xref: /openbmc/u-boot/cmd/otp.c (revision d6cdf762)
1 /*
2  *  This program is distributed in the hope that it will be useful,
3  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
4  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
5  *  GNU General Public License for more details.
6  *
7  *  You should have received a copy of the GNU General Public License
8  *  along with this program; if not, write to the Free Software
9  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
10  */
11 #include <stdlib.h>
12 #include <common.h>
13 #include <console.h>
14 #include <bootretry.h>
15 #include <cli.h>
16 #include <command.h>
17 #include <console.h>
18 #include <malloc.h>
19 #include <inttypes.h>
20 #include <mapmem.h>
21 #include <asm/io.h>
22 #include <linux/compiler.h>
23 
24 DECLARE_GLOBAL_DATA_PTR;
25 
26 #define OTP_PASSWD			0x349fe38a
27 #define RETRY				3
28 #define OTP_REGION_STRAP		BIT(0)
29 #define OTP_REGION_CONF			BIT(1)
30 #define OTP_REGION_DATA			BIT(2)
31 
32 #define OTP_USAGE			-1
33 #define OTP_FAILURE			-2
34 #define OTP_SUCCESS			0
35 
36 #define OTP_PROG_SKIP			1
37 
38 #define OTP_KEY_TYPE_RSA		1
39 #define OTP_KEY_TYPE_AES		2
40 #define OTP_KEY_TYPE_VAULT		3
41 #define OTP_KEY_TYPE_HMAC		4
42 
43 
44 #define OTP_REG_RESERVED		-1
45 #define OTP_REG_VALUE			-2
46 #define OTP_REG_VALID_BIT		-3
47 
48 #define PBSTR "||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||"
49 #define PBWIDTH 60
50 
51 #define OTP_BASE		0x1e6f2000
52 #define OTP_PROTECT_KEY		OTP_BASE
53 #define OTP_COMMAND		OTP_BASE + 0x4
54 #define OTP_TIMING		OTP_BASE + 0x8
55 #define OTP_ADDR		OTP_BASE + 0x10
56 #define OTP_STATUS		OTP_BASE + 0x14
57 #define OTP_COMPARE_1		OTP_BASE + 0x20
58 #define OTP_COMPARE_2		OTP_BASE + 0x24
59 #define OTP_COMPARE_3		OTP_BASE + 0x28
60 #define OTP_COMPARE_4		OTP_BASE + 0x2c
61 
62 struct otpstrap_status {
63 	int value;
64 	int option_array[7];
65 	int remain_times;
66 	int writeable_option;
67 	int protected;
68 };
69 
70 struct otpconf_parse {
71 	int dw_offset;
72 	int bit;
73 	int length;
74 	int value;
75 	int keep;
76 	char status[80];
77 };
78 
79 struct otpstrap_info {
80 	int8_t bit_offset;
81 	int8_t length;
82 	int8_t value;
83 	char *information;
84 };
85 
86 struct otpconf_info {
87 	int8_t dw_offset;
88 	int8_t bit_offset;
89 	int8_t length;
90 	int8_t value;
91 	char *information;
92 };
93 
94 struct otpkey_type {
95 	int value;
96 	int key_type;
97 	int need_id;
98 	char information[110];
99 };
100 
101 struct otp_info_cb {
102 	int version;
103 	const struct otpstrap_info *strap_info;
104 	int strap_info_len;
105 	const struct otpconf_info *conf_info;
106 	int conf_info_len;
107 	const struct otpkey_type *key_info;
108 	int key_info_len;
109 };
110 
111 static struct otp_info_cb info_cb;
112 
113 static const struct otpstrap_info a0_strap_info[] = {
114 	{ 0, 1, 0, "Disable secure boot" },
115 	{ 0, 1, 1, "Enable secure boot"	},
116 	{ 1, 1, 0, "Disable boot from eMMC" },
117 	{ 1, 1, 1, "Enable boot from eMMC" },
118 	{ 2, 1, 0, "Disable Boot from debug SPI" },
119 	{ 2, 1, 1, "Enable Boot from debug SPI" },
120 	{ 3, 1, 0, "Enable ARM CM3" },
121 	{ 3, 1, 1, "Disable ARM CM3" },
122 	{ 4, 1, 0, "No VGA BIOS ROM, VGA BIOS is merged in the system BIOS" },
123 	{ 4, 1, 1, "Enable dedicated VGA BIOS ROM" },
124 	{ 5, 1, 0, "MAC 1 : RMII/NCSI" },
125 	{ 5, 1, 1, "MAC 1 : RGMII" },
126 	{ 6, 1, 0, "MAC 2 : RMII/NCSI" },
127 	{ 6, 1, 1, "MAC 2 : RGMII" },
128 	{ 7, 3, 0, "CPU Frequency : 1GHz" },
129 	{ 7, 3, 1, "CPU Frequency : 800MHz" },
130 	{ 7, 3, 2, "CPU Frequency : 1.2GHz" },
131 	{ 7, 3, 3, "CPU Frequency : 1.4GHz" },
132 	{ 10, 2, 0, "HCLK ratio AXI:AHB = 2:1" },
133 	{ 10, 2, 1, "HCLK ratio AXI:AHB = 2:1" },
134 	{ 10, 2, 2, "HCLK ratio AXI:AHB = 3:1" },
135 	{ 10, 2, 3, "HCLK ratio AXI:AHB = 4:1" },
136 	{ 12, 2, 0, "VGA memory size : 8MB" },
137 	{ 12, 2, 1, "VGA memory size : 16MB" },
138 	{ 12, 2, 2, "VGA memory size : 32MB" },
139 	{ 12, 2, 3, "VGA memory size : 64MB" },
140 	{ 14, 3, OTP_REG_RESERVED, "" },
141 	{ 17, 1, 0, "VGA class code : Class Code for video device" },
142 	{ 17, 1, 1, "VGA class code : Class Code for VGA device" },
143 	{ 18, 1, 0, "Enable debug interfaces 0" },
144 	{ 18, 1, 1, "Disable debug interfaces 0" },
145 	{ 19, 1, 0, "Boot from emmc mode : High eMMC speed" },
146 	{ 19, 1, 1, "Boot from emmc mode : Normal eMMC speed" },
147 	{ 20, 1, 0, "Enable Pcie EHCI device" },
148 	{ 20, 1, 1, "Disable Pcie EHCI device" },
149 	{ 21, 1, 0, "Enable VGA XDMA function" },
150 	{ 21, 1, 1, "Disable VGA XDMA function" },
151 	{ 22, 1, 0, "Normal BMC mode" },
152 	{ 22, 1, 1, "Disable dedicated BMC functions for non-BMC application" },
153 	{ 23, 1, 0, "SSPRST# pin is for secondary processor dedicated reset pin" },
154 	{ 23, 1, 1, "SSPRST# pin is for PCIE root complex dedicated reset pin" },
155 	{ 24, 1, 0, "DRAM types : DDR4" },
156 	{ 24, 1, 1, "DRAM types : DDR3" },
157 	{ 25, 5, OTP_REG_RESERVED, "" },
158 	{ 30, 2, OTP_REG_RESERVED, "" },
159 	{ 32, 1, 0, "MAC 3 : RMII/NCSI" },
160 	{ 32, 1, 1, "MAC 3 : RGMII" },
161 	{ 33, 1, 0, "MAC 4 : RMII/NCSI" },
162 	{ 33, 1, 1, "MAC 4 : RGMII" },
163 	{ 34, 1, 0, "SuperIO configuration address : 0x2E" },
164 	{ 34, 1, 1, "SuperIO configuration address : 0x4E" },
165 	{ 35, 1, 0, "Enable LPC to decode SuperIO" },
166 	{ 35, 1, 1, "Disable LPC to decode SuperIO" },
167 	{ 36, 1, 0, "Enable debug interfaces 1" },
168 	{ 36, 1, 1, "Disable debug interfaces 1" },
169 	{ 37, 1, 0, "Disable ACPI function" },
170 	{ 37, 1, 1, "Enable ACPI function" },
171 	{ 38, 1, 0, "Enable eSPI mode" },
172 	{ 38, 1, 1, "Enable LPC mode" },
173 	{ 39, 1, 0, "Enable SAFS mode" },
174 	{ 39, 1, 1, "Enable SAFS mode" },
175 	{ 40, 2, OTP_REG_RESERVED, "" },
176 	{ 42, 1, 0, "Disable boot SPI 3B/4B address mode auto detection" },
177 	{ 42, 1, 1, "Enable boot SPI 3B/4B address mode auto detection" },
178 	{ 43, 1, 0, "Disable boot SPI ABR" },
179 	{ 43, 1, 1, "Enable boot SPI ABR" },
180 	{ 44, 1, 0, "Boot SPI ABR mode : dual SPI flash" },
181 	{ 44, 1, 1, "Boot SPI ABR mode : single SPI flash" },
182 	{ 45, 3, 0, "Boot SPI flash size : no define size" },
183 	{ 45, 3, 1, "Boot SPI flash size : 2MB" },
184 	{ 45, 3, 2, "Boot SPI flash size : 4MB" },
185 	{ 45, 3, 3, "Boot SPI flash size : 8MB" },
186 	{ 45, 3, 4, "Boot SPI flash size : 16MB" },
187 	{ 45, 3, 5, "Boot SPI flash size : 32MB" },
188 	{ 45, 3, 6, "Boot SPI flash size : 64MB" },
189 	{ 45, 3, 7, "Boot SPI flash size : 128MB" },
190 	{ 48, 1, 0, "Disable host SPI ABR" },
191 	{ 48, 1, 1, "Enable host SPI ABR" },
192 	{ 49, 1, 0, "Disable host SPI ABR mode select pin" },
193 	{ 49, 1, 1, "Enable host SPI ABR mode select pin" },
194 	{ 50, 1, 0, "Host SPI ABR mode : dual SPI flash" },
195 	{ 50, 1, 1, "Host SPI ABR mode : single SPI flash" },
196 	{ 51, 3, 0, "Host SPI flash size : no define size" },
197 	{ 51, 3, 1, "Host SPI flash size : 2MB" },
198 	{ 51, 3, 2, "Host SPI flash size : 4MB" },
199 	{ 51, 3, 3, "Host SPI flash size : 8MB" },
200 	{ 51, 3, 4, "Host SPI flash size : 16MB" },
201 	{ 51, 3, 5, "Host SPI flash size : 32MB" },
202 	{ 51, 3, 6, "Host SPI flash size : 64MB" },
203 	{ 51, 3, 7, "Host SPI flash size : 128MB" },
204 	{ 54, 1, 0, "Disable boot SPI auxiliary control pins" },
205 	{ 54, 1, 1, "Enable boot SPI auxiliary control pins" },
206 	{ 55, 2, 0, "Boot SPI CRTM size : disable CRTM" },
207 	{ 55, 2, 1, "Boot SPI CRTM size : 256KB" },
208 	{ 55, 2, 2, "Boot SPI CRTM size : 512KB" },
209 	{ 55, 2, 3, "Boot SPI CRTM size : 1MB" },
210 	{ 57, 2, 0, "Host SPI CRTM size : disable CRTM" },
211 	{ 57, 2, 1, "Host SPI CRTM size : 256KB" },
212 	{ 57, 2, 2, "Host SPI CRTM size : 512KB" },
213 	{ 57, 2, 3, "Host SPI CRTM size : 1MB" },
214 	{ 59, 1, 0, "Disable host SPI auxiliary control pins" },
215 	{ 59, 1, 1, "Enable host SPI auxiliary control pins" },
216 	{ 60, 1, 0, "Disable GPIO pass through" },
217 	{ 60, 1, 1, "Enable GPIO pass through" },
218 	{ 61, 1, 0, "Enable low security secure boot key" },
219 	{ 61, 1, 1, "Disable low security secure boot key" },
220 	{ 62, 1, 0, "Disable dedicate GPIO strap pins" },
221 	{ 62, 1, 1, "Enable dedicate GPIO strap pins" },
222 	{ 63, 1, OTP_REG_RESERVED, "" }
223 };
224 
225 static const struct otpstrap_info a1_strap_info[] = {
226 	{ 0, 1, 0, "Disable secure boot" },
227 	{ 0, 1, 1, "Enable secure boot"	},
228 	{ 1, 1, 0, "Disable boot from eMMC" },
229 	{ 1, 1, 1, "Enable boot from eMMC" },
230 	{ 2, 1, 0, "Disable Boot from debug SPI" },
231 	{ 2, 1, 1, "Enable Boot from debug SPI" },
232 	{ 3, 1, 0, "Enable ARM CM3" },
233 	{ 3, 1, 1, "Disable ARM CM3" },
234 	{ 4, 1, 0, "No VGA BIOS ROM, VGA BIOS is merged in the system BIOS" },
235 	{ 4, 1, 1, "Enable dedicated VGA BIOS ROM" },
236 	{ 5, 1, 0, "MAC 1 : RMII/NCSI" },
237 	{ 5, 1, 1, "MAC 1 : RGMII" },
238 	{ 6, 1, 0, "MAC 2 : RMII/NCSI" },
239 	{ 6, 1, 1, "MAC 2 : RGMII" },
240 	{ 7, 3, 0, "CPU Frequency : 1GHz" },
241 	{ 7, 3, 1, "CPU Frequency : 800MHz" },
242 	{ 7, 3, 2, "CPU Frequency : 1.2GHz" },
243 	{ 7, 3, 3, "CPU Frequency : 1.4GHz" },
244 	{ 10, 2, 0, "HCLK ratio AXI:AHB = 2:1" },
245 	{ 10, 2, 1, "HCLK ratio AXI:AHB = 2:1" },
246 	{ 10, 2, 2, "HCLK ratio AXI:AHB = 3:1" },
247 	{ 10, 2, 3, "HCLK ratio AXI:AHB = 4:1" },
248 	{ 12, 2, 0, "VGA memory size : 8MB" },
249 	{ 12, 2, 1, "VGA memory size : 16MB" },
250 	{ 12, 2, 2, "VGA memory size : 32MB" },
251 	{ 12, 2, 3, "VGA memory size : 64MB" },
252 	{ 14, 3, OTP_REG_RESERVED, "" },
253 	{ 17, 1, 0, "VGA class code : Class Code for video device" },
254 	{ 17, 1, 1, "VGA class code : Class Code for VGA device" },
255 	{ 18, 1, 0, "Enable debug interfaces 0" },
256 	{ 18, 1, 1, "Disable debug interfaces 0" },
257 	{ 19, 1, 0, "Boot from emmc mode : High eMMC speed" },
258 	{ 19, 1, 1, "Boot from emmc mode : Normal eMMC speed" },
259 	{ 20, 1, 0, "Disable Pcie EHCI device" },
260 	{ 20, 1, 1, "Enable Pcie EHCI device" },
261 	{ 21, 1, 0, "Enable VGA XDMA function" },
262 	{ 21, 1, 1, "Disable VGA XDMA function" },
263 	{ 22, 1, 0, "Normal BMC mode" },
264 	{ 22, 1, 1, "Disable dedicated BMC functions for non-BMC application" },
265 	{ 23, 1, 0, "SSPRST# pin is for secondary processor dedicated reset pin" },
266 	{ 23, 1, 1, "SSPRST# pin is for PCIE root complex dedicated reset pin" },
267 	{ 24, 1, 0, "Enable watchdog to reset full chip" },
268 	{ 24, 1, 1, "Disable watchdog to reset full chip" },
269 	{ 25, 5, OTP_REG_RESERVED, "" },
270 	{ 30, 2, OTP_REG_RESERVED, "" },
271 	{ 32, 1, 0, "MAC 3 : RMII/NCSI" },
272 	{ 32, 1, 1, "MAC 3 : RGMII" },
273 	{ 33, 1, 0, "MAC 4 : RMII/NCSI" },
274 	{ 33, 1, 1, "MAC 4 : RGMII" },
275 	{ 34, 1, 0, "SuperIO configuration address : 0x2E" },
276 	{ 34, 1, 1, "SuperIO configuration address : 0x4E" },
277 	{ 35, 1, 0, "Enable LPC to decode SuperIO" },
278 	{ 35, 1, 1, "Disable LPC to decode SuperIO" },
279 	{ 36, 1, 0, "Enable debug interfaces 1" },
280 	{ 36, 1, 1, "Disable debug interfaces 1" },
281 	{ 37, 1, 0, "Disable ACPI function" },
282 	{ 37, 1, 1, "Enable ACPI function" },
283 	{ 38, 1, 0, "Enable eSPI mode" },
284 	{ 38, 1, 1, "Enable LPC mode" },
285 	{ 39, 1, 0, "Enable SAFS mode" },
286 	{ 39, 1, 1, "Enable SAFS mode" },
287 	{ 40, 2, OTP_REG_RESERVED, "" },
288 	{ 42, 1, 0, "Disable boot SPI 3B/4B address mode auto detection" },
289 	{ 42, 1, 1, "Enable boot SPI 3B/4B address mode auto detection" },
290 	{ 43, 1, 0, "Disable boot SPI ABR" },
291 	{ 43, 1, 1, "Enable boot SPI ABR" },
292 	{ 44, 1, 0, "Boot SPI ABR mode : dual SPI flash" },
293 	{ 44, 1, 1, "Boot SPI ABR mode : single SPI flash" },
294 	{ 45, 3, 0, "Boot SPI flash size : no define size" },
295 	{ 45, 3, 1, "Boot SPI flash size : 2MB" },
296 	{ 45, 3, 2, "Boot SPI flash size : 4MB" },
297 	{ 45, 3, 3, "Boot SPI flash size : 8MB" },
298 	{ 45, 3, 4, "Boot SPI flash size : 16MB" },
299 	{ 45, 3, 5, "Boot SPI flash size : 32MB" },
300 	{ 45, 3, 6, "Boot SPI flash size : 64MB" },
301 	{ 45, 3, 7, "Boot SPI flash size : 128MB" },
302 	{ 48, 1, 0, "Disable host SPI ABR" },
303 	{ 48, 1, 1, "Enable host SPI ABR" },
304 	{ 49, 1, 0, "Disable host SPI ABR mode select pin" },
305 	{ 49, 1, 1, "Enable host SPI ABR mode select pin" },
306 	{ 50, 1, 0, "Host SPI ABR mode : dual SPI flash" },
307 	{ 50, 1, 1, "Host SPI ABR mode : single SPI flash" },
308 	{ 51, 3, 0, "Host SPI flash size : no define size" },
309 	{ 51, 3, 1, "Host SPI flash size : 2MB" },
310 	{ 51, 3, 2, "Host SPI flash size : 4MB" },
311 	{ 51, 3, 3, "Host SPI flash size : 8MB" },
312 	{ 51, 3, 4, "Host SPI flash size : 16MB" },
313 	{ 51, 3, 5, "Host SPI flash size : 32MB" },
314 	{ 51, 3, 6, "Host SPI flash size : 64MB" },
315 	{ 51, 3, 7, "Host SPI flash size : 128MB" },
316 	{ 54, 1, 0, "Disable boot SPI auxiliary control pins" },
317 	{ 54, 1, 1, "Enable boot SPI auxiliary control pins" },
318 	{ 55, 2, 0, "Boot SPI CRTM size : disable CRTM" },
319 	{ 55, 2, 1, "Boot SPI CRTM size : 256KB" },
320 	{ 55, 2, 2, "Boot SPI CRTM size : 512KB" },
321 	{ 55, 2, 3, "Boot SPI CRTM size : 1MB" },
322 	{ 57, 2, 0, "Host SPI CRTM size : disable CRTM" },
323 	{ 57, 2, 1, "Host SPI CRTM size : 256KB" },
324 	{ 57, 2, 2, "Host SPI CRTM size : 512KB" },
325 	{ 57, 2, 3, "Host SPI CRTM size : 1MB" },
326 	{ 59, 1, 0, "Disable host SPI auxiliary control pins" },
327 	{ 59, 1, 1, "Enable host SPI auxiliary control pins" },
328 	{ 60, 1, 0, "Disable GPIO pass through" },
329 	{ 60, 1, 1, "Enable GPIO pass through" },
330 	{ 61, 1, 0, "Enable low security secure boot key" },
331 	{ 61, 1, 1, "Disable low security secure boot key" },
332 	{ 62, 1, 0, "Disable dedicate GPIO strap pins" },
333 	{ 62, 1, 1, "Enable dedicate GPIO strap pins" },
334 	{ 63, 1, OTP_REG_RESERVED, "" }
335 };
336 
337 static const struct otpconf_info a0_conf_info[] = {
338 	{ 0, 0,  1,  0, "Enable Secure Region programming" },
339 	{ 0, 0,  1,  1, "Disable Secure Region programming" },
340 	{ 0, 1,  1,  0, "Disable Secure Boot" },
341 	{ 0, 1,  1,  1, "Enable Secure Boot" },
342 	{ 0, 2,  1,  0, "Initialization programming not done" },
343 	{ 0, 2,  1,  1, "Initialization programming done" },
344 	{ 0, 3,  1,  0, "User region ECC disable" },
345 	{ 0, 3,  1,  1, "User region ECC enable" },
346 	{ 0, 4,  1,  0, "Secure Region ECC disable" },
347 	{ 0, 4,  1,  1, "Secure Region ECC enable" },
348 	{ 0, 5,  1,  0, "Enable low security key" },
349 	{ 0, 5,  1,  1, "Disable low security key" },
350 	{ 0, 6,  1,  0, "Do not ignore Secure Boot hardware strap" },
351 	{ 0, 6,  1,  1, "Ignore Secure Boot hardware strap" },
352 	{ 0, 7,  1,  0, "Secure Boot Mode: 1" },
353 	{ 0, 7,  1,  1, "Secure Boot Mode: 2" },
354 	{ 0, 8,  2,  0, "Single cell mode (recommended)" },
355 	{ 0, 8,  2,  1, "Differential mode" },
356 	{ 0, 8,  2,  2, "Differential-redundant mode" },
357 	{ 0, 10, 2,  0, "RSA mode : RSA1024" },
358 	{ 0, 10, 2,  1, "RSA mode : RSA2048" },
359 	{ 0, 10, 2,  2, "RSA mode : RSA3072" },
360 	{ 0, 10, 2,  3, "RSA mode : RSA4096" },
361 	{ 0, 12, 2,  0, "SHA mode : SHA224" },
362 	{ 0, 12, 2,  1, "SHA mode : SHA256" },
363 	{ 0, 12, 2,  2, "SHA mode : SHA384" },
364 	{ 0, 12, 2,  3, "SHA mode : SHA512" },
365 	{ 0, 14, 2,  OTP_REG_RESERVED, "" },
366 	{ 0, 16, 6,  OTP_REG_VALUE, "Secure Region size (DW): 0x%x" },
367 	{ 0, 22, 1,  0, "Secure Region : Writable" },
368 	{ 0, 22, 1,  1, "Secure Region : Write Protect" },
369 	{ 0, 23, 1,  0, "User Region : Writable" },
370 	{ 0, 23, 1,  1, "User Region : Write Protect" },
371 	{ 0, 24, 1,  0, "Configure Region : Writable" },
372 	{ 0, 24, 1,  1, "Configure Region : Write Protect" },
373 	{ 0, 25, 1,  0, "OTP strap Region : Writable" },
374 	{ 0, 25, 1,  1, "OTP strap Region : Write Protect" },
375 	{ 0, 26, 1,  0, "Disable Copy Boot Image to Internal SRAM" },
376 	{ 0, 26, 1,  1, "Copy Boot Image to Internal SRAM" },
377 	{ 0, 27, 1,  0, "Disable image encryption" },
378 	{ 0, 27, 1,  1, "Enable image encryption" },
379 	{ 0, 28, 1,  OTP_REG_RESERVED, "" },
380 	{ 0, 29, 1,  0, "OTP key retire Region : Writable" },
381 	{ 0, 29, 1,  1, "OTP key retire Region : Write Protect" },
382 	{ 0, 30, 1,  0, "Data region redundancy repair disable" },
383 	{ 0, 30, 1,  1, "Data region redundancy repair enable" },
384 	{ 0, 31, 1,  0, "OTP memory lock disable" },
385 	{ 0, 31, 1,  1, "OTP memory lock enable" },
386 	{ 2, 0,  16, OTP_REG_VALUE, "Vender ID : 0x%x" },
387 	{ 2, 16, 16, OTP_REG_VALUE, "Key Revision : 0x%x" },
388 	{ 3, 0,  16, OTP_REG_VALUE, "Secure boot header offset : 0x%x" },
389 	{ 4, 0,  8,  OTP_REG_VALID_BIT, "Keys valid  : %s" },
390 	{ 4, 16, 8,  OTP_REG_VALID_BIT, "Keys retire  : %s" },
391 	{ 5, 0,  32, OTP_REG_VALUE, "User define data, random number low : 0x%x" },
392 	{ 6, 0,  32, OTP_REG_VALUE, "User define data, random number high : 0x%x" },
393 	{ 7, 0,  1,  0, "Force enable PCI bus to AHB bus bridge" },
394 	{ 7, 0,  1,  1, "Force disable PCI bus to AHB bus bridge" },
395 	{ 7, 1,  1,  0, "Force enable UART5 debug port function" },
396 	{ 7, 1,  1,  1, "Force disable UART5 debug port function" },
397 	{ 7, 2,  1,  0, "Force enable XDMA function" },
398 	{ 7, 2,  1,  1, "Force disable XDMA function" },
399 	{ 7, 3,  1,  0, "Force enable APB to PCIE device bridge" },
400 	{ 7, 3,  1,  1, "Force disable APB to PCIE device bridge" },
401 	{ 7, 4,  1,  0, "Force enable APB to PCIE bridge config access" },
402 	{ 7, 4,  1,  1, "Force disable APB to PCIE bridge config access" },
403 	{ 7, 5,  1,  0, "Force enable PCIE bus trace buffer" },
404 	{ 7, 5,  1,  1, "Force disable PCIE bus trace buffer" },
405 	{ 7, 6,  1,  0, "Force enable the capability for PCIE device port as a Root Complex" },
406 	{ 7, 6,  1,  1, "Force disable the capability for PCIE device port as a Root Complex" },
407 	{ 7, 16, 1,  0, "Force enable ESPI bus to AHB bus bridge" },
408 	{ 7, 16, 1,  1, "Force disable ESPI bus to AHB bus bridge" },
409 	{ 7, 17, 1,  0, "Force enable LPC bus to AHB bus bridge1" },
410 	{ 7, 17, 1,  1, "Force disable LPC bus to AHB bus bridge1" },
411 	{ 7, 18, 1,  0, "Force enable LPC bus to AHB bus bridge2" },
412 	{ 7, 18, 1,  1, "Force disable LPC bus to AHB bus bridge2" },
413 	{ 7, 19, 1,  0, "Force enable UART1 debug port function" },
414 	{ 7, 19, 1,  1, "Force disable UART1 debug port function" },
415 	{ 7, 31, 1,  0, "Disable chip security setting" },
416 	{ 7, 31, 1,  1, "Enable chip security setting" },
417 	{ 8, 0,  32, OTP_REG_VALUE, "Redundancy Repair : 0x%x" },
418 	{ 10, 0, 32, OTP_REG_VALUE, "Manifest ID low : 0x%x" },
419 	{ 11, 0, 32, OTP_REG_VALUE, "Manifest ID high : 0x%x" }
420 };
421 
422 static const struct otpconf_info a1_conf_info[] = {
423 	{ 0, 0,  1,  OTP_REG_RESERVED, "" },
424 	{ 0, 1,  1,  0, "Disable Secure Boot" },
425 	{ 0, 1,  1,  1, "Enable Secure Boot" },
426 	{ 0, 2,  1,  0, "Initialization programming not done" },
427 	{ 0, 2,  1,  1, "Initialization programming done" },
428 	{ 0, 3,  1,  0, "User region ECC disable" },
429 	{ 0, 3,  1,  1, "User region ECC enable" },
430 	{ 0, 4,  1,  0, "Secure Region ECC disable" },
431 	{ 0, 4,  1,  1, "Secure Region ECC enable" },
432 	{ 0, 5,  1,  0, "Enable low security key" },
433 	{ 0, 5,  1,  1, "Disable low security key" },
434 	{ 0, 6,  1,  0, "Do not ignore Secure Boot hardware strap" },
435 	{ 0, 6,  1,  1, "Ignore Secure Boot hardware strap" },
436 	{ 0, 7,  1,  0, "Secure Boot Mode: GCM" },
437 	{ 0, 7,  1,  1, "Secure Boot Mode: 2" },
438 	{ 0, 8,  2,  0, "Single cell mode (recommended)" },
439 	{ 0, 8,  2,  1, "Differential mode" },
440 	{ 0, 8,  2,  2, "Differential-redundant mode" },
441 	{ 0, 10, 2,  0, "RSA mode : RSA1024" },
442 	{ 0, 10, 2,  1, "RSA mode : RSA2048" },
443 	{ 0, 10, 2,  2, "RSA mode : RSA3072" },
444 	{ 0, 10, 2,  3, "RSA mode : RSA4096" },
445 	{ 0, 12, 2,  0, "SHA mode : SHA224" },
446 	{ 0, 12, 2,  1, "SHA mode : SHA256" },
447 	{ 0, 12, 2,  2, "SHA mode : SHA384" },
448 	{ 0, 12, 2,  3, "SHA mode : SHA512" },
449 	{ 0, 14, 2,  OTP_REG_RESERVED, "" },
450 	{ 0, 16, 6,  OTP_REG_VALUE, "Secure Region size (DW): 0x%x" },
451 	{ 0, 22, 1,  0, "Secure Region : Writable" },
452 	{ 0, 22, 1,  1, "Secure Region : Write Protect" },
453 	{ 0, 23, 1,  0, "User Region : Writable" },
454 	{ 0, 23, 1,  1, "User Region : Write Protect" },
455 	{ 0, 24, 1,  0, "Configure Region : Writable" },
456 	{ 0, 24, 1,  1, "Configure Region : Write Protect" },
457 	{ 0, 25, 1,  0, "OTP strap Region : Writable" },
458 	{ 0, 25, 1,  1, "OTP strap Region : Write Protect" },
459 	{ 0, 26, 1,  0, "Disable Copy Boot Image to Internal SRAM" },
460 	{ 0, 26, 1,  1, "Copy Boot Image to Internal SRAM" },
461 	{ 0, 27, 1,  0, "Disable image encryption" },
462 	{ 0, 27, 1,  1, "Enable image encryption" },
463 	{ 0, 28, 1,  OTP_REG_RESERVED, "" },
464 	{ 0, 29, 1,  0, "OTP key retire Region : Writable" },
465 	{ 0, 29, 1,  1, "OTP key retire Region : Write Protect" },
466 	{ 0, 30, 1,  0, "Data region redundancy repair disable" },
467 	{ 0, 30, 1,  1, "Data region redundancy repair enable" },
468 	{ 0, 31, 1,  0, "OTP memory lock disable" },
469 	{ 0, 31, 1,  1, "OTP memory lock enable" },
470 	{ 2, 0,  16, OTP_REG_VALUE, "Vender ID : 0x%x" },
471 	{ 2, 16, 16, OTP_REG_VALUE, "Key Revision : 0x%x" },
472 	{ 3, 0,  16, OTP_REG_VALUE, "Secure boot header offset : 0x%x" },
473 	{ 4, 0,  8,  OTP_REG_VALID_BIT, "Keys valid  : %s" },
474 	{ 4, 16, 8,  OTP_REG_VALID_BIT, "Keys retire  : %s" },
475 	{ 5, 0,  32, OTP_REG_VALUE, "User define data, random number low : 0x%x" },
476 	{ 6, 0,  32, OTP_REG_VALUE, "User define data, random number high : 0x%x" },
477 	{ 7, 0,  1,  0, "Force enable PCI bus to AHB bus bridge" },
478 	{ 7, 0,  1,  1, "Force disable PCI bus to AHB bus bridge" },
479 	{ 7, 1,  1,  0, "Force enable UART5 debug port function" },
480 	{ 7, 1,  1,  1, "Force disable UART5 debug port function" },
481 	{ 7, 2,  1,  0, "Force enable XDMA function" },
482 	{ 7, 2,  1,  1, "Force disable XDMA function" },
483 	{ 7, 3,  1,  0, "Force enable APB to PCIE device bridge" },
484 	{ 7, 3,  1,  1, "Force disable APB to PCIE device bridge" },
485 	{ 7, 4,  1,  0, "Force enable APB to PCIE bridge config access" },
486 	{ 7, 4,  1,  1, "Force disable APB to PCIE bridge config access" },
487 	{ 7, 5,  1,  0, "Force enable PCIE bus trace buffer" },
488 	{ 7, 5,  1,  1, "Force disable PCIE bus trace buffer" },
489 	{ 7, 6,  1,  0, "Force enable the capability for PCIE device port as a Root Complex" },
490 	{ 7, 6,  1,  1, "Force disable the capability for PCIE device port as a Root Complex" },
491 	{ 7, 16, 1,  0, "Force enable ESPI bus to AHB bus bridge" },
492 	{ 7, 16, 1,  1, "Force disable ESPI bus to AHB bus bridge" },
493 	{ 7, 17, 1,  0, "Force enable LPC bus to AHB bus bridge1" },
494 	{ 7, 17, 1,  1, "Force disable LPC bus to AHB bus bridge1" },
495 	{ 7, 18, 1,  0, "Force enable LPC bus to AHB bus bridge2" },
496 	{ 7, 18, 1,  1, "Force disable LPC bus to AHB bus bridge2" },
497 	{ 7, 19, 1,  0, "Force enable UART1 debug port function" },
498 	{ 7, 19, 1,  1, "Force disable UART1 debug port function" },
499 	{ 7, 31, 1,  0, "Disable chip security setting" },
500 	{ 7, 31, 1,  1, "Enable chip security setting" },
501 	{ 8, 0,  32, OTP_REG_VALUE, "Redundancy Repair : 0x%x" },
502 	{ 10, 0, 32, OTP_REG_VALUE, "Manifest ID low : 0x%x" },
503 	{ 11, 0, 32, OTP_REG_VALUE, "Manifest ID high : 0x%x" }
504 };
505 
506 static const struct otpkey_type a0_key_type[] = {
507 	{0, OTP_KEY_TYPE_AES,   0, "AES-256 as OEM platform key for image encryption/decryption"},
508 	{1, OTP_KEY_TYPE_VAULT, 0, "AES-256 as secret vault key"},
509 	{4, OTP_KEY_TYPE_HMAC,  1, "HMAC as encrypted OEM HMAC keys in Mode 1"},
510 	{8, OTP_KEY_TYPE_RSA,   1, "RSA-public as OEM DSS public keys in Mode 2"},
511 	{9, OTP_KEY_TYPE_RSA,   0, "RSA-public as SOC public key"},
512 	{10, OTP_KEY_TYPE_RSA,  0, "RSA-public as AES key decryption key"},
513 	{13, OTP_KEY_TYPE_RSA,  0, "RSA-private as SOC private key"},
514 	{14, OTP_KEY_TYPE_RSA,  0, "RSA-private as AES key decryption key"},
515 };
516 
517 static const struct otpkey_type a1_key_type[] = {
518 	{1, OTP_KEY_TYPE_VAULT, 0, "AES-256 as secret vault key"},
519 	{2, OTP_KEY_TYPE_AES,   1, "AES-256 as OEM platform key for image encryption/decryption in Mode 2 or AES-256 as OEM DSS keys for Mode GCM"},
520 	{8, OTP_KEY_TYPE_RSA,   1, "RSA-public as OEM DSS public keys in Mode 2"},
521 	{10, OTP_KEY_TYPE_RSA,  0, "RSA-public as AES key decryption key"},
522 	{14, OTP_KEY_TYPE_RSA,  0, "RSA-private as AES key decryption key"},
523 };
524 
525 static uint32_t chip_version(void)
526 {
527 	uint32_t rev_id;
528 
529 	rev_id = (readl(0x1e6e2004) >> 16) & 0xff ;
530 
531 	return rev_id;
532 }
533 
534 static void wait_complete(void)
535 {
536 	int reg;
537 
538 	do {
539 		reg = readl(OTP_STATUS);
540 	} while ((reg & 0x6) != 0x6);
541 }
542 
543 static void otp_read_data(uint32_t offset, uint32_t *data)
544 {
545 	writel(offset, OTP_ADDR); //Read address
546 	writel(0x23b1e361, OTP_COMMAND); //trigger read
547 	wait_complete();
548 	data[0] = readl(OTP_COMPARE_1);
549 	data[1] = readl(OTP_COMPARE_2);
550 }
551 
552 static void otp_read_config(uint32_t offset, uint32_t *data)
553 {
554 	int config_offset;
555 
556 	config_offset = 0x800;
557 	config_offset |= (offset / 8) * 0x200;
558 	config_offset |= (offset % 8) * 0x2;
559 
560 	writel(config_offset, OTP_ADDR);  //Read address
561 	writel(0x23b1e361, OTP_COMMAND); //trigger read
562 	wait_complete();
563 	data[0] = readl(OTP_COMPARE_1);
564 }
565 
566 static int otp_print_config(uint32_t offset, int dw_count)
567 {
568 	int i;
569 	uint32_t ret[1];
570 
571 	if (offset + dw_count > 32)
572 		return OTP_USAGE;
573 	for (i = offset; i < offset + dw_count; i ++) {
574 		otp_read_config(i, ret);
575 		printf("OTPCFG%X: %08X\n", i, ret[0]);
576 	}
577 	printf("\n");
578 	return OTP_SUCCESS;
579 }
580 
581 static int otp_print_data(uint32_t offset, int dw_count)
582 {
583 	int i;
584 	uint32_t ret[2];
585 
586 	if (offset + dw_count > 2048 || offset % 4 != 0)
587 		return OTP_USAGE;
588 	for (i = offset; i < offset + dw_count; i += 2) {
589 		otp_read_data(i, ret);
590 		if (i % 4 == 0)
591 			printf("%03X: %08X %08X ", i * 4, ret[0], ret[1]);
592 		else
593 			printf("%08X %08X\n", ret[0], ret[1]);
594 
595 	}
596 	printf("\n");
597 	return OTP_SUCCESS;
598 }
599 
600 static int otp_compare(uint32_t otp_addr, uint32_t addr)
601 {
602 	uint32_t ret;
603 	uint32_t *buf;
604 
605 	buf = map_physmem(addr, 16, MAP_WRBACK);
606 	printf("%08X\n", buf[0]);
607 	printf("%08X\n", buf[1]);
608 	printf("%08X\n", buf[2]);
609 	printf("%08X\n", buf[3]);
610 	writel(otp_addr, OTP_ADDR); //Compare address
611 	writel(buf[0], OTP_COMPARE_1); //Compare data 1
612 	writel(buf[1], OTP_COMPARE_2); //Compare data 2
613 	writel(buf[2], OTP_COMPARE_3); //Compare data 3
614 	writel(buf[3], OTP_COMPARE_4); //Compare data 4
615 	writel(0x23b1e363, OTP_COMMAND); //Compare command
616 	wait_complete();
617 	ret = readl(OTP_STATUS); //Compare command
618 	if (ret & 0x1)
619 		return 0;
620 	else
621 		return -1;
622 }
623 
624 static void otp_write(uint32_t otp_addr, uint32_t data)
625 {
626 	writel(otp_addr, OTP_ADDR); //write address
627 	writel(data, OTP_COMPARE_1); //write data
628 	writel(0x23b1e362, OTP_COMMAND); //write command
629 	wait_complete();
630 }
631 
632 static void otp_prog(uint32_t otp_addr, uint32_t prog_bit)
633 {
634 	writel(otp_addr, OTP_ADDR); //write address
635 	writel(prog_bit, OTP_COMPARE_1); //write data
636 	writel(0x23b1e364, OTP_COMMAND); //write command
637 	wait_complete();
638 }
639 
640 static int verify_bit(uint32_t otp_addr, int bit_offset, int value)
641 {
642 	uint32_t ret[2];
643 
644 	if (otp_addr % 2 == 0)
645 		writel(otp_addr, OTP_ADDR); //Read address
646 	else
647 		writel(otp_addr - 1, OTP_ADDR); //Read address
648 
649 	writel(0x23b1e361, OTP_COMMAND); //trigger read
650 	wait_complete();
651 	ret[0] = readl(OTP_COMPARE_1);
652 	ret[1] = readl(OTP_COMPARE_2);
653 	// printf("verify_bit = %x\n", ret);
654 	if (otp_addr % 2 == 0) {
655 		if (((ret[0] >> bit_offset) & 1) == value)
656 			return 0;
657 		else
658 			return -1;
659 	} else {
660 		if (((ret[1] >> bit_offset) & 1) == value)
661 			return 0;
662 		else
663 			return -1;
664 	}
665 
666 }
667 
668 static uint32_t verify_dw(uint32_t otp_addr, uint32_t *value, uint32_t *keep, uint32_t *compare, int size)
669 {
670 	uint32_t ret[2];
671 
672 	otp_addr &= ~(1 << 15);
673 
674 	if (otp_addr % 2 == 0)
675 		writel(otp_addr, OTP_ADDR); //Read address
676 	else
677 		writel(otp_addr - 1, OTP_ADDR); //Read address
678 	writel(0x23b1e361, OTP_COMMAND); //trigger read
679 	wait_complete();
680 	ret[0] = readl(OTP_COMPARE_1);
681 	ret[1] = readl(OTP_COMPARE_2);
682 	if (size == 1) {
683 		if (otp_addr % 2 == 0) {
684 			// printf("check %x : %x = %x\n", otp_addr, ret[0], value[0]);
685 			if ((value[0] & ~keep[0]) == (ret[0] & ~keep[0])) {
686 				compare[0] = 0;
687 				return 0;
688 			} else {
689 				compare[0] = value[0] ^ ret[0];
690 				return -1;
691 			}
692 
693 		} else {
694 			// printf("check %x : %x = %x\n", otp_addr, ret[1], value[0]);
695 			if ((value[0] & ~keep[0]) == (ret[1] & ~keep[0])) {
696 				compare[0] = ~0;
697 				return 0;
698 			} else {
699 				compare[0] = ~(value[0] ^ ret[1]);
700 				return -1;
701 			}
702 		}
703 	} else if (size == 2) {
704 		// otp_addr should be even
705 		if ((value[0] & ~keep[0]) == (ret[0] & ~keep[0]) && (value[1] & ~keep[1]) == (ret[1] & ~keep[1])) {
706 			// printf("check[0] %x : %x = %x\n", otp_addr, ret[0], value[0]);
707 			// printf("check[1] %x : %x = %x\n", otp_addr, ret[1], value[1]);
708 			compare[0] = 0;
709 			compare[1] = ~0;
710 			return 0;
711 		} else {
712 			// printf("check[0] %x : %x = %x\n", otp_addr, ret[0], value[0]);
713 			// printf("check[1] %x : %x = %x\n", otp_addr, ret[1], value[1]);
714 			compare[0] = value[0] ^ ret[0];
715 			compare[1] = ~(value[1] ^ ret[1]);
716 			return -1;
717 		}
718 	} else {
719 		return -1;
720 	}
721 }
722 
723 static void otp_soak(int soak)
724 {
725 	switch (soak) {
726 	case 0: //default
727 		otp_write(0x3000, 0x0); // Write MRA
728 		otp_write(0x5000, 0x0); // Write MRB
729 		otp_write(0x1000, 0x0); // Write MR
730 		break;
731 	case 1: //normal program
732 		otp_write(0x3000, 0x4021); // Write MRA
733 		otp_write(0x5000, 0x302f); // Write MRB
734 		otp_write(0x1000, 0x4020); // Write MR
735 		writel(0x04190760, OTP_TIMING);
736 		break;
737 	case 2: //soak program
738 		otp_write(0x3000, 0x4021); // Write MRA
739 		otp_write(0x5000, 0x1027); // Write MRB
740 		otp_write(0x1000, 0x4820); // Write MR
741 		writel(0x041930d4, OTP_TIMING);
742 		break;
743 	}
744 
745 	wait_complete();
746 }
747 
748 static void otp_prog_dw(uint32_t value, uint32_t keep, uint32_t prog_address)
749 {
750 	int j, bit_value, prog_bit;
751 
752 	for (j = 0; j < 32; j++) {
753 		if ((keep >> j) & 0x1)
754 			continue;
755 		bit_value = (value >> j) & 0x1;
756 		if (prog_address % 2 == 0) {
757 			if (bit_value)
758 				prog_bit = ~(0x1 << j);
759 			else
760 				continue;
761 		} else {
762 			prog_address |= 1 << 15;
763 			if (bit_value)
764 				continue;
765 			else
766 				prog_bit = 0x1 << j;
767 		}
768 		otp_prog(prog_address, prog_bit);
769 	}
770 }
771 
772 
773 static void otp_strap_status(struct otpstrap_status *otpstrap)
774 {
775 	uint32_t OTPSTRAP_RAW[2];
776 	int i, j;
777 
778 	for (j = 0; j < 64; j++) {
779 		otpstrap[j].value = 0;
780 		otpstrap[j].remain_times = 7;
781 		otpstrap[j].writeable_option = -1;
782 		otpstrap[j].protected = 0;
783 	}
784 
785 	for (i = 16; i < 30; i += 2) {
786 		int option = (i - 16) / 2;
787 		otp_read_config(i, &OTPSTRAP_RAW[0]);
788 		otp_read_config(i + 1, &OTPSTRAP_RAW[1]);
789 		for (j = 0; j < 32; j++) {
790 			char bit_value = ((OTPSTRAP_RAW[0] >> j) & 0x1);
791 			if ((bit_value == 0) && (otpstrap[j].writeable_option == -1)) {
792 				otpstrap[j].writeable_option = option;
793 			}
794 			if (bit_value == 1)
795 				otpstrap[j].remain_times --;
796 			otpstrap[j].value ^= bit_value;
797 			otpstrap[j].option_array[option] = bit_value;
798 		}
799 		for (j = 32; j < 64; j++) {
800 			char bit_value = ((OTPSTRAP_RAW[1] >> (j - 32)) & 0x1);
801 			if ((bit_value == 0) && (otpstrap[j].writeable_option == -1)) {
802 				otpstrap[j].writeable_option = option;
803 			}
804 			if (bit_value == 1)
805 				otpstrap[j].remain_times --;
806 			otpstrap[j].value ^= bit_value;
807 			otpstrap[j].option_array[option] = bit_value;
808 		}
809 	}
810 	otp_read_config(30, &OTPSTRAP_RAW[0]);
811 	otp_read_config(31, &OTPSTRAP_RAW[1]);
812 	for (j = 0; j < 32; j++) {
813 		if (((OTPSTRAP_RAW[0] >> j) & 0x1) == 1)
814 			otpstrap[j].protected = 1;
815 	}
816 	for (j = 32; j < 64; j++) {
817 		if (((OTPSTRAP_RAW[1] >> (j - 32)) & 0x1) == 1)
818 			otpstrap[j].protected = 1;
819 	}
820 }
821 
822 static int otp_print_conf_image(uint32_t *OTPCFG)
823 {
824 	const struct otpconf_info *conf_info = info_cb.conf_info;
825 	uint32_t *OTPCFG_KEEP = &OTPCFG[12];
826 	uint32_t mask;
827 	uint32_t dw_offset;
828 	uint32_t bit_offset;
829 	uint32_t otp_value;
830 	uint32_t otp_keep;
831 	int fail = 0;
832 	char valid_bit[20];
833 	int i;
834 	int j;
835 
836 	printf("DW    BIT        Value       Description\n");
837 	printf("__________________________________________________________________________\n");
838 	for (i = 0; i < info_cb.conf_info_len; i++) {
839 		dw_offset = conf_info[i].dw_offset;
840 		bit_offset = conf_info[i].bit_offset;
841 		mask = BIT(conf_info[i].length) - 1;
842 		otp_value = (OTPCFG[dw_offset] >> bit_offset) & mask;
843 		otp_keep = (OTPCFG_KEEP[dw_offset] >> bit_offset) & mask;
844 
845 		if (otp_keep == mask) {
846 			continue;
847 		} else if (otp_keep != 0) {
848 			fail = 1;
849 		}
850 
851 		if ((otp_value != conf_info[i].value) &&
852 		    conf_info[i].value != OTP_REG_RESERVED &&
853 		    conf_info[i].value != OTP_REG_VALUE &&
854 		    conf_info[i].value != OTP_REG_VALID_BIT)
855 			continue;
856 		printf("0x%-4X", dw_offset);
857 
858 		if (conf_info[i].length == 1) {
859 			printf("0x%-9X", conf_info[i].bit_offset);
860 		} else {
861 			printf("0x%-2X:0x%-4X",
862 			       conf_info[i].bit_offset + conf_info[i].length - 1,
863 			       conf_info[i].bit_offset);
864 		}
865 		printf("0x%-10x", otp_value);
866 
867 		if (fail) {
868 			printf("Keep mask error\n");
869 		} else {
870 			if (conf_info[i].value == OTP_REG_RESERVED) {
871 				printf("Reserved\n");
872 			} else if (conf_info[i].value == OTP_REG_VALUE) {
873 				printf(conf_info[i].information, otp_value);
874 				printf("\n");
875 			} else if (conf_info[i].value == OTP_REG_VALID_BIT) {
876 				if (otp_value != 0) {
877 					for (j = 0; j < 7; j++) {
878 						if (otp_value == (1 << j)) {
879 							valid_bit[j * 2] = '1';
880 						} else {
881 							valid_bit[j * 2] = '0';
882 						}
883 						valid_bit[j * 2 + 1] = ' ';
884 					}
885 					valid_bit[15] = 0;
886 				} else {
887 					strcpy(valid_bit, "0 0 0 0 0 0 0 0\0");
888 				}
889 				printf(conf_info[i].information, valid_bit);
890 				printf("\n");
891 			} else {
892 				printf("%s\n", conf_info[i].information);
893 			}
894 		}
895 	}
896 
897 	if (fail)
898 		return OTP_FAILURE;
899 
900 	return OTP_SUCCESS;
901 }
902 
903 static int otp_print_conf_info(int input_offset)
904 {
905 	const struct otpconf_info *conf_info = info_cb.conf_info;
906 	uint32_t OTPCFG[12];
907 	uint32_t mask;
908 	uint32_t dw_offset;
909 	uint32_t bit_offset;
910 	uint32_t otp_value;
911 	char valid_bit[20];
912 	int i;
913 	int j;
914 
915 	for (i = 0; i < 12; i++)
916 		otp_read_config(i, &OTPCFG[i]);
917 
918 
919 	printf("DW    BIT        Value       Description\n");
920 	printf("__________________________________________________________________________\n");
921 	for (i = 0; i < info_cb.conf_info_len; i++) {
922 		if (input_offset != -1 && input_offset != conf_info[i].dw_offset)
923 			continue;
924 		dw_offset = conf_info[i].dw_offset;
925 		bit_offset = conf_info[i].bit_offset;
926 		mask = BIT(conf_info[i].length) - 1;
927 		otp_value = (OTPCFG[dw_offset] >> bit_offset) & mask;
928 
929 		if ((otp_value != conf_info[i].value) &&
930 		    conf_info[i].value != OTP_REG_RESERVED &&
931 		    conf_info[i].value != OTP_REG_VALUE &&
932 		    conf_info[i].value != OTP_REG_VALID_BIT)
933 			continue;
934 		printf("0x%-4X", dw_offset);
935 
936 		if (conf_info[i].length == 1) {
937 			printf("0x%-9X", conf_info[i].bit_offset);
938 		} else {
939 			printf("0x%-2X:0x%-4X",
940 			       conf_info[i].bit_offset + conf_info[i].length - 1,
941 			       conf_info[i].bit_offset);
942 		}
943 		printf("0x%-10x", otp_value);
944 
945 		if (conf_info[i].value == OTP_REG_RESERVED) {
946 			printf("Reserved\n");
947 		} else if (conf_info[i].value == OTP_REG_VALUE) {
948 			printf(conf_info[i].information, otp_value);
949 			printf("\n");
950 		} else if (conf_info[i].value == OTP_REG_VALID_BIT) {
951 			if (otp_value != 0) {
952 				for (j = 0; j < 7; j++) {
953 					if (otp_value == (1 << j)) {
954 						valid_bit[j * 2] = '1';
955 					} else {
956 						valid_bit[j * 2] = '0';
957 					}
958 					valid_bit[j * 2 + 1] = ' ';
959 				}
960 				valid_bit[15] = 0;
961 			} else {
962 				strcpy(valid_bit, "0 0 0 0 0 0 0 0\0");
963 			}
964 			printf(conf_info[i].information, valid_bit);
965 			printf("\n");
966 		} else {
967 			printf("%s\n", conf_info[i].information);
968 		}
969 	}
970 	return OTP_SUCCESS;
971 }
972 
973 static int otp_print_strap_image(uint32_t *OTPSTRAP)
974 {
975 	const struct otpstrap_info *strap_info = info_cb.strap_info;
976 	uint32_t *OTPSTRAP_PRO = &OTPSTRAP[4];
977 	uint32_t *OTPSTRAP_KEEP = &OTPSTRAP[2];
978 	int i;
979 	int fail = 0;
980 	uint32_t bit_offset;
981 	uint32_t dw_offset;
982 	uint32_t mask;
983 	uint32_t otp_value;
984 	uint32_t otp_protect;
985 	uint32_t otp_keep;
986 
987 	printf("BIT(hex)   Value       Protect     Description\n");
988 	printf("__________________________________________________________________________________________\n");
989 
990 	for (i = 0; i < info_cb.strap_info_len; i++) {
991 		if (strap_info[i].bit_offset > 32) {
992 			dw_offset = 1;
993 			bit_offset = strap_info[i].bit_offset - 32;
994 		} else {
995 			dw_offset = 0;
996 			bit_offset = strap_info[i].bit_offset;
997 		}
998 
999 		mask = BIT(strap_info[i].length) - 1;
1000 		otp_value = (OTPSTRAP[dw_offset] >> bit_offset) & mask;
1001 		otp_protect = (OTPSTRAP_PRO[dw_offset] >> bit_offset) & mask;
1002 		otp_keep = (OTPSTRAP_KEEP[dw_offset] >> bit_offset) & mask;
1003 
1004 		if (otp_keep == mask) {
1005 			continue;
1006 		} else if (otp_keep != 0) {
1007 			fail = 1;
1008 		}
1009 
1010 		if ((otp_value != strap_info[i].value) &&
1011 		    strap_info[i].value != OTP_REG_RESERVED)
1012 			continue;
1013 
1014 		if (strap_info[i].length == 1) {
1015 			printf("0x%-9X", strap_info[i].bit_offset);
1016 		} else {
1017 			printf("0x%-2X:0x%-4X",
1018 			       strap_info[i].bit_offset + strap_info[i].length - 1,
1019 			       strap_info[i].bit_offset);
1020 		}
1021 		printf("0x%-10x", otp_value);
1022 		printf("0x%-10x", otp_protect);
1023 
1024 		if (fail) {
1025 			printf("Keep mask error\n");
1026 		} else {
1027 			if (strap_info[i].value != OTP_REG_RESERVED)
1028 				printf("%s\n", strap_info[i].information);
1029 			else
1030 				printf("Reserved\n");
1031 		}
1032 	}
1033 
1034 	if (fail)
1035 		return OTP_FAILURE;
1036 
1037 	return OTP_SUCCESS;
1038 }
1039 
1040 static int otp_print_strap_info(int view)
1041 {
1042 	const struct otpstrap_info *strap_info = info_cb.strap_info;
1043 	struct otpstrap_status strap_status[64];
1044 	int i, j;
1045 	int fail = 0;
1046 	uint32_t bit_offset;
1047 	uint32_t length;
1048 	uint32_t otp_value;
1049 	uint32_t otp_protect;
1050 
1051 	otp_strap_status(strap_status);
1052 
1053 	if (view) {
1054 		// printf("BIT(hex) Value  Option         Protect   Description\n");
1055 		// printf("                0 1 2 3 4 5 6\n");
1056 		printf("BIT(hex) Value  Remains  Protect   Description\n");
1057 		printf("___________________________________________________________________________________________________\n");
1058 	} else {
1059 		printf("BIT(hex)   Value       Description\n");
1060 		printf("________________________________________________________________________________\n");
1061 	}
1062 	for (i = 0; i < info_cb.strap_info_len; i++) {
1063 		otp_value = 0;
1064 		bit_offset = strap_info[i].bit_offset;
1065 		length = strap_info[i].length;
1066 		for (j = 0; j < length; j++) {
1067 			otp_value |= strap_status[bit_offset + j].value << j;
1068 			otp_protect |= strap_status[bit_offset + j].protected << j;
1069 		}
1070 		if ((otp_value != strap_info[i].value) &&
1071 		    strap_info[i].value != OTP_REG_RESERVED)
1072 			continue;
1073 		if (view) {
1074 			for (j = 0; j < length; j++) {
1075 				printf("0x%-7X", strap_info[i].bit_offset + j);
1076 				printf("0x%-5X", strap_status[bit_offset + j].value);
1077 				printf("%-9d", strap_status[bit_offset + j].remain_times);
1078 				printf("0x%-7X", strap_status[bit_offset].protected);
1079 				if (strap_info[i].value == OTP_REG_RESERVED) {
1080 					printf(" Reserved\n");
1081 					continue;
1082 				}
1083 				if (length == 1) {
1084 					printf(" %s\n", strap_info[i].information);
1085 					continue;
1086 				}
1087 
1088 				if (j == 0)
1089 					printf("/%s\n", strap_info[i].information);
1090 				else if (j == length - 1)
1091 					printf("\\ \"\n");
1092 				else
1093 					printf("| \"\n");
1094 			}
1095 		} else {
1096 			if (length == 1) {
1097 				printf("0x%-9X", strap_info[i].bit_offset);
1098 			} else {
1099 				printf("0x%-2X:0x%-4X",
1100 				       bit_offset + length - 1, bit_offset);
1101 			}
1102 
1103 			printf("0x%-10X", otp_value);
1104 
1105 			if (strap_info[i].value != OTP_REG_RESERVED)
1106 				printf("%s\n", strap_info[i].information);
1107 			else
1108 				printf("Reserved\n");
1109 		}
1110 	}
1111 
1112 	if (fail)
1113 		return OTP_FAILURE;
1114 
1115 	return OTP_SUCCESS;
1116 }
1117 
1118 static void buf_print(char *buf, int len)
1119 {
1120 	int i;
1121 	printf("      00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
1122 	for (i = 0; i < len; i++) {
1123 		if (i % 16 == 0) {
1124 			printf("%04X: ", i);
1125 		}
1126 		printf("%02X ", buf[i]);
1127 		if ((i + 1) % 16 == 0) {
1128 			printf("\n");
1129 		}
1130 	}
1131 }
1132 
1133 static int otp_print_data_info(uint32_t *buf)
1134 {
1135 	int key_id, key_offset, last, key_type, key_length, exp_length;
1136 	const struct otpkey_type *key_info_array = info_cb.key_info;
1137 	struct otpkey_type key_info;
1138 	char *byte_buf;
1139 	int i = 0, len = 0;
1140 	int j;
1141 	byte_buf = (char *)buf;
1142 	while (1) {
1143 		key_id = buf[i] & 0x7;
1144 		key_offset = buf[i] & 0x1ff8;
1145 		last = (buf[i] >> 13) & 1;
1146 		key_type = (buf[i] >> 14) & 0xf;
1147 		key_length = (buf[i] >> 18) & 0x3;
1148 		exp_length = (buf[i] >> 20) & 0xfff;
1149 
1150 		for (j = 0; j < info_cb.key_info_len; j++) {
1151 			if (key_type == key_info_array[j].value) {
1152 				key_info = key_info_array[j];
1153 				break;
1154 			}
1155 		}
1156 
1157 		printf("\nKey[%d]:\n", i);
1158 		printf("Key Type: ");
1159 		printf("%s\n", key_info.information);
1160 
1161 		if (key_info.key_type == OTP_KEY_TYPE_HMAC) {
1162 			printf("HMAC SHA Type: ");
1163 			switch (key_length) {
1164 			case 0:
1165 				printf("HMAC(SHA224)\n");
1166 				break;
1167 			case 1:
1168 				printf("HMAC(SHA256)\n");
1169 				break;
1170 			case 2:
1171 				printf("HMAC(SHA384)\n");
1172 				break;
1173 			case 3:
1174 				printf("HMAC(SHA512)\n");
1175 				break;
1176 			}
1177 		} else if (key_info.key_type == OTP_KEY_TYPE_RSA) {
1178 			printf("RSA SHA Type: ");
1179 			switch (key_length) {
1180 			case 0:
1181 				printf("RSA1024\n");
1182 				len = 0x100;
1183 				break;
1184 			case 1:
1185 				printf("RSA2048\n");
1186 				len = 0x200;
1187 				break;
1188 			case 2:
1189 				printf("RSA3072\n");
1190 				len = 0x300;
1191 				break;
1192 			case 3:
1193 				printf("RSA4096\n");
1194 				len = 0x400;
1195 				break;
1196 			}
1197 			printf("RSA exponent bit length: %d\n", exp_length);
1198 		}
1199 		if (key_info.need_id)
1200 			printf("Key Number ID: %d\n", key_id);
1201 		printf("Key Value:\n");
1202 		if (key_info.key_type == OTP_KEY_TYPE_HMAC) {
1203 			buf_print(&byte_buf[key_offset], 0x40);
1204 		} else if (key_info.key_type == OTP_KEY_TYPE_AES) {
1205 			printf("AES Key:\n");
1206 			buf_print(&byte_buf[key_offset], 0x20);
1207 			if (info_cb.version == 0) {
1208 				printf("AES IV:\n");
1209 				buf_print(&byte_buf[key_offset + 0x20], 0x10);
1210 			}
1211 
1212 		} else if (key_info.key_type == OTP_KEY_TYPE_VAULT) {
1213 			if (info_cb.version == 0) {
1214 				printf("AES Key:\n");
1215 				buf_print(&byte_buf[key_offset], 0x20);
1216 				printf("AES IV:\n");
1217 				buf_print(&byte_buf[key_offset + 0x20], 0x10);
1218 			} else if (info_cb.version == 1) {
1219 				printf("AES Key 1:\n");
1220 				buf_print(&byte_buf[key_offset], 0x20);
1221 				printf("AES Key 2:\n");
1222 				buf_print(&byte_buf[key_offset + 0x20], 0x20);
1223 			}
1224 
1225 		} else if (key_info.key_type == OTP_KEY_TYPE_RSA) {
1226 			printf("RSA mod:\n");
1227 			buf_print(&byte_buf[key_offset], len / 2);
1228 			printf("RSA exp:\n");
1229 			buf_print(&byte_buf[key_offset + (len / 2)], len / 2);
1230 		}
1231 		if (last)
1232 			break;
1233 		i++;
1234 	}
1235 	return 0;
1236 }
1237 
1238 static int otp_prog_conf(uint32_t *buf)
1239 {
1240 	int i, k;
1241 	int pass = 0;
1242 	uint32_t prog_address;
1243 	uint32_t data[12];
1244 	uint32_t compare[2];
1245 	uint32_t *buf_keep = &buf[12];
1246 	uint32_t data_masked;
1247 	uint32_t buf_masked;
1248 
1249 	printf("Read OTP Config Region:\n");
1250 
1251 	for (i = 0; i < 12 ; i ++) {
1252 		prog_address = 0x800;
1253 		prog_address |= (i / 8) * 0x200;
1254 		prog_address |= (i % 8) * 0x2;
1255 		otp_read_data(prog_address, &data[i]);
1256 	}
1257 
1258 	printf("Check writable...\n");
1259 	for (i = 0; i < 12; i++) {
1260 		data_masked = data[i]  & ~buf_keep[i];
1261 		buf_masked  = buf[i] & ~buf_keep[i];
1262 		if (data_masked == buf_masked)
1263 			continue;
1264 		if ((data_masked | buf_masked) == buf_masked) {
1265 			continue;
1266 		} else {
1267 			printf("Input image can't program into OTP, please check.\n");
1268 			printf("OTPCFG[%X] = %x\n", i, data[i]);
1269 			printf("Input [%X] = %x\n", i, buf[i]);
1270 			printf("Mask  [%X] = %x\n", i, ~buf_keep[i]);
1271 			return OTP_FAILURE;
1272 		}
1273 	}
1274 
1275 	printf("Start Programing...\n");
1276 	otp_soak(0);
1277 	for (i = 0; i < 12; i++) {
1278 		data_masked = data[i]  & ~buf_keep[i];
1279 		buf_masked  = buf[i] & ~buf_keep[i];
1280 		prog_address = 0x800;
1281 		prog_address |= (i / 8) * 0x200;
1282 		prog_address |= (i % 8) * 0x2;
1283 		if (data_masked == buf_masked)
1284 			continue;
1285 
1286 
1287 		otp_soak(1);
1288 		otp_prog_dw(buf[i], buf_keep[i], prog_address);
1289 
1290 		pass = 0;
1291 		for (k = 0; k < RETRY; k++) {
1292 			if (verify_dw(prog_address, &buf[i], &buf_keep[i], compare, 1) != 0) {
1293 				otp_soak(2);
1294 				otp_prog_dw(compare[0], prog_address, 1);
1295 				if (verify_dw(prog_address, &buf[i], &buf_keep[i], compare, 1) != 0) {
1296 					otp_soak(1);
1297 				} else {
1298 					pass = 1;
1299 					break;
1300 				}
1301 			} else {
1302 				pass = 1;
1303 				break;
1304 			}
1305 		}
1306 	}
1307 
1308 	otp_soak(0);
1309 	if (!pass)
1310 		return OTP_FAILURE;
1311 
1312 	return OTP_SUCCESS;
1313 
1314 }
1315 
1316 
1317 static int otp_strap_image_confirm(uint32_t *buf)
1318 {
1319 	int i;
1320 	uint32_t *strap_keep = buf + 2;
1321 	uint32_t *strap_protect = buf + 4;
1322 	int bit, pbit, kbit;
1323 	int fail = 0;
1324 	int skip = -1;
1325 	struct otpstrap_status otpstrap[64];
1326 
1327 	otp_strap_status(otpstrap);
1328 	for (i = 0; i < 64; i++) {
1329 		if (i < 32) {
1330 			bit = (buf[0] >> i) & 0x1;
1331 			kbit = (strap_keep[0] >> i) & 0x1;
1332 			pbit = (strap_protect[0] >> i) & 0x1;
1333 		} else {
1334 			bit = (buf[1] >> (i - 32)) & 0x1;
1335 			kbit = (strap_keep[1] >> (i - 32)) & 0x1;
1336 			pbit = (strap_protect[1] >> (i - 32)) & 0x1;
1337 		}
1338 
1339 		if (kbit == 1) {
1340 			continue;
1341 		} else {
1342 			printf("OTPSTRAP[%X]:\n", i);
1343 		}
1344 		if (bit == otpstrap[i].value) {
1345 			printf("    The value is same as before, skip it.\n");
1346 			if (skip == -1)
1347 				skip = 1;
1348 			continue;
1349 		} else {
1350 			skip = 0;
1351 		}
1352 		if (otpstrap[i].protected == 1) {
1353 			printf("    This bit is protected and is not writable\n");
1354 			fail = 1;
1355 			continue;
1356 		}
1357 		if (otpstrap[i].remain_times == 0) {
1358 			printf("    This bit is no remaining times to write.\n");
1359 			fail = 1;
1360 			continue;
1361 		}
1362 		if (pbit == 1) {
1363 			printf("    This bit will be protected and become non-writable.\n");
1364 		}
1365 		printf("    Write 1 to OTPSTRAP[%X] OPTION[%X], that value becomes from %d to %d.\n", i, otpstrap[i].writeable_option + 1, otpstrap[i].value, otpstrap[i].value ^ 1);
1366 	}
1367 	if (fail == 1)
1368 		return OTP_FAILURE;
1369 	else if (skip == 1)
1370 		return OTP_PROG_SKIP;
1371 
1372 	return 0;
1373 }
1374 
1375 static int otp_print_strap(int start, int count)
1376 {
1377 	int i, j;
1378 	struct otpstrap_status otpstrap[64];
1379 
1380 	if (start < 0 || start > 64)
1381 		return OTP_USAGE;
1382 
1383 	if ((start + count) < 0 || (start + count) > 64)
1384 		return OTP_USAGE;
1385 
1386 	otp_strap_status(otpstrap);
1387 
1388 	printf("BIT(hex)  Value  Option           Status\n");
1389 	printf("___________________________________________________________________________\n");
1390 
1391 	for (i = start; i < start + count; i++) {
1392 		printf("0x%-8X", i);
1393 		printf("%-7d", otpstrap[i].value);
1394 		for (j = 0; j < 7; j++)
1395 			printf("%d ", otpstrap[i].option_array[j]);
1396 		printf("   ");
1397 		if (otpstrap[i].protected == 1) {
1398 			printf("protected and not writable");
1399 		} else {
1400 			printf("not protected ");
1401 			if (otpstrap[i].remain_times == 0) {
1402 				printf("and no remaining times to write.");
1403 			} else {
1404 				printf("and still can write %d times", otpstrap[i].remain_times);
1405 			}
1406 		}
1407 		printf("\n");
1408 	}
1409 
1410 	return OTP_SUCCESS;
1411 }
1412 
1413 static int otp_prog_strap(uint32_t *buf)
1414 {
1415 	int i, j;
1416 	uint32_t *strap_keep = buf + 2;
1417 	uint32_t *strap_protect = buf + 4;
1418 	uint32_t prog_bit, prog_address;
1419 	int bit, pbit, kbit, offset;
1420 	int fail = 0;
1421 	int pass = 0;
1422 	struct otpstrap_status otpstrap[64];
1423 
1424 	printf("Read OTP Strap Region:\n");
1425 	otp_strap_status(otpstrap);
1426 
1427 	printf("Check writable...\n");
1428 	if (otp_strap_image_confirm(buf) == OTP_FAILURE) {
1429 		printf("Input image can't program into OTP, please check.\n");
1430 		return OTP_FAILURE;
1431 	}
1432 
1433 	for (i = 0; i < 64; i++) {
1434 		prog_address = 0x800;
1435 		if (i < 32) {
1436 			offset = i;
1437 			bit = (buf[0] >> offset) & 0x1;
1438 			kbit = (strap_keep[0] >> offset) & 0x1;
1439 			pbit = (strap_protect[0] >> offset) & 0x1;
1440 			prog_address |= ((otpstrap[i].writeable_option * 2 + 16) / 8) * 0x200;
1441 			prog_address |= ((otpstrap[i].writeable_option * 2 + 16) % 8) * 0x2;
1442 
1443 		} else {
1444 			offset = (i - 32);
1445 			bit = (buf[1] >> offset) & 0x1;
1446 			kbit = (strap_keep[1] >> offset) & 0x1;
1447 			pbit = (strap_protect[1] >> offset) & 0x1;
1448 			prog_address |= ((otpstrap[i].writeable_option * 2 + 17) / 8) * 0x200;
1449 			prog_address |= ((otpstrap[i].writeable_option * 2 + 17) % 8) * 0x2;
1450 		}
1451 		prog_bit = ~(0x1 << offset);
1452 
1453 		if (kbit == 1) {
1454 			continue;
1455 		}
1456 		if (bit == otpstrap[i].value) {
1457 			continue;
1458 		}
1459 		if (otpstrap[i].protected == 1) {
1460 			fail = 1;
1461 			continue;
1462 		}
1463 		if (otpstrap[i].remain_times == 0) {
1464 			fail = 1;
1465 			continue;
1466 		}
1467 
1468 
1469 		otp_soak(1);
1470 		otp_prog(prog_address, prog_bit);
1471 
1472 		pass = 0;
1473 		for (j = 0; j < RETRY; j++) {
1474 			if (verify_bit(prog_address, offset, 1) != 0) {
1475 				otp_soak(2);
1476 				otp_prog(prog_address, prog_bit);
1477 				if (verify_bit(prog_address, offset, 1) != 0) {
1478 					otp_soak(1);
1479 				} else {
1480 					pass = 1;
1481 					break;
1482 				}
1483 			} else {
1484 				pass = 1;
1485 				break;
1486 			}
1487 		}
1488 		if (!pass)
1489 			return OTP_FAILURE;
1490 
1491 		if (pbit == 0)
1492 			continue;
1493 		prog_address = 0x800;
1494 		if (i < 32)
1495 			prog_address |= 0x60c;
1496 		else
1497 			prog_address |= 0x60e;
1498 
1499 
1500 		otp_soak(1);
1501 		otp_prog(prog_address, prog_bit);
1502 
1503 		pass = 0;
1504 		for (j = 0; j < RETRY; j++) {
1505 			if (verify_bit(prog_address, offset, 1) != 0) {
1506 				otp_soak(2);
1507 				otp_prog(prog_address, prog_bit);
1508 				if (verify_bit(prog_address, offset, 1) != 0) {
1509 					otp_soak(1);
1510 				} else {
1511 					pass = 1;
1512 					break;
1513 				}
1514 			} else {
1515 				pass = 1;
1516 				break;
1517 			}
1518 		}
1519 		if (!pass)
1520 			return OTP_FAILURE;
1521 
1522 	}
1523 	otp_soak(0);
1524 	if (fail == 1)
1525 		return OTP_FAILURE;
1526 	else
1527 		return OTP_SUCCESS;
1528 
1529 }
1530 
1531 static void otp_prog_bit(uint32_t value, uint32_t prog_address, uint32_t bit_offset)
1532 {
1533 	int prog_bit;
1534 
1535 	if (prog_address % 2 == 0) {
1536 		if (value)
1537 			prog_bit = ~(0x1 << bit_offset);
1538 		else
1539 			return;
1540 	} else {
1541 		prog_address |= 1 << 15;
1542 		if (!value)
1543 			prog_bit = 0x1 << bit_offset;
1544 		else
1545 			return;
1546 	}
1547 	otp_prog(prog_address, prog_bit);
1548 }
1549 
1550 static int otp_prog_data(uint32_t *buf)
1551 {
1552 	int i, k;
1553 	int pass;
1554 	uint32_t prog_address;
1555 	uint32_t data[2048];
1556 	uint32_t compare[2];
1557 	uint32_t *buf_keep = &buf[2048];
1558 
1559 	uint32_t data0_masked;
1560 	uint32_t data1_masked;
1561 	uint32_t buf0_masked;
1562 	uint32_t buf1_masked;
1563 
1564 	printf("Read OTP Data:\n");
1565 
1566 	for (i = 0; i < 2046 ; i += 2) {
1567 		otp_read_data(i, &data[i]);
1568 	}
1569 
1570 
1571 	printf("Check writable...\n");
1572 	for (i = 0; i < 2046; i++) {
1573 		data0_masked = data[i]  & ~buf_keep[i];
1574 		buf0_masked  = buf[i] & ~buf_keep[i];
1575 		if (data0_masked == buf0_masked)
1576 			continue;
1577 		if (i % 2 == 0) {
1578 			if ((data0_masked | buf0_masked) == buf0_masked) {
1579 				continue;
1580 			} else {
1581 				printf("Input image can't program into OTP, please check.\n");
1582 				printf("OTP_ADDR[%x] = %x\n", i, data[i]);
1583 				printf("Input   [%x] = %x\n", i, buf[i]);
1584 				printf("Mask    [%x] = %x\n", i, ~buf_keep[i]);
1585 				return OTP_FAILURE;
1586 			}
1587 		} else {
1588 			if ((data0_masked & buf0_masked) == buf0_masked) {
1589 				continue;
1590 			} else {
1591 				printf("Input image can't program into OTP, please check.\n");
1592 				printf("OTP_ADDR[%x] = %x\n", i, data[i]);
1593 				printf("Input   [%x] = %x\n", i, buf[i]);
1594 				printf("Mask    [%x] = %x\n", i, ~buf_keep[i]);
1595 				return OTP_FAILURE;
1596 			}
1597 		}
1598 	}
1599 
1600 	printf("Start Programing...\n");
1601 
1602 	for (i = 0; i < 2046; i += 2) {
1603 		prog_address = i;
1604 		data0_masked = data[i]  & ~buf_keep[i];
1605 		buf0_masked  = buf[i] & ~buf_keep[i];
1606 		data1_masked = data[i + 1]  & ~buf_keep[i + 1];
1607 		buf1_masked  = buf[i + 1] & ~buf_keep[i + 1];
1608 		if ((data0_masked == buf0_masked) && (data1_masked == buf1_masked)) {
1609 			continue;
1610 		}
1611 
1612 		otp_soak(1);
1613 		if (data1_masked == buf1_masked) {
1614 			otp_prog_dw(buf[i], buf_keep[i], prog_address);
1615 		} else if (data0_masked == buf0_masked) {
1616 			otp_prog_dw(buf[i + 1], buf_keep[i + 1], prog_address + 1);
1617 		} else {
1618 			otp_prog_dw(buf[i], buf_keep[i], prog_address);
1619 			otp_prog_dw(buf[i + 1], buf_keep[i + 1], prog_address + 1);
1620 		}
1621 
1622 		pass = 0;
1623 		for (k = 0; k < RETRY; k++) {
1624 			if (verify_dw(prog_address, &buf[i], &buf_keep[i], compare, 2) != 0) {
1625 				otp_soak(2);
1626 				if (compare[0] != 0) {
1627 					otp_prog_dw(compare[0], buf_keep[i], prog_address);
1628 				}
1629 				if (compare[1] != ~0) {
1630 					otp_prog_dw(compare[1], buf_keep[i], prog_address + 1);
1631 				}
1632 				if (verify_dw(prog_address, &buf[i], &buf_keep[i], compare, 2) != 0) {
1633 					otp_soak(1);
1634 				} else {
1635 					pass = 1;
1636 					break;
1637 				}
1638 			} else {
1639 				pass = 1;
1640 				break;
1641 			}
1642 		}
1643 
1644 		if (!pass) {
1645 			otp_soak(0);
1646 			return OTP_FAILURE;
1647 		}
1648 	}
1649 	otp_soak(0);
1650 	return OTP_SUCCESS;
1651 
1652 }
1653 
1654 static int do_otp_prog(int addr, int byte_size, int nconfirm)
1655 {
1656 	int ret;
1657 	int mode = 0;
1658 	int image_version = 0;
1659 	uint32_t *buf;
1660 	uint32_t *data_region = NULL;
1661 	uint32_t *conf_region = NULL;
1662 	uint32_t *strap_region = NULL;
1663 
1664 	buf = map_physmem(addr, byte_size, MAP_WRBACK);
1665 	if (!buf) {
1666 		puts("Failed to map physical memory\n");
1667 		return OTP_FAILURE;
1668 	}
1669 
1670 	image_version = buf[0] & 0x3;
1671 	if (image_version != info_cb.version) {
1672 		puts("Version is not match\n");
1673 		return OTP_FAILURE;
1674 	}
1675 
1676 	if (buf[0] & BIT(29)) {
1677 		mode |= OTP_REGION_DATA;
1678 		data_region = &buf[36];
1679 	}
1680 	if (buf[0] & BIT(30)) {
1681 		mode |= OTP_REGION_CONF;
1682 		conf_region = &buf[12];
1683 	}
1684 	if (buf[0] & BIT(31)) {
1685 		mode |= OTP_REGION_STRAP;
1686 		strap_region = &buf[4];
1687 	}
1688 
1689 	if (!nconfirm) {
1690 		if (mode & OTP_REGION_DATA) {
1691 			printf("\nOTP data region :\n");
1692 			if (otp_print_data_info(data_region) < 0) {
1693 				printf("OTP data error, please check.\n");
1694 				return OTP_FAILURE;
1695 			}
1696 		}
1697 		if (mode & OTP_REGION_STRAP) {
1698 			printf("\nOTP strap region :\n");
1699 			if (otp_print_strap_image(strap_region) < 0) {
1700 				printf("OTP strap error, please check.\n");
1701 				return OTP_FAILURE;
1702 			}
1703 		}
1704 		if (mode & OTP_REGION_CONF) {
1705 			printf("\nOTP configuration region :\n");
1706 			if (otp_print_conf_image(conf_region) < 0) {
1707 				printf("OTP config error, please check.\n");
1708 				return OTP_FAILURE;
1709 			}
1710 		}
1711 
1712 		printf("type \"YES\" (no quotes) to continue:\n");
1713 		if (!confirm_yesno()) {
1714 			printf(" Aborting\n");
1715 			return OTP_FAILURE;
1716 		}
1717 	}
1718 
1719 	if (mode & OTP_REGION_DATA) {
1720 		printf("programing data region ...\n");
1721 		ret = otp_prog_data(data_region);
1722 		if (ret != 0) {
1723 			printf("Error\n");
1724 			return ret;
1725 		} else {
1726 			printf("Done\n");
1727 		}
1728 	}
1729 	if (mode & OTP_REGION_STRAP) {
1730 		printf("programing strap region ...\n");
1731 		ret = otp_prog_strap(strap_region);
1732 		if (ret != 0) {
1733 			printf("Error\n");
1734 			return ret;
1735 		} else {
1736 			printf("Done\n");
1737 		}
1738 	}
1739 	if (mode & OTP_REGION_CONF) {
1740 		printf("programing configuration region ...\n");
1741 		ret = otp_prog_conf(conf_region);
1742 		if (ret != 0) {
1743 			printf("Error\n");
1744 			return ret;
1745 		}
1746 		printf("Done\n");
1747 	}
1748 
1749 	return OTP_SUCCESS;
1750 }
1751 
1752 static int do_otp_prog_bit(int mode, int otp_dw_offset, int bit_offset, int value, int nconfirm)
1753 {
1754 	uint32_t read[2];
1755 	uint32_t strap_buf[6];
1756 	uint32_t prog_address = 0;
1757 	struct otpstrap_status otpstrap[64];
1758 	int otp_bit;
1759 	int i;
1760 	int pass;
1761 	int ret;
1762 
1763 	switch (mode) {
1764 	case OTP_REGION_CONF:
1765 		otp_read_config(otp_dw_offset, read);
1766 		prog_address = 0x800;
1767 		prog_address |= (otp_dw_offset / 8) * 0x200;
1768 		prog_address |= (otp_dw_offset % 8) * 0x2;
1769 		otp_bit = (read[0] >> bit_offset) & 0x1;
1770 		if (otp_bit == value) {
1771 			printf("OTPCFG%X[%X] = %d\n", otp_dw_offset, bit_offset, value);
1772 			printf("No need to program\n");
1773 			return OTP_SUCCESS;
1774 		}
1775 		if (otp_bit == 1 && value == 0) {
1776 			printf("OTPCFG%X[%X] = 1\n", otp_dw_offset, bit_offset);
1777 			printf("OTP is programed, which can't be clean\n");
1778 			return OTP_FAILURE;
1779 		}
1780 		printf("Program OTPCFG%X[%X] to 1\n", otp_dw_offset, bit_offset);
1781 		break;
1782 	case OTP_REGION_DATA:
1783 		prog_address = otp_dw_offset;
1784 
1785 		if (otp_dw_offset % 2 == 0) {
1786 			otp_read_data(otp_dw_offset, read);
1787 			otp_bit = (read[0] >> bit_offset) & 0x1;
1788 
1789 			if (otp_bit == 1 && value == 0) {
1790 				printf("OTPDATA%X[%X] = 1\n", otp_dw_offset, bit_offset);
1791 				printf("OTP is programed, which can't be cleaned\n");
1792 				return OTP_FAILURE;
1793 			}
1794 		} else {
1795 			otp_read_data(otp_dw_offset - 1, read);
1796 			otp_bit = (read[1] >> bit_offset) & 0x1;
1797 
1798 			if (otp_bit == 0 && value == 1) {
1799 				printf("OTPDATA%X[%X] = 1\n", otp_dw_offset, bit_offset);
1800 				printf("OTP is programed, which can't be writen\n");
1801 				return OTP_FAILURE;
1802 			}
1803 		}
1804 		if (otp_bit == value) {
1805 			printf("OTPDATA%X[%X] = %d\n", otp_dw_offset, bit_offset, value);
1806 			printf("No need to program\n");
1807 			return OTP_SUCCESS;
1808 		}
1809 
1810 		printf("Program OTPDATA%X[%X] to 1\n", otp_dw_offset, bit_offset);
1811 		break;
1812 	case OTP_REGION_STRAP:
1813 		otp_strap_status(otpstrap);
1814 		otp_print_strap(bit_offset, 1);
1815 		if (bit_offset < 32) {
1816 			strap_buf[0] = value << bit_offset;
1817 			strap_buf[2] = ~BIT(bit_offset);
1818 			strap_buf[3] = ~0;
1819 			strap_buf[5] = 0;
1820 			// if (protect)
1821 			// 	strap_buf[4] = BIT(bit_offset);
1822 			// else
1823 			// 	strap_buf[4] = 0;
1824 		} else {
1825 			strap_buf[1] = value << (bit_offset - 32);
1826 			strap_buf[2] = ~0;
1827 			strap_buf[3] = ~BIT(bit_offset - 32);
1828 			strap_buf[4] = 0;
1829 			// if (protect)
1830 			// 	strap_buf[5] = BIT(bit_offset - 32);
1831 			// else
1832 			// 	strap_buf[5] = 0;
1833 		}
1834 		ret = otp_strap_image_confirm(strap_buf);
1835 		if (ret == OTP_FAILURE)
1836 			return OTP_FAILURE;
1837 		else if (ret == OTP_PROG_SKIP)
1838 			return OTP_SUCCESS;
1839 
1840 		break;
1841 	}
1842 
1843 	if (!nconfirm) {
1844 		printf("type \"YES\" (no quotes) to continue:\n");
1845 		if (!confirm_yesno()) {
1846 			printf(" Aborting\n");
1847 			return OTP_FAILURE;
1848 		}
1849 	}
1850 
1851 	switch (mode) {
1852 	case OTP_REGION_STRAP:
1853 		return otp_prog_strap(strap_buf);
1854 	case OTP_REGION_CONF:
1855 	case OTP_REGION_DATA:
1856 		otp_soak(1);
1857 		otp_prog_bit(value, prog_address, bit_offset);
1858 		pass = 0;
1859 
1860 		for (i = 0; i < RETRY; i++) {
1861 			if (verify_bit(prog_address, bit_offset, value) != 0) {
1862 				otp_soak(2);
1863 				otp_prog_bit(value, prog_address, bit_offset);
1864 				if (verify_bit(prog_address, bit_offset, value) != 0) {
1865 					otp_soak(1);
1866 				} else {
1867 					pass = 1;
1868 					break;
1869 				}
1870 			} else {
1871 				pass = 1;
1872 				break;
1873 			}
1874 		}
1875 
1876 		otp_soak(0);
1877 		if (pass) {
1878 			printf("SUCCESS\n");
1879 			return OTP_SUCCESS;
1880 		} else {
1881 			printf("OTP cannot be programed\n");
1882 			printf("FAILED\n");
1883 			return OTP_FAILURE;
1884 		}
1885 	}
1886 
1887 	return OTP_USAGE;
1888 }
1889 
1890 static int do_otpread(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
1891 {
1892 	uint32_t offset, count;
1893 	int ret;
1894 
1895 	if (argc == 4) {
1896 		offset = simple_strtoul(argv[2], NULL, 16);
1897 		count = simple_strtoul(argv[3], NULL, 16);
1898 	} else if (argc == 3) {
1899 		offset = simple_strtoul(argv[2], NULL, 16);
1900 		count = 1;
1901 	} else {
1902 		return CMD_RET_USAGE;
1903 	}
1904 
1905 
1906 	if (!strcmp(argv[1], "conf")) {
1907 		writel(OTP_PASSWD, OTP_PROTECT_KEY); //password
1908 		ret = otp_print_config(offset, count);
1909 	} else if (!strcmp(argv[1], "data")) {
1910 		writel(OTP_PASSWD, OTP_PROTECT_KEY); //password
1911 		ret = otp_print_data(offset, count);
1912 	} else if (!strcmp(argv[1], "strap")) {
1913 		writel(OTP_PASSWD, OTP_PROTECT_KEY); //password
1914 		ret = otp_print_strap(offset, count);
1915 	} else {
1916 		return CMD_RET_USAGE;
1917 	}
1918 
1919 	if (ret == OTP_SUCCESS)
1920 		return CMD_RET_SUCCESS;
1921 	else
1922 		return CMD_RET_USAGE;
1923 
1924 }
1925 
1926 static int do_otpprog(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
1927 {
1928 	phys_addr_t addr;
1929 	uint32_t byte_size;
1930 	int ret;
1931 
1932 	if (argc == 4) {
1933 		if (strcmp(argv[1], "o"))
1934 			return CMD_RET_USAGE;
1935 		addr = simple_strtoul(argv[2], NULL, 16);
1936 		byte_size = simple_strtoul(argv[3], NULL, 16);
1937 		writel(OTP_PASSWD, OTP_PROTECT_KEY); //password
1938 		ret = do_otp_prog(addr, byte_size, 1);
1939 	} else if (argc == 3) {
1940 		addr = simple_strtoul(argv[1], NULL, 16);
1941 		byte_size = simple_strtoul(argv[2], NULL, 16);
1942 		writel(OTP_PASSWD, OTP_PROTECT_KEY); //password
1943 		ret = do_otp_prog(addr, byte_size, 0);
1944 	} else {
1945 		return CMD_RET_USAGE;
1946 	}
1947 
1948 	if (ret == OTP_SUCCESS)
1949 		return CMD_RET_SUCCESS;
1950 	else if (ret == OTP_FAILURE)
1951 		return CMD_RET_FAILURE;
1952 	else
1953 		return CMD_RET_USAGE;
1954 }
1955 
1956 static int do_otppb(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
1957 {
1958 	int mode = 0;
1959 	int nconfirm = 0;
1960 	int otp_addr = 0;
1961 	int bit_offset;
1962 	int value;
1963 	int ret;
1964 
1965 	if (argc != 4 && argc != 5 && argc != 6)
1966 		return CMD_RET_USAGE;
1967 
1968 	/* Drop the pb cmd */
1969 	argc--;
1970 	argv++;
1971 
1972 	if (!strcmp(argv[0], "conf"))
1973 		mode = OTP_REGION_CONF;
1974 	else if (!strcmp(argv[0], "strap"))
1975 		mode = OTP_REGION_STRAP;
1976 	else if (!strcmp(argv[0], "data"))
1977 		mode = OTP_REGION_DATA;
1978 	else
1979 		return CMD_RET_USAGE;
1980 
1981 	/* Drop the region cmd */
1982 	argc--;
1983 	argv++;
1984 
1985 	if (!strcmp(argv[0], "o")) {
1986 		nconfirm = 1;
1987 		/* Drop the force option */
1988 		argc--;
1989 		argv++;
1990 	}
1991 
1992 	if (mode == OTP_REGION_STRAP) {
1993 		bit_offset = simple_strtoul(argv[0], NULL, 16);
1994 		value = simple_strtoul(argv[1], NULL, 16);
1995 		if (bit_offset >= 64 || (value != 0 && value != 1))
1996 			return CMD_RET_USAGE;
1997 	} else {
1998 		otp_addr = simple_strtoul(argv[0], NULL, 16);
1999 		bit_offset = simple_strtoul(argv[1], NULL, 16);
2000 		value = simple_strtoul(argv[2], NULL, 16);
2001 		if (bit_offset >= 32 || (value != 0 && value != 1))
2002 			return CMD_RET_USAGE;
2003 		if (mode == OTP_REGION_DATA) {
2004 			if (otp_addr >= 0x800)
2005 				return CMD_RET_USAGE;
2006 		} else {
2007 			if (otp_addr >= 0x20)
2008 				return CMD_RET_USAGE;
2009 		}
2010 	}
2011 	if (value != 0 && value != 1)
2012 		return CMD_RET_USAGE;
2013 
2014 	writel(OTP_PASSWD, OTP_PROTECT_KEY); //password
2015 	ret = do_otp_prog_bit(mode, otp_addr, bit_offset, value, nconfirm);
2016 
2017 	if (ret == OTP_SUCCESS)
2018 		return CMD_RET_SUCCESS;
2019 	else if (ret == OTP_FAILURE)
2020 		return CMD_RET_FAILURE;
2021 	else
2022 		return CMD_RET_USAGE;
2023 }
2024 
2025 static int do_otpcmp(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
2026 {
2027 	phys_addr_t addr;
2028 	int otp_addr = 0;
2029 
2030 	if (argc != 3)
2031 		return CMD_RET_USAGE;
2032 
2033 	writel(OTP_PASSWD, OTP_PROTECT_KEY); //password
2034 	addr = simple_strtoul(argv[1], NULL, 16);
2035 	otp_addr = simple_strtoul(argv[2], NULL, 16);
2036 	if (otp_compare(otp_addr, addr) == 0) {
2037 		printf("Compare pass\n");
2038 		return CMD_RET_SUCCESS;
2039 	} else {
2040 		printf("Compare fail\n");
2041 		return CMD_RET_FAILURE;
2042 	}
2043 }
2044 
2045 static int do_otpinfo(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
2046 {
2047 	int view = 0;
2048 	int input;
2049 
2050 	if (argc != 2 && argc != 3)
2051 		return CMD_RET_USAGE;
2052 
2053 	if (!strcmp(argv[1], "conf")) {
2054 
2055 		writel(OTP_PASSWD, OTP_PROTECT_KEY); //password
2056 		if (argc == 3) {
2057 			input = simple_strtoul(argv[2], NULL, 16);
2058 			otp_print_conf_info(input);
2059 		} else {
2060 			otp_print_conf_info(-1);
2061 		}
2062 	} else if (!strcmp(argv[1], "strap")) {
2063 		if (!strcmp(argv[2], "v")) {
2064 			view = 1;
2065 			/* Drop the view option */
2066 			argc--;
2067 			argv++;
2068 		}
2069 		writel(OTP_PASSWD, OTP_PROTECT_KEY); //password
2070 		otp_print_strap_info(view);
2071 	} else {
2072 		return CMD_RET_USAGE;
2073 	}
2074 
2075 	return CMD_RET_SUCCESS;
2076 }
2077 
2078 static int do_otpprotect(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
2079 {
2080 	int input;
2081 	int bit_offset;
2082 	int prog_address;
2083 	int pass;
2084 	int i;
2085 	if (argc != 3 && argc != 2)
2086 		return CMD_RET_USAGE;
2087 
2088 	if (!strcmp(argv[0], "o")) {
2089 		input = simple_strtoul(argv[2], NULL, 16);
2090 	} else {
2091 		input = simple_strtoul(argv[1], NULL, 16);
2092 		printf("OTPSTRAP[%d] will be protected\n", input);
2093 		printf("type \"YES\" (no quotes) to continue:\n");
2094 		if (!confirm_yesno()) {
2095 			printf(" Aborting\n");
2096 			return CMD_RET_FAILURE;
2097 		}
2098 	}
2099 
2100 	prog_address = 0x800;
2101 	if (input < 32) {
2102 		bit_offset = input;
2103 		prog_address |= 0x60c;
2104 	} else if (input < 64) {
2105 		bit_offset = input - 32;
2106 		prog_address |= 0x60e;
2107 	} else {
2108 		return CMD_RET_USAGE;
2109 	}
2110 
2111 	if (verify_bit(prog_address, bit_offset, 1) == 0) {
2112 		printf("OTPSTRAP[%d] already protected\n", input);
2113 	}
2114 
2115 	otp_soak(1);
2116 	otp_prog_bit(1, prog_address, bit_offset);
2117 	pass = 0;
2118 
2119 	for (i = 0; i < RETRY; i++) {
2120 		if (verify_bit(prog_address, bit_offset, 1) != 0) {
2121 			otp_soak(2);
2122 			otp_prog_bit(1, prog_address, bit_offset);
2123 			if (verify_bit(prog_address, bit_offset, 1) != 0) {
2124 				otp_soak(1);
2125 			} else {
2126 				pass = 1;
2127 				break;
2128 			}
2129 		} else {
2130 			pass = 1;
2131 			break;
2132 		}
2133 	}
2134 	otp_soak(0);
2135 	if (pass) {
2136 		printf("OTPSTRAP[%d] is protected\n", input);
2137 		return CMD_RET_SUCCESS;
2138 	}
2139 
2140 	printf("Protect OTPSTRAP[%d] fail\n", input);
2141 	return CMD_RET_FAILURE;
2142 
2143 }
2144 
2145 static cmd_tbl_t cmd_otp[] = {
2146 	U_BOOT_CMD_MKENT(read, 4, 0, do_otpread, "", ""),
2147 	U_BOOT_CMD_MKENT(info, 3, 0, do_otpinfo, "", ""),
2148 	U_BOOT_CMD_MKENT(prog, 4, 0, do_otpprog, "", ""),
2149 	U_BOOT_CMD_MKENT(pb, 6, 0, do_otppb, "", ""),
2150 	U_BOOT_CMD_MKENT(protect, 3, 0, do_otpprotect, "", ""),
2151 	U_BOOT_CMD_MKENT(cmp, 3, 0, do_otpcmp, "", ""),
2152 };
2153 
2154 static int do_ast_otp(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
2155 {
2156 	cmd_tbl_t *cp;
2157 
2158 	cp = find_cmd_tbl(argv[1], cmd_otp, ARRAY_SIZE(cmd_otp));
2159 
2160 	/* Drop the otp command */
2161 	argc--;
2162 	argv++;
2163 
2164 	if (cp == NULL || argc > cp->maxargs)
2165 		return CMD_RET_USAGE;
2166 	if (flag == CMD_FLAG_REPEAT && !cmd_is_repeatable(cp))
2167 		return CMD_RET_SUCCESS;
2168 
2169 	if (chip_version() == 0) {
2170 		info_cb.version = 0;
2171 		info_cb.conf_info = a0_conf_info;
2172 		info_cb.conf_info_len = ARRAY_SIZE(a0_conf_info);
2173 		info_cb.strap_info = a0_strap_info;
2174 		info_cb.strap_info_len = ARRAY_SIZE(a0_strap_info);
2175 		info_cb.key_info = a0_key_type;
2176 		info_cb.key_info_len = ARRAY_SIZE(a0_key_type);
2177 	} else if (chip_version() == 1) {
2178 		info_cb.version = 1;
2179 		info_cb.conf_info = a1_conf_info;
2180 		info_cb.conf_info_len = ARRAY_SIZE(a1_conf_info);
2181 		info_cb.strap_info = a1_strap_info;
2182 		info_cb.strap_info_len = ARRAY_SIZE(a1_strap_info);
2183 		info_cb.key_info = a1_key_type;
2184 		info_cb.key_info_len = ARRAY_SIZE(a1_key_type);
2185 	}
2186 
2187 	return cp->cmd(cmdtp, flag, argc, argv);
2188 }
2189 
2190 U_BOOT_CMD(
2191 	otp, 7, 0,  do_ast_otp,
2192 	"ASPEED One-Time-Programmable sub-system",
2193 	"read conf|data <otp_dw_offset> <dw_count>\n"
2194 	"otp read strap <strap_bit_offset> <bit_count>\n"
2195 	"otp info strap [v]\n"
2196 	"otp info conf [otp_dw_offset]\n"
2197 	"otp prog [o] <addr> <byte_size>\n"
2198 	"otp pb conf|data [o] <otp_dw_offset> <bit_offset> <value>\n"
2199 	"otp pb strap [o] <bit_offset> <value>\n"
2200 	"otp protect [o] <bit_offset>\n"
2201 	"otp cmp <addr> <otp_dw_offset>\n"
2202 );
2203