xref: /openbmc/u-boot/common/dlmalloc.c (revision 15855700)
1 #include <common.h>
2 
3 #if 0	/* Moved to malloc.h */
4 /* ---------- To make a malloc.h, start cutting here ------------ */
5 
6 /*
7   A version of malloc/free/realloc written by Doug Lea and released to the
8   public domain.  Send questions/comments/complaints/performance data
9   to dl@cs.oswego.edu
10 
11 * VERSION 2.6.6  Sun Mar  5 19:10:03 2000  Doug Lea  (dl at gee)
12 
13    Note: There may be an updated version of this malloc obtainable at
14 	   ftp://g.oswego.edu/pub/misc/malloc.c
15 	 Check before installing!
16 
17 * Why use this malloc?
18 
19   This is not the fastest, most space-conserving, most portable, or
20   most tunable malloc ever written. However it is among the fastest
21   while also being among the most space-conserving, portable and tunable.
22   Consistent balance across these factors results in a good general-purpose
23   allocator. For a high-level description, see
24      http://g.oswego.edu/dl/html/malloc.html
25 
26 * Synopsis of public routines
27 
28   (Much fuller descriptions are contained in the program documentation below.)
29 
30   malloc(size_t n);
31      Return a pointer to a newly allocated chunk of at least n bytes, or null
32      if no space is available.
33   free(Void_t* p);
34      Release the chunk of memory pointed to by p, or no effect if p is null.
35   realloc(Void_t* p, size_t n);
36      Return a pointer to a chunk of size n that contains the same data
37      as does chunk p up to the minimum of (n, p's size) bytes, or null
38      if no space is available. The returned pointer may or may not be
39      the same as p. If p is null, equivalent to malloc.  Unless the
40      #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a
41      size argument of zero (re)allocates a minimum-sized chunk.
42   memalign(size_t alignment, size_t n);
43      Return a pointer to a newly allocated chunk of n bytes, aligned
44      in accord with the alignment argument, which must be a power of
45      two.
46   valloc(size_t n);
47      Equivalent to memalign(pagesize, n), where pagesize is the page
48      size of the system (or as near to this as can be figured out from
49      all the includes/defines below.)
50   pvalloc(size_t n);
51      Equivalent to valloc(minimum-page-that-holds(n)), that is,
52      round up n to nearest pagesize.
53   calloc(size_t unit, size_t quantity);
54      Returns a pointer to quantity * unit bytes, with all locations
55      set to zero.
56   cfree(Void_t* p);
57      Equivalent to free(p).
58   malloc_trim(size_t pad);
59      Release all but pad bytes of freed top-most memory back
60      to the system. Return 1 if successful, else 0.
61   malloc_usable_size(Void_t* p);
62      Report the number usable allocated bytes associated with allocated
63      chunk p. This may or may not report more bytes than were requested,
64      due to alignment and minimum size constraints.
65   malloc_stats();
66      Prints brief summary statistics.
67   mallinfo()
68      Returns (by copy) a struct containing various summary statistics.
69   mallopt(int parameter_number, int parameter_value)
70      Changes one of the tunable parameters described below. Returns
71      1 if successful in changing the parameter, else 0.
72 
73 * Vital statistics:
74 
75   Alignment:                            8-byte
76        8 byte alignment is currently hardwired into the design.  This
77        seems to suffice for all current machines and C compilers.
78 
79   Assumed pointer representation:       4 or 8 bytes
80        Code for 8-byte pointers is untested by me but has worked
81        reliably by Wolfram Gloger, who contributed most of the
82        changes supporting this.
83 
84   Assumed size_t  representation:       4 or 8 bytes
85        Note that size_t is allowed to be 4 bytes even if pointers are 8.
86 
87   Minimum overhead per allocated chunk: 4 or 8 bytes
88        Each malloced chunk has a hidden overhead of 4 bytes holding size
89        and status information.
90 
91   Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
92 			  8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
93 
94        When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
95        ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
96        needed; 4 (8) for a trailing size field
97        and 8 (16) bytes for free list pointers. Thus, the minimum
98        allocatable size is 16/24/32 bytes.
99 
100        Even a request for zero bytes (i.e., malloc(0)) returns a
101        pointer to something of the minimum allocatable size.
102 
103   Maximum allocated size: 4-byte size_t: 2^31 -  8 bytes
104 			  8-byte size_t: 2^63 - 16 bytes
105 
106        It is assumed that (possibly signed) size_t bit values suffice to
107        represent chunk sizes. `Possibly signed' is due to the fact
108        that `size_t' may be defined on a system as either a signed or
109        an unsigned type. To be conservative, values that would appear
110        as negative numbers are avoided.
111        Requests for sizes with a negative sign bit when the request
112        size is treaded as a long will return null.
113 
114   Maximum overhead wastage per allocated chunk: normally 15 bytes
115 
116        Alignnment demands, plus the minimum allocatable size restriction
117        make the normal worst-case wastage 15 bytes (i.e., up to 15
118        more bytes will be allocated than were requested in malloc), with
119        two exceptions:
120 	 1. Because requests for zero bytes allocate non-zero space,
121 	    the worst case wastage for a request of zero bytes is 24 bytes.
122 	 2. For requests >= mmap_threshold that are serviced via
123 	    mmap(), the worst case wastage is 8 bytes plus the remainder
124 	    from a system page (the minimal mmap unit); typically 4096 bytes.
125 
126 * Limitations
127 
128     Here are some features that are NOT currently supported
129 
130     * No user-definable hooks for callbacks and the like.
131     * No automated mechanism for fully checking that all accesses
132       to malloced memory stay within their bounds.
133     * No support for compaction.
134 
135 * Synopsis of compile-time options:
136 
137     People have reported using previous versions of this malloc on all
138     versions of Unix, sometimes by tweaking some of the defines
139     below. It has been tested most extensively on Solaris and
140     Linux. It is also reported to work on WIN32 platforms.
141     People have also reported adapting this malloc for use in
142     stand-alone embedded systems.
143 
144     The implementation is in straight, hand-tuned ANSI C.  Among other
145     consequences, it uses a lot of macros.  Because of this, to be at
146     all usable, this code should be compiled using an optimizing compiler
147     (for example gcc -O2) that can simplify expressions and control
148     paths.
149 
150   __STD_C                  (default: derived from C compiler defines)
151      Nonzero if using ANSI-standard C compiler, a C++ compiler, or
152      a C compiler sufficiently close to ANSI to get away with it.
153   DEBUG                    (default: NOT defined)
154      Define to enable debugging. Adds fairly extensive assertion-based
155      checking to help track down memory errors, but noticeably slows down
156      execution.
157   REALLOC_ZERO_BYTES_FREES (default: NOT defined)
158      Define this if you think that realloc(p, 0) should be equivalent
159      to free(p). Otherwise, since malloc returns a unique pointer for
160      malloc(0), so does realloc(p, 0).
161   HAVE_MEMCPY               (default: defined)
162      Define if you are not otherwise using ANSI STD C, but still
163      have memcpy and memset in your C library and want to use them.
164      Otherwise, simple internal versions are supplied.
165   USE_MEMCPY               (default: 1 if HAVE_MEMCPY is defined, 0 otherwise)
166      Define as 1 if you want the C library versions of memset and
167      memcpy called in realloc and calloc (otherwise macro versions are used).
168      At least on some platforms, the simple macro versions usually
169      outperform libc versions.
170   HAVE_MMAP                 (default: defined as 1)
171      Define to non-zero to optionally make malloc() use mmap() to
172      allocate very large blocks.
173   HAVE_MREMAP                 (default: defined as 0 unless Linux libc set)
174      Define to non-zero to optionally make realloc() use mremap() to
175      reallocate very large blocks.
176   malloc_getpagesize        (default: derived from system #includes)
177      Either a constant or routine call returning the system page size.
178   HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined)
179      Optionally define if you are on a system with a /usr/include/malloc.h
180      that declares struct mallinfo. It is not at all necessary to
181      define this even if you do, but will ensure consistency.
182   INTERNAL_SIZE_T           (default: size_t)
183      Define to a 32-bit type (probably `unsigned int') if you are on a
184      64-bit machine, yet do not want or need to allow malloc requests of
185      greater than 2^31 to be handled. This saves space, especially for
186      very small chunks.
187   INTERNAL_LINUX_C_LIB      (default: NOT defined)
188      Defined only when compiled as part of Linux libc.
189      Also note that there is some odd internal name-mangling via defines
190      (for example, internally, `malloc' is named `mALLOc') needed
191      when compiling in this case. These look funny but don't otherwise
192      affect anything.
193   WIN32                     (default: undefined)
194      Define this on MS win (95, nt) platforms to compile in sbrk emulation.
195   LACKS_UNISTD_H            (default: undefined if not WIN32)
196      Define this if your system does not have a <unistd.h>.
197   LACKS_SYS_PARAM_H         (default: undefined if not WIN32)
198      Define this if your system does not have a <sys/param.h>.
199   MORECORE                  (default: sbrk)
200      The name of the routine to call to obtain more memory from the system.
201   MORECORE_FAILURE          (default: -1)
202      The value returned upon failure of MORECORE.
203   MORECORE_CLEARS           (default 1)
204      True (1) if the routine mapped to MORECORE zeroes out memory (which
205      holds for sbrk).
206   DEFAULT_TRIM_THRESHOLD
207   DEFAULT_TOP_PAD
208   DEFAULT_MMAP_THRESHOLD
209   DEFAULT_MMAP_MAX
210      Default values of tunable parameters (described in detail below)
211      controlling interaction with host system routines (sbrk, mmap, etc).
212      These values may also be changed dynamically via mallopt(). The
213      preset defaults are those that give best performance for typical
214      programs/systems.
215   USE_DL_PREFIX             (default: undefined)
216      Prefix all public routines with the string 'dl'.  Useful to
217      quickly avoid procedure declaration conflicts and linker symbol
218      conflicts with existing memory allocation routines.
219 
220 
221 */
222 
223 
224 
225 
226 /* Preliminaries */
227 
228 #ifndef __STD_C
229 #ifdef __STDC__
230 #define __STD_C     1
231 #else
232 #if __cplusplus
233 #define __STD_C     1
234 #else
235 #define __STD_C     0
236 #endif /*__cplusplus*/
237 #endif /*__STDC__*/
238 #endif /*__STD_C*/
239 
240 #ifndef Void_t
241 #if (__STD_C || defined(WIN32))
242 #define Void_t      void
243 #else
244 #define Void_t      char
245 #endif
246 #endif /*Void_t*/
247 
248 #if __STD_C
249 #include <stddef.h>   /* for size_t */
250 #else
251 #include <sys/types.h>
252 #endif
253 
254 #ifdef __cplusplus
255 extern "C" {
256 #endif
257 
258 #include <stdio.h>    /* needed for malloc_stats */
259 
260 
261 /*
262   Compile-time options
263 */
264 
265 
266 /*
267     Debugging:
268 
269     Because freed chunks may be overwritten with link fields, this
270     malloc will often die when freed memory is overwritten by user
271     programs.  This can be very effective (albeit in an annoying way)
272     in helping track down dangling pointers.
273 
274     If you compile with -DDEBUG, a number of assertion checks are
275     enabled that will catch more memory errors. You probably won't be
276     able to make much sense of the actual assertion errors, but they
277     should help you locate incorrectly overwritten memory.  The
278     checking is fairly extensive, and will slow down execution
279     noticeably. Calling malloc_stats or mallinfo with DEBUG set will
280     attempt to check every non-mmapped allocated and free chunk in the
281     course of computing the summmaries. (By nature, mmapped regions
282     cannot be checked very much automatically.)
283 
284     Setting DEBUG may also be helpful if you are trying to modify
285     this code. The assertions in the check routines spell out in more
286     detail the assumptions and invariants underlying the algorithms.
287 
288 */
289 
290 #ifdef DEBUG
291 #include <assert.h>
292 #else
293 #define assert(x) ((void)0)
294 #endif
295 
296 
297 /*
298   INTERNAL_SIZE_T is the word-size used for internal bookkeeping
299   of chunk sizes. On a 64-bit machine, you can reduce malloc
300   overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int'
301   at the expense of not being able to handle requests greater than
302   2^31. This limitation is hardly ever a concern; you are encouraged
303   to set this. However, the default version is the same as size_t.
304 */
305 
306 #ifndef INTERNAL_SIZE_T
307 #define INTERNAL_SIZE_T size_t
308 #endif
309 
310 /*
311   REALLOC_ZERO_BYTES_FREES should be set if a call to
312   realloc with zero bytes should be the same as a call to free.
313   Some people think it should. Otherwise, since this malloc
314   returns a unique pointer for malloc(0), so does realloc(p, 0).
315 */
316 
317 
318 /*   #define REALLOC_ZERO_BYTES_FREES */
319 
320 
321 /*
322   WIN32 causes an emulation of sbrk to be compiled in
323   mmap-based options are not currently supported in WIN32.
324 */
325 
326 /* #define WIN32 */
327 #ifdef WIN32
328 #define MORECORE wsbrk
329 #define HAVE_MMAP 0
330 
331 #define LACKS_UNISTD_H
332 #define LACKS_SYS_PARAM_H
333 
334 /*
335   Include 'windows.h' to get the necessary declarations for the
336   Microsoft Visual C++ data structures and routines used in the 'sbrk'
337   emulation.
338 
339   Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft
340   Visual C++ header files are included.
341 */
342 #define WIN32_LEAN_AND_MEAN
343 #include <windows.h>
344 #endif
345 
346 
347 /*
348   HAVE_MEMCPY should be defined if you are not otherwise using
349   ANSI STD C, but still have memcpy and memset in your C library
350   and want to use them in calloc and realloc. Otherwise simple
351   macro versions are defined here.
352 
353   USE_MEMCPY should be defined as 1 if you actually want to
354   have memset and memcpy called. People report that the macro
355   versions are often enough faster than libc versions on many
356   systems that it is better to use them.
357 
358 */
359 
360 #define HAVE_MEMCPY
361 
362 #ifndef USE_MEMCPY
363 #ifdef HAVE_MEMCPY
364 #define USE_MEMCPY 1
365 #else
366 #define USE_MEMCPY 0
367 #endif
368 #endif
369 
370 #if (__STD_C || defined(HAVE_MEMCPY))
371 
372 #if __STD_C
373 void* memset(void*, int, size_t);
374 void* memcpy(void*, const void*, size_t);
375 #else
376 #ifdef WIN32
377 /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */
378 /* 'windows.h' */
379 #else
380 Void_t* memset();
381 Void_t* memcpy();
382 #endif
383 #endif
384 #endif
385 
386 #if USE_MEMCPY
387 
388 /* The following macros are only invoked with (2n+1)-multiples of
389    INTERNAL_SIZE_T units, with a positive integer n. This is exploited
390    for fast inline execution when n is small. */
391 
392 #define MALLOC_ZERO(charp, nbytes)                                            \
393 do {                                                                          \
394   INTERNAL_SIZE_T mzsz = (nbytes);                                            \
395   if(mzsz <= 9*sizeof(mzsz)) {                                                \
396     INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp);                         \
397     if(mzsz >= 5*sizeof(mzsz)) {     *mz++ = 0;                               \
398 				     *mz++ = 0;                               \
399       if(mzsz >= 7*sizeof(mzsz)) {   *mz++ = 0;                               \
400 				     *mz++ = 0;                               \
401 	if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0;                               \
402 				     *mz++ = 0; }}}                           \
403 				     *mz++ = 0;                               \
404 				     *mz++ = 0;                               \
405 				     *mz   = 0;                               \
406   } else memset((charp), 0, mzsz);                                            \
407 } while(0)
408 
409 #define MALLOC_COPY(dest,src,nbytes)                                          \
410 do {                                                                          \
411   INTERNAL_SIZE_T mcsz = (nbytes);                                            \
412   if(mcsz <= 9*sizeof(mcsz)) {                                                \
413     INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src);                        \
414     INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest);                       \
415     if(mcsz >= 5*sizeof(mcsz)) {     *mcdst++ = *mcsrc++;                     \
416 				     *mcdst++ = *mcsrc++;                     \
417       if(mcsz >= 7*sizeof(mcsz)) {   *mcdst++ = *mcsrc++;                     \
418 				     *mcdst++ = *mcsrc++;                     \
419 	if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++;                     \
420 				     *mcdst++ = *mcsrc++; }}}                 \
421 				     *mcdst++ = *mcsrc++;                     \
422 				     *mcdst++ = *mcsrc++;                     \
423 				     *mcdst   = *mcsrc  ;                     \
424   } else memcpy(dest, src, mcsz);                                             \
425 } while(0)
426 
427 #else /* !USE_MEMCPY */
428 
429 /* Use Duff's device for good zeroing/copying performance. */
430 
431 #define MALLOC_ZERO(charp, nbytes)                                            \
432 do {                                                                          \
433   INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
434   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
435   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
436   switch (mctmp) {                                                            \
437     case 0: for(;;) { *mzp++ = 0;                                             \
438     case 7:           *mzp++ = 0;                                             \
439     case 6:           *mzp++ = 0;                                             \
440     case 5:           *mzp++ = 0;                                             \
441     case 4:           *mzp++ = 0;                                             \
442     case 3:           *mzp++ = 0;                                             \
443     case 2:           *mzp++ = 0;                                             \
444     case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
445   }                                                                           \
446 } while(0)
447 
448 #define MALLOC_COPY(dest,src,nbytes)                                          \
449 do {                                                                          \
450   INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
451   INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
452   long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn;                         \
453   if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
454   switch (mctmp) {                                                            \
455     case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
456     case 7:           *mcdst++ = *mcsrc++;                                    \
457     case 6:           *mcdst++ = *mcsrc++;                                    \
458     case 5:           *mcdst++ = *mcsrc++;                                    \
459     case 4:           *mcdst++ = *mcsrc++;                                    \
460     case 3:           *mcdst++ = *mcsrc++;                                    \
461     case 2:           *mcdst++ = *mcsrc++;                                    \
462     case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
463   }                                                                           \
464 } while(0)
465 
466 #endif
467 
468 
469 /*
470   Define HAVE_MMAP to optionally make malloc() use mmap() to
471   allocate very large blocks.  These will be returned to the
472   operating system immediately after a free().
473 */
474 
475 #ifndef HAVE_MMAP
476 #define HAVE_MMAP 1
477 #endif
478 
479 /*
480   Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
481   large blocks.  This is currently only possible on Linux with
482   kernel versions newer than 1.3.77.
483 */
484 
485 #ifndef HAVE_MREMAP
486 #ifdef INTERNAL_LINUX_C_LIB
487 #define HAVE_MREMAP 1
488 #else
489 #define HAVE_MREMAP 0
490 #endif
491 #endif
492 
493 #if HAVE_MMAP
494 
495 #include <unistd.h>
496 #include <fcntl.h>
497 #include <sys/mman.h>
498 
499 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
500 #define MAP_ANONYMOUS MAP_ANON
501 #endif
502 
503 #endif /* HAVE_MMAP */
504 
505 /*
506   Access to system page size. To the extent possible, this malloc
507   manages memory from the system in page-size units.
508 
509   The following mechanics for getpagesize were adapted from
510   bsd/gnu getpagesize.h
511 */
512 
513 #ifndef LACKS_UNISTD_H
514 #  include <unistd.h>
515 #endif
516 
517 #ifndef malloc_getpagesize
518 #  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
519 #    ifndef _SC_PAGE_SIZE
520 #      define _SC_PAGE_SIZE _SC_PAGESIZE
521 #    endif
522 #  endif
523 #  ifdef _SC_PAGE_SIZE
524 #    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
525 #  else
526 #    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
527        extern size_t getpagesize();
528 #      define malloc_getpagesize getpagesize()
529 #    else
530 #      ifdef WIN32
531 #        define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */
532 #      else
533 #        ifndef LACKS_SYS_PARAM_H
534 #          include <sys/param.h>
535 #        endif
536 #        ifdef EXEC_PAGESIZE
537 #          define malloc_getpagesize EXEC_PAGESIZE
538 #        else
539 #          ifdef NBPG
540 #            ifndef CLSIZE
541 #              define malloc_getpagesize NBPG
542 #            else
543 #              define malloc_getpagesize (NBPG * CLSIZE)
544 #            endif
545 #          else
546 #            ifdef NBPC
547 #              define malloc_getpagesize NBPC
548 #            else
549 #              ifdef PAGESIZE
550 #                define malloc_getpagesize PAGESIZE
551 #              else
552 #                define malloc_getpagesize (4096) /* just guess */
553 #              endif
554 #            endif
555 #          endif
556 #        endif
557 #      endif
558 #    endif
559 #  endif
560 #endif
561 
562 
563 /*
564 
565   This version of malloc supports the standard SVID/XPG mallinfo
566   routine that returns a struct containing the same kind of
567   information you can get from malloc_stats. It should work on
568   any SVID/XPG compliant system that has a /usr/include/malloc.h
569   defining struct mallinfo. (If you'd like to install such a thing
570   yourself, cut out the preliminary declarations as described above
571   and below and save them in a malloc.h file. But there's no
572   compelling reason to bother to do this.)
573 
574   The main declaration needed is the mallinfo struct that is returned
575   (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
576   bunch of fields, most of which are not even meaningful in this
577   version of malloc. Some of these fields are are instead filled by
578   mallinfo() with other numbers that might possibly be of interest.
579 
580   HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
581   /usr/include/malloc.h file that includes a declaration of struct
582   mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
583   version is declared below.  These must be precisely the same for
584   mallinfo() to work.
585 
586 */
587 
588 /* #define HAVE_USR_INCLUDE_MALLOC_H */
589 
590 #if HAVE_USR_INCLUDE_MALLOC_H
591 #include "/usr/include/malloc.h"
592 #else
593 
594 /* SVID2/XPG mallinfo structure */
595 
596 struct mallinfo {
597   int arena;    /* total space allocated from system */
598   int ordblks;  /* number of non-inuse chunks */
599   int smblks;   /* unused -- always zero */
600   int hblks;    /* number of mmapped regions */
601   int hblkhd;   /* total space in mmapped regions */
602   int usmblks;  /* unused -- always zero */
603   int fsmblks;  /* unused -- always zero */
604   int uordblks; /* total allocated space */
605   int fordblks; /* total non-inuse space */
606   int keepcost; /* top-most, releasable (via malloc_trim) space */
607 };
608 
609 /* SVID2/XPG mallopt options */
610 
611 #define M_MXFAST  1    /* UNUSED in this malloc */
612 #define M_NLBLKS  2    /* UNUSED in this malloc */
613 #define M_GRAIN   3    /* UNUSED in this malloc */
614 #define M_KEEP    4    /* UNUSED in this malloc */
615 
616 #endif
617 
618 /* mallopt options that actually do something */
619 
620 #define M_TRIM_THRESHOLD    -1
621 #define M_TOP_PAD           -2
622 #define M_MMAP_THRESHOLD    -3
623 #define M_MMAP_MAX          -4
624 
625 
626 #ifndef DEFAULT_TRIM_THRESHOLD
627 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
628 #endif
629 
630 /*
631     M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
632       to keep before releasing via malloc_trim in free().
633 
634       Automatic trimming is mainly useful in long-lived programs.
635       Because trimming via sbrk can be slow on some systems, and can
636       sometimes be wasteful (in cases where programs immediately
637       afterward allocate more large chunks) the value should be high
638       enough so that your overall system performance would improve by
639       releasing.
640 
641       The trim threshold and the mmap control parameters (see below)
642       can be traded off with one another. Trimming and mmapping are
643       two different ways of releasing unused memory back to the
644       system. Between these two, it is often possible to keep
645       system-level demands of a long-lived program down to a bare
646       minimum. For example, in one test suite of sessions measuring
647       the XF86 X server on Linux, using a trim threshold of 128K and a
648       mmap threshold of 192K led to near-minimal long term resource
649       consumption.
650 
651       If you are using this malloc in a long-lived program, it should
652       pay to experiment with these values.  As a rough guide, you
653       might set to a value close to the average size of a process
654       (program) running on your system.  Releasing this much memory
655       would allow such a process to run in memory.  Generally, it's
656       worth it to tune for trimming rather tham memory mapping when a
657       program undergoes phases where several large chunks are
658       allocated and released in ways that can reuse each other's
659       storage, perhaps mixed with phases where there are no such
660       chunks at all.  And in well-behaved long-lived programs,
661       controlling release of large blocks via trimming versus mapping
662       is usually faster.
663 
664       However, in most programs, these parameters serve mainly as
665       protection against the system-level effects of carrying around
666       massive amounts of unneeded memory. Since frequent calls to
667       sbrk, mmap, and munmap otherwise degrade performance, the default
668       parameters are set to relatively high values that serve only as
669       safeguards.
670 
671       The default trim value is high enough to cause trimming only in
672       fairly extreme (by current memory consumption standards) cases.
673       It must be greater than page size to have any useful effect.  To
674       disable trimming completely, you can set to (unsigned long)(-1);
675 
676 
677 */
678 
679 
680 #ifndef DEFAULT_TOP_PAD
681 #define DEFAULT_TOP_PAD        (0)
682 #endif
683 
684 /*
685     M_TOP_PAD is the amount of extra `padding' space to allocate or
686       retain whenever sbrk is called. It is used in two ways internally:
687 
688       * When sbrk is called to extend the top of the arena to satisfy
689 	a new malloc request, this much padding is added to the sbrk
690 	request.
691 
692       * When malloc_trim is called automatically from free(),
693 	it is used as the `pad' argument.
694 
695       In both cases, the actual amount of padding is rounded
696       so that the end of the arena is always a system page boundary.
697 
698       The main reason for using padding is to avoid calling sbrk so
699       often. Having even a small pad greatly reduces the likelihood
700       that nearly every malloc request during program start-up (or
701       after trimming) will invoke sbrk, which needlessly wastes
702       time.
703 
704       Automatic rounding-up to page-size units is normally sufficient
705       to avoid measurable overhead, so the default is 0.  However, in
706       systems where sbrk is relatively slow, it can pay to increase
707       this value, at the expense of carrying around more memory than
708       the program needs.
709 
710 */
711 
712 
713 #ifndef DEFAULT_MMAP_THRESHOLD
714 #define DEFAULT_MMAP_THRESHOLD (128 * 1024)
715 #endif
716 
717 /*
718 
719     M_MMAP_THRESHOLD is the request size threshold for using mmap()
720       to service a request. Requests of at least this size that cannot
721       be allocated using already-existing space will be serviced via mmap.
722       (If enough normal freed space already exists it is used instead.)
723 
724       Using mmap segregates relatively large chunks of memory so that
725       they can be individually obtained and released from the host
726       system. A request serviced through mmap is never reused by any
727       other request (at least not directly; the system may just so
728       happen to remap successive requests to the same locations).
729 
730       Segregating space in this way has the benefit that mmapped space
731       can ALWAYS be individually released back to the system, which
732       helps keep the system level memory demands of a long-lived
733       program low. Mapped memory can never become `locked' between
734       other chunks, as can happen with normally allocated chunks, which
735       menas that even trimming via malloc_trim would not release them.
736 
737       However, it has the disadvantages that:
738 
739 	 1. The space cannot be reclaimed, consolidated, and then
740 	    used to service later requests, as happens with normal chunks.
741 	 2. It can lead to more wastage because of mmap page alignment
742 	    requirements
743 	 3. It causes malloc performance to be more dependent on host
744 	    system memory management support routines which may vary in
745 	    implementation quality and may impose arbitrary
746 	    limitations. Generally, servicing a request via normal
747 	    malloc steps is faster than going through a system's mmap.
748 
749       All together, these considerations should lead you to use mmap
750       only for relatively large requests.
751 
752 
753 */
754 
755 
756 #ifndef DEFAULT_MMAP_MAX
757 #if HAVE_MMAP
758 #define DEFAULT_MMAP_MAX       (64)
759 #else
760 #define DEFAULT_MMAP_MAX       (0)
761 #endif
762 #endif
763 
764 /*
765     M_MMAP_MAX is the maximum number of requests to simultaneously
766       service using mmap. This parameter exists because:
767 
768 	 1. Some systems have a limited number of internal tables for
769 	    use by mmap.
770 	 2. In most systems, overreliance on mmap can degrade overall
771 	    performance.
772 	 3. If a program allocates many large regions, it is probably
773 	    better off using normal sbrk-based allocation routines that
774 	    can reclaim and reallocate normal heap memory. Using a
775 	    small value allows transition into this mode after the
776 	    first few allocations.
777 
778       Setting to 0 disables all use of mmap.  If HAVE_MMAP is not set,
779       the default value is 0, and attempts to set it to non-zero values
780       in mallopt will fail.
781 */
782 
783 
784 /*
785     USE_DL_PREFIX will prefix all public routines with the string 'dl'.
786       Useful to quickly avoid procedure declaration conflicts and linker
787       symbol conflicts with existing memory allocation routines.
788 
789 */
790 
791 /* #define USE_DL_PREFIX */
792 
793 
794 /*
795 
796   Special defines for linux libc
797 
798   Except when compiled using these special defines for Linux libc
799   using weak aliases, this malloc is NOT designed to work in
800   multithreaded applications.  No semaphores or other concurrency
801   control are provided to ensure that multiple malloc or free calls
802   don't run at the same time, which could be disasterous. A single
803   semaphore could be used across malloc, realloc, and free (which is
804   essentially the effect of the linux weak alias approach). It would
805   be hard to obtain finer granularity.
806 
807 */
808 
809 
810 #ifdef INTERNAL_LINUX_C_LIB
811 
812 #if __STD_C
813 
814 Void_t * __default_morecore_init (ptrdiff_t);
815 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init;
816 
817 #else
818 
819 Void_t * __default_morecore_init ();
820 Void_t *(*__morecore)() = __default_morecore_init;
821 
822 #endif
823 
824 #define MORECORE (*__morecore)
825 #define MORECORE_FAILURE 0
826 #define MORECORE_CLEARS 1
827 
828 #else /* INTERNAL_LINUX_C_LIB */
829 
830 #if __STD_C
831 extern Void_t*     sbrk(ptrdiff_t);
832 #else
833 extern Void_t*     sbrk();
834 #endif
835 
836 #ifndef MORECORE
837 #define MORECORE sbrk
838 #endif
839 
840 #ifndef MORECORE_FAILURE
841 #define MORECORE_FAILURE -1
842 #endif
843 
844 #ifndef MORECORE_CLEARS
845 #define MORECORE_CLEARS 1
846 #endif
847 
848 #endif /* INTERNAL_LINUX_C_LIB */
849 
850 #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__)
851 
852 #define cALLOc		__libc_calloc
853 #define fREe		__libc_free
854 #define mALLOc		__libc_malloc
855 #define mEMALIGn	__libc_memalign
856 #define rEALLOc		__libc_realloc
857 #define vALLOc		__libc_valloc
858 #define pvALLOc		__libc_pvalloc
859 #define mALLINFo	__libc_mallinfo
860 #define mALLOPt		__libc_mallopt
861 
862 #pragma weak calloc = __libc_calloc
863 #pragma weak free = __libc_free
864 #pragma weak cfree = __libc_free
865 #pragma weak malloc = __libc_malloc
866 #pragma weak memalign = __libc_memalign
867 #pragma weak realloc = __libc_realloc
868 #pragma weak valloc = __libc_valloc
869 #pragma weak pvalloc = __libc_pvalloc
870 #pragma weak mallinfo = __libc_mallinfo
871 #pragma weak mallopt = __libc_mallopt
872 
873 #else
874 
875 #ifdef USE_DL_PREFIX
876 #define cALLOc		dlcalloc
877 #define fREe		dlfree
878 #define mALLOc		dlmalloc
879 #define mEMALIGn	dlmemalign
880 #define rEALLOc		dlrealloc
881 #define vALLOc		dlvalloc
882 #define pvALLOc		dlpvalloc
883 #define mALLINFo	dlmallinfo
884 #define mALLOPt		dlmallopt
885 #else /* USE_DL_PREFIX */
886 #define cALLOc		calloc
887 #define fREe		free
888 #define mALLOc		malloc
889 #define mEMALIGn	memalign
890 #define rEALLOc		realloc
891 #define vALLOc		valloc
892 #define pvALLOc		pvalloc
893 #define mALLINFo	mallinfo
894 #define mALLOPt		mallopt
895 #endif /* USE_DL_PREFIX */
896 
897 #endif
898 
899 /* Public routines */
900 
901 #if __STD_C
902 
903 Void_t* mALLOc(size_t);
904 void    fREe(Void_t*);
905 Void_t* rEALLOc(Void_t*, size_t);
906 Void_t* mEMALIGn(size_t, size_t);
907 Void_t* vALLOc(size_t);
908 Void_t* pvALLOc(size_t);
909 Void_t* cALLOc(size_t, size_t);
910 void    cfree(Void_t*);
911 int     malloc_trim(size_t);
912 size_t  malloc_usable_size(Void_t*);
913 void    malloc_stats();
914 int     mALLOPt(int, int);
915 struct mallinfo mALLINFo(void);
916 #else
917 Void_t* mALLOc();
918 void    fREe();
919 Void_t* rEALLOc();
920 Void_t* mEMALIGn();
921 Void_t* vALLOc();
922 Void_t* pvALLOc();
923 Void_t* cALLOc();
924 void    cfree();
925 int     malloc_trim();
926 size_t  malloc_usable_size();
927 void    malloc_stats();
928 int     mALLOPt();
929 struct mallinfo mALLINFo();
930 #endif
931 
932 
933 #ifdef __cplusplus
934 };  /* end of extern "C" */
935 #endif
936 
937 /* ---------- To make a malloc.h, end cutting here ------------ */
938 #else				/* Moved to malloc.h */
939 
940 #include <malloc.h>
941 #if 0
942 #if __STD_C
943 static void malloc_update_mallinfo (void);
944 void malloc_stats (void);
945 #else
946 static void malloc_update_mallinfo ();
947 void malloc_stats();
948 #endif
949 #endif	/* 0 */
950 
951 #endif	/* 0 */			/* Moved to malloc.h */
952 
953 DECLARE_GLOBAL_DATA_PTR;
954 
955 /*
956   Emulation of sbrk for WIN32
957   All code within the ifdef WIN32 is untested by me.
958 
959   Thanks to Martin Fong and others for supplying this.
960 */
961 
962 
963 #ifdef WIN32
964 
965 #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
966 ~(malloc_getpagesize-1))
967 #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
968 
969 /* resrve 64MB to insure large contiguous space */
970 #define RESERVED_SIZE (1024*1024*64)
971 #define NEXT_SIZE (2048*1024)
972 #define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
973 
974 struct GmListElement;
975 typedef struct GmListElement GmListElement;
976 
977 struct GmListElement
978 {
979 	GmListElement* next;
980 	void* base;
981 };
982 
983 static GmListElement* head = 0;
984 static unsigned int gNextAddress = 0;
985 static unsigned int gAddressBase = 0;
986 static unsigned int gAllocatedSize = 0;
987 
988 static
989 GmListElement* makeGmListElement (void* bas)
990 {
991 	GmListElement* this;
992 	this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
993 	assert (this);
994 	if (this)
995 	{
996 		this->base = bas;
997 		this->next = head;
998 		head = this;
999 	}
1000 	return this;
1001 }
1002 
1003 void gcleanup ()
1004 {
1005 	BOOL rval;
1006 	assert ( (head == NULL) || (head->base == (void*)gAddressBase));
1007 	if (gAddressBase && (gNextAddress - gAddressBase))
1008 	{
1009 		rval = VirtualFree ((void*)gAddressBase,
1010 							gNextAddress - gAddressBase,
1011 							MEM_DECOMMIT);
1012 	assert (rval);
1013 	}
1014 	while (head)
1015 	{
1016 		GmListElement* next = head->next;
1017 		rval = VirtualFree (head->base, 0, MEM_RELEASE);
1018 		assert (rval);
1019 		LocalFree (head);
1020 		head = next;
1021 	}
1022 }
1023 
1024 static
1025 void* findRegion (void* start_address, unsigned long size)
1026 {
1027 	MEMORY_BASIC_INFORMATION info;
1028 	if (size >= TOP_MEMORY) return NULL;
1029 
1030 	while ((unsigned long)start_address + size < TOP_MEMORY)
1031 	{
1032 		VirtualQuery (start_address, &info, sizeof (info));
1033 		if ((info.State == MEM_FREE) && (info.RegionSize >= size))
1034 			return start_address;
1035 		else
1036 		{
1037 			/* Requested region is not available so see if the */
1038 			/* next region is available.  Set 'start_address' */
1039 			/* to the next region and call 'VirtualQuery()' */
1040 			/* again. */
1041 
1042 			start_address = (char*)info.BaseAddress + info.RegionSize;
1043 
1044 			/* Make sure we start looking for the next region */
1045 			/* on the *next* 64K boundary.  Otherwise, even if */
1046 			/* the new region is free according to */
1047 			/* 'VirtualQuery()', the subsequent call to */
1048 			/* 'VirtualAlloc()' (which follows the call to */
1049 			/* this routine in 'wsbrk()') will round *down* */
1050 			/* the requested address to a 64K boundary which */
1051 			/* we already know is an address in the */
1052 			/* unavailable region.  Thus, the subsequent call */
1053 			/* to 'VirtualAlloc()' will fail and bring us back */
1054 			/* here, causing us to go into an infinite loop. */
1055 
1056 			start_address =
1057 				(void *) AlignPage64K((unsigned long) start_address);
1058 		}
1059 	}
1060 	return NULL;
1061 
1062 }
1063 
1064 
1065 void* wsbrk (long size)
1066 {
1067 	void* tmp;
1068 	if (size > 0)
1069 	{
1070 		if (gAddressBase == 0)
1071 		{
1072 			gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
1073 			gNextAddress = gAddressBase =
1074 				(unsigned int)VirtualAlloc (NULL, gAllocatedSize,
1075 											MEM_RESERVE, PAGE_NOACCESS);
1076 		} else if (AlignPage (gNextAddress + size) > (gAddressBase +
1077 gAllocatedSize))
1078 		{
1079 			long new_size = max (NEXT_SIZE, AlignPage (size));
1080 			void* new_address = (void*)(gAddressBase+gAllocatedSize);
1081 			do
1082 			{
1083 				new_address = findRegion (new_address, new_size);
1084 
1085 				if (new_address == 0)
1086 					return (void*)-1;
1087 
1088 				gAddressBase = gNextAddress =
1089 					(unsigned int)VirtualAlloc (new_address, new_size,
1090 												MEM_RESERVE, PAGE_NOACCESS);
1091 				/* repeat in case of race condition */
1092 				/* The region that we found has been snagged */
1093 				/* by another thread */
1094 			}
1095 			while (gAddressBase == 0);
1096 
1097 			assert (new_address == (void*)gAddressBase);
1098 
1099 			gAllocatedSize = new_size;
1100 
1101 			if (!makeGmListElement ((void*)gAddressBase))
1102 				return (void*)-1;
1103 		}
1104 		if ((size + gNextAddress) > AlignPage (gNextAddress))
1105 		{
1106 			void* res;
1107 			res = VirtualAlloc ((void*)AlignPage (gNextAddress),
1108 								(size + gNextAddress -
1109 								 AlignPage (gNextAddress)),
1110 								MEM_COMMIT, PAGE_READWRITE);
1111 			if (res == 0)
1112 				return (void*)-1;
1113 		}
1114 		tmp = (void*)gNextAddress;
1115 		gNextAddress = (unsigned int)tmp + size;
1116 		return tmp;
1117 	}
1118 	else if (size < 0)
1119 	{
1120 		unsigned int alignedGoal = AlignPage (gNextAddress + size);
1121 		/* Trim by releasing the virtual memory */
1122 		if (alignedGoal >= gAddressBase)
1123 		{
1124 			VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
1125 						 MEM_DECOMMIT);
1126 			gNextAddress = gNextAddress + size;
1127 			return (void*)gNextAddress;
1128 		}
1129 		else
1130 		{
1131 			VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
1132 						 MEM_DECOMMIT);
1133 			gNextAddress = gAddressBase;
1134 			return (void*)-1;
1135 		}
1136 	}
1137 	else
1138 	{
1139 		return (void*)gNextAddress;
1140 	}
1141 }
1142 
1143 #endif
1144 
1145 
1146 
1147 /*
1148   Type declarations
1149 */
1150 
1151 
1152 struct malloc_chunk
1153 {
1154   INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1155   INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
1156   struct malloc_chunk* fd;   /* double links -- used only if free. */
1157   struct malloc_chunk* bk;
1158 };
1159 
1160 typedef struct malloc_chunk* mchunkptr;
1161 
1162 /*
1163 
1164    malloc_chunk details:
1165 
1166     (The following includes lightly edited explanations by Colin Plumb.)
1167 
1168     Chunks of memory are maintained using a `boundary tag' method as
1169     described in e.g., Knuth or Standish.  (See the paper by Paul
1170     Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1171     survey of such techniques.)  Sizes of free chunks are stored both
1172     in the front of each chunk and at the end.  This makes
1173     consolidating fragmented chunks into bigger chunks very fast.  The
1174     size fields also hold bits representing whether chunks are free or
1175     in use.
1176 
1177     An allocated chunk looks like this:
1178 
1179 
1180     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1181 	    |             Size of previous chunk, if allocated            | |
1182 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1183 	    |             Size of chunk, in bytes                         |P|
1184       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1185 	    |             User data starts here...                          .
1186 	    .                                                               .
1187 	    .             (malloc_usable_space() bytes)                     .
1188 	    .                                                               |
1189 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1190 	    |             Size of chunk                                     |
1191 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1192 
1193 
1194     Where "chunk" is the front of the chunk for the purpose of most of
1195     the malloc code, but "mem" is the pointer that is returned to the
1196     user.  "Nextchunk" is the beginning of the next contiguous chunk.
1197 
1198     Chunks always begin on even word boundries, so the mem portion
1199     (which is returned to the user) is also on an even word boundary, and
1200     thus double-word aligned.
1201 
1202     Free chunks are stored in circular doubly-linked lists, and look like this:
1203 
1204     chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1205 	    |             Size of previous chunk                            |
1206 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1207     `head:' |             Size of chunk, in bytes                         |P|
1208       mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1209 	    |             Forward pointer to next chunk in list             |
1210 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1211 	    |             Back pointer to previous chunk in list            |
1212 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1213 	    |             Unused space (may be 0 bytes long)                .
1214 	    .                                                               .
1215 	    .                                                               |
1216 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1217     `foot:' |             Size of chunk, in bytes                           |
1218 	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1219 
1220     The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1221     chunk size (which is always a multiple of two words), is an in-use
1222     bit for the *previous* chunk.  If that bit is *clear*, then the
1223     word before the current chunk size contains the previous chunk
1224     size, and can be used to find the front of the previous chunk.
1225     (The very first chunk allocated always has this bit set,
1226     preventing access to non-existent (or non-owned) memory.)
1227 
1228     Note that the `foot' of the current chunk is actually represented
1229     as the prev_size of the NEXT chunk. (This makes it easier to
1230     deal with alignments etc).
1231 
1232     The two exceptions to all this are
1233 
1234      1. The special chunk `top', which doesn't bother using the
1235 	trailing size field since there is no
1236 	next contiguous chunk that would have to index off it. (After
1237 	initialization, `top' is forced to always exist.  If it would
1238 	become less than MINSIZE bytes long, it is replenished via
1239 	malloc_extend_top.)
1240 
1241      2. Chunks allocated via mmap, which have the second-lowest-order
1242 	bit (IS_MMAPPED) set in their size fields.  Because they are
1243 	never merged or traversed from any other chunk, they have no
1244 	foot size or inuse information.
1245 
1246     Available chunks are kept in any of several places (all declared below):
1247 
1248     * `av': An array of chunks serving as bin headers for consolidated
1249        chunks. Each bin is doubly linked.  The bins are approximately
1250        proportionally (log) spaced.  There are a lot of these bins
1251        (128). This may look excessive, but works very well in
1252        practice.  All procedures maintain the invariant that no
1253        consolidated chunk physically borders another one. Chunks in
1254        bins are kept in size order, with ties going to the
1255        approximately least recently used chunk.
1256 
1257        The chunks in each bin are maintained in decreasing sorted order by
1258        size.  This is irrelevant for the small bins, which all contain
1259        the same-sized chunks, but facilitates best-fit allocation for
1260        larger chunks. (These lists are just sequential. Keeping them in
1261        order almost never requires enough traversal to warrant using
1262        fancier ordered data structures.)  Chunks of the same size are
1263        linked with the most recently freed at the front, and allocations
1264        are taken from the back.  This results in LRU or FIFO allocation
1265        order, which tends to give each chunk an equal opportunity to be
1266        consolidated with adjacent freed chunks, resulting in larger free
1267        chunks and less fragmentation.
1268 
1269     * `top': The top-most available chunk (i.e., the one bordering the
1270        end of available memory) is treated specially. It is never
1271        included in any bin, is used only if no other chunk is
1272        available, and is released back to the system if it is very
1273        large (see M_TRIM_THRESHOLD).
1274 
1275     * `last_remainder': A bin holding only the remainder of the
1276        most recently split (non-top) chunk. This bin is checked
1277        before other non-fitting chunks, so as to provide better
1278        locality for runs of sequentially allocated chunks.
1279 
1280     *  Implicitly, through the host system's memory mapping tables.
1281        If supported, requests greater than a threshold are usually
1282        serviced via calls to mmap, and then later released via munmap.
1283 
1284 */
1285 
1286 /*  sizes, alignments */
1287 
1288 #define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
1289 #define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
1290 #define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
1291 #define MINSIZE                (sizeof(struct malloc_chunk))
1292 
1293 /* conversion from malloc headers to user pointers, and back */
1294 
1295 #define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1296 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1297 
1298 /* pad request bytes into a usable size */
1299 
1300 #define request2size(req) \
1301  (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
1302   (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
1303    (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
1304 
1305 /* Check if m has acceptable alignment */
1306 
1307 #define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
1308 
1309 
1310 
1311 
1312 /*
1313   Physical chunk operations
1314 */
1315 
1316 
1317 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1318 
1319 #define PREV_INUSE 0x1
1320 
1321 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1322 
1323 #define IS_MMAPPED 0x2
1324 
1325 /* Bits to mask off when extracting size */
1326 
1327 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
1328 
1329 
1330 /* Ptr to next physical malloc_chunk. */
1331 
1332 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
1333 
1334 /* Ptr to previous physical malloc_chunk */
1335 
1336 #define prev_chunk(p)\
1337    ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
1338 
1339 
1340 /* Treat space at ptr + offset as a chunk */
1341 
1342 #define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
1343 
1344 
1345 
1346 
1347 /*
1348   Dealing with use bits
1349 */
1350 
1351 /* extract p's inuse bit */
1352 
1353 #define inuse(p)\
1354 ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
1355 
1356 /* extract inuse bit of previous chunk */
1357 
1358 #define prev_inuse(p)  ((p)->size & PREV_INUSE)
1359 
1360 /* check for mmap()'ed chunk */
1361 
1362 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1363 
1364 /* set/clear chunk as in use without otherwise disturbing */
1365 
1366 #define set_inuse(p)\
1367 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
1368 
1369 #define clear_inuse(p)\
1370 ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
1371 
1372 /* check/set/clear inuse bits in known places */
1373 
1374 #define inuse_bit_at_offset(p, s)\
1375  (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
1376 
1377 #define set_inuse_bit_at_offset(p, s)\
1378  (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
1379 
1380 #define clear_inuse_bit_at_offset(p, s)\
1381  (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
1382 
1383 
1384 
1385 
1386 /*
1387   Dealing with size fields
1388 */
1389 
1390 /* Get size, ignoring use bits */
1391 
1392 #define chunksize(p)          ((p)->size & ~(SIZE_BITS))
1393 
1394 /* Set size at head, without disturbing its use bit */
1395 
1396 #define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))
1397 
1398 /* Set size/use ignoring previous bits in header */
1399 
1400 #define set_head(p, s)        ((p)->size = (s))
1401 
1402 /* Set size at footer (only when chunk is not in use) */
1403 
1404 #define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
1405 
1406 
1407 
1408 
1409 
1410 /*
1411    Bins
1412 
1413     The bins, `av_' are an array of pairs of pointers serving as the
1414     heads of (initially empty) doubly-linked lists of chunks, laid out
1415     in a way so that each pair can be treated as if it were in a
1416     malloc_chunk. (This way, the fd/bk offsets for linking bin heads
1417     and chunks are the same).
1418 
1419     Bins for sizes < 512 bytes contain chunks of all the same size, spaced
1420     8 bytes apart. Larger bins are approximately logarithmically
1421     spaced. (See the table below.) The `av_' array is never mentioned
1422     directly in the code, but instead via bin access macros.
1423 
1424     Bin layout:
1425 
1426     64 bins of size       8
1427     32 bins of size      64
1428     16 bins of size     512
1429      8 bins of size    4096
1430      4 bins of size   32768
1431      2 bins of size  262144
1432      1 bin  of size what's left
1433 
1434     There is actually a little bit of slop in the numbers in bin_index
1435     for the sake of speed. This makes no difference elsewhere.
1436 
1437     The special chunks `top' and `last_remainder' get their own bins,
1438     (this is implemented via yet more trickery with the av_ array),
1439     although `top' is never properly linked to its bin since it is
1440     always handled specially.
1441 
1442 */
1443 
1444 #define NAV             128   /* number of bins */
1445 
1446 typedef struct malloc_chunk* mbinptr;
1447 
1448 /* access macros */
1449 
1450 #define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
1451 #define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
1452 #define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
1453 
1454 /*
1455    The first 2 bins are never indexed. The corresponding av_ cells are instead
1456    used for bookkeeping. This is not to save space, but to simplify
1457    indexing, maintain locality, and avoid some initialization tests.
1458 */
1459 
1460 #define top            (av_[2])          /* The topmost chunk */
1461 #define last_remainder (bin_at(1))       /* remainder from last split */
1462 
1463 
1464 /*
1465    Because top initially points to its own bin with initial
1466    zero size, thus forcing extension on the first malloc request,
1467    we avoid having any special code in malloc to check whether
1468    it even exists yet. But we still need to in malloc_extend_top.
1469 */
1470 
1471 #define initial_top    ((mchunkptr)(bin_at(0)))
1472 
1473 /* Helper macro to initialize bins */
1474 
1475 #define IAV(i)  bin_at(i), bin_at(i)
1476 
1477 static mbinptr av_[NAV * 2 + 2] = {
1478  0, 0,
1479  IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
1480  IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
1481  IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
1482  IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
1483  IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
1484  IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
1485  IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
1486  IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
1487  IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
1488  IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
1489  IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
1490  IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
1491  IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
1492  IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
1493  IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
1494  IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
1495 };
1496 
1497 #ifndef CONFIG_RELOC_FIXUP_WORKS
1498 void malloc_bin_reloc (void)
1499 {
1500 	unsigned long *p = (unsigned long *)(&av_[2]);
1501 	int i;
1502 	for (i=2; i<(sizeof(av_)/sizeof(mbinptr)); ++i) {
1503 		*p++ += gd->reloc_off;
1504 	}
1505 }
1506 #endif
1507 
1508 ulong mem_malloc_start = 0;
1509 ulong mem_malloc_end = 0;
1510 ulong mem_malloc_brk = 0;
1511 
1512 void *sbrk(ptrdiff_t increment)
1513 {
1514 	ulong old = mem_malloc_brk;
1515 	ulong new = old + increment;
1516 
1517 	if ((new < mem_malloc_start) || (new > mem_malloc_end))
1518 		return (void *)MORECORE_FAILURE;
1519 
1520 	mem_malloc_brk = new;
1521 
1522 	return (void *)old;
1523 }
1524 
1525 void mem_malloc_init(ulong start, ulong size)
1526 {
1527 	mem_malloc_start = start;
1528 	mem_malloc_end = start + size;
1529 	mem_malloc_brk = start;
1530 
1531 	memset((void *)mem_malloc_start, 0, size);
1532 }
1533 
1534 /* field-extraction macros */
1535 
1536 #define first(b) ((b)->fd)
1537 #define last(b)  ((b)->bk)
1538 
1539 /*
1540   Indexing into bins
1541 */
1542 
1543 #define bin_index(sz)                                                          \
1544 (((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
1545  ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
1546  ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
1547  ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
1548  ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
1549  ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
1550 					  126)
1551 /*
1552   bins for chunks < 512 are all spaced 8 bytes apart, and hold
1553   identically sized chunks. This is exploited in malloc.
1554 */
1555 
1556 #define MAX_SMALLBIN         63
1557 #define MAX_SMALLBIN_SIZE   512
1558 #define SMALLBIN_WIDTH        8
1559 
1560 #define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)
1561 
1562 /*
1563    Requests are `small' if both the corresponding and the next bin are small
1564 */
1565 
1566 #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
1567 
1568 
1569 
1570 /*
1571     To help compensate for the large number of bins, a one-level index
1572     structure is used for bin-by-bin searching.  `binblocks' is a
1573     one-word bitvector recording whether groups of BINBLOCKWIDTH bins
1574     have any (possibly) non-empty bins, so they can be skipped over
1575     all at once during during traversals. The bits are NOT always
1576     cleared as soon as all bins in a block are empty, but instead only
1577     when all are noticed to be empty during traversal in malloc.
1578 */
1579 
1580 #define BINBLOCKWIDTH     4   /* bins per block */
1581 
1582 #define binblocks_r     ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
1583 #define binblocks_w     (av_[1])
1584 
1585 /* bin<->block macros */
1586 
1587 #define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
1588 #define mark_binblock(ii)   (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
1589 #define clear_binblock(ii)  (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
1590 
1591 
1592 
1593 
1594 
1595 /*  Other static bookkeeping data */
1596 
1597 /* variables holding tunable values */
1598 
1599 static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
1600 static unsigned long top_pad          = DEFAULT_TOP_PAD;
1601 static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
1602 static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;
1603 
1604 /* The first value returned from sbrk */
1605 static char* sbrk_base = (char*)(-1);
1606 
1607 /* The maximum memory obtained from system via sbrk */
1608 static unsigned long max_sbrked_mem = 0;
1609 
1610 /* The maximum via either sbrk or mmap */
1611 static unsigned long max_total_mem = 0;
1612 
1613 /* internal working copy of mallinfo */
1614 static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
1615 
1616 /* The total memory obtained from system via sbrk */
1617 #define sbrked_mem  (current_mallinfo.arena)
1618 
1619 /* Tracking mmaps */
1620 
1621 #if 0
1622 static unsigned int n_mmaps = 0;
1623 #endif	/* 0 */
1624 static unsigned long mmapped_mem = 0;
1625 #if HAVE_MMAP
1626 static unsigned int max_n_mmaps = 0;
1627 static unsigned long max_mmapped_mem = 0;
1628 #endif
1629 
1630 
1631 
1632 /*
1633   Debugging support
1634 */
1635 
1636 #ifdef DEBUG
1637 
1638 
1639 /*
1640   These routines make a number of assertions about the states
1641   of data structures that should be true at all times. If any
1642   are not true, it's very likely that a user program has somehow
1643   trashed memory. (It's also possible that there is a coding error
1644   in malloc. In which case, please report it!)
1645 */
1646 
1647 #if __STD_C
1648 static void do_check_chunk(mchunkptr p)
1649 #else
1650 static void do_check_chunk(p) mchunkptr p;
1651 #endif
1652 {
1653 #if 0	/* causes warnings because assert() is off */
1654   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1655 #endif	/* 0 */
1656 
1657   /* No checkable chunk is mmapped */
1658   assert(!chunk_is_mmapped(p));
1659 
1660   /* Check for legal address ... */
1661   assert((char*)p >= sbrk_base);
1662   if (p != top)
1663     assert((char*)p + sz <= (char*)top);
1664   else
1665     assert((char*)p + sz <= sbrk_base + sbrked_mem);
1666 
1667 }
1668 
1669 
1670 #if __STD_C
1671 static void do_check_free_chunk(mchunkptr p)
1672 #else
1673 static void do_check_free_chunk(p) mchunkptr p;
1674 #endif
1675 {
1676   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1677 #if 0	/* causes warnings because assert() is off */
1678   mchunkptr next = chunk_at_offset(p, sz);
1679 #endif	/* 0 */
1680 
1681   do_check_chunk(p);
1682 
1683   /* Check whether it claims to be free ... */
1684   assert(!inuse(p));
1685 
1686   /* Unless a special marker, must have OK fields */
1687   if ((long)sz >= (long)MINSIZE)
1688   {
1689     assert((sz & MALLOC_ALIGN_MASK) == 0);
1690     assert(aligned_OK(chunk2mem(p)));
1691     /* ... matching footer field */
1692     assert(next->prev_size == sz);
1693     /* ... and is fully consolidated */
1694     assert(prev_inuse(p));
1695     assert (next == top || inuse(next));
1696 
1697     /* ... and has minimally sane links */
1698     assert(p->fd->bk == p);
1699     assert(p->bk->fd == p);
1700   }
1701   else /* markers are always of size SIZE_SZ */
1702     assert(sz == SIZE_SZ);
1703 }
1704 
1705 #if __STD_C
1706 static void do_check_inuse_chunk(mchunkptr p)
1707 #else
1708 static void do_check_inuse_chunk(p) mchunkptr p;
1709 #endif
1710 {
1711   mchunkptr next = next_chunk(p);
1712   do_check_chunk(p);
1713 
1714   /* Check whether it claims to be in use ... */
1715   assert(inuse(p));
1716 
1717   /* ... and is surrounded by OK chunks.
1718     Since more things can be checked with free chunks than inuse ones,
1719     if an inuse chunk borders them and debug is on, it's worth doing them.
1720   */
1721   if (!prev_inuse(p))
1722   {
1723     mchunkptr prv = prev_chunk(p);
1724     assert(next_chunk(prv) == p);
1725     do_check_free_chunk(prv);
1726   }
1727   if (next == top)
1728   {
1729     assert(prev_inuse(next));
1730     assert(chunksize(next) >= MINSIZE);
1731   }
1732   else if (!inuse(next))
1733     do_check_free_chunk(next);
1734 
1735 }
1736 
1737 #if __STD_C
1738 static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
1739 #else
1740 static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
1741 #endif
1742 {
1743 #if 0	/* causes warnings because assert() is off */
1744   INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
1745   long room = sz - s;
1746 #endif	/* 0 */
1747 
1748   do_check_inuse_chunk(p);
1749 
1750   /* Legal size ... */
1751   assert((long)sz >= (long)MINSIZE);
1752   assert((sz & MALLOC_ALIGN_MASK) == 0);
1753   assert(room >= 0);
1754   assert(room < (long)MINSIZE);
1755 
1756   /* ... and alignment */
1757   assert(aligned_OK(chunk2mem(p)));
1758 
1759 
1760   /* ... and was allocated at front of an available chunk */
1761   assert(prev_inuse(p));
1762 
1763 }
1764 
1765 
1766 #define check_free_chunk(P)  do_check_free_chunk(P)
1767 #define check_inuse_chunk(P) do_check_inuse_chunk(P)
1768 #define check_chunk(P) do_check_chunk(P)
1769 #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
1770 #else
1771 #define check_free_chunk(P)
1772 #define check_inuse_chunk(P)
1773 #define check_chunk(P)
1774 #define check_malloced_chunk(P,N)
1775 #endif
1776 
1777 
1778 
1779 /*
1780   Macro-based internal utilities
1781 */
1782 
1783 
1784 /*
1785   Linking chunks in bin lists.
1786   Call these only with variables, not arbitrary expressions, as arguments.
1787 */
1788 
1789 /*
1790   Place chunk p of size s in its bin, in size order,
1791   putting it ahead of others of same size.
1792 */
1793 
1794 
1795 #define frontlink(P, S, IDX, BK, FD)                                          \
1796 {                                                                             \
1797   if (S < MAX_SMALLBIN_SIZE)                                                  \
1798   {                                                                           \
1799     IDX = smallbin_index(S);                                                  \
1800     mark_binblock(IDX);                                                       \
1801     BK = bin_at(IDX);                                                         \
1802     FD = BK->fd;                                                              \
1803     P->bk = BK;                                                               \
1804     P->fd = FD;                                                               \
1805     FD->bk = BK->fd = P;                                                      \
1806   }                                                                           \
1807   else                                                                        \
1808   {                                                                           \
1809     IDX = bin_index(S);                                                       \
1810     BK = bin_at(IDX);                                                         \
1811     FD = BK->fd;                                                              \
1812     if (FD == BK) mark_binblock(IDX);                                         \
1813     else                                                                      \
1814     {                                                                         \
1815       while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
1816       BK = FD->bk;                                                            \
1817     }                                                                         \
1818     P->bk = BK;                                                               \
1819     P->fd = FD;                                                               \
1820     FD->bk = BK->fd = P;                                                      \
1821   }                                                                           \
1822 }
1823 
1824 
1825 /* take a chunk off a list */
1826 
1827 #define unlink(P, BK, FD)                                                     \
1828 {                                                                             \
1829   BK = P->bk;                                                                 \
1830   FD = P->fd;                                                                 \
1831   FD->bk = BK;                                                                \
1832   BK->fd = FD;                                                                \
1833 }                                                                             \
1834 
1835 /* Place p as the last remainder */
1836 
1837 #define link_last_remainder(P)                                                \
1838 {                                                                             \
1839   last_remainder->fd = last_remainder->bk =  P;                               \
1840   P->fd = P->bk = last_remainder;                                             \
1841 }
1842 
1843 /* Clear the last_remainder bin */
1844 
1845 #define clear_last_remainder \
1846   (last_remainder->fd = last_remainder->bk = last_remainder)
1847 
1848 
1849 
1850 
1851 
1852 /* Routines dealing with mmap(). */
1853 
1854 #if HAVE_MMAP
1855 
1856 #if __STD_C
1857 static mchunkptr mmap_chunk(size_t size)
1858 #else
1859 static mchunkptr mmap_chunk(size) size_t size;
1860 #endif
1861 {
1862   size_t page_mask = malloc_getpagesize - 1;
1863   mchunkptr p;
1864 
1865 #ifndef MAP_ANONYMOUS
1866   static int fd = -1;
1867 #endif
1868 
1869   if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
1870 
1871   /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1872    * there is no following chunk whose prev_size field could be used.
1873    */
1874   size = (size + SIZE_SZ + page_mask) & ~page_mask;
1875 
1876 #ifdef MAP_ANONYMOUS
1877   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1878 		      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1879 #else /* !MAP_ANONYMOUS */
1880   if (fd < 0)
1881   {
1882     fd = open("/dev/zero", O_RDWR);
1883     if(fd < 0) return 0;
1884   }
1885   p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1886 #endif
1887 
1888   if(p == (mchunkptr)-1) return 0;
1889 
1890   n_mmaps++;
1891   if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1892 
1893   /* We demand that eight bytes into a page must be 8-byte aligned. */
1894   assert(aligned_OK(chunk2mem(p)));
1895 
1896   /* The offset to the start of the mmapped region is stored
1897    * in the prev_size field of the chunk; normally it is zero,
1898    * but that can be changed in memalign().
1899    */
1900   p->prev_size = 0;
1901   set_head(p, size|IS_MMAPPED);
1902 
1903   mmapped_mem += size;
1904   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1905     max_mmapped_mem = mmapped_mem;
1906   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1907     max_total_mem = mmapped_mem + sbrked_mem;
1908   return p;
1909 }
1910 
1911 #if __STD_C
1912 static void munmap_chunk(mchunkptr p)
1913 #else
1914 static void munmap_chunk(p) mchunkptr p;
1915 #endif
1916 {
1917   INTERNAL_SIZE_T size = chunksize(p);
1918   int ret;
1919 
1920   assert (chunk_is_mmapped(p));
1921   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1922   assert((n_mmaps > 0));
1923   assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1924 
1925   n_mmaps--;
1926   mmapped_mem -= (size + p->prev_size);
1927 
1928   ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1929 
1930   /* munmap returns non-zero on failure */
1931   assert(ret == 0);
1932 }
1933 
1934 #if HAVE_MREMAP
1935 
1936 #if __STD_C
1937 static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1938 #else
1939 static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1940 #endif
1941 {
1942   size_t page_mask = malloc_getpagesize - 1;
1943   INTERNAL_SIZE_T offset = p->prev_size;
1944   INTERNAL_SIZE_T size = chunksize(p);
1945   char *cp;
1946 
1947   assert (chunk_is_mmapped(p));
1948   assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1949   assert((n_mmaps > 0));
1950   assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1951 
1952   /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1953   new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1954 
1955   cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1956 
1957   if (cp == (char *)-1) return 0;
1958 
1959   p = (mchunkptr)(cp + offset);
1960 
1961   assert(aligned_OK(chunk2mem(p)));
1962 
1963   assert((p->prev_size == offset));
1964   set_head(p, (new_size - offset)|IS_MMAPPED);
1965 
1966   mmapped_mem -= size + offset;
1967   mmapped_mem += new_size;
1968   if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1969     max_mmapped_mem = mmapped_mem;
1970   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1971     max_total_mem = mmapped_mem + sbrked_mem;
1972   return p;
1973 }
1974 
1975 #endif /* HAVE_MREMAP */
1976 
1977 #endif /* HAVE_MMAP */
1978 
1979 
1980 
1981 
1982 /*
1983   Extend the top-most chunk by obtaining memory from system.
1984   Main interface to sbrk (but see also malloc_trim).
1985 */
1986 
1987 #if __STD_C
1988 static void malloc_extend_top(INTERNAL_SIZE_T nb)
1989 #else
1990 static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1991 #endif
1992 {
1993   char*     brk;                  /* return value from sbrk */
1994   INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1995   INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
1996   char*     new_brk;              /* return of 2nd sbrk call */
1997   INTERNAL_SIZE_T top_size;       /* new size of top chunk */
1998 
1999   mchunkptr old_top     = top;  /* Record state of old top */
2000   INTERNAL_SIZE_T old_top_size = chunksize(old_top);
2001   char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));
2002 
2003   /* Pad request with top_pad plus minimal overhead */
2004 
2005   INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
2006   unsigned long pagesz    = malloc_getpagesize;
2007 
2008   /* If not the first time through, round to preserve page boundary */
2009   /* Otherwise, we need to correct to a page size below anyway. */
2010   /* (We also correct below if an intervening foreign sbrk call.) */
2011 
2012   if (sbrk_base != (char*)(-1))
2013     sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
2014 
2015   brk = (char*)(MORECORE (sbrk_size));
2016 
2017   /* Fail if sbrk failed or if a foreign sbrk call killed our space */
2018   if (brk == (char*)(MORECORE_FAILURE) ||
2019       (brk < old_end && old_top != initial_top))
2020     return;
2021 
2022   sbrked_mem += sbrk_size;
2023 
2024   if (brk == old_end) /* can just add bytes to current top */
2025   {
2026     top_size = sbrk_size + old_top_size;
2027     set_head(top, top_size | PREV_INUSE);
2028   }
2029   else
2030   {
2031     if (sbrk_base == (char*)(-1))  /* First time through. Record base */
2032       sbrk_base = brk;
2033     else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
2034       sbrked_mem += brk - (char*)old_end;
2035 
2036     /* Guarantee alignment of first new chunk made from this space */
2037     front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
2038     if (front_misalign > 0)
2039     {
2040       correction = (MALLOC_ALIGNMENT) - front_misalign;
2041       brk += correction;
2042     }
2043     else
2044       correction = 0;
2045 
2046     /* Guarantee the next brk will be at a page boundary */
2047 
2048     correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
2049 		   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
2050 
2051     /* Allocate correction */
2052     new_brk = (char*)(MORECORE (correction));
2053     if (new_brk == (char*)(MORECORE_FAILURE)) return;
2054 
2055     sbrked_mem += correction;
2056 
2057     top = (mchunkptr)brk;
2058     top_size = new_brk - brk + correction;
2059     set_head(top, top_size | PREV_INUSE);
2060 
2061     if (old_top != initial_top)
2062     {
2063 
2064       /* There must have been an intervening foreign sbrk call. */
2065       /* A double fencepost is necessary to prevent consolidation */
2066 
2067       /* If not enough space to do this, then user did something very wrong */
2068       if (old_top_size < MINSIZE)
2069       {
2070 	set_head(top, PREV_INUSE); /* will force null return from malloc */
2071 	return;
2072       }
2073 
2074       /* Also keep size a multiple of MALLOC_ALIGNMENT */
2075       old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
2076       set_head_size(old_top, old_top_size);
2077       chunk_at_offset(old_top, old_top_size          )->size =
2078 	SIZE_SZ|PREV_INUSE;
2079       chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
2080 	SIZE_SZ|PREV_INUSE;
2081       /* If possible, release the rest. */
2082       if (old_top_size >= MINSIZE)
2083 	fREe(chunk2mem(old_top));
2084     }
2085   }
2086 
2087   if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
2088     max_sbrked_mem = sbrked_mem;
2089   if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
2090     max_total_mem = mmapped_mem + sbrked_mem;
2091 
2092   /* We always land on a page boundary */
2093   assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
2094 }
2095 
2096 
2097 
2098 
2099 /* Main public routines */
2100 
2101 
2102 /*
2103   Malloc Algorthim:
2104 
2105     The requested size is first converted into a usable form, `nb'.
2106     This currently means to add 4 bytes overhead plus possibly more to
2107     obtain 8-byte alignment and/or to obtain a size of at least
2108     MINSIZE (currently 16 bytes), the smallest allocatable size.
2109     (All fits are considered `exact' if they are within MINSIZE bytes.)
2110 
2111     From there, the first successful of the following steps is taken:
2112 
2113       1. The bin corresponding to the request size is scanned, and if
2114 	 a chunk of exactly the right size is found, it is taken.
2115 
2116       2. The most recently remaindered chunk is used if it is big
2117 	 enough.  This is a form of (roving) first fit, used only in
2118 	 the absence of exact fits. Runs of consecutive requests use
2119 	 the remainder of the chunk used for the previous such request
2120 	 whenever possible. This limited use of a first-fit style
2121 	 allocation strategy tends to give contiguous chunks
2122 	 coextensive lifetimes, which improves locality and can reduce
2123 	 fragmentation in the long run.
2124 
2125       3. Other bins are scanned in increasing size order, using a
2126 	 chunk big enough to fulfill the request, and splitting off
2127 	 any remainder.  This search is strictly by best-fit; i.e.,
2128 	 the smallest (with ties going to approximately the least
2129 	 recently used) chunk that fits is selected.
2130 
2131       4. If large enough, the chunk bordering the end of memory
2132 	 (`top') is split off. (This use of `top' is in accord with
2133 	 the best-fit search rule.  In effect, `top' is treated as
2134 	 larger (and thus less well fitting) than any other available
2135 	 chunk since it can be extended to be as large as necessary
2136 	 (up to system limitations).
2137 
2138       5. If the request size meets the mmap threshold and the
2139 	 system supports mmap, and there are few enough currently
2140 	 allocated mmapped regions, and a call to mmap succeeds,
2141 	 the request is allocated via direct memory mapping.
2142 
2143       6. Otherwise, the top of memory is extended by
2144 	 obtaining more space from the system (normally using sbrk,
2145 	 but definable to anything else via the MORECORE macro).
2146 	 Memory is gathered from the system (in system page-sized
2147 	 units) in a way that allows chunks obtained across different
2148 	 sbrk calls to be consolidated, but does not require
2149 	 contiguous memory. Thus, it should be safe to intersperse
2150 	 mallocs with other sbrk calls.
2151 
2152 
2153       All allocations are made from the the `lowest' part of any found
2154       chunk. (The implementation invariant is that prev_inuse is
2155       always true of any allocated chunk; i.e., that each allocated
2156       chunk borders either a previously allocated and still in-use chunk,
2157       or the base of its memory arena.)
2158 
2159 */
2160 
2161 #if __STD_C
2162 Void_t* mALLOc(size_t bytes)
2163 #else
2164 Void_t* mALLOc(bytes) size_t bytes;
2165 #endif
2166 {
2167   mchunkptr victim;                  /* inspected/selected chunk */
2168   INTERNAL_SIZE_T victim_size;       /* its size */
2169   int       idx;                     /* index for bin traversal */
2170   mbinptr   bin;                     /* associated bin */
2171   mchunkptr remainder;               /* remainder from a split */
2172   long      remainder_size;          /* its size */
2173   int       remainder_index;         /* its bin index */
2174   unsigned long block;               /* block traverser bit */
2175   int       startidx;                /* first bin of a traversed block */
2176   mchunkptr fwd;                     /* misc temp for linking */
2177   mchunkptr bck;                     /* misc temp for linking */
2178   mbinptr q;                         /* misc temp */
2179 
2180   INTERNAL_SIZE_T nb;
2181 
2182   /* check if mem_malloc_init() was run */
2183   if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
2184     /* not initialized yet */
2185     return 0;
2186   }
2187 
2188   if ((long)bytes < 0) return 0;
2189 
2190   nb = request2size(bytes);  /* padded request size; */
2191 
2192   /* Check for exact match in a bin */
2193 
2194   if (is_small_request(nb))  /* Faster version for small requests */
2195   {
2196     idx = smallbin_index(nb);
2197 
2198     /* No traversal or size check necessary for small bins.  */
2199 
2200     q = bin_at(idx);
2201     victim = last(q);
2202 
2203     /* Also scan the next one, since it would have a remainder < MINSIZE */
2204     if (victim == q)
2205     {
2206       q = next_bin(q);
2207       victim = last(q);
2208     }
2209     if (victim != q)
2210     {
2211       victim_size = chunksize(victim);
2212       unlink(victim, bck, fwd);
2213       set_inuse_bit_at_offset(victim, victim_size);
2214       check_malloced_chunk(victim, nb);
2215       return chunk2mem(victim);
2216     }
2217 
2218     idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
2219 
2220   }
2221   else
2222   {
2223     idx = bin_index(nb);
2224     bin = bin_at(idx);
2225 
2226     for (victim = last(bin); victim != bin; victim = victim->bk)
2227     {
2228       victim_size = chunksize(victim);
2229       remainder_size = victim_size - nb;
2230 
2231       if (remainder_size >= (long)MINSIZE) /* too big */
2232       {
2233 	--idx; /* adjust to rescan below after checking last remainder */
2234 	break;
2235       }
2236 
2237       else if (remainder_size >= 0) /* exact fit */
2238       {
2239 	unlink(victim, bck, fwd);
2240 	set_inuse_bit_at_offset(victim, victim_size);
2241 	check_malloced_chunk(victim, nb);
2242 	return chunk2mem(victim);
2243       }
2244     }
2245 
2246     ++idx;
2247 
2248   }
2249 
2250   /* Try to use the last split-off remainder */
2251 
2252   if ( (victim = last_remainder->fd) != last_remainder)
2253   {
2254     victim_size = chunksize(victim);
2255     remainder_size = victim_size - nb;
2256 
2257     if (remainder_size >= (long)MINSIZE) /* re-split */
2258     {
2259       remainder = chunk_at_offset(victim, nb);
2260       set_head(victim, nb | PREV_INUSE);
2261       link_last_remainder(remainder);
2262       set_head(remainder, remainder_size | PREV_INUSE);
2263       set_foot(remainder, remainder_size);
2264       check_malloced_chunk(victim, nb);
2265       return chunk2mem(victim);
2266     }
2267 
2268     clear_last_remainder;
2269 
2270     if (remainder_size >= 0)  /* exhaust */
2271     {
2272       set_inuse_bit_at_offset(victim, victim_size);
2273       check_malloced_chunk(victim, nb);
2274       return chunk2mem(victim);
2275     }
2276 
2277     /* Else place in bin */
2278 
2279     frontlink(victim, victim_size, remainder_index, bck, fwd);
2280   }
2281 
2282   /*
2283      If there are any possibly nonempty big-enough blocks,
2284      search for best fitting chunk by scanning bins in blockwidth units.
2285   */
2286 
2287   if ( (block = idx2binblock(idx)) <= binblocks_r)
2288   {
2289 
2290     /* Get to the first marked block */
2291 
2292     if ( (block & binblocks_r) == 0)
2293     {
2294       /* force to an even block boundary */
2295       idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
2296       block <<= 1;
2297       while ((block & binblocks_r) == 0)
2298       {
2299 	idx += BINBLOCKWIDTH;
2300 	block <<= 1;
2301       }
2302     }
2303 
2304     /* For each possibly nonempty block ... */
2305     for (;;)
2306     {
2307       startidx = idx;          /* (track incomplete blocks) */
2308       q = bin = bin_at(idx);
2309 
2310       /* For each bin in this block ... */
2311       do
2312       {
2313 	/* Find and use first big enough chunk ... */
2314 
2315 	for (victim = last(bin); victim != bin; victim = victim->bk)
2316 	{
2317 	  victim_size = chunksize(victim);
2318 	  remainder_size = victim_size - nb;
2319 
2320 	  if (remainder_size >= (long)MINSIZE) /* split */
2321 	  {
2322 	    remainder = chunk_at_offset(victim, nb);
2323 	    set_head(victim, nb | PREV_INUSE);
2324 	    unlink(victim, bck, fwd);
2325 	    link_last_remainder(remainder);
2326 	    set_head(remainder, remainder_size | PREV_INUSE);
2327 	    set_foot(remainder, remainder_size);
2328 	    check_malloced_chunk(victim, nb);
2329 	    return chunk2mem(victim);
2330 	  }
2331 
2332 	  else if (remainder_size >= 0)  /* take */
2333 	  {
2334 	    set_inuse_bit_at_offset(victim, victim_size);
2335 	    unlink(victim, bck, fwd);
2336 	    check_malloced_chunk(victim, nb);
2337 	    return chunk2mem(victim);
2338 	  }
2339 
2340 	}
2341 
2342        bin = next_bin(bin);
2343 
2344       } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
2345 
2346       /* Clear out the block bit. */
2347 
2348       do   /* Possibly backtrack to try to clear a partial block */
2349       {
2350 	if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
2351 	{
2352 	  av_[1] = (mbinptr)(binblocks_r & ~block);
2353 	  break;
2354 	}
2355 	--startidx;
2356        q = prev_bin(q);
2357       } while (first(q) == q);
2358 
2359       /* Get to the next possibly nonempty block */
2360 
2361       if ( (block <<= 1) <= binblocks_r && (block != 0) )
2362       {
2363 	while ((block & binblocks_r) == 0)
2364 	{
2365 	  idx += BINBLOCKWIDTH;
2366 	  block <<= 1;
2367 	}
2368       }
2369       else
2370 	break;
2371     }
2372   }
2373 
2374 
2375   /* Try to use top chunk */
2376 
2377   /* Require that there be a remainder, ensuring top always exists  */
2378   if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2379   {
2380 
2381 #if HAVE_MMAP
2382     /* If big and would otherwise need to extend, try to use mmap instead */
2383     if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
2384 	(victim = mmap_chunk(nb)) != 0)
2385       return chunk2mem(victim);
2386 #endif
2387 
2388     /* Try to extend */
2389     malloc_extend_top(nb);
2390     if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
2391       return 0; /* propagate failure */
2392   }
2393 
2394   victim = top;
2395   set_head(victim, nb | PREV_INUSE);
2396   top = chunk_at_offset(victim, nb);
2397   set_head(top, remainder_size | PREV_INUSE);
2398   check_malloced_chunk(victim, nb);
2399   return chunk2mem(victim);
2400 
2401 }
2402 
2403 
2404 
2405 
2406 /*
2407 
2408   free() algorithm :
2409 
2410     cases:
2411 
2412        1. free(0) has no effect.
2413 
2414        2. If the chunk was allocated via mmap, it is release via munmap().
2415 
2416        3. If a returned chunk borders the current high end of memory,
2417 	  it is consolidated into the top, and if the total unused
2418 	  topmost memory exceeds the trim threshold, malloc_trim is
2419 	  called.
2420 
2421        4. Other chunks are consolidated as they arrive, and
2422 	  placed in corresponding bins. (This includes the case of
2423 	  consolidating with the current `last_remainder').
2424 
2425 */
2426 
2427 
2428 #if __STD_C
2429 void fREe(Void_t* mem)
2430 #else
2431 void fREe(mem) Void_t* mem;
2432 #endif
2433 {
2434   mchunkptr p;         /* chunk corresponding to mem */
2435   INTERNAL_SIZE_T hd;  /* its head field */
2436   INTERNAL_SIZE_T sz;  /* its size */
2437   int       idx;       /* its bin index */
2438   mchunkptr next;      /* next contiguous chunk */
2439   INTERNAL_SIZE_T nextsz; /* its size */
2440   INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
2441   mchunkptr bck;       /* misc temp for linking */
2442   mchunkptr fwd;       /* misc temp for linking */
2443   int       islr;      /* track whether merging with last_remainder */
2444 
2445   if (mem == 0)                              /* free(0) has no effect */
2446     return;
2447 
2448   p = mem2chunk(mem);
2449   hd = p->size;
2450 
2451 #if HAVE_MMAP
2452   if (hd & IS_MMAPPED)                       /* release mmapped memory. */
2453   {
2454     munmap_chunk(p);
2455     return;
2456   }
2457 #endif
2458 
2459   check_inuse_chunk(p);
2460 
2461   sz = hd & ~PREV_INUSE;
2462   next = chunk_at_offset(p, sz);
2463   nextsz = chunksize(next);
2464 
2465   if (next == top)                            /* merge with top */
2466   {
2467     sz += nextsz;
2468 
2469     if (!(hd & PREV_INUSE))                    /* consolidate backward */
2470     {
2471       prevsz = p->prev_size;
2472       p = chunk_at_offset(p, -((long) prevsz));
2473       sz += prevsz;
2474       unlink(p, bck, fwd);
2475     }
2476 
2477     set_head(p, sz | PREV_INUSE);
2478     top = p;
2479     if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
2480       malloc_trim(top_pad);
2481     return;
2482   }
2483 
2484   set_head(next, nextsz);                    /* clear inuse bit */
2485 
2486   islr = 0;
2487 
2488   if (!(hd & PREV_INUSE))                    /* consolidate backward */
2489   {
2490     prevsz = p->prev_size;
2491     p = chunk_at_offset(p, -((long) prevsz));
2492     sz += prevsz;
2493 
2494     if (p->fd == last_remainder)             /* keep as last_remainder */
2495       islr = 1;
2496     else
2497       unlink(p, bck, fwd);
2498   }
2499 
2500   if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
2501   {
2502     sz += nextsz;
2503 
2504     if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
2505     {
2506       islr = 1;
2507       link_last_remainder(p);
2508     }
2509     else
2510       unlink(next, bck, fwd);
2511   }
2512 
2513 
2514   set_head(p, sz | PREV_INUSE);
2515   set_foot(p, sz);
2516   if (!islr)
2517     frontlink(p, sz, idx, bck, fwd);
2518 }
2519 
2520 
2521 
2522 
2523 
2524 /*
2525 
2526   Realloc algorithm:
2527 
2528     Chunks that were obtained via mmap cannot be extended or shrunk
2529     unless HAVE_MREMAP is defined, in which case mremap is used.
2530     Otherwise, if their reallocation is for additional space, they are
2531     copied.  If for less, they are just left alone.
2532 
2533     Otherwise, if the reallocation is for additional space, and the
2534     chunk can be extended, it is, else a malloc-copy-free sequence is
2535     taken.  There are several different ways that a chunk could be
2536     extended. All are tried:
2537 
2538        * Extending forward into following adjacent free chunk.
2539        * Shifting backwards, joining preceding adjacent space
2540        * Both shifting backwards and extending forward.
2541        * Extending into newly sbrked space
2542 
2543     Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
2544     size argument of zero (re)allocates a minimum-sized chunk.
2545 
2546     If the reallocation is for less space, and the new request is for
2547     a `small' (<512 bytes) size, then the newly unused space is lopped
2548     off and freed.
2549 
2550     The old unix realloc convention of allowing the last-free'd chunk
2551     to be used as an argument to realloc is no longer supported.
2552     I don't know of any programs still relying on this feature,
2553     and allowing it would also allow too many other incorrect
2554     usages of realloc to be sensible.
2555 
2556 
2557 */
2558 
2559 
2560 #if __STD_C
2561 Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
2562 #else
2563 Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
2564 #endif
2565 {
2566   INTERNAL_SIZE_T    nb;      /* padded request size */
2567 
2568   mchunkptr oldp;             /* chunk corresponding to oldmem */
2569   INTERNAL_SIZE_T    oldsize; /* its size */
2570 
2571   mchunkptr newp;             /* chunk to return */
2572   INTERNAL_SIZE_T    newsize; /* its size */
2573   Void_t*   newmem;           /* corresponding user mem */
2574 
2575   mchunkptr next;             /* next contiguous chunk after oldp */
2576   INTERNAL_SIZE_T  nextsize;  /* its size */
2577 
2578   mchunkptr prev;             /* previous contiguous chunk before oldp */
2579   INTERNAL_SIZE_T  prevsize;  /* its size */
2580 
2581   mchunkptr remainder;        /* holds split off extra space from newp */
2582   INTERNAL_SIZE_T  remainder_size;   /* its size */
2583 
2584   mchunkptr bck;              /* misc temp for linking */
2585   mchunkptr fwd;              /* misc temp for linking */
2586 
2587 #ifdef REALLOC_ZERO_BYTES_FREES
2588   if (bytes == 0) { fREe(oldmem); return 0; }
2589 #endif
2590 
2591   if ((long)bytes < 0) return 0;
2592 
2593   /* realloc of null is supposed to be same as malloc */
2594   if (oldmem == 0) return mALLOc(bytes);
2595 
2596   newp    = oldp    = mem2chunk(oldmem);
2597   newsize = oldsize = chunksize(oldp);
2598 
2599 
2600   nb = request2size(bytes);
2601 
2602 #if HAVE_MMAP
2603   if (chunk_is_mmapped(oldp))
2604   {
2605 #if HAVE_MREMAP
2606     newp = mremap_chunk(oldp, nb);
2607     if(newp) return chunk2mem(newp);
2608 #endif
2609     /* Note the extra SIZE_SZ overhead. */
2610     if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
2611     /* Must alloc, copy, free. */
2612     newmem = mALLOc(bytes);
2613     if (newmem == 0) return 0; /* propagate failure */
2614     MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
2615     munmap_chunk(oldp);
2616     return newmem;
2617   }
2618 #endif
2619 
2620   check_inuse_chunk(oldp);
2621 
2622   if ((long)(oldsize) < (long)(nb))
2623   {
2624 
2625     /* Try expanding forward */
2626 
2627     next = chunk_at_offset(oldp, oldsize);
2628     if (next == top || !inuse(next))
2629     {
2630       nextsize = chunksize(next);
2631 
2632       /* Forward into top only if a remainder */
2633       if (next == top)
2634       {
2635 	if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
2636 	{
2637 	  newsize += nextsize;
2638 	  top = chunk_at_offset(oldp, nb);
2639 	  set_head(top, (newsize - nb) | PREV_INUSE);
2640 	  set_head_size(oldp, nb);
2641 	  return chunk2mem(oldp);
2642 	}
2643       }
2644 
2645       /* Forward into next chunk */
2646       else if (((long)(nextsize + newsize) >= (long)(nb)))
2647       {
2648 	unlink(next, bck, fwd);
2649 	newsize  += nextsize;
2650 	goto split;
2651       }
2652     }
2653     else
2654     {
2655       next = 0;
2656       nextsize = 0;
2657     }
2658 
2659     /* Try shifting backwards. */
2660 
2661     if (!prev_inuse(oldp))
2662     {
2663       prev = prev_chunk(oldp);
2664       prevsize = chunksize(prev);
2665 
2666       /* try forward + backward first to save a later consolidation */
2667 
2668       if (next != 0)
2669       {
2670 	/* into top */
2671 	if (next == top)
2672 	{
2673 	  if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
2674 	  {
2675 	    unlink(prev, bck, fwd);
2676 	    newp = prev;
2677 	    newsize += prevsize + nextsize;
2678 	    newmem = chunk2mem(newp);
2679 	    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2680 	    top = chunk_at_offset(newp, nb);
2681 	    set_head(top, (newsize - nb) | PREV_INUSE);
2682 	    set_head_size(newp, nb);
2683 	    return newmem;
2684 	  }
2685 	}
2686 
2687 	/* into next chunk */
2688 	else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
2689 	{
2690 	  unlink(next, bck, fwd);
2691 	  unlink(prev, bck, fwd);
2692 	  newp = prev;
2693 	  newsize += nextsize + prevsize;
2694 	  newmem = chunk2mem(newp);
2695 	  MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2696 	  goto split;
2697 	}
2698       }
2699 
2700       /* backward only */
2701       if (prev != 0 && (long)(prevsize + newsize) >= (long)nb)
2702       {
2703 	unlink(prev, bck, fwd);
2704 	newp = prev;
2705 	newsize += prevsize;
2706 	newmem = chunk2mem(newp);
2707 	MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2708 	goto split;
2709       }
2710     }
2711 
2712     /* Must allocate */
2713 
2714     newmem = mALLOc (bytes);
2715 
2716     if (newmem == 0)  /* propagate failure */
2717       return 0;
2718 
2719     /* Avoid copy if newp is next chunk after oldp. */
2720     /* (This can only happen when new chunk is sbrk'ed.) */
2721 
2722     if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
2723     {
2724       newsize += chunksize(newp);
2725       newp = oldp;
2726       goto split;
2727     }
2728 
2729     /* Otherwise copy, free, and exit */
2730     MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
2731     fREe(oldmem);
2732     return newmem;
2733   }
2734 
2735 
2736  split:  /* split off extra room in old or expanded chunk */
2737 
2738   if (newsize - nb >= MINSIZE) /* split off remainder */
2739   {
2740     remainder = chunk_at_offset(newp, nb);
2741     remainder_size = newsize - nb;
2742     set_head_size(newp, nb);
2743     set_head(remainder, remainder_size | PREV_INUSE);
2744     set_inuse_bit_at_offset(remainder, remainder_size);
2745     fREe(chunk2mem(remainder)); /* let free() deal with it */
2746   }
2747   else
2748   {
2749     set_head_size(newp, newsize);
2750     set_inuse_bit_at_offset(newp, newsize);
2751   }
2752 
2753   check_inuse_chunk(newp);
2754   return chunk2mem(newp);
2755 }
2756 
2757 
2758 
2759 
2760 /*
2761 
2762   memalign algorithm:
2763 
2764     memalign requests more than enough space from malloc, finds a spot
2765     within that chunk that meets the alignment request, and then
2766     possibly frees the leading and trailing space.
2767 
2768     The alignment argument must be a power of two. This property is not
2769     checked by memalign, so misuse may result in random runtime errors.
2770 
2771     8-byte alignment is guaranteed by normal malloc calls, so don't
2772     bother calling memalign with an argument of 8 or less.
2773 
2774     Overreliance on memalign is a sure way to fragment space.
2775 
2776 */
2777 
2778 
2779 #if __STD_C
2780 Void_t* mEMALIGn(size_t alignment, size_t bytes)
2781 #else
2782 Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
2783 #endif
2784 {
2785   INTERNAL_SIZE_T    nb;      /* padded  request size */
2786   char*     m;                /* memory returned by malloc call */
2787   mchunkptr p;                /* corresponding chunk */
2788   char*     brk;              /* alignment point within p */
2789   mchunkptr newp;             /* chunk to return */
2790   INTERNAL_SIZE_T  newsize;   /* its size */
2791   INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
2792   mchunkptr remainder;        /* spare room at end to split off */
2793   long      remainder_size;   /* its size */
2794 
2795   if ((long)bytes < 0) return 0;
2796 
2797   /* If need less alignment than we give anyway, just relay to malloc */
2798 
2799   if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
2800 
2801   /* Otherwise, ensure that it is at least a minimum chunk size */
2802 
2803   if (alignment <  MINSIZE) alignment = MINSIZE;
2804 
2805   /* Call malloc with worst case padding to hit alignment. */
2806 
2807   nb = request2size(bytes);
2808   m  = (char*)(mALLOc(nb + alignment + MINSIZE));
2809 
2810   if (m == 0) return 0; /* propagate failure */
2811 
2812   p = mem2chunk(m);
2813 
2814   if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2815   {
2816 #if HAVE_MMAP
2817     if(chunk_is_mmapped(p))
2818       return chunk2mem(p); /* nothing more to do */
2819 #endif
2820   }
2821   else /* misaligned */
2822   {
2823     /*
2824       Find an aligned spot inside chunk.
2825       Since we need to give back leading space in a chunk of at
2826       least MINSIZE, if the first calculation places us at
2827       a spot with less than MINSIZE leader, we can move to the
2828       next aligned spot -- we've allocated enough total room so that
2829       this is always possible.
2830     */
2831 
2832     brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2833     if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2834 
2835     newp = (mchunkptr)brk;
2836     leadsize = brk - (char*)(p);
2837     newsize = chunksize(p) - leadsize;
2838 
2839 #if HAVE_MMAP
2840     if(chunk_is_mmapped(p))
2841     {
2842       newp->prev_size = p->prev_size + leadsize;
2843       set_head(newp, newsize|IS_MMAPPED);
2844       return chunk2mem(newp);
2845     }
2846 #endif
2847 
2848     /* give back leader, use the rest */
2849 
2850     set_head(newp, newsize | PREV_INUSE);
2851     set_inuse_bit_at_offset(newp, newsize);
2852     set_head_size(p, leadsize);
2853     fREe(chunk2mem(p));
2854     p = newp;
2855 
2856     assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2857   }
2858 
2859   /* Also give back spare room at the end */
2860 
2861   remainder_size = chunksize(p) - nb;
2862 
2863   if (remainder_size >= (long)MINSIZE)
2864   {
2865     remainder = chunk_at_offset(p, nb);
2866     set_head(remainder, remainder_size | PREV_INUSE);
2867     set_head_size(p, nb);
2868     fREe(chunk2mem(remainder));
2869   }
2870 
2871   check_inuse_chunk(p);
2872   return chunk2mem(p);
2873 
2874 }
2875 
2876 
2877 
2878 
2879 /*
2880     valloc just invokes memalign with alignment argument equal
2881     to the page size of the system (or as near to this as can
2882     be figured out from all the includes/defines above.)
2883 */
2884 
2885 #if __STD_C
2886 Void_t* vALLOc(size_t bytes)
2887 #else
2888 Void_t* vALLOc(bytes) size_t bytes;
2889 #endif
2890 {
2891   return mEMALIGn (malloc_getpagesize, bytes);
2892 }
2893 
2894 /*
2895   pvalloc just invokes valloc for the nearest pagesize
2896   that will accommodate request
2897 */
2898 
2899 
2900 #if __STD_C
2901 Void_t* pvALLOc(size_t bytes)
2902 #else
2903 Void_t* pvALLOc(bytes) size_t bytes;
2904 #endif
2905 {
2906   size_t pagesize = malloc_getpagesize;
2907   return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2908 }
2909 
2910 /*
2911 
2912   calloc calls malloc, then zeroes out the allocated chunk.
2913 
2914 */
2915 
2916 #if __STD_C
2917 Void_t* cALLOc(size_t n, size_t elem_size)
2918 #else
2919 Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
2920 #endif
2921 {
2922   mchunkptr p;
2923   INTERNAL_SIZE_T csz;
2924 
2925   INTERNAL_SIZE_T sz = n * elem_size;
2926 
2927 
2928   /* check if expand_top called, in which case don't need to clear */
2929 #if MORECORE_CLEARS
2930   mchunkptr oldtop = top;
2931   INTERNAL_SIZE_T oldtopsize = chunksize(top);
2932 #endif
2933   Void_t* mem = mALLOc (sz);
2934 
2935   if ((long)n < 0) return 0;
2936 
2937   if (mem == 0)
2938     return 0;
2939   else
2940   {
2941     p = mem2chunk(mem);
2942 
2943     /* Two optional cases in which clearing not necessary */
2944 
2945 
2946 #if HAVE_MMAP
2947     if (chunk_is_mmapped(p)) return mem;
2948 #endif
2949 
2950     csz = chunksize(p);
2951 
2952 #if MORECORE_CLEARS
2953     if (p == oldtop && csz > oldtopsize)
2954     {
2955       /* clear only the bytes from non-freshly-sbrked memory */
2956       csz = oldtopsize;
2957     }
2958 #endif
2959 
2960     MALLOC_ZERO(mem, csz - SIZE_SZ);
2961     return mem;
2962   }
2963 }
2964 
2965 /*
2966 
2967   cfree just calls free. It is needed/defined on some systems
2968   that pair it with calloc, presumably for odd historical reasons.
2969 
2970 */
2971 
2972 #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2973 #if __STD_C
2974 void cfree(Void_t *mem)
2975 #else
2976 void cfree(mem) Void_t *mem;
2977 #endif
2978 {
2979   fREe(mem);
2980 }
2981 #endif
2982 
2983 
2984 
2985 /*
2986 
2987     Malloc_trim gives memory back to the system (via negative
2988     arguments to sbrk) if there is unused memory at the `high' end of
2989     the malloc pool. You can call this after freeing large blocks of
2990     memory to potentially reduce the system-level memory requirements
2991     of a program. However, it cannot guarantee to reduce memory. Under
2992     some allocation patterns, some large free blocks of memory will be
2993     locked between two used chunks, so they cannot be given back to
2994     the system.
2995 
2996     The `pad' argument to malloc_trim represents the amount of free
2997     trailing space to leave untrimmed. If this argument is zero,
2998     only the minimum amount of memory to maintain internal data
2999     structures will be left (one page or less). Non-zero arguments
3000     can be supplied to maintain enough trailing space to service
3001     future expected allocations without having to re-obtain memory
3002     from the system.
3003 
3004     Malloc_trim returns 1 if it actually released any memory, else 0.
3005 
3006 */
3007 
3008 #if __STD_C
3009 int malloc_trim(size_t pad)
3010 #else
3011 int malloc_trim(pad) size_t pad;
3012 #endif
3013 {
3014   long  top_size;        /* Amount of top-most memory */
3015   long  extra;           /* Amount to release */
3016   char* current_brk;     /* address returned by pre-check sbrk call */
3017   char* new_brk;         /* address returned by negative sbrk call */
3018 
3019   unsigned long pagesz = malloc_getpagesize;
3020 
3021   top_size = chunksize(top);
3022   extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3023 
3024   if (extra < (long)pagesz)  /* Not enough memory to release */
3025     return 0;
3026 
3027   else
3028   {
3029     /* Test to make sure no one else called sbrk */
3030     current_brk = (char*)(MORECORE (0));
3031     if (current_brk != (char*)(top) + top_size)
3032       return 0;     /* Apparently we don't own memory; must fail */
3033 
3034     else
3035     {
3036       new_brk = (char*)(MORECORE (-extra));
3037 
3038       if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
3039       {
3040 	/* Try to figure out what we have */
3041 	current_brk = (char*)(MORECORE (0));
3042 	top_size = current_brk - (char*)top;
3043 	if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
3044 	{
3045 	  sbrked_mem = current_brk - sbrk_base;
3046 	  set_head(top, top_size | PREV_INUSE);
3047 	}
3048 	check_chunk(top);
3049 	return 0;
3050       }
3051 
3052       else
3053       {
3054 	/* Success. Adjust top accordingly. */
3055 	set_head(top, (top_size - extra) | PREV_INUSE);
3056 	sbrked_mem -= extra;
3057 	check_chunk(top);
3058 	return 1;
3059       }
3060     }
3061   }
3062 }
3063 
3064 
3065 
3066 /*
3067   malloc_usable_size:
3068 
3069     This routine tells you how many bytes you can actually use in an
3070     allocated chunk, which may be more than you requested (although
3071     often not). You can use this many bytes without worrying about
3072     overwriting other allocated objects. Not a particularly great
3073     programming practice, but still sometimes useful.
3074 
3075 */
3076 
3077 #if __STD_C
3078 size_t malloc_usable_size(Void_t* mem)
3079 #else
3080 size_t malloc_usable_size(mem) Void_t* mem;
3081 #endif
3082 {
3083   mchunkptr p;
3084   if (mem == 0)
3085     return 0;
3086   else
3087   {
3088     p = mem2chunk(mem);
3089     if(!chunk_is_mmapped(p))
3090     {
3091       if (!inuse(p)) return 0;
3092       check_inuse_chunk(p);
3093       return chunksize(p) - SIZE_SZ;
3094     }
3095     return chunksize(p) - 2*SIZE_SZ;
3096   }
3097 }
3098 
3099 
3100 
3101 
3102 /* Utility to update current_mallinfo for malloc_stats and mallinfo() */
3103 
3104 #if 0
3105 static void malloc_update_mallinfo()
3106 {
3107   int i;
3108   mbinptr b;
3109   mchunkptr p;
3110 #ifdef DEBUG
3111   mchunkptr q;
3112 #endif
3113 
3114   INTERNAL_SIZE_T avail = chunksize(top);
3115   int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
3116 
3117   for (i = 1; i < NAV; ++i)
3118   {
3119     b = bin_at(i);
3120     for (p = last(b); p != b; p = p->bk)
3121     {
3122 #ifdef DEBUG
3123       check_free_chunk(p);
3124       for (q = next_chunk(p);
3125 	   q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
3126 	   q = next_chunk(q))
3127 	check_inuse_chunk(q);
3128 #endif
3129       avail += chunksize(p);
3130       navail++;
3131     }
3132   }
3133 
3134   current_mallinfo.ordblks = navail;
3135   current_mallinfo.uordblks = sbrked_mem - avail;
3136   current_mallinfo.fordblks = avail;
3137   current_mallinfo.hblks = n_mmaps;
3138   current_mallinfo.hblkhd = mmapped_mem;
3139   current_mallinfo.keepcost = chunksize(top);
3140 
3141 }
3142 #endif	/* 0 */
3143 
3144 
3145 
3146 /*
3147 
3148   malloc_stats:
3149 
3150     Prints on the amount of space obtain from the system (both
3151     via sbrk and mmap), the maximum amount (which may be more than
3152     current if malloc_trim and/or munmap got called), the maximum
3153     number of simultaneous mmap regions used, and the current number
3154     of bytes allocated via malloc (or realloc, etc) but not yet
3155     freed. (Note that this is the number of bytes allocated, not the
3156     number requested. It will be larger than the number requested
3157     because of alignment and bookkeeping overhead.)
3158 
3159 */
3160 
3161 #if 0
3162 void malloc_stats()
3163 {
3164   malloc_update_mallinfo();
3165   printf("max system bytes = %10u\n",
3166 	  (unsigned int)(max_total_mem));
3167   printf("system bytes     = %10u\n",
3168 	  (unsigned int)(sbrked_mem + mmapped_mem));
3169   printf("in use bytes     = %10u\n",
3170 	  (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
3171 #if HAVE_MMAP
3172   printf("max mmap regions = %10u\n",
3173 	  (unsigned int)max_n_mmaps);
3174 #endif
3175 }
3176 #endif	/* 0 */
3177 
3178 /*
3179   mallinfo returns a copy of updated current mallinfo.
3180 */
3181 
3182 #if 0
3183 struct mallinfo mALLINFo()
3184 {
3185   malloc_update_mallinfo();
3186   return current_mallinfo;
3187 }
3188 #endif	/* 0 */
3189 
3190 
3191 
3192 
3193 /*
3194   mallopt:
3195 
3196     mallopt is the general SVID/XPG interface to tunable parameters.
3197     The format is to provide a (parameter-number, parameter-value) pair.
3198     mallopt then sets the corresponding parameter to the argument
3199     value if it can (i.e., so long as the value is meaningful),
3200     and returns 1 if successful else 0.
3201 
3202     See descriptions of tunable parameters above.
3203 
3204 */
3205 
3206 #if __STD_C
3207 int mALLOPt(int param_number, int value)
3208 #else
3209 int mALLOPt(param_number, value) int param_number; int value;
3210 #endif
3211 {
3212   switch(param_number)
3213   {
3214     case M_TRIM_THRESHOLD:
3215       trim_threshold = value; return 1;
3216     case M_TOP_PAD:
3217       top_pad = value; return 1;
3218     case M_MMAP_THRESHOLD:
3219       mmap_threshold = value; return 1;
3220     case M_MMAP_MAX:
3221 #if HAVE_MMAP
3222       n_mmaps_max = value; return 1;
3223 #else
3224       if (value != 0) return 0; else  n_mmaps_max = value; return 1;
3225 #endif
3226 
3227     default:
3228       return 0;
3229   }
3230 }
3231 
3232 /*
3233 
3234 History:
3235 
3236     V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
3237       * return null for negative arguments
3238       * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
3239 	 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
3240 	  (e.g. WIN32 platforms)
3241 	 * Cleanup up header file inclusion for WIN32 platforms
3242 	 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
3243 	 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
3244 	   memory allocation routines
3245 	 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
3246 	 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
3247 	   usage of 'assert' in non-WIN32 code
3248 	 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
3249 	   avoid infinite loop
3250       * Always call 'fREe()' rather than 'free()'
3251 
3252     V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
3253       * Fixed ordering problem with boundary-stamping
3254 
3255     V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
3256       * Added pvalloc, as recommended by H.J. Liu
3257       * Added 64bit pointer support mainly from Wolfram Gloger
3258       * Added anonymously donated WIN32 sbrk emulation
3259       * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
3260       * malloc_extend_top: fix mask error that caused wastage after
3261 	foreign sbrks
3262       * Add linux mremap support code from HJ Liu
3263 
3264     V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
3265       * Integrated most documentation with the code.
3266       * Add support for mmap, with help from
3267 	Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3268       * Use last_remainder in more cases.
3269       * Pack bins using idea from  colin@nyx10.cs.du.edu
3270       * Use ordered bins instead of best-fit threshhold
3271       * Eliminate block-local decls to simplify tracing and debugging.
3272       * Support another case of realloc via move into top
3273       * Fix error occuring when initial sbrk_base not word-aligned.
3274       * Rely on page size for units instead of SBRK_UNIT to
3275 	avoid surprises about sbrk alignment conventions.
3276       * Add mallinfo, mallopt. Thanks to Raymond Nijssen
3277 	(raymond@es.ele.tue.nl) for the suggestion.
3278       * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
3279       * More precautions for cases where other routines call sbrk,
3280 	courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
3281       * Added macros etc., allowing use in linux libc from
3282 	H.J. Lu (hjl@gnu.ai.mit.edu)
3283       * Inverted this history list
3284 
3285     V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
3286       * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
3287       * Removed all preallocation code since under current scheme
3288 	the work required to undo bad preallocations exceeds
3289 	the work saved in good cases for most test programs.
3290       * No longer use return list or unconsolidated bins since
3291 	no scheme using them consistently outperforms those that don't
3292 	given above changes.
3293       * Use best fit for very large chunks to prevent some worst-cases.
3294       * Added some support for debugging
3295 
3296     V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
3297       * Removed footers when chunks are in use. Thanks to
3298 	Paul Wilson (wilson@cs.texas.edu) for the suggestion.
3299 
3300     V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
3301       * Added malloc_trim, with help from Wolfram Gloger
3302 	(wmglo@Dent.MED.Uni-Muenchen.DE).
3303 
3304     V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
3305 
3306     V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
3307       * realloc: try to expand in both directions
3308       * malloc: swap order of clean-bin strategy;
3309       * realloc: only conditionally expand backwards
3310       * Try not to scavenge used bins
3311       * Use bin counts as a guide to preallocation
3312       * Occasionally bin return list chunks in first scan
3313       * Add a few optimizations from colin@nyx10.cs.du.edu
3314 
3315     V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
3316       * faster bin computation & slightly different binning
3317       * merged all consolidations to one part of malloc proper
3318 	 (eliminating old malloc_find_space & malloc_clean_bin)
3319       * Scan 2 returns chunks (not just 1)
3320       * Propagate failure in realloc if malloc returns 0
3321       * Add stuff to allow compilation on non-ANSI compilers
3322 	  from kpv@research.att.com
3323 
3324     V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
3325       * removed potential for odd address access in prev_chunk
3326       * removed dependency on getpagesize.h
3327       * misc cosmetics and a bit more internal documentation
3328       * anticosmetics: mangled names in macros to evade debugger strangeness
3329       * tested on sparc, hp-700, dec-mips, rs6000
3330 	  with gcc & native cc (hp, dec only) allowing
3331 	  Detlefs & Zorn comparison study (in SIGPLAN Notices.)
3332 
3333     Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
3334       * Based loosely on libg++-1.2X malloc. (It retains some of the overall
3335 	 structure of old version,  but most details differ.)
3336 
3337 */
3338