xref: /openbmc/u-boot/common/Kconfig (revision cd4b0c5f)
1menu "Boot timing"
2
3config BOOTSTAGE
4	bool "Boot timing and reporting"
5	help
6	  Enable recording of boot time while booting. To use it, insert
7	  calls to bootstage_mark() with a suitable BOOTSTAGE_ID from
8	  bootstage.h. Only a single entry is recorded for each ID. You can
9	  give the entry a name with bootstage_mark_name(). You can also
10	  record elapsed time in a particular stage using bootstage_start()
11	  before starting and bootstage_accum() when finished. Bootstage will
12	  add up all the accumated time and report it.
13
14	  Normally, IDs are defined in bootstage.h but a small number of
15	  additional 'user' IDs can be used but passing BOOTSTAGE_ID_ALLOC
16	  as the ID.
17
18	  Calls to show_boot_progress() wil also result in log entries but
19	  these will not have names.
20
21config BOOTSTAGE_REPORT
22	bool "Display a detailed boot timing report before booting the OS"
23	depends on BOOTSTAGE
24	help
25	  Enable output of a boot time report just before the OS is booted.
26	  This shows how long it took U-Boot to go through each stage of the
27	  boot process. The report looks something like this:
28
29		Timer summary in microseconds:
30		       Mark    Elapsed  Stage
31			  0          0  reset
32		  3,575,678  3,575,678  board_init_f start
33		  3,575,695         17  arch_cpu_init A9
34		  3,575,777         82  arch_cpu_init done
35		  3,659,598     83,821  board_init_r start
36		  3,910,375    250,777  main_loop
37		 29,916,167 26,005,792  bootm_start
38		 30,361,327    445,160  start_kernel
39
40config BOOTSTAGE_USER_COUNT
41	hex "Number of boot ID numbers available for user use"
42	default 20
43	help
44	  This is the number of available user bootstage records.
45	  Each time you call bootstage_mark(BOOTSTAGE_ID_ALLOC, ...)
46	  a new ID will be allocated from this stash. If you exceed
47	  the limit, recording will stop.
48
49config BOOTSTAGE_FDT
50	bool "Store boot timing information in the OS device tree"
51	depends on BOOTSTAGE
52	help
53	  Stash the bootstage information in the FDT. A root 'bootstage'
54	  node is created with each bootstage id as a child. Each child
55	  has a 'name' property and either 'mark' containing the
56	  mark time in microsecond, or 'accum' containing the
57	  accumulated time for that bootstage id in microseconds.
58	  For example:
59
60		bootstage {
61			154 {
62				name = "board_init_f";
63				mark = <3575678>;
64			};
65			170 {
66				name = "lcd";
67				accum = <33482>;
68			};
69		};
70
71	  Code in the Linux kernel can find this in /proc/devicetree.
72
73config BOOTSTAGE_STASH
74	bool "Stash the boot timing information in memory before booting OS"
75	depends on BOOTSTAGE
76	help
77	  Some OSes do not support device tree. Bootstage can instead write
78	  the boot timing information in a binary format at a given address.
79	  This happens through a call to bootstage_stash(), typically in
80	  the CPU's cleanup_before_linux() function. You can use the
81	  'bootstage stash' and 'bootstage unstash' commands to do this on
82	  the command line.
83
84config BOOTSTAGE_STASH_ADDR
85	hex "Address to stash boot timing information"
86	default 0
87	help
88	  Provide an address which will not be overwritten by the OS when it
89	  starts, so that it can read this information when ready.
90
91config BOOTSTAGE_STASH_SIZE
92	hex "Size of boot timing stash region"
93	default 4096
94	help
95	  This should be large enough to hold the bootstage stash. A value of
96	  4096 (4KiB) is normally plenty.
97
98endmenu
99
100menu "Boot media"
101
102config NOR_BOOT
103	bool "Support for booting from NOR flash"
104	depends on NOR
105	help
106	  Enabling this will make a U-Boot binary that is capable of being
107	  booted via NOR.  In this case we will enable certain pinmux early
108	  as the ROM only partially sets up pinmux.  We also default to using
109	  NOR for environment.
110
111config NAND_BOOT
112	bool "Support for booting from NAND flash"
113	default n
114	help
115	  Enabling this will make a U-Boot binary that is capable of being
116	  booted via NAND flash. This is not a must, some SoCs need this,
117	  somes not.
118
119config ONENAND_BOOT
120	bool "Support for booting from ONENAND"
121	default n
122	help
123	  Enabling this will make a U-Boot binary that is capable of being
124	  booted via ONENAND. This is not a must, some SoCs need this,
125	  somes not.
126
127config QSPI_BOOT
128	bool "Support for booting from QSPI flash"
129	default n
130	help
131	  Enabling this will make a U-Boot binary that is capable of being
132	  booted via QSPI flash. This is not a must, some SoCs need this,
133	  somes not.
134
135config SATA_BOOT
136	bool "Support for booting from SATA"
137	default n
138	help
139	  Enabling this will make a U-Boot binary that is capable of being
140	  booted via SATA. This is not a must, some SoCs need this,
141	  somes not.
142
143config SD_BOOT
144	bool "Support for booting from SD/EMMC"
145	default n
146	help
147	  Enabling this will make a U-Boot binary that is capable of being
148	  booted via SD/EMMC. This is not a must, some SoCs need this,
149	  somes not.
150
151config SPI_BOOT
152	bool "Support for booting from SPI flash"
153	default n
154	help
155	  Enabling this will make a U-Boot binary that is capable of being
156	  booted via SPI flash. This is not a must, some SoCs need this,
157	  somes not.
158
159endmenu
160
161config BOOTDELAY
162	int "delay in seconds before automatically booting"
163	default 2
164	depends on AUTOBOOT
165	help
166	  Delay before automatically running bootcmd;
167	  set to 0 to autoboot with no delay, but you can stop it by key input.
168	  set to -1 to disable autoboot.
169	  set to -2 to autoboot with no delay and not check for abort
170
171	  See doc/README.autoboot for details.
172
173config CONSOLE_RECORD
174	bool "Console recording"
175	help
176	  This provides a way to record console output (and provide console
177	  input) through cirular buffers. This is mostly useful for testing.
178	  Console output is recorded even when the console is silent.
179	  To enable console recording, call console_record_reset_enable()
180	  from your code.
181
182config CONSOLE_RECORD_OUT_SIZE
183	hex "Output buffer size"
184	depends on CONSOLE_RECORD
185	default 0x400 if CONSOLE_RECORD
186	help
187	  Set the size of the console output buffer. When this fills up, no
188	  more data will be recorded until some is removed. The buffer is
189	  allocated immediately after the malloc() region is ready.
190
191config CONSOLE_RECORD_IN_SIZE
192	hex "Input buffer size"
193	depends on CONSOLE_RECORD
194	default 0x100 if CONSOLE_RECORD
195	help
196	  Set the size of the console input buffer. When this contains data,
197	  tstc() and getc() will use this in preference to real device input.
198	  The buffer is allocated immediately after the malloc() region is
199	  ready.
200