see below)
642       can be traded off with one another. Trimming and mmapping are
643       two different ways of releasing unused memory back to the
644       system. Between these two, it is often possible to keep
645       system-level demands of a long-lived program down to a bare
646       minimum. For example, in one test suite of sessions measuring
647       the XF86 X server on Linux, using a trim threshold of 128K and a
648       mmap threshold of 192K led to near-minimal long term resource
649       consumption.
650 
651       If you are using this malloc in a long-lived program, it should
652       pay to experiment with these values.  As a rough guide, you
653       might set to a value close to the average size of a process
654       (program) running on your system.  Releasing this much memory
655       would allow such a process to run in memory.  Generally, it's
656       worth it to tune for trimming rather tham memory mapping when a
657       program undergoes phases where several large chunks are
658       allocated and released in ways that can reuse each other's
659       storage, perhaps mixed with phases where there are no such
660       chunks at all.  And in well-behaved long-lived programs,
661       controlling release of large blocks via trimming versus mapping
662       is usually faster.
663 
664       However, in most programs, these parameters serve mainly as
665       protection against the system-level effects of carrying around
666       massive amounts of unneeded memory. Since frequent calls to
667       sbrk, mmap, and munmap otherwise degrade performance, the default
668       parameters are set to relatively high values that serve only as
669       safeguards.
670 
671       The default trim value is high enough to cause trimming only in
672       fairly extreme (by current memory consumption standards) cases.
673       It must be greater than page size to have any useful effect.  To
674       disable trimming completely, you can set to (unsigned long)(-1);
675 
676 
677 */
678 
679 
680 #ifndef DEFAULT_TOP_PAD
681 #define DEFAULT_TOP_PAD        (0)
682 #endif
683 
684 /*
685     M_TOP_PAD is the amount of extra `padding' space to allocate or
686       retain whenever sbrk is called. It is used in two ways internally:
687 
688       * When sbrk is called to extend the top of the arena to satisfy
689 	a new malloc request, this much padding is added to the sbrk
690 	request.
691 
692       * When malloc_trim is called automatically from free(),
693 	it is used as the `pad' argument.
694 
695       In both cases, the actual amount of padding is rounded
696       so that the end of the arena is always a system page boundary.
697 
698       The main reason for using padding is to avoid calling sbrk so
699       often. Having even a small pad greatly reduces the likelihood
700       that nearly every malloc request during program start-up (or
701       after trimming) will invoke sbrk, which needlessly wastes
702       time.
703 
704       Automatic rounding-up to page-size units is normally sufficient
705       to avoid measurable overhead, so the default is 0.  However, in
706       systems where sbrk is relatively slow, it can pay to increase
707       this value, at the expense of carrying around more memory than
708       the program needs.
709 
710 */
711 
712 
713 #ifndef DEFAULT_MMAP_THRESHOLD
714 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
715 #endif
716 
717 /*
718 
719     M_MMAP_THRESHOLD is the request size threshold for using mmap()
720       to service a request. Requests of at least this size that cannot
721       be allocated using already-existing space will be serviced via mmap.
722       (If enough normal freed space already exists it is used instead.)
723 
724       Using mmap segregates relatively large chunks of memory so that
725       they can be individually obtained and released from the host
726       system. A request serviced through mmap is never reused by any
727       other request (at least not directly; the system may just so
728       happen to remap successive requests to the same locations).
729 
730       Segregating space in this way has the benefit that mmapped space
731       can ALWAYS be individually released back to the system, which
732       helps keep the system level memory demands of a long-lived
733       program low. Mapped memory can never become `locked' between
734       other chunks, as can happen with normally allocated chunks, which
735       menas that even trimming via malloc_trim would not release them.
736 
737       However, it has the disadvantages that:
738 
739 	 1. The space cannot be reclaimed, consolidated, and then
740 	    used to service later requests, as happens with normal chunks.
741 	 2. It can lead to more wastage because of mmap page alignment
742 	    requirements
743 	 3. It causes malloc performance to be more dependent on host
744 	    system memory management support routines which may vary in
745 	    implementation quality and may impose arbitrary
746 	    limitations. Generally, servicing a request via normal
747 	    malloc steps is faster than going through a system's mmap.
748 
749       All together, these considerations should lead you to use mmap
750       only for relatively large requests.
751 
752 
753 */
754 
755 
756 #ifndef DEFAULT_MMAP_MAX
757 #if HAVE_MMAP
758 #define DEFAULT_MMAP_MAX       (64)
759 #else
760 #define DEFAULT_MMAP_MAX       (0)
761 #endif
762 #endif
763 
764 /*
765     M_MMAP_MAX is the maximum number of requests to simultaneously
766       service using mmap. This parameter exists because:
767 
768 	 1. Some systems have a limited number of internal tables for
769 	    use by mmap.
770 	 2. In most systems, overreliance on mmap can degrade overall
771 	    performance.
772 	 3. If a program allocates many large regions, it is probably
773 	    better off using normal sbrk-based allocation routines that
774 	    can reclaim and reallocate normal heap memory. Using a
775 	    small value allows transition into this mode after the
776 	    first few allocations.
777 
778       Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
779       the default value is 0, and attempts to set it to non-zero values
780       in mallopt will fail.
781 */
782 
783 
784 /*
785     USE_DL_PREFIX will prefix all public routines with the string 'dl'.
786       Useful to quickly avoid procedure declaration conflicts and linker
787       symbol conflicts with existing memory allocation routines.
788 
789 */
790 
791 /* #define USE_DL_PREFIX */
792 
793 
794 /*
795 
796   Special defines for linux libc
797 
798   Except when compiled using these special defines for Linux libc
799   using weak aliases, this malloc is NOT designed to work in
800   multithreaded applications.  No semaphores or other concurrency
801   control are provided to ensure that multiple malloc or free calls
802   don't run at the same time, which could be disasterous. A single
803   semaphore could be used across malloc, realloc, and free (which is
804   essentially the effect of the linux weak alias approach). It would
805   be hard to obtain finer granularity.
806 
807 */
808 
809 
810 #ifdef INTERNAL_LINUX_C_LIB
811 
812 #if __STD_C
813 
814 Void_t * __default_morecore_init (ptrdiff_t);
815 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
816 
817 #else
818 
819 Void_t * __default_morecore_init ();
820 Void_t *(*__morecore)() = __default_morecore_init;
821 
822 #endif
823 
824 #define MORECORE (*__morecore)
825 #define MORECORE_FAILURE 0
826 #define MORECORE_CLEARS 1
827 
828 #else /* INTERNAL_LINUX_C_LIB */
829 
830 #if __STD_C
831 extern Void_t*     sbrk(ptrdiff_t);
832 #else
833 extern Void_t*     sbrk();
834 #endif
835 
836 #ifndef MORECORE
837 #define MORECORE sbrk
838 #endif
839 
840 #ifndef MORECORE_FAILURE
841 #define MORECORE_FAILURE -1
842 #endif
843 
844 #ifndef MORECORE_CLEARS
845 #define MORECORE_CLEARS 1
846 #endif
847 
848 #endif /* INTERNAL_LINUX_C_LIB */
849 
850 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
851 
852 #define cALLOc		__libc_calloc
853 #define fREe		__libc_free
854 #define mALLOc		__libc_malloc
855 #define mEMALIGn	__libc_memalign
856 #define rEALLOc		__libc_realloc
857 #define vALLOc		__libc_valloc
858 #define pvALLOc		__libc_pvalloc
859 #define mALLINFo	__libc_mallinfo
860 #define mALLOPt		__libc_mallopt
861 
862 #pragma weak calloc = __libc_calloc
863 #pragma weak free = __libc_free
864 #pragma weak cfree = __libc_free
865 #pragma weak malloc = __libc_malloc
866 #pragma weak memalign = __libc_memalign
867 #pragma weak realloc = __libc_realloc
868 #pragma weak valloc = __libc_valloc
869 #pragma weak pvalloc = __libc_pvalloc
870 #pragma weak mallinfo = __libc_mallinfo
871 #pragma weak mallopt = __libc_mallopt
872 
873 #else
874 
875 #ifdef USE_DL_PREFIX
876 #define cALLOc		dlcalloc
877 #define fREe		dlfree
878 #define mALLOc		dlmalloc
879 #define mEMALIGn	dlmemalign
880 #define rEALLOc		dlrealloc
881 #define vALLOc		dlvalloc
882 #define pvALLOc		dlpvalloc
883 #define mALLINFo	dlmallinfo
884 #define mALLOPt		dlmallopt
885 #else /* USE_DL_PREFIX */
886 #define cALLOc		calloc
887 #define fREe		free
888 #define mALLOc		malloc
889 #define mEMALIGn	memalign
890 #define rEALLOc		realloc
891 #define vALLOc		valloc
892 #define pvALLOc		pvalloc
893 #define mALLINFo	mallinfo
894 #define mALLOPt		mallopt
895 #endif /* USE_DL_PREFIX */
896 
897 #endif
898 
899 /* Public routines */
900 
901 #if __STD_C
902 
903 Void_t* mALLOc(size_t);
904 void    fREe(Void_t*);
905 Void_t* rEALLOc(Void_t*, size_t);
906 Void_t* mEMALIGn(size_t, size_t);
907 Void_t* vALLOc(size_t);
908 Void_t* pvALLOc(size_t);
909 Void_t* cALLOc(size_t, size_t);
910 void    cfree(Void_t*);
911 int     malloc_trim(size_t);
912 size_t  malloc_usable_size(Void_t*);
913 void    malloc_stats();
914 int     mALLOPt(int, int);
915 struct mallinfo mALLINFo(void);
916 #else
917 Void_t* mALLOc();
918 void    fREe();
919 Void_t* rEALLOc();
920 Void_t* mEMALIGn();
921 Void_t* vALLOc();
922 Void_t* pvALLOc();
923 Void_t* cALLOc();
924 void    cfree();
925 int     malloc_trim();
926 size_t  malloc_usable_size();
927 void    malloc_stats();
928 int     mALLOPt();
929 struct mallinfo mALLINFo();
930 #endif
931 
932 
933 #ifdef __cplusplus
934 };  /* end of extern "C" */
935 #endif
936 
937 /* ---------- To make a malloc.h, end cutting here ------------ */
938 #else				/* Moved to malloc.h */
939 
940 #include <malloc.h>
941 #if 0
942 #if __STD_C
943 static void malloc_update_mallinfo (void);
944 void malloc_stats (void);
945 #else
946 static void malloc_update_mallinfo ();
947 void malloc_stats();
948 #endif
949 #endif	/* 0 */
950 
951 #endif	/* 0 */			/* Moved to malloc.h */
952 
953 DECLARE_GLOBAL_DATA_PTR;
954 
955 /*
956   Emulation of sbrk for WIN32
957   All code within the ifdef WIN32 is untested by me.
958 
959   Thanks to Martin Fong and others for supplying this.
960 */
961 
962 
963 #ifdef WIN32
964 
965 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
966 ~(malloc_getpagesize-1))
967 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
968 
969 /* resrve 64MB to insure large contiguous space */
970 #define RESERVED_SIZE (1024*1024*64)
971 #define NEXT_SIZE (2048*1024)
972 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
973 
974 struct GmListElement;
975 typedef struct GmListElement GmListElement;
976 
977 struct GmListElement
978 {
979 	GmListElement* next;
980 	void* base;
981 };
982 
983 static GmListElement* head = 0;
984 static unsigned int gNextAddress = 0;
985 static unsigned int gAddressBase = 0;
986 static unsigned int gAllocatedSize = 0;
987 
988 static
989 GmListElement* makeGmListElement (void* bas)
990 {
991 	GmListElement* this;
992 	this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
993 	assert (this);
994 	if (this)
995 	{
996 		this->base = bas;
997 		this->next = head;
998 		head = this;
999 	}
1000 	return this;
1001 }
1002 
1003 void gcleanup ()
1004 {
1005 	BOOL rval;
1006 	assert ( (head == NULL) || (head->base == (void*)gAddressBase));
1007 	if (gAddressBase && (gNextAddress - gAddressBase))
1008 	{
1009 		rval = VirtualFree ((void*)gAddressBase,
1010 							gNextAddress - gAddressBase,
1011 							MEM_DECOMMIT);
1012 	assert (rval);
1013 	}
1014 	while (head)
1015 	{
1016 		GmListElement* next = head->next;
1017 		rval = VirtualFree (head->base, 0, MEM_RELEASE);
1018 		assert (rval);
1019 		LocalFree (head);
1020 		head = next;
1021 	}
1022 }
1023 
1024 static
1025 void* findRegion (void* start_address, unsigned long size)
1026 {
1027 	MEMORY_BASIC_INFORMATION info;
1028 	if (size >= TOP_MEMORY) return NULL;
1029 
1030 	while ((unsigned long)start_address + size < TOP_MEMORY)
1031 	{
1032 		VirtualQuery (start_address, &info, sizeof (info));
1033 		if ((info.State == MEM_FREE) && (info.RegionSize >= size))
1034 			return start_address;
1035 		else
1036 		{
1037 			/* Requested region is not available so see if the */
1038 			/* next region is available.  Set 'start_address' */
1039 			/* to the next region and call 'VirtualQuery()' */
1040 			/* again. */
1041 
1042 			start_address = (char*)info.BaseAddress + info.RegionSize;
1043 
1044 			/* Make sure we start looking for the next region */
1045 			/* on the *next* 64K boundary.  Otherwise, even if */
1046 			/* the new region is free according to */
1047 			/* 'VirtualQuery()', the subsequent call to */
1048 			/* 'VirtualAlloc()' (which follows the call to */
1049 			/* this routine in 'wsbrk()') will round *down* */
1050 			/* the requested address to a 64K boundary which */
1051 			/* we already know is an address in the */
1052 			/* unavailable region.  Thus, the subsequent call */
1053 			/* to 'VirtualAlloc()' will fail and bring us back */
1054 			/* here, causing us to go into an infinite loop. */
1055 
1056 			start_address =
1057 				(void *) AlignPage64K((unsigned long) start_address);
1058 		}
1059 	}
1060 	return NULL;
1061 
1062 }
1063 
1064 
1065 void* wsbrk (long size)
1066 {
1067 	void* tmp;
1068 	if (size > 0)
1069 	{
1070 		if (gAddressBase == 0)
1071 		{
1072 			gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
1073 			gNextAddress = gAddressBase =
1074 				(unsigned int)VirtualAlloc (NULL, gAllocatedSize,
1075 											MEM_RESERVE, PAGE_NOACCESS);
1076 		} else if (AlignPage (gNextAddress + size) > (gAddressBase +
1077 gAllocatedSize))
1078 		{
1079 			long new_size = max (NEXT_SIZE, AlignPage (size));
1080 			void* new_address = (void*)(gAddressBase+gAllocatedSize);
1081 			do
1082 			{
1083 				new_address = findRegion (new_address, new_size);
1084 
1085 				if (new_address == 0)
1086 					return (void*)-1;
1087 
1088 				gAddressBase = gNextAddress =
1089 					(unsigned int)VirtualAlloc (new_address, new_size,
1090 												MEM_RESERVE, PAGE_NOACCESS);
1091 				/* repeat in case of race condition */
1092 				/* The region that we found has been snagged */
1093 				/* by another thread */
1094 			}
1095 			while (gAddressBase == 0);
1096 
1097 			assert (new_address == (void*)gAddressBase);
1098 
1099 			gAllocatedSize = new_size;
1100 
1101 			if (!makeGmListElement ((void*)gAddressBase))
1102 				return (void*)-1;
1103 		}
1104 		if ((size + gNextAddress) > AlignPage (gNextAddress))
1105 		{
1106 			void* res;
1107 			res = VirtualAlloc ((void*)AlignPage (gNextAddress),
1108 								(size + gNextAddress -
1109 								 AlignPage (gNextAddress)),
1110 								MEM_COMMIT, PAGE_READWRITE);
1111 			if (res == 0)
1112 				return (void*)-1;
1113 		}
1114 		tmp = (void*)gNextAddress;
1115 		gNextAddress = (unsigned int)tmp + size;
1116 		return tmp;
1117 	}
1118 	else if (size < 0)
1119 	{
1120 		unsigned int alignedGoal = AlignPage (gNextAddress + size);
1121 		/* Trim by releasing the virtual memory */
1122 		if (alignedGoal >= gAddressBase)
1123 		{
1124 			VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
1125 						 MEM_DECOMMIT);
1126 			gNextAddress = gNextAddress + size;
1127 			return (void*)gNextAddress;
1128 		}
1129 		else
1130 		{
1131 			VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
1132 						 MEM_DECOMMIT);
1133 			gNextAddress = gAddressBase;
1134 			return (void*)-1;
1135 		}
1136 	}
1137 	else
1138 	{
1139 		return (void*)gNextAddress;
1140 	}
1141 }
1142 
1143 #endif
1144 
1145 
1146 
1147 /*
1148   Type declarations
1149 */
1150 
1151 
1152 struct malloc_chunk
1153 {
1154   INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1155   INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
1156   struct malloc_chunk* fd;   /* double links -- used only if free. */
1157   struct malloc_chunk* bk;
1158 };
1159 
1160 typedef struct malloc_chunk* mchunkptr;
1161 
1162 /*
1163 
1164    malloc_chunk details:
1165 
1166     (The following includes lightly edited explanations by Colin Plumb.)
1167 
1168     Chunks of memory are maintained using a `boundary tag' method as
1169     described in e.g., Knuth or Standish.  (See the paper by Paul
1170     Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1171     survey of such techniques.)  Sizes of free chunks are stored both
1172     in the front of each chunk and at the end.  This makes
1173     consolidating fragmented chunks into bigger chunks very fast.  The
1174     size fields also hold bits representing whether chunks are free or
1175     in use.
1176 
1177     An allocated chunk looks like this:
1178 
1179 
1180     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1181 	    |             Size of previous chunk, if allocated            | |
1182 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1183 	    |             Size of chunk, in bytes                         |P|
1184       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1185 	    |             User data starts here...                          .
1186 	    .                                                               .
1187 	    .             (malloc_usable_space() bytes)                     .
1188 	    .                                                               |
1189 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1190 	    |             Size of chunk                                     |
1191 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1192 
1193 
1194     Where "chunk" is the front of the chunk for the purpose of most of
1195     the malloc code, but "mem" is the pointer that is returned to the
1196     user.  "Nextchunk" is the beginning of the next contiguous chunk.
1197 
1198     Chunks always begin on even word boundries, so the mem portion
1199     (which is returned to the user) is also on an even word boundary, and
1200     thus double-word aligned.
1201 
1202     Free chunks are stored in circular doubly-linked lists, and look like this:
1203 
1204     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1205 	    |             Size of previous chunk                            |
1206 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1207     `head:' |             Size of chunk, in bytes                         |P|
1208       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1209 	    |             Forward pointer to next chunk in list             |
1210 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1211 	    |             Back pointer to previous chunk in list            |
1212 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1213 	    |             Unused space (may be 0 bytes long)                .
1214 	    .                                                               .
1215 	    .                                                               |
1216 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1217     `foot:' |             Size of chunk, in bytes                           |
1218 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1219 
1220     The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1221     chunk size (which is always a multiple of two words), is an in-use
1222     bit for the *previous* chunk.  If that bit is *clear*, then the
1223     word before the current chunk size contains the previous chunk
1224     size, and can be used to find the front of the previous chunk.
1225     (The very first chunk allocated always has this bit set,
1226     preventing access to non-existent (or non-owned) memory.)
1227 
1228     Note that the `foot' of the current chunk is actually represented
1229     as the prev_size of the NEXT chunk. (This makes it easier to
1230     deal with alignments etc).
1231 
1232     The two exceptions to all this are
1233 
1234      1. The special chunk `top', which doesn't bother using the
1235 	trailing size field since there is no
1236 	next contiguous chunk that would have to index off it. (After
1237 	initialization, `top' is forced to always exist.  If it would
1238 	become less than MINSIZE bytes long, it is replenished via
1239 	malloc_extend_top.)
1240 
1241      2. Chunks allocated via mmap, which have the second-lowest-order
1242 	bit (IS_MMAPPED) set in their size fields.  Because they are
1243 	never merged or traversed from any other chunk, they have no
1244 	foot size or inuse information.
1245 
1246     Available chunks are kept in any of several places (all declared below):
1247 
1248     * `av': An array of chunks serving as bin headers for consolidated
1249        chunks. Each bin is doubly linked.  The bins are approximately
1250        proportionally (log) spaced.  There are a lot of these bins
1251        (128). This may look excessive, but works very well in
1252        practice.  All procedures maintain the invariant that no
1253        consolidated chunk physically borders another one. Chunks in
1254        bins are kept in size order, with ties going to the
1255        approximately least recently used chunk.
1256 
1257        The chunks in each bin are maintained in decreasing sorted order by
1258        size.  This is irrelevant for the small bins, which all contain
1259        the same-sized chunks, but facilitates best-fit allocation for
1260        larger chunks. (These lists are just sequential. Keeping them in
1261        order almost never requires enough traversal to warrant using
1262        fancier ordered data structures.)  Chunks of the same size are
1263        linked with the most recently freed at the front, and allocations
1264        are taken from the back.  This results in LRU or FIFO allocation
1265        order, which tends to give each chunk an equal opportunity to be
1266        consolidated with adjacent freed chunks, resulting in larger free
1267        chunks and less fragmentation.
1268 
1269     * `top': The top-most available chunk (i.e., the one bordering the
1270        end of available memory) is treated specially. It is never
1271        included in any bin, is used only if no other chunk is
1272        available, and is released back to the system if it is very
1273        large (see M_TRIM_THRESHOLD).
1274 
1275     * `last_remainder': A bin holding only the remainder of the
1276        most recently split (non-top) chunk. This bin is checked
1277        before other non-fitting chunks, so as to provide better
1278        locality for runs of sequentially allocated chunks.
1279 
1280     *  Implicitly, through the host system's memory mapping tables.
1281        If supported, requests greater than a threshold are usually
1282        serviced via calls to mmap, and then later released via munmap.
1283 
1284 */
1285 
1286 /*  sizes, alignments */
1287 
1288 #define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
1289 #define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
1290 #define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
1291 #define MINSIZE                (sizeof(struct malloc_chunk))
1292 
1293 /* conversion from malloc headers to user pointers, and back */
1294 
1295 #define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1296 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1297 
1298 /* pad request bytes into a usable size */
1299 
1300 #define request2size(req) \
1301  (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1302   (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1303    (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1304 
1305 /* Check if m has acceptable alignment */
1306 
1307 #define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1308 
1309 
1310 
1311 
1312 /*
1313   Physical chunk operations
1314 */
1315 
1316 
1317 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1318 
1319 #define PREV_INUSE 0x1
1320 
1321 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1322 
1323 #define IS_MMAPPED 0x2
1324 
1325 /* Bits to mask off when extracting size */
1326 
1327 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1328 
1329 
1330 /* Ptr to next physical malloc_chunk. */
1331 
1332 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1333 
1334 /* Ptr to previous physical malloc_chunk */
1335 
1336 #define prev_chunk(p)\
1337    ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1338 
1339 
1340 /* Treat space at ptr + offset as a chunk */
1341 
1342 #define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
1343 
1344 
1345 
1346 
1347 /*
1348   Dealing with use bits
1349 */
1350 
1351 /* extract p's inuse bit */
1352 
1353 #define inuse(p)\
1354 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1355 
1356 /* extract inuse bit of previous chunk */
1357 
1358 #define prev_inuse(p)  ((p)->size & PREV_INUSE)
1359 
1360 /* check for mmap()'ed chunk */
1361 
1362 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1363 
1364 /* set/clear chunk as in use without otherwise disturbing */
1365 
1366 #define set_inuse(p)\
1367 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1368 
1369 #define clear_inuse(p)\
1370 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1371 
1372 /* check/set/clear inuse bits in known places */
1373 
1374 #define inuse_bit_at_offset(p, s)\
1375  (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1376 
1377 #define set_inuse_bit_at_offset(p, s)\
1378  (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1379 
1380 #define clear_inuse_bit_at_offset(p, s)\
1381  (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1382 
1383 
1384 
1385 
1386 /*
1387   Dealing with size fields
1388 */
1389 
1390 /* Get size, ignoring use bits */
1391 
1392 #define chunksize(p)          ((p)->size & ~(SIZE_BITS))
1393 
1394 /* Set size at head, without disturbing its use bit */
1395 
1396 #define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1397 
1398 /* Set size/use ignoring previous bits in header */
1399 
1400 #define set_head(p, s)        ((p)->size = (s))
1401 
1402 /* Set size at footer (only when chunk is not in use) */
1403 
1404 #define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1405 
1406 
1407 
1408 
1409 
1410 /*
1411    Bins
1412 
1413     The bins, `av_' are an array of pairs of pointers serving as the
1414     heads of (initially empty) doubly-linked lists of chunks, laid out
1415     in a way so that each pair can be treated as if it were in a
1416     malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1417     and chunks are the same).
1418 
1419     Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1420     8 bytes apart. Larger bins are approximately logarithmically
1421     spaced. (See the table below.) The `av_' array is never mentioned
1422     directly in the code, but instead via bin access macros.
1423 
1424     Bin layout:
1425 
1426     64 bins of size       8
1427     32 bins of size      64
1428     16 bins of size     512
1429      8 bins of size    4096
1430      4 bins of size   32768
1431      2 bins of size  262144
1432      1 bin  of size what's left
1433 
1434     There is actually a little bit of slop in the numbers in bin_index
1435     for the sake of speed. This makes no difference elsewhere.
1436 
1437     The special chunks `top' and `last_remainder' get their own bins,
1438     (this is implemented via yet more trickery with the av_ array),
1439     although `top' is never properly linked to its bin since it is
1440     always handled specially.
1441 
1442 */
1443 
1444 #define NAV             128   /* number of bins */
1445 
1446 typedef struct malloc_chunk* mbinptr;
1447 
1448 /* access macros */
1449 
1450 #define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
1451 #define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1452 #define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1453 
1454 /*
1455    The first 2 bins are never indexed. The corresponding av_ cells are instead
1456    used for bookkeeping. This is not to save space, but to simplify
1457    indexing, maintain locality, and avoid some initialization tests.
1458 */
1459 
1460 #define top            (av_[2])          /* The topmost chunk */
1461 #define last_remainder (bin_at(1))       /* remainder from last split */
1462 
1463 
1464 /*
1465    Because top initially points to its own bin with initial
1466    zero size, thus forcing extension on the first malloc request,
1467    we avoid having any special code in malloc to check whether
1468    it even exists yet. But we still need to in malloc_extend_top.
1469 */
1470 
1471 #define initial_top    ((mchunkptr)(bin_at(0)))
1472 
1473 /* Helper macro to initialize bins */
1474 
1475 #define IAV(i)  bin_at(i), bin_at(i)
1476 
1477 static mbinptr av_[NAV * 2 + 2] = {
1478  0, 0,
1479  IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
1480  IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
1481  IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
1482  IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
1483  IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
1484  IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
1485  IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
1486  IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
1487  IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
1488  IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
1489  IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
1490  IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
1491  IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
1492  IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1493  IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1494  IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1495 };
1496 
1497 #ifndef CONFIG_RELOC_FIXUP_WORKS
1498 void malloc_bin_reloc (void)
1499 {
1500 	unsigned long *p = (unsigned long *)(&av_[2]);
1501 	int i;
1502 	for (i=2; i<(sizeof(av_)/sizeof(mbinptr)); ++i) {
1503 		*p++ += gd->reloc_off;
1504 	}
1505 }
1506 #endif
1507 
1508 ulong mem_malloc_start = 0;
1509 ulong mem_malloc_end = 0;
1510 ulong mem_malloc_brk = 0;
1511 
1512 void *sbrk(ptrdiff_t increment)
1513 {
1514 	ulong old = mem_malloc_brk;
1515 	ulong new = old + increment;
1516 
1517 	if ((new < mem_malloc_start) || (new > mem_malloc_end))
1518 		return NULL;
1519 
1520 	mem_malloc_brk = new;
1521 
1522 	return (void *)old;
1523 }
1524 
1525 void mem_malloc_init(ulong start, ulong size)
1526 {
1527 	mem_malloc_start = start;
1528 	mem_malloc_end = start + size;
1529 	mem_malloc_brk = start;
1530 
1531 	memset((void *)mem_malloc_start, 0, size);
1532 }
1533 
1534 /* field-extraction macros */
1535 
1536 #define first(b) ((b)->fd)
1537 #define last(b)  ((b)->bk)
1538 
1539 /*
1540   Indexing into bins
1541 */
1542 
1543 #define bin_index(sz)                                                          \
1544 (((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
1545  ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
1546  ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
1547  ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
1548  ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
1549  ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
1550 					  126)
1551 /*
1552   bins for chunks < 512 are all spaced 8 bytes apart, and hold
1553   identically sized chunks. This is exploited in malloc.
1554 */
1555 
1556 #define MAX_SMALLBIN         63
1557 #define MAX_SMALLBIN_SIZE   512
1558 #define SMALLBIN_WIDTH        8
1559 
1560 #define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
1561 
1562 /*
1563    Requests are `small' if both the corresponding and the next bin are small
1564 */
1565 
1566 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1567 
1568 
1569 
1570 /*
1571     To help compensate for the large number of bins, a one-level index
1572     structure is used for bin-by-bin searching.  `binblocks' is a
1573     one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1574     have any (possibly) non-empty bins, so they can be skipped over
1575     all at once during during traversals. The bits are NOT always
1576     cleared as soon as all bins in a block are empty, but instead only
1577     when all are noticed to be empty during traversal in malloc.
1578 */
1579 
1580 #define BINBLOCKWIDTH     4   /* bins per block */
1581 
1582 #define binblocks_r     ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
1583 #define binblocks_w     (av_[1])
1584 
1585 /* bin<->block macros */
1586 
1587 #define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
1588 #define mark_binblock(ii)   (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
1589 #define clear_binblock(ii)  (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
1590 
1591 
1592 
1593 
1594 
1595 /*  Other static bookkeeping data */
1596 
1597 /* variables holding tunable values */
1598 
1599 static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
1600 static unsigned long top_pad          = DEFAULT_TOP_PAD;
1601 static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
1602 static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
1603 
1604 /* The first value returned from sbrk */
1605 static char* sbrk_base = (char*)(-1);
1606 
1607 /* The maximum memory obtained from system via sbrk */
1608 static unsigned long max_sbrked_mem = 0;
1609 
1610 /* The maximum via either sbrk or mmap */
1611 static unsigned long max_total_mem = 0;
1612 
1613 /* internal working copy of mallinfo */
1614 static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
1615 
1616 /* The total memory obtained from system via sbrk */
1617 #define sbrked_mem  (current_mallinfo.arena)
1618 
1619 /* Tracking mmaps */
1620 
1621 #if 0
1622 static unsigned int n_mmaps = 0;
1623 #endif	/* 0 */
1624 static unsigned long mmapped_mem = 0;
1625 #if HAVE_MMAP
1626 static unsigned int max_n_mmaps = 0;
1627 static unsigned long max_mmapped_mem = 0;
1628 #endif
1629 
1630 
1631 
1632 /*
1633   Debugging support
1634 */
1635 
1636 #ifdef DEBUG
1637 
1638 
1639 /*
1640   These routines make a number of assertions about the states
1641   of data structures that should be true at all times. If any
1642   are not true, it's very likely that a user program has somehow
1643   trashed memory. (It's also possible that there is a coding error
1644   in malloc. In which case, please report it!)
1645 */
1646 
1647 #if __STD_C
1648 static void do_check_chunk(mchunkptr p)
1649 #else
1650 static void do_check_chunk(p) mchunkptr p;
1651 #endif
1652 {
1653 #if 0	/* causes warnings because assert() is off */
1654   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1655 #endif	/* 0 */
1656 
1657   /* No checkable chunk is mmapped */
1658   assert(!chunk_is_mmapped(p));
1659 
1660   /* Check for legal address ... */
1661   assert((char*)p >= sbrk_base);
1662   if (p != top)
1663     assert((char*)p + sz <= (char*)top);
1664   else
1665     assert((char*)p + sz <= sbrk_base + sbrked_mem);
1666 
1667 }
1668 
1669 
1670 #if __STD_C
1671 static void do_check_free_chunk(mchunkptr p)
1672 #else
1673 static void do_check_free_chunk(p) mchunkptr p;
1674 #endif
1675 {
1676   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1677 #if 0	/* causes warnings because assert() is off */
1678   mchunkptr next = chunk_at_offset(p, sz);
1679 #endif	/* 0 */
1680 
1681   do_check_chunk(p);
1682 
1683   /* Check whether it claims to be free ... */
1684   assert(!inuse(p));
1685 
1686   /* Unless a special marker, must have OK fields */
1687   if ((long)sz >= (long)MINSIZE)
1688   {
1689     assert((sz & MALLOC_ALIGN_MASK) == 0);
1690     assert(aligned_OK(chunk2mem(p)));
1691     /* ... matching footer field */
1692     assert(next->prev_size == sz);
1693     /* ... and is fully consolidated */
1694     assert(prev_inuse(p));
1695     assert (next == top || inuse(next));
1696 
1697     /* ... and has minimally sane links */
1698     assert(p->fd->bk == p);
1699     assert(p->bk->fd == p);
1700   }
1701   else /* markers are always of size SIZE_SZ */
1702     assert(sz == SIZE_SZ);
1703 }
1704 
1705 #if __STD_C
1706 static void do_check_inuse_chunk(mchunkptr p)
1707 #else
1708 static void do_check_inuse_chunk(p) mchunkptr p;
1709 #endif
1710 {
1711   mchunkptr next = next_chunk(p);
1712   do_check_chunk(p);
1713 
1714   /* Check whether it claims to be in use ... */
1715   assert(inuse(p));
1716 
1717   /* ... and is surrounded by OK chunks.
1718     Since more things can be checked with free chunks than inuse ones,
1719     if an inuse chunk borders them and debug is on, it's worth doing them.
1720   */
1721   if (!prev_inuse(p))
1722   {
1723     mchunkptr prv = prev_chunk(p);
1724     assert(next_chunk(prv) == p);
1725     do_check_free_chunk(prv);
1726   }
1727   if (next == top)
1728   {
1729     assert(prev_inuse(next));
1730     assert(chunksize(next) >= MINSIZE);
1731   }
1732   else if (!inuse(next))
1733     do_check_free_chunk(next);
1734 
1735 }
1736 
1737 #if __STD_C
1738 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
1739 #else
1740 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
1741 #endif
1742 {
1743 #if 0	/* causes warnings because assert() is off */
1744   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1745   long room = sz - s;
1746 #endif	/* 0 */
1747 
1748   do_check_inuse_chunk(p);
1749 
1750   /* Legal size ... */
1751   assert((long)sz >= (long)MINSIZE);
1752   assert((sz & MALLOC_ALIGN_MASK) == 0);
1753   assert(room >= 0);
1754   assert(room < (long)MINSIZE);
1755 
1756   /* ... and alignment */
1757   assert(aligned_OK(chunk2mem(p)));
1758 
1759 
1760   /* ... and was allocated at front of an available chunk */
1761   assert(prev_inuse(p));
1762 
1763 }
1764 
1765 
1766 #define check_free_chunk(P)  do_check_free_chunk(P)
1767 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
1768 #define check_chunk(P) do_check_chunk(P)
1769 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
1770 #else
1771 #define check_free_chunk(P)
1772 #define check_inuse_chunk(P)
1773 #define check_chunk(P)
1774 #define check_malloced_chunk(P,N)
1775 #endif
1776 
1777 
1778 
1779 /*
1780   Macro-based internal utilities
1781 */
1782 
1783 
1784 /*
1785   Linking chunks in bin lists.
1786   Call these only with variables, not arbitrary expressions, as arguments.
1787 */
1788 
1789 /*
1790   Place chunk p of size s in its bin, in size order,
1791   putting it ahead of others of same size.
1792 */
1793 
1794 
1795 #define frontlink(P, S, IDX, BK, FD)                                          \
1796 {                                                                             \
1797   if (S < MAX_SMALLBIN_SIZE)                                                  \
1798   {                                                                           \
1799     IDX = smallbin_index(S);                                                  \
1800     mark_binblock(IDX);                                                       \
1801     BK = bin_at(IDX);                                                         \
1802     FD = BK->fd;                                                              \
1803     P->bk = BK;                                                               \
1804     P->fd = FD;                                                               \
1805     FD->bk = BK->fd = P;                                                      \
1806   }                                                                           \
1807   else                                                                        \
1808   {                                                                           \
1809     IDX = bin_index(S);                                                       \
1810     BK = bin_at(IDX);                                                         \
1811     FD = BK->fd;                                                              \
1812     if (FD == BK) mark_binblock(IDX);                                         \
1813     else                                                                      \
1814     {                                                                         \
1815       while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
1816       BK = FD->bk;                                                            \
1817     }                                                                         \
1818     P->bk = BK;                                                               \
1819     P->fd = FD;                                                               \
1820     FD->bk = BK->fd = P;                                                      \
1821   }                                                                           \
1822 }
1823 
1824 
1825 /* take a chunk off a list */
1826 
1827 #define unlink(P, BK, FD)                                                     \
1828 {                                                                             \
1829   BK = P->bk;                                                                 \
1830   FD = P->fd;                                                                 \
1831   FD->bk = BK;                                                                \
1832   BK->fd = FD;                                                                \
1833 }                                                                             \
1834 
1835 /* Place p as the last remainder */
1836 
1837 #define link_last_remainder(P)                                                \
1838 {                                                                             \
1839   last_remainder->fd = last_remainder->bk =  P;                               \
1840   P->fd = P->bk = last_remainder;                                             \
1841 }
1842 
1843 /* Clear the last_remainder bin */
1844 
1845 #define clear_last_remainder \
1846   (last_remainder->fd = last_remainder->bk = last_remainder)
1847 
1848 
1849 
1850 
1851 
1852 /* Routines dealing with mmap(). */
1853 
1854 #if HAVE_MMAP
1855 
1856 #if __STD_C
1857 static mchunkptr mmap_chunk(size_t size)
1858 #else
1859 static mchunkptr mmap_chunk(size) size_t size;
1860 #endif
1861 {
1862   size_t page_mask = malloc_getpagesize - 1;
1863   mchunkptr p;
1864 
1865 #ifndef MAP_ANONYMOUS
1866   static int fd = -1;
1867 #endif
1868 
1869   if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1870 
1871   /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1872    * there is no following chunk whose prev_size field could be used.
1873    */
1874   size = (size + SIZE_SZ + page_mask) & ~page_mask;
1875 
1876 #ifdef MAP_ANONYMOUS
1877   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1878 		      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1879 #else /* !MAP_ANONYMOUS */
1880   if (fd < 0)
1881   {
1882     fd = open("/dev/zero", O_RDWR);
1883     if(fd < 0) return 0;
1884   }
1885   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1886 #endif
1887 
1888   if(p == (mchunkptr)-1) return 0;
1889 
1890   n_mmaps++;
1891   if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1892 
1893   /* We demand that eight bytes into a page must be 8-byte aligned. */
1894   assert(aligned_OK(chunk2mem(p)));
1895 
1896   /* The offset to the start of the mmapped region is stored
1897    * in the prev_size field of the chunk; normally it is zero,
1898    * but that can be changed in memalign().
1899    */
1900   p->prev_size = 0;
1901   set_head(p, size|IS_MMAPPED);
1902 
1903   mmapped_mem += size;
1904   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1905     max_mmapped_mem = mmapped_mem;
1906   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1907     max_total_mem = mmapped_mem + sbrked_mem;
1908   return p;
1909 }
1910 
1911 #if __STD_C
1912 static void munmap_chunk(mchunkptr p)
1913 #else
1914 static void munmap_chunk(p) mchunkptr p;
1915 #endif
1916 {
1917   INTERNAL_SIZE_T size = chunksize(p);
1918   int ret;
1919 
1920   assert (chunk_is_mmapped(p));
1921   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1922   assert((n_mmaps > 0));
1923   assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1924 
1925   n_mmaps--;
1926   mmapped_mem -= (size + p->prev_size);
1927 
1928   ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1929 
1930   /* munmap returns non-zero on failure */
1931   assert(ret == 0);
1932 }
1933 
1934 #if HAVE_MREMAP
1935 
1936 #if __STD_C
1937 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1938 #else
1939 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1940 #endif
1941 {
1942   size_t page_mask = malloc_getpagesize - 1;
1943   INTERNAL_SIZE_T offset = p->prev_size;
1944   INTERNAL_SIZE_T size = chunksize(p);
1945   char *cp;
1946 
1947   assert (chunk_is_mmapped(p));
1948   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1949   assert((n_mmaps > 0));
1950   assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1951 
1952   /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1953   new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1954 
1955   cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1956 
1957   if (cp == (char *)-1) return 0;
1958 
1959   p = (mchunkptr)(cp + offset);
1960 
1961   assert(aligned_OK(chunk2mem(p)));
1962 
1963   assert((p->prev_size == offset));
1964   set_head(p, (new_size - offset)|IS_MMAPPED);
1965 
1966   mmapped_mem -= size + offset;
1967   mmapped_mem += new_size;
1968   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1969     max_mmapped_mem = mmapped_mem;
1970   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1971     max_total_mem = mmapped_mem + sbrked_mem;
1972   return p;
1973 }
1974 
1975 #endif /* HAVE_MREMAP */
1976 
1977 #endif /* HAVE_MMAP */
1978 
1979 
1980 
1981 
1982 /*
1983   Extend the top-most chunk by obtaining memory from system.
1984   Main interface to sbrk (but see also malloc_trim).
1985 */
1986 
1987 #if __STD_C
1988 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1989 #else
1990 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1991 #endif
1992 {
1993   char*     brk;                  /* return value from sbrk */
1994   INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1995   INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
1996   char*     new_brk;              /* return of 2nd sbrk call */
1997   INTERNAL_SIZE_T top_size;       /* new size of top chunk */
1998 
1999   mchunkptr old_top     = top;  /* Record state of old top */
2000   INTERNAL_SIZE_T old_top_size = chunksize(old_top);
2001   char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
2002 
2003   /* Pad request with top_pad plus minimal overhead */
2004 
2005   INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
2006   unsigned long pagesz    = malloc_getpagesize;
2007 
2008   /* If not the first time through, round to preserve page boundary */
2009   /* Otherwise, we need to correct to a page size below anyway. */
2010   /* (We also correct below if an intervening foreign sbrk call.) */
2011 
2012   if (sbrk_base != (char*)(-1))
2013     sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
2014 
2015   brk = (char*)(MORECORE (sbrk_size));
2016 
2017   /* Fail if sbrk failed or if a foreign sbrk call killed our space */
2018   if (brk == (char*)(MORECORE_FAILURE) ||
2019       (brk < old_end && old_top != initial_top))
2020     return;
2021 
2022   sbrked_mem += sbrk_size;
2023 
2024   if (brk == old_end) /* can just add bytes to current top */
2025   {
2026     top_size = sbrk_size + old_top_size;
2027     set_head(top, top_size | PREV_INUSE);
2028   }
2029   else
2030   {
2031     if (sbrk_base == (char*)(-1))  /* First time through. Record base */
2032       sbrk_base = brk;
2033     else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
2034       sbrked_mem += brk - (char*)old_end;
2035 
2036     /* Guarantee alignment of first new chunk made from this space */
2037     front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2038     if (front_misalign > 0)
2039     {
2040       correction = (MALLOC_ALIGNMENT) - front_misalign;
2041       brk += correction;
2042     }
2043     else
2044       correction = 0;
2045 
2046     /* Guarantee the next brk will be at a page boundary */
2047 
2048     correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
2049 		   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
2050 
2051     /* Allocate correction */
2052     new_brk = (char*)(MORECORE (correction));
2053     if (new_brk == (char*)(MORECORE_FAILURE)) return;
2054 
2055     sbrked_mem += correction;
2056 
2057     top = (mchunkptr)brk;
2058     top_size = new_brk - brk + correction;
2059     set_head(top, top_size | PREV_INUSE);
2060 
2061     if (old_top != initial_top)
2062     {
2063 
2064       /* There must have been an intervening foreign sbrk call. */
2065       /* A double fencepost is necessary to prevent consolidation */
2066 
2067       /* If not enough space to do this, then user did something very wrong */
2068       if (old_top_size < MINSIZE)
2069       {
2070 	set_head(top, PREV_INUSE); /* will force null return from malloc */
2071 	return;
2072       }
2073 
2074       /* Also keep size a multiple of MALLOC_ALIGNMENT */
2075       old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2076       set_head_size(old_top, old_top_size);
2077       chunk_at_offset(old_top, old_top_size          )->size =
2078 	SIZE_SZ|PREV_INUSE;
2079       chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
2080 	SIZE_SZ|PREV_INUSE;
2081       /* If possible, release the rest. */
2082       if (old_top_size >= MINSIZE)
2083 	fREe(chunk2mem(old_top));
2084     }
2085   }
2086 
2087   if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2088     max_sbrked_mem = sbrked_mem;
2089   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2090     max_total_mem = mmapped_mem + sbrked_mem;
2091 
2092   /* We always land on a page boundary */
2093   assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
2094 }
2095 
2096 
2097 
2098 
2099 /* Main public routines */
2100 
2101 
2102 /*
2103   Malloc Algorthim:
2104 
2105     The requested size is first converted into a usable form, `nb'.
2106     This currently means to add 4 bytes overhead plus possibly more to
2107     obtain 8-byte alignment and/or to obtain a size of at least
2108     MINSIZE (currently 16 bytes), the smallest allocatable size.
2109     (All fits are considered `exact' if they are within MINSIZE bytes.)
2110 
2111     From there, the first successful of the following steps is taken:
2112 
2113       1. The bin corresponding to the request size is scanned, and if
2114 	 a chunk of exactly the right size is found, it is taken.
2115 
2116       2. The most recently remaindered chunk is used if it is big
2117 	 enough.  This is a form of (roving) first fit, used only in
2118 	 the absence of exact fits. Runs of consecutive requests use
2119 	 the remainder of the chunk used for the previous such request
2120 	 whenever possible. This limited use of a first-fit style
2121 	 allocation strategy tends to give contiguous chunks
2122 	 coextensive lifetimes, which improves locality and can reduce
2123 	 fragmentation in the long run.
2124 
2125       3. Other bins are scanned in increasing size order, using a
2126 	 chunk big enough to fulfill the request, and splitting off
2127 	 any remainder.  This search is strictly by best-fit; i.e.,
2128 	 the smallest (with ties going to approximately the least
2129 	 recently used) chunk that fits is selected.
2130 
2131       4. If large enough, the chunk bordering the end of memory
2132 	 (`top') is split off. (This use of `top' is in accord with
2133 	 the best-fit search rule.  In effect, `top' is treated as
2134 	 larger (and thus less well fitting) than any other available
2135 	 chunk since it can be extended to be as large as necessary
2136 	 (up to system limitations).
2137 
2138       5. If the request size meets the mmap threshold and the
2139 	 system supports mmap, and there are few enough currently
2140 	 allocated mmapped regions, and a call to mmap succeeds,
2141 	 the request is allocated via direct memory mapping.
2142 
2143       6. Otherwise, the top of memory is extended by
2144 	 obtaining more space from the system (normally using sbrk,
2145 	 but definable to anything else via the MORECORE macro).
2146 	 Memory is gathered from the system (in system page-sized
2147 	 units) in a way that allows chunks obtained across different
2148 	 sbrk calls to be consolidated, but does not require
2149 	 contiguous memory. Thus, it should be safe to intersperse
2150 	 mallocs with other sbrk calls.
2151 
2152 
2153       All allocations are made from the the `lowest' part of any found
2154       chunk. (The implementation invariant is that prev_inuse is
2155       always true of any allocated chunk; i.e., that each allocated
2156       chunk borders either a previously allocated and still in-use chunk,
2157       or the base of its memory arena.)
2158 
2159 */
2160 
2161 #if __STD_C
2162 Void_t* mALLOc(size_t bytes)
2163 #else
2164 Void_t* mALLOc(bytes) size_t bytes;
2165 #endif
2166 {
2167   mchunkptr victim;                  /* inspected/selected chunk */
2168   INTERNAL_SIZE_T victim_size;       /* its size */
2169   int       idx;                     /* index for bin traversal */
2170   mbinptr   bin;                     /* associated bin */
2171   mchunkptr remainder;               /* remainder from a split */
2172   long      remainder_size;          /* its size */
2173   int       remainder_index;         /* its bin index */
2174   unsigned long block;               /* block traverser bit */
2175   int       startidx;                /* first bin of a traversed block */
2176   mchunkptr fwd;                     /* misc temp for linking */
2177   mchunkptr bck;                     /* misc temp for linking */
2178   mbinptr q;                         /* misc temp */
2179 
2180   INTERNAL_SIZE_T nb;
2181 
2182   if ((long)bytes < 0) return 0;
2183 
2184   nb = request2size(bytes);  /* padded request size; */
2185 
2186   /* Check for exact match in a bin */
2187 
2188   if (is_small_request(nb))  /* Faster version for small requests */
2189   {
2190     idx = smallbin_index(nb);
2191 
2192     /* No traversal or size check necessary for small bins.  */
2193 
2194     q = bin_at(idx);
2195     victim = last(q);
2196 
2197     /* Also scan the next one, since it would have a remainder < MINSIZE */
2198     if (victim == q)
2199     {
2200       q = next_bin(q);
2201       victim = last(q);
2202     }
2203     if (victim != q)
2204     {
2205       victim_size = chunksize(victim);
2206       unlink(victim, bck, fwd);
2207       set_inuse_bit_at_offset(victim, victim_size);
2208       check_malloced_chunk(victim, nb);
2209       return chunk2mem(victim);
2210     }
2211 
2212     idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2213 
2214   }
2215   else
2216   {
2217     idx = bin_index(nb);
2218     bin = bin_at(idx);
2219 
2220     for (victim = last(bin); victim != bin; victim = victim->bk)
2221     {
2222       victim_size = chunksize(victim);
2223       remainder_size = victim_size - nb;
2224 
2225       if (remainder_size >= (long)MINSIZE) /* too big */
2226       {
2227 	--idx; /* adjust to rescan below after checking last remainder */
2228 	break;
2229       }
2230 
2231       else if (remainder_size >= 0) /* exact fit */
2232       {
2233 	unlink(victim, bck, fwd);
2234 	set_inuse_bit_at_offset(victim, victim_size);
2235 	check_malloced_chunk(victim, nb);
2236 	return chunk2mem(victim);
2237       }
2238     }
2239 
2240     ++idx;
2241 
2242   }
2243 
2244   /* Try to use the last split-off remainder */
2245 
2246   if ( (victim = last_remainder->fd) != last_remainder)
2247   {
2248     victim_size = chunksize(victim);
2249     remainder_size = victim_size - nb;
2250 
2251     if (remainder_size >= (long)MINSIZE) /* re-split */
2252     {
2253       remainder = chunk_at_offset(victim, nb);
2254       set_head(victim, nb | PREV_INUSE);
2255       link_last_remainder(remainder);
2256       set_head(remainder, remainder_size | PREV_INUSE);
2257       set_foot(remainder, remainder_size);
2258       check_malloced_chunk(victim, nb);
2259       return chunk2mem(victim);
2260     }
2261 
2262     clear_last_remainder;
2263 
2264     if (remainder_size >= 0)  /* exhaust */
2265     {
2266       set_inuse_bit_at_offset(victim, victim_size);
2267       check_malloced_chunk(victim, nb);
2268       return chunk2mem(victim);
2269     }
2270 
2271     /* Else place in bin */
2272 
2273     frontlink(victim, victim_size, remainder_index, bck, fwd);
2274   }
2275 
2276   /*
2277      If there are any possibly nonempty big-enough blocks,
2278      search for best fitting chunk by scanning bins in blockwidth units.
2279   */
2280 
2281   if ( (block = idx2binblock(idx)) <= binblocks_r)
2282   {
2283 
2284     /* Get to the first marked block */
2285 
2286     if ( (block & binblocks_r) == 0)
2287     {
2288       /* force to an even block boundary */
2289       idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2290       block <<= 1;
2291       while ((block & binblocks_r) == 0)
2292       {
2293 	idx += BINBLOCKWIDTH;
2294 	block <<= 1;
2295       }
2296     }
2297 
2298     /* For each possibly nonempty block ... */
2299     for (;;)
2300     {
2301       startidx = idx;          /* (track incomplete blocks) */
2302       q = bin = bin_at(idx);
2303 
2304       /* For each bin in this block ... */
2305       do
2306       {
2307 	/* Find and use first big enough chunk ... */
2308 
2309 	for (victim = last(bin); victim != bin; victim = victim->bk)
2310 	{
2311 	  victim_size = chunksize(victim);
2312 	  remainder_size = victim_size - nb;
2313 
2314 	  if (remainder_size >= (long)MINSIZE) /* split */
2315 	  {
2316 	    remainder = chunk_at_offset(victim, nb);
2317 	    set_head(victim, nb | PREV_INUSE);
2318 	    unlink(victim, bck, fwd);
2319 	    link_last_remainder(remainder);
2320 	    set_head(remainder, remainder_size | PREV_INUSE);
2321 	    set_foot(remainder, remainder_size);
2322 	    check_malloced_chunk(victim, nb);
2323 	    return chunk2mem(victim);
2324 	  }
2325 
2326 	  else if (remainder_size >= 0)  /* take */
2327 	  {
2328 	    set_inuse_bit_at_offset(victim, victim_size);
2329 	    unlink(victim, bck, fwd);
2330 	    check_malloced_chunk(victim, nb);
2331 	    return chunk2mem(victim);
2332 	  }
2333 
2334 	}
2335 
2336        bin = next_bin(bin);
2337 
2338       } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2339 
2340       /* Clear out the block bit. */
2341 
2342       do   /* Possibly backtrack to try to clear a partial block */
2343       {
2344 	if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2345 	{
2346 	  av_[1] = (mbinptr)(binblocks_r & ~block);
2347 	  break;
2348 	}
2349 	--startidx;
2350        q = prev_bin(q);
2351       } while (first(q) == q);
2352 
2353       /* Get to the next possibly nonempty block */
2354 
2355       if ( (block <<= 1) <= binblocks_r && (block != 0) )
2356       {
2357 	while ((block & binblocks_r) == 0)
2358 	{
2359 	  idx += BINBLOCKWIDTH;
2360 	  block <<= 1;
2361 	}
2362       }
2363       else
2364 	break;
2365     }
2366   }
2367 
2368 
2369   /* Try to use top chunk */
2370 
2371   /* Require that there be a remainder, ensuring top always exists  */
2372   if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2373   {
2374 
2375 #if HAVE_MMAP
2376     /* If big and would otherwise need to extend, try to use mmap instead */
2377     if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2378 	(victim = mmap_chunk(nb)) != 0)
2379       return chunk2mem(victim);
2380 #endif
2381 
2382     /* Try to extend */
2383     malloc_extend_top(nb);
2384     if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2385       return 0; /* propagate failure */
2386   }
2387 
2388   victim = top;
2389   set_head(victim, nb | PREV_INUSE);
2390   top = chunk_at_offset(victim, nb);
2391   set_head(top, remainder_size | PREV_INUSE);
2392   check_malloced_chunk(victim, nb);
2393   return chunk2mem(victim);
2394 
2395 }
2396 
2397 
2398 
2399 
2400 /*
2401 
2402   free() algorithm :
2403 
2404     cases:
2405 
2406        1. free(0) has no effect.
2407 
2408        2. If the chunk was allocated via mmap, it is release via munmap().
2409 
2410        3. If a returned chunk borders the current high end of memory,
2411 	  it is consolidated into the top, and if the total unused
2412 	  topmost memory exceeds the trim threshold, malloc_trim is
2413 	  called.
2414 
2415        4. Other chunks are consolidated as they arrive, and
2416 	  placed in corresponding bins. (This includes the case of
2417 	  consolidating with the current `last_remainder').
2418 
2419 */
2420 
2421 
2422 #if __STD_C
2423 void fREe(Void_t* mem)
2424 #else
2425 void fREe(mem) Void_t* mem;
2426 #endif
2427 {
2428   mchunkptr p;         /* chunk corresponding to mem */
2429   INTERNAL_SIZE_T hd;  /* its head field */
2430   INTERNAL_SIZE_T sz;  /* its size */
2431   int       idx;       /* its bin index */
2432   mchunkptr next;      /* next contiguous chunk */
2433   INTERNAL_SIZE_T nextsz; /* its size */
2434   INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2435   mchunkptr bck;       /* misc temp for linking */
2436   mchunkptr fwd;       /* misc temp for linking */
2437   int       islr;      /* track whether merging with last_remainder */
2438 
2439   if (mem == 0)                              /* free(0) has no effect */
2440     return;
2441 
2442   p = mem2chunk(mem);
2443   hd = p->size;
2444 
2445 #if HAVE_MMAP
2446   if (hd & IS_MMAPPED)                       /* release mmapped memory. */
2447   {
2448     munmap_chunk(p);
2449     return;
2450   }
2451 #endif
2452 
2453   check_inuse_chunk(p);
2454 
2455   sz = hd & ~PREV_INUSE;
2456   next = chunk_at_offset(p, sz);
2457   nextsz = chunksize(next);
2458 
2459   if (next == top)                            /* merge with top */
2460   {
2461     sz += nextsz;
2462 
2463     if (!(hd & PREV_INUSE))                    /* consolidate backward */
2464     {
2465       prevsz = p->prev_size;
2466       p = chunk_at_offset(p, -((long) prevsz));
2467       sz += prevsz;
2468       unlink(p, bck, fwd);
2469     }
2470 
2471     set_head(p, sz | PREV_INUSE);
2472     top = p;
2473     if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2474       malloc_trim(top_pad);
2475     return;
2476   }
2477 
2478   set_head(next, nextsz);                    /* clear inuse bit */
2479 
2480   islr = 0;
2481 
2482   if (!(hd & PREV_INUSE))                    /* consolidate backward */
2483   {
2484     prevsz = p->prev_size;
2485     p = chunk_at_offset(p, -((long) prevsz));
2486     sz += prevsz;
2487 
2488     if (p->fd == last_remainder)             /* keep as last_remainder */
2489       islr = 1;
2490     else
2491       unlink(p, bck, fwd);
2492   }
2493 
2494   if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
2495   {
2496     sz += nextsz;
2497 
2498     if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
2499     {
2500       islr = 1;
2501       link_last_remainder(p);
2502     }
2503     else
2504       unlink(next, bck, fwd);
2505   }
2506 
2507 
2508   set_head(p, sz | PREV_INUSE);
2509   set_foot(p, sz);
2510   if (!islr)
2511     frontlink(p, sz, idx, bck, fwd);
2512 }
2513 
2514 
2515 
2516 
2517 
2518 /*
2519 
2520   Realloc algorithm:
2521 
2522     Chunks that were obtained via mmap cannot be extended or shrunk
2523     unless HAVE_MREMAP is defined, in which case mremap is used.
2524     Otherwise, if their reallocation is for additional space, they are
2525     copied.  If for less, they are just left alone.
2526 
2527     Otherwise, if the reallocation is for additional space, and the
2528     chunk can be extended, it is, else a malloc-copy-free sequence is
2529     taken.  There are several different ways that a chunk could be
2530     extended. All are tried:
2531 
2532        * Extending forward into following adjacent free chunk.
2533        * Shifting backwards, joining preceding adjacent space
2534        * Both shifting backwards and extending forward.
2535        * Extending into newly sbrked space
2536 
2537     Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2538     size argument of zero (re)allocates a minimum-sized chunk.
2539 
2540     If the reallocation is for less space, and the new request is for
2541     a `small' (<512 bytes) size, then the newly unused space is lopped
2542     off and freed.
2543 
2544     The old unix realloc convention of allowing the last-free'd chunk
2545     to be used as an argument to realloc is no longer supported.
2546     I don't know of any programs still relying on this feature,
2547     and allowing it would also allow too many other incorrect
2548     usages of realloc to be sensible.
2549 
2550 
2551 */
2552 
2553 
2554 #if __STD_C
2555 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
2556 #else
2557 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
2558 #endif
2559 {
2560   INTERNAL_SIZE_T    nb;      /* padded request size */
2561 
2562   mchunkptr oldp;             /* chunk corresponding to oldmem */
2563   INTERNAL_SIZE_T    oldsize; /* its size */
2564 
2565   mchunkptr newp;             /* chunk to return */
2566   INTERNAL_SIZE_T    newsize; /* its size */
2567   Void_t*   newmem;           /* corresponding user mem */
2568 
2569   mchunkptr next;             /* next contiguous chunk after oldp */
2570   INTERNAL_SIZE_T  nextsize;  /* its size */
2571 
2572   mchunkptr prev;             /* previous contiguous chunk before oldp */
2573   INTERNAL_SIZE_T  prevsize;  /* its size */
2574 
2575   mchunkptr remainder;        /* holds split off extra space from newp */
2576   INTERNAL_SIZE_T  remainder_size;   /* its size */
2577 
2578   mchunkptr bck;              /* misc temp for linking */
2579   mchunkptr fwd;              /* misc temp for linking */
2580 
2581 #ifdef REALLOC_ZERO_BYTES_FREES
2582   if (bytes == 0) { fREe(oldmem); return 0; }
2583 #endif
2584 
2585   if ((long)bytes < 0) return 0;
2586 
2587   /* realloc of null is supposed to be same as malloc */
2588   if (oldmem == 0) return mALLOc(bytes);
2589 
2590   newp    = oldp    = mem2chunk(oldmem);
2591   newsize = oldsize = chunksize(oldp);
2592 
2593 
2594   nb = request2size(bytes);
2595 
2596 #if HAVE_MMAP
2597   if (chunk_is_mmapped(oldp))
2598   {
2599 #if HAVE_MREMAP
2600     newp = mremap_chunk(oldp, nb);
2601     if(newp) return chunk2mem(newp);
2602 #endif
2603     /* Note the extra SIZE_SZ overhead. */
2604     if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2605     /* Must alloc, copy, free. */
2606     newmem = mALLOc(bytes);
2607     if (newmem == 0) return 0; /* propagate failure */
2608     MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2609     munmap_chunk(oldp);
2610     return newmem;
2611   }
2612 #endif
2613 
2614   check_inuse_chunk(oldp);
2615 
2616   if ((long)(oldsize) < (long)(nb))
2617   {
2618 
2619     /* Try expanding forward */
2620 
2621     next = chunk_at_offset(oldp, oldsize);
2622     if (next == top || !inuse(next))
2623     {
2624       nextsize = chunksize(next);
2625 
2626       /* Forward into top only if a remainder */
2627       if (next == top)
2628       {
2629 	if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
2630 	{
2631 	  newsize += nextsize;
2632 	  top = chunk_at_offset(oldp, nb);
2633 	  set_head(top, (newsize - nb) | PREV_INUSE);
2634 	  set_head_size(oldp, nb);
2635 	  return chunk2mem(oldp);
2636 	}
2637       }
2638 
2639       /* Forward into next chunk */
2640       else if (((long)(nextsize + newsize) >= (long)(nb)))
2641       {
2642 	unlink(next, bck, fwd);
2643 	newsize  += nextsize;
2644 	goto split;
2645       }
2646     }
2647     else
2648     {
2649       next = 0;
2650       nextsize = 0;
2651     }
2652 
2653     /* Try shifting backwards. */
2654 
2655     if (!prev_inuse(oldp))
2656     {
2657       prev = prev_chunk(oldp);
2658       prevsize = chunksize(prev);
2659 
2660       /* try forward + backward first to save a later consolidation */
2661 
2662       if (next != 0)
2663       {
2664 	/* into top */
2665 	if (next == top)
2666 	{
2667 	  if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
2668 	  {
2669 	    unlink(prev, bck, fwd);
2670 	    newp = prev;
2671 	    newsize += prevsize + nextsize;
2672 	    newmem = chunk2mem(newp);
2673 	    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2674 	    top = chunk_at_offset(newp, nb);
2675 	    set_head(top, (newsize - nb) | PREV_INUSE);
2676 	    set_head_size(newp, nb);
2677 	    return newmem;
2678 	  }
2679 	}
2680 
2681 	/* into next chunk */
2682 	else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
2683 	{
2684 	  unlink(next, bck, fwd);
2685 	  unlink(prev, bck, fwd);
2686 	  newp = prev;
2687 	  newsize += nextsize + prevsize;
2688 	  newmem = chunk2mem(newp);
2689 	  MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2690 	  goto split;
2691 	}
2692       }
2693 
2694       /* backward only */
2695       if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
2696       {
2697 	unlink(prev, bck, fwd);
2698 	newp = prev;
2699 	newsize += prevsize;
2700 	newmem = chunk2mem(newp);
2701 	MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2702 	goto split;
2703       }
2704     }
2705 
2706     /* Must allocate */
2707 
2708     newmem = mALLOc (bytes);
2709 
2710     if (newmem == 0)  /* propagate failure */
2711       return 0;
2712 
2713     /* Avoid copy if newp is next chunk after oldp. */
2714     /* (This can only happen when new chunk is sbrk'ed.) */
2715 
2716     if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
2717     {
2718       newsize += chunksize(newp);
2719       newp = oldp;
2720       goto split;
2721     }
2722 
2723     /* Otherwise copy, free, and exit */
2724     MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2725     fREe(oldmem);
2726     return newmem;
2727   }
2728 
2729 
2730  split:  /* split off extra room in old or expanded chunk */
2731 
2732   if (newsize - nb >= MINSIZE) /* split off remainder */
2733   {
2734     remainder = chunk_at_offset(newp, nb);
2735     remainder_size = newsize - nb;
2736     set_head_size(newp, nb);
2737     set_head(remainder, remainder_size | PREV_INUSE);
2738     set_inuse_bit_at_offset(remainder, remainder_size);
2739     fREe(chunk2mem(remainder)); /* let free() deal with it */
2740   }
2741   else
2742   {
2743     set_head_size(newp, newsize);
2744     set_inuse_bit_at_offset(newp, newsize);
2745   }
2746 
2747   check_inuse_chunk(newp);
2748   return chunk2mem(newp);
2749 }
2750 
2751 
2752 
2753 
2754 /*
2755 
2756   memalign algorithm:
2757 
2758     memalign requests more than enough space from malloc, finds a spot
2759     within that chunk that meets the alignment request, and then
2760     possibly frees the leading and trailing space.
2761 
2762     The alignment argument must be a power of two. This property is not
2763     checked by memalign, so misuse may result in random runtime errors.
2764 
2765     8-byte alignment is guaranteed by normal malloc calls, so don't
2766     bother calling memalign with an argument of 8 or less.
2767 
2768     Overreliance on memalign is a sure way to fragment space.
2769 
2770 */
2771 
2772 
2773 #if __STD_C
2774 Void_t* mEMALIGn(size_t alignment, size_t bytes)
2775 #else
2776 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
2777 #endif
2778 {
2779   INTERNAL_SIZE_T    nb;      /* padded  request size */
2780   char*     m;                /* memory returned by malloc call */
2781   mchunkptr p;                /* corresponding chunk */
2782   char*     brk;              /* alignment point within p */
2783   mchunkptr newp;             /* chunk to return */
2784   INTERNAL_SIZE_T  newsize;   /* its size */
2785   INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
2786   mchunkptr remainder;        /* spare room at end to split off */
2787   long      remainder_size;   /* its size */
2788 
2789   if ((long)bytes < 0) return 0;
2790 
2791   /* If need less alignment than we give anyway, just relay to malloc */
2792 
2793   if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
2794 
2795   /* Otherwise, ensure that it is at least a minimum chunk size */
2796 
2797   if (alignment <  MINSIZE) alignment = MINSIZE;
2798 
2799   /* Call malloc with worst case padding to hit alignment. */
2800 
2801   nb = request2size(bytes);
2802   m  = (char*)(mALLOc(nb + alignment + MINSIZE));
2803 
2804   if (m == 0) return 0; /* propagate failure */
2805 
2806   p = mem2chunk(m);
2807 
2808   if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2809   {
2810 #if HAVE_MMAP
2811     if(chunk_is_mmapped(p))
2812       return chunk2mem(p); /* nothing more to do */
2813 #endif
2814   }
2815   else /* misaligned */
2816   {
2817     /*
2818       Find an aligned spot inside chunk.
2819       Since we need to give back leading space in a chunk of at
2820       least MINSIZE, if the first calculation places us at
2821       a spot with less than MINSIZE leader, we can move to the
2822       next aligned spot -- we've allocated enough total room so that
2823       this is always possible.
2824     */
2825 
2826     brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2827     if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2828 
2829     newp = (mchunkptr)brk;
2830     leadsize = brk - (char*)(p);
2831     newsize = chunksize(p) - leadsize;
2832 
2833 #if HAVE_MMAP
2834     if(chunk_is_mmapped(p))
2835     {
2836       newp->prev_size = p->prev_size + leadsize;
2837       set_head(newp, newsize|IS_MMAPPED);
2838       return chunk2mem(newp);
2839     }
2840 #endif
2841 
2842     /* give back leader, use the rest */
2843 
2844     set_head(newp, newsize | PREV_INUSE);
2845     set_inuse_bit_at_offset(newp, newsize);
2846     set_head_size(p, leadsize);
2847     fREe(chunk2mem(p));
2848     p = newp;
2849 
2850     assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2851   }
2852 
2853   /* Also give back spare room at the end */
2854 
2855   remainder_size = chunksize(p) - nb;
2856 
2857   if (remainder_size >= (long)MINSIZE)
2858   {
2859     remainder = chunk_at_offset(p, nb);
2860     set_head(remainder, remainder_size | PREV_INUSE);
2861     set_head_size(p, nb);
2862     fREe(chunk2mem(remainder));
2863   }
2864 
2865   check_inuse_chunk(p);
2866   return chunk2mem(p);
2867 
2868 }
2869 
2870 
2871 
2872 
2873 /*
2874     valloc just invokes memalign with alignment argument equal
2875     to the page size of the system (or as near to this as can
2876     be figured out from all the includes/defines above.)
2877 */
2878 
2879 #if __STD_C
2880 Void_t* vALLOc(size_t bytes)
2881 #else
2882 Void_t* vALLOc(bytes) size_t bytes;
2883 #endif
2884 {
2885   return mEMALIGn (malloc_getpagesize, bytes);
2886 }
2887 
2888 /*
2889   pvalloc just invokes valloc for the nearest pagesize
2890   that will accommodate request
2891 */
2892 
2893 
2894 #if __STD_C
2895 Void_t* pvALLOc(size_t bytes)
2896 #else
2897 Void_t* pvALLOc(bytes) size_t bytes;
2898 #endif
2899 {
2900   size_t pagesize = malloc_getpagesize;
2901   return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2902 }
2903 
2904 /*
2905 
2906   calloc calls malloc, then zeroes out the allocated chunk.
2907 
2908 */
2909 
2910 #if __STD_C
2911 Void_t* cALLOc(size_t n, size_t elem_size)
2912 #else
2913 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2914 #endif
2915 {
2916   mchunkptr p;
2917   INTERNAL_SIZE_T csz;
2918 
2919   INTERNAL_SIZE_T sz = n * elem_size;
2920 
2921 
2922   /* check if expand_top called, in which case don't need to clear */
2923 #if MORECORE_CLEARS
2924   mchunkptr oldtop = top;
2925   INTERNAL_SIZE_T oldtopsize = chunksize(top);
2926 #endif
2927   Void_t* mem = mALLOc (sz);
2928 
2929   if ((long)n < 0) return 0;
2930 
2931   if (mem == 0)
2932     return 0;
2933   else
2934   {
2935     p = mem2chunk(mem);
2936 
2937     /* Two optional cases in which clearing not necessary */
2938 
2939 
2940 #if HAVE_MMAP
2941     if (chunk_is_mmapped(p)) return mem;
2942 #endif
2943 
2944     csz = chunksize(p);
2945 
2946 #if MORECORE_CLEARS
2947     if (p == oldtop && csz > oldtopsize)
2948     {
2949       /* clear only the bytes from non-freshly-sbrked memory */
2950       csz = oldtopsize;
2951     }
2952 #endif
2953 
2954     MALLOC_ZERO(mem, csz - SIZE_SZ);
2955     return mem;
2956   }
2957 }
2958 
2959 /*
2960 
2961   cfree just calls free. It is needed/defined on some systems
2962   that pair it with calloc, presumably for odd historical reasons.
2963 
2964 */
2965 
2966 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2967 #if __STD_C
2968 void cfree(Void_t *mem)
2969 #else
2970 void cfree(mem) Void_t *mem;
2971 #endif
2972 {
2973   fREe(mem);
2974 }
2975 #endif
2976 
2977 
2978 
2979 /*
2980 
2981     Malloc_trim gives memory back to the system (via negative
2982     arguments to sbrk) if there is unused memory at the `high' end of
2983     the malloc pool. You can call this after freeing large blocks of
2984     memory to potentially reduce the system-level memory requirements
2985     of a program. However, it cannot guarantee to reduce memory. Under
2986     some allocation patterns, some large free blocks of memory will be
2987     locked between two used chunks, so they cannot be given back to
2988     the system.
2989 
2990     The `pad' argument to malloc_trim represents the amount of free
2991     trailing space to leave untrimmed. If this argument is zero,
2992     only the minimum amount of memory to maintain internal data
2993     structures will be left (one page or less). Non-zero arguments
2994     can be supplied to maintain enough trailing space to service
2995     future expected allocations without having to re-obtain memory
2996     from the system.
2997 
2998     Malloc_trim returns 1 if it actually released any memory, else 0.
2999 
3000 */
3001 
3002 #if __STD_C
3003 int malloc_trim(size_t pad)
3004 #else
3005 int malloc_trim(pad) size_t pad;
3006 #endif
3007 {
3008   long  top_size;        /* Amount of top-most memory */
3009   long  extra;           /* Amount to release */
3010   char* current_brk;     /* address returned by pre-check sbrk call */
3011   char* new_brk;         /* address returned by negative sbrk call */
3012 
3013   unsigned long pagesz = malloc_getpagesize;
3014 
3015   top_size = chunksize(top);
3016   extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3017 
3018   if (extra < (long)pagesz)  /* Not enough memory to release */
3019     return 0;
3020 
3021   else
3022   {
3023     /* Test to make sure no one else called sbrk */
3024     current_brk = (char*)(MORECORE (0));
3025     if (current_brk != (char*)(top) + top_size)
3026       return 0;     /* Apparently we don't own memory; must fail */
3027 
3028     else
3029     {
3030       new_brk = (char*)(MORECORE (-extra));
3031 
3032       if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
3033       {
3034 	/* Try to figure out what we have */
3035 	current_brk = (char*)(MORECORE (0));
3036 	top_size = current_brk - (char*)top;
3037 	if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3038 	{
3039 	  sbrked_mem = current_brk - sbrk_base;
3040 	  set_head(top, top_size | PREV_INUSE);
3041 	}
3042 	check_chunk(top);
3043 	return 0;
3044       }
3045 
3046       else
3047       {
3048 	/* Success. Adjust top accordingly. */
3049 	set_head(top, (top_size - extra) | PREV_INUSE);
3050 	sbrked_mem -= extra;
3051 	check_chunk(top);
3052 	return 1;
3053       }
3054     }
3055   }
3056 }
3057 
3058 
3059 
3060 /*
3061   malloc_usable_size:
3062 
3063     This routine tells you how many bytes you can actually use in an
3064     allocated chunk, which may be more than you requested (although
3065     often not). You can use this many bytes without worrying about
3066     overwriting other allocated objects. Not a particularly great
3067     programming practice, but still sometimes useful.
3068 
3069 */
3070 
3071 #if __STD_C
3072 size_t malloc_usable_size(Void_t* mem)
3073 #else
3074 size_t malloc_usable_size(mem) Void_t* mem;
3075 #endif
3076 {
3077   mchunkptr p;
3078   if (mem == 0)
3079     return 0;
3080   else
3081   {
3082     p = mem2chunk(mem);
3083     if(!chunk_is_mmapped(p))
3084     {
3085       if (!inuse(p)) return 0;
3086       check_inuse_chunk(p);
3087       return chunksize(p) - SIZE_SZ;
3088     }
3089     return chunksize(p) - 2*SIZE_SZ;
3090   }
3091 }
3092 
3093 
3094 
3095 
3096 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
3097 
3098 #if 0
3099 static void malloc_update_mallinfo()
3100 {
3101   int i;
3102   mbinptr b;
3103   mchunkptr p;
3104 #ifdef DEBUG
3105   mchunkptr q;
3106 #endif
3107 
3108   INTERNAL_SIZE_T avail = chunksize(top);
3109   int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3110 
3111   for (i = 1; i < NAV; ++i)
3112   {
3113     b = bin_at(i);
3114     for (p = last(b); p != b; p = p->bk)
3115     {
3116 #ifdef DEBUG
3117       check_free_chunk(p);
3118       for (q = next_chunk(p);
3119 	   q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
3120 	   q = next_chunk(q))
3121 	check_inuse_chunk(q);
3122 #endif
3123       avail += chunksize(p);
3124       navail++;
3125     }
3126   }
3127 
3128   current_mallinfo.ordblks = navail;
3129   current_mallinfo.uordblks = sbrked_mem - avail;
3130   current_mallinfo.fordblks = avail;
3131   current_mallinfo.hblks = n_mmaps;
3132   current_mallinfo.hblkhd = mmapped_mem;
3133   current_mallinfo.keepcost = chunksize(top);
3134 
3135 }
3136 #endif	/* 0 */
3137 
3138 
3139 
3140 /*
3141 
3142   malloc_stats:
3143 
3144     Prints on the amount of space obtain from the system (both
3145     via sbrk and mmap), the maximum amount (which may be more than
3146     current if malloc_trim and/or munmap got called), the maximum
3147     number of simultaneous mmap regions used, and the current number
3148     of bytes allocated via malloc (or realloc, etc) but not yet
3149     freed. (Note that this is the number of bytes allocated, not the
3150     number requested. It will be larger than the number requested
3151     because of alignment and bookkeeping overhead.)
3152 
3153 */
3154 
3155 #if 0
3156 void malloc_stats()
3157 {
3158   malloc_update_mallinfo();
3159   printf("max system bytes = %10u\n",
3160 	  (unsigned int)(max_total_mem));
3161   printf("system bytes     = %10u\n",
3162 	  (unsigned int)(sbrked_mem + mmapped_mem));
3163   printf("in use bytes     = %10u\n",
3164 	  (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
3165 #if HAVE_MMAP
3166   printf("max mmap regions = %10u\n",
3167 	  (unsigned int)max_n_mmaps);
3168 #endif
3169 }
3170 #endif	/* 0 */
3171 
3172 /*
3173   mallinfo returns a copy of updated current mallinfo.
3174 */
3175 
3176 #if 0
3177 struct mallinfo mALLINFo()
3178 {
3179   malloc_update_mallinfo();
3180   return current_mallinfo;
3181 }
3182 #endif	/* 0 */
3183 
3184 
3185 
3186 
3187 /*
3188   mallopt:
3189 
3190     mallopt is the general SVID/XPG interface to tunable parameters.
3191     The format is to provide a (parameter-number, parameter-value) pair.
3192     mallopt then sets the corresponding parameter to the argument
3193     value if it can (i.e., so long as the value is meaningful),
3194     and returns 1 if successful else 0.
3195 
3196     See descriptions of tunable parameters above.
3197 
3198 */
3199 
3200 #if __STD_C
3201 int mALLOPt(int param_number, int value)
3202 #else
3203 int mALLOPt(param_number, value) int param_number; int value;
3204 #endif
3205 {
3206   switch(param_number)
3207   {
3208     case M_TRIM_THRESHOLD:
3209       trim_threshold = value; return 1;
3210     case M_TOP_PAD:
3211       top_pad = value; return 1;
3212     case M_MMAP_THRESHOLD:
3213       mmap_threshold = value; return 1;
3214     case M_MMAP_MAX:
3215 #if HAVE_MMAP
3216       n_mmaps_max = value; return 1;
3217 #else
3218       if (value != 0) return 0; else  n_mmaps_max = value; return 1;
3219 #endif
3220 
3221     default:
3222       return 0;
3223   }
3224 }
3225 
3226 /*
3227 
3228 History:
3229 
3230     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
3231       * return null for negative arguments
3232       * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
3233 	 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
3234 	  (e.g. WIN32 platforms)
3235 	 * Cleanup up header file inclusion for WIN32 platforms
3236 	 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
3237 	 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
3238 	   memory allocation routines
3239 	 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
3240 	 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
3241 	   usage of 'assert' in non-WIN32 code
3242 	 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
3243 	   avoid infinite loop
3244       * Always call 'fREe()' rather than 'free()'
3245 
3246     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
3247       * Fixed ordering problem with boundary-stamping
3248 
3249     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
3250       * Added pvalloc, as recommended by H.J. Liu
3251       * Added 64bit pointer support mainly from Wolfram Gloger
3252       * Added anonymously donated WIN32 sbrk emulation
3253       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
3254       * malloc_extend_top: fix mask error that caused wastage after
3255 	foreign sbrks
3256       * Add linux mremap support code from HJ Liu
3257 
3258     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
3259       * Integrated most documentation with the code.
3260       * Add support for mmap, with help from
3261 	Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3262       * Use last_remainder in more cases.
3263       * Pack bins using idea from  colin@nyx10.cs.du.edu
3264       * Use ordered bins instead of best-fit threshhold
3265       * Eliminate block-local decls to simplify tracing and debugging.
3266       * Support another case of realloc via move into top
3267       * Fix error occuring when initial sbrk_base not word-aligned.
3268       * Rely on page size for units instead of SBRK_UNIT to
3269 	avoid surprises about sbrk alignment conventions.
3270       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
3271 	(raymond@es.ele.tue.nl) for the suggestion.
3272       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
3273       * More precautions for cases where other routines call sbrk,
3274 	courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3275       * Added macros etc., allowing use in linux libc from
3276 	H.J. Lu (hjl@gnu.ai.mit.edu)
3277       * Inverted this history list
3278 
3279     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
3280       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
3281       * Removed all preallocation code since under current scheme
3282 	the work required to undo bad preallocations exceeds
3283 	the work saved in good cases for most test programs.
3284       * No longer use return list or unconsolidated bins since
3285 	no scheme using them consistently outperforms those that don't
3286 	given above changes.
3287       * Use best fit for very large chunks to prevent some worst-cases.
3288       * Added some support for debugging
3289 
3290     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
3291       * Removed footers when chunks are in use. Thanks to
3292 	Paul Wilson (wilson@cs.texas.edu) for the suggestion.
3293 
3294     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
3295       * Added malloc_trim, with help from Wolfram Gloger
3296 	(wmglo@Dent.MED.Uni-Muenchen.DE).
3297 
3298     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
3299 
3300     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
3301       * realloc: try to expand in both directions
3302       * malloc: swap order of clean-bin strategy;
3303       * realloc: only conditionally expand backwards
3304       * Try not to scavenge used bins
3305       * Use bin counts as a guide to preallocation
3306       * Occasionally bin return list chunks in first scan
3307       * Add a few optimizations from colin@nyx10.cs.du.edu
3308 
3309     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
3310       * faster bin computation & slightly different binning
3311       * merged all consolidations to one part of malloc proper
3312 	 (eliminating old malloc_find_space & malloc_clean_bin)
3313       * Scan 2 returns chunks (not just 1)
3314       * Propagate failure in realloc if malloc returns 0
3315       * Add stuff to allow compilation on non-ANSI compilers
3316 	  from kpv@research.att.com
3317 
3318     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
3319       * removed potential for odd address access in prev_chunk
3320       * removed dependency on getpagesize.h
3321       * misc cosmetics and a bit more internal documentation
3322       * anticosmetics: mangled names in macros to evade debugger strangeness
3323       * tested on sparc, hp-700, dec-mips, rs6000
3324 	  with gcc & native cc (hp, dec only) allowing
3325 	  Detlefs & Zorn comparison study (in SIGPLAN Notices.)
3326 
3327     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
3328       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
3329 	 structure of old version,  but most details differ.)
3330 
3331 */
3332