xref: /openbmc/u-boot/cmd/i2c.c (revision d5abcf94)
1 /*
2  * (C) Copyright 2009
3  * Sergey Kubushyn, himself, ksi@koi8.net
4  *
5  * Changes for unified multibus/multiadapter I2C support.
6  *
7  * (C) Copyright 2001
8  * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
9  *
10  * SPDX-License-Identifier:	GPL-2.0+
11  */
12 
13 /*
14  * I2C Functions similar to the standard memory functions.
15  *
16  * There are several parameters in many of the commands that bear further
17  * explanations:
18  *
19  * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
20  *   Each I2C chip on the bus has a unique address.  On the I2C data bus,
21  *   the address is the upper seven bits and the LSB is the "read/write"
22  *   bit.  Note that the {i2c_chip} address specified on the command
23  *   line is not shifted up: e.g. a typical EEPROM memory chip may have
24  *   an I2C address of 0x50, but the data put on the bus will be 0xA0
25  *   for write and 0xA1 for read.  This "non shifted" address notation
26  *   matches at least half of the data sheets :-/.
27  *
28  * {addr} is the address (or offset) within the chip.  Small memory
29  *   chips have 8 bit addresses.  Large memory chips have 16 bit
30  *   addresses.  Other memory chips have 9, 10, or 11 bit addresses.
31  *   Many non-memory chips have multiple registers and {addr} is used
32  *   as the register index.  Some non-memory chips have only one register
33  *   and therefore don't need any {addr} parameter.
34  *
35  *   The default {addr} parameter is one byte (.1) which works well for
36  *   memories and registers with 8 bits of address space.
37  *
38  *   You can specify the length of the {addr} field with the optional .0,
39  *   .1, or .2 modifier (similar to the .b, .w, .l modifier).  If you are
40  *   manipulating a single register device which doesn't use an address
41  *   field, use "0.0" for the address and the ".0" length field will
42  *   suppress the address in the I2C data stream.  This also works for
43  *   successive reads using the I2C auto-incrementing memory pointer.
44  *
45  *   If you are manipulating a large memory with 2-byte addresses, use
46  *   the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
47  *
48  *   Then there are the unfortunate memory chips that spill the most
49  *   significant 1, 2, or 3 bits of address into the chip address byte.
50  *   This effectively makes one chip (logically) look like 2, 4, or
51  *   8 chips.  This is handled (awkwardly) by #defining
52  *   CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
53  *   {addr} field (since .1 is the default, it doesn't actually have to
54  *   be specified).  Examples: given a memory chip at I2C chip address
55  *   0x50, the following would happen...
56  *     i2c md 50 0 10   display 16 bytes starting at 0x000
57  *                      On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
58  *     i2c md 50 100 10 display 16 bytes starting at 0x100
59  *                      On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
60  *     i2c md 50 210 10 display 16 bytes starting at 0x210
61  *                      On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
62  *   This is awfully ugly.  It would be nice if someone would think up
63  *   a better way of handling this.
64  *
65  * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
66  */
67 
68 #include <common.h>
69 #include <bootretry.h>
70 #include <cli.h>
71 #include <command.h>
72 #include <console.h>
73 #include <dm.h>
74 #include <edid.h>
75 #include <environment.h>
76 #include <errno.h>
77 #include <i2c.h>
78 #include <malloc.h>
79 #include <asm/byteorder.h>
80 #include <linux/compiler.h>
81 
82 DECLARE_GLOBAL_DATA_PTR;
83 
84 /* Display values from last command.
85  * Memory modify remembered values are different from display memory.
86  */
87 static uint	i2c_dp_last_chip;
88 static uint	i2c_dp_last_addr;
89 static uint	i2c_dp_last_alen;
90 static uint	i2c_dp_last_length = 0x10;
91 
92 static uint	i2c_mm_last_chip;
93 static uint	i2c_mm_last_addr;
94 static uint	i2c_mm_last_alen;
95 
96 /* If only one I2C bus is present, the list of devices to ignore when
97  * the probe command is issued is represented by a 1D array of addresses.
98  * When multiple buses are present, the list is an array of bus-address
99  * pairs.  The following macros take care of this */
100 
101 #if defined(CONFIG_SYS_I2C_NOPROBES)
102 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS)
103 static struct
104 {
105 	uchar	bus;
106 	uchar	addr;
107 } i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
108 #define GET_BUS_NUM	i2c_get_bus_num()
109 #define COMPARE_BUS(b,i)	(i2c_no_probes[(i)].bus == (b))
110 #define COMPARE_ADDR(a,i)	(i2c_no_probes[(i)].addr == (a))
111 #define NO_PROBE_ADDR(i)	i2c_no_probes[(i)].addr
112 #else		/* single bus */
113 static uchar i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
114 #define GET_BUS_NUM	0
115 #define COMPARE_BUS(b,i)	((b) == 0)	/* Make compiler happy */
116 #define COMPARE_ADDR(a,i)	(i2c_no_probes[(i)] == (a))
117 #define NO_PROBE_ADDR(i)	i2c_no_probes[(i)]
118 #endif	/* defined(CONFIG_SYS_I2C) */
119 #endif
120 
121 #define DISP_LINE_LEN	16
122 
123 /*
124  * Default for driver model is to use the chip's existing address length.
125  * For legacy code, this is not stored, so we need to use a suitable
126  * default.
127  */
128 #ifdef CONFIG_DM_I2C
129 #define DEFAULT_ADDR_LEN	(-1)
130 #else
131 #define DEFAULT_ADDR_LEN	1
132 #endif
133 
134 #ifdef CONFIG_DM_I2C
135 static struct udevice *i2c_cur_bus;
136 
137 static int cmd_i2c_set_bus_num(unsigned int busnum)
138 {
139 	struct udevice *bus;
140 	int ret;
141 
142 	ret = uclass_get_device_by_seq(UCLASS_I2C, busnum, &bus);
143 	if (ret) {
144 		debug("%s: No bus %d\n", __func__, busnum);
145 		return ret;
146 	}
147 	i2c_cur_bus = bus;
148 
149 	return 0;
150 }
151 
152 static int i2c_get_cur_bus(struct udevice **busp)
153 {
154 	if (!i2c_cur_bus) {
155 		puts("No I2C bus selected\n");
156 		return -ENODEV;
157 	}
158 	*busp = i2c_cur_bus;
159 
160 	return 0;
161 }
162 
163 static int i2c_get_cur_bus_chip(uint chip_addr, struct udevice **devp)
164 {
165 	struct udevice *bus;
166 	int ret;
167 
168 	ret = i2c_get_cur_bus(&bus);
169 	if (ret)
170 		return ret;
171 
172 	return i2c_get_chip(bus, chip_addr, 1, devp);
173 }
174 
175 #endif
176 
177 /**
178  * i2c_init_board() - Board-specific I2C bus init
179  *
180  * This function is the default no-op implementation of I2C bus
181  * initialization. This function can be overridden by board-specific
182  * implementation if needed.
183  */
184 __weak
185 void i2c_init_board(void)
186 {
187 }
188 
189 /* TODO: Implement architecture-specific get/set functions */
190 
191 /**
192  * i2c_get_bus_speed() - Return I2C bus speed
193  *
194  * This function is the default implementation of function for retrieveing
195  * the current I2C bus speed in Hz.
196  *
197  * A driver implementing runtime switching of I2C bus speed must override
198  * this function to report the speed correctly. Simple or legacy drivers
199  * can use this fallback.
200  *
201  * Returns I2C bus speed in Hz.
202  */
203 #if !defined(CONFIG_SYS_I2C) && !defined(CONFIG_DM_I2C)
204 /*
205  * TODO: Implement architecture-specific get/set functions
206  * Should go away, if we switched completely to new multibus support
207  */
208 __weak
209 unsigned int i2c_get_bus_speed(void)
210 {
211 	return CONFIG_SYS_I2C_SPEED;
212 }
213 
214 /**
215  * i2c_set_bus_speed() - Configure I2C bus speed
216  * @speed:	Newly set speed of the I2C bus in Hz
217  *
218  * This function is the default implementation of function for setting
219  * the I2C bus speed in Hz.
220  *
221  * A driver implementing runtime switching of I2C bus speed must override
222  * this function to report the speed correctly. Simple or legacy drivers
223  * can use this fallback.
224  *
225  * Returns zero on success, negative value on error.
226  */
227 __weak
228 int i2c_set_bus_speed(unsigned int speed)
229 {
230 	if (speed != CONFIG_SYS_I2C_SPEED)
231 		return -1;
232 
233 	return 0;
234 }
235 #endif
236 
237 /**
238  * get_alen() - Small parser helper function to get address length
239  *
240  * Returns the address length.
241  */
242 static uint get_alen(char *arg, int default_len)
243 {
244 	int	j;
245 	int	alen;
246 
247 	alen = default_len;
248 	for (j = 0; j < 8; j++) {
249 		if (arg[j] == '.') {
250 			alen = arg[j+1] - '0';
251 			break;
252 		} else if (arg[j] == '\0')
253 			break;
254 	}
255 	return alen;
256 }
257 
258 enum i2c_err_op {
259 	I2C_ERR_READ,
260 	I2C_ERR_WRITE,
261 };
262 
263 static int i2c_report_err(int ret, enum i2c_err_op op)
264 {
265 	printf("Error %s the chip: %d\n",
266 	       op == I2C_ERR_READ ? "reading" : "writing", ret);
267 
268 	return CMD_RET_FAILURE;
269 }
270 
271 /**
272  * do_i2c_read() - Handle the "i2c read" command-line command
273  * @cmdtp:	Command data struct pointer
274  * @flag:	Command flag
275  * @argc:	Command-line argument count
276  * @argv:	Array of command-line arguments
277  *
278  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
279  * on error.
280  *
281  * Syntax:
282  *	i2c read {i2c_chip} {devaddr}{.0, .1, .2} {len} {memaddr}
283  */
284 static int do_i2c_read ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
285 {
286 	uint	chip;
287 	uint	devaddr, length;
288 	int alen;
289 	u_char  *memaddr;
290 	int ret;
291 #ifdef CONFIG_DM_I2C
292 	struct udevice *dev;
293 #endif
294 
295 	if (argc != 5)
296 		return CMD_RET_USAGE;
297 
298 	/*
299 	 * I2C chip address
300 	 */
301 	chip = simple_strtoul(argv[1], NULL, 16);
302 
303 	/*
304 	 * I2C data address within the chip.  This can be 1 or
305 	 * 2 bytes long.  Some day it might be 3 bytes long :-).
306 	 */
307 	devaddr = simple_strtoul(argv[2], NULL, 16);
308 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
309 	if (alen > 3)
310 		return CMD_RET_USAGE;
311 
312 	/*
313 	 * Length is the number of objects, not number of bytes.
314 	 */
315 	length = simple_strtoul(argv[3], NULL, 16);
316 
317 	/*
318 	 * memaddr is the address where to store things in memory
319 	 */
320 	memaddr = (u_char *)simple_strtoul(argv[4], NULL, 16);
321 
322 #ifdef CONFIG_DM_I2C
323 	ret = i2c_get_cur_bus_chip(chip, &dev);
324 	if (!ret && alen != -1)
325 		ret = i2c_set_chip_offset_len(dev, alen);
326 	if (!ret)
327 		ret = dm_i2c_read(dev, devaddr, memaddr, length);
328 #else
329 	ret = i2c_read(chip, devaddr, alen, memaddr, length);
330 #endif
331 	if (ret)
332 		return i2c_report_err(ret, I2C_ERR_READ);
333 
334 	return 0;
335 }
336 
337 static int do_i2c_write(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
338 {
339 	uint	chip;
340 	uint	devaddr, length;
341 	int alen;
342 	u_char  *memaddr;
343 	int ret;
344 #ifdef CONFIG_DM_I2C
345 	struct udevice *dev;
346 	struct dm_i2c_chip *i2c_chip;
347 #endif
348 
349 	if ((argc < 5) || (argc > 6))
350 		return cmd_usage(cmdtp);
351 
352 	/*
353 	 * memaddr is the address where to store things in memory
354 	 */
355 	memaddr = (u_char *)simple_strtoul(argv[1], NULL, 16);
356 
357 	/*
358 	 * I2C chip address
359 	 */
360 	chip = simple_strtoul(argv[2], NULL, 16);
361 
362 	/*
363 	 * I2C data address within the chip.  This can be 1 or
364 	 * 2 bytes long.  Some day it might be 3 bytes long :-).
365 	 */
366 	devaddr = simple_strtoul(argv[3], NULL, 16);
367 	alen = get_alen(argv[3], DEFAULT_ADDR_LEN);
368 	if (alen > 3)
369 		return cmd_usage(cmdtp);
370 
371 	/*
372 	 * Length is the number of bytes.
373 	 */
374 	length = simple_strtoul(argv[4], NULL, 16);
375 
376 #ifdef CONFIG_DM_I2C
377 	ret = i2c_get_cur_bus_chip(chip, &dev);
378 	if (!ret && alen != -1)
379 		ret = i2c_set_chip_offset_len(dev, alen);
380 	if (ret)
381 		return i2c_report_err(ret, I2C_ERR_WRITE);
382 	i2c_chip = dev_get_parent_platdata(dev);
383 	if (!i2c_chip)
384 		return i2c_report_err(ret, I2C_ERR_WRITE);
385 #endif
386 
387 	if (argc == 6 && !strcmp(argv[5], "-s")) {
388 		/*
389 		 * Write all bytes in a single I2C transaction. If the target
390 		 * device is an EEPROM, it is your responsibility to not cross
391 		 * a page boundary. No write delay upon completion, take this
392 		 * into account if linking commands.
393 		 */
394 #ifdef CONFIG_DM_I2C
395 		i2c_chip->flags &= ~DM_I2C_CHIP_WR_ADDRESS;
396 		ret = dm_i2c_write(dev, devaddr, memaddr, length);
397 #else
398 		ret = i2c_write(chip, devaddr, alen, memaddr, length);
399 #endif
400 		if (ret)
401 			return i2c_report_err(ret, I2C_ERR_WRITE);
402 	} else {
403 		/*
404 		 * Repeated addressing - perform <length> separate
405 		 * write transactions of one byte each
406 		 */
407 		while (length-- > 0) {
408 #ifdef CONFIG_DM_I2C
409 			i2c_chip->flags |= DM_I2C_CHIP_WR_ADDRESS;
410 			ret = dm_i2c_write(dev, devaddr++, memaddr++, 1);
411 #else
412 			ret = i2c_write(chip, devaddr++, alen, memaddr++, 1);
413 #endif
414 			if (ret)
415 				return i2c_report_err(ret, I2C_ERR_WRITE);
416 /*
417  * No write delay with FRAM devices.
418  */
419 #if !defined(CONFIG_SYS_I2C_FRAM)
420 			udelay(11000);
421 #endif
422 		}
423 	}
424 	return 0;
425 }
426 
427 #ifdef CONFIG_DM_I2C
428 static int do_i2c_flags(cmd_tbl_t *cmdtp, int flag, int argc,
429 			char *const argv[])
430 {
431 	struct udevice *dev;
432 	uint flags;
433 	int chip;
434 	int ret;
435 
436 	if (argc < 2)
437 		return CMD_RET_USAGE;
438 
439 	chip = simple_strtoul(argv[1], NULL, 16);
440 	ret = i2c_get_cur_bus_chip(chip, &dev);
441 	if (ret)
442 		return i2c_report_err(ret, I2C_ERR_READ);
443 
444 	if (argc > 2) {
445 		flags = simple_strtoul(argv[2], NULL, 16);
446 		ret = i2c_set_chip_flags(dev, flags);
447 	} else  {
448 		ret = i2c_get_chip_flags(dev, &flags);
449 		if (!ret)
450 			printf("%x\n", flags);
451 	}
452 	if (ret)
453 		return i2c_report_err(ret, I2C_ERR_READ);
454 
455 	return 0;
456 }
457 
458 static int do_i2c_olen(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
459 {
460 	struct udevice *dev;
461 	uint olen;
462 	int chip;
463 	int ret;
464 
465 	if (argc < 2)
466 		return CMD_RET_USAGE;
467 
468 	chip = simple_strtoul(argv[1], NULL, 16);
469 	ret = i2c_get_cur_bus_chip(chip, &dev);
470 	if (ret)
471 		return i2c_report_err(ret, I2C_ERR_READ);
472 
473 	if (argc > 2) {
474 		olen = simple_strtoul(argv[2], NULL, 16);
475 		ret = i2c_set_chip_offset_len(dev, olen);
476 	} else  {
477 		ret = i2c_get_chip_offset_len(dev);
478 		if (ret >= 0) {
479 			printf("%x\n", ret);
480 			ret = 0;
481 		}
482 	}
483 	if (ret)
484 		return i2c_report_err(ret, I2C_ERR_READ);
485 
486 	return 0;
487 }
488 #endif
489 
490 /**
491  * do_i2c_md() - Handle the "i2c md" command-line command
492  * @cmdtp:	Command data struct pointer
493  * @flag:	Command flag
494  * @argc:	Command-line argument count
495  * @argv:	Array of command-line arguments
496  *
497  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
498  * on error.
499  *
500  * Syntax:
501  *	i2c md {i2c_chip} {addr}{.0, .1, .2} {len}
502  */
503 static int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
504 {
505 	uint	chip;
506 	uint	addr, length;
507 	int alen;
508 	int	j, nbytes, linebytes;
509 	int ret;
510 #ifdef CONFIG_DM_I2C
511 	struct udevice *dev;
512 #endif
513 
514 	/* We use the last specified parameters, unless new ones are
515 	 * entered.
516 	 */
517 	chip   = i2c_dp_last_chip;
518 	addr   = i2c_dp_last_addr;
519 	alen   = i2c_dp_last_alen;
520 	length = i2c_dp_last_length;
521 
522 	if (argc < 3)
523 		return CMD_RET_USAGE;
524 
525 	if ((flag & CMD_FLAG_REPEAT) == 0) {
526 		/*
527 		 * New command specified.
528 		 */
529 
530 		/*
531 		 * I2C chip address
532 		 */
533 		chip = simple_strtoul(argv[1], NULL, 16);
534 
535 		/*
536 		 * I2C data address within the chip.  This can be 1 or
537 		 * 2 bytes long.  Some day it might be 3 bytes long :-).
538 		 */
539 		addr = simple_strtoul(argv[2], NULL, 16);
540 		alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
541 		if (alen > 3)
542 			return CMD_RET_USAGE;
543 
544 		/*
545 		 * If another parameter, it is the length to display.
546 		 * Length is the number of objects, not number of bytes.
547 		 */
548 		if (argc > 3)
549 			length = simple_strtoul(argv[3], NULL, 16);
550 	}
551 
552 #ifdef CONFIG_DM_I2C
553 	ret = i2c_get_cur_bus_chip(chip, &dev);
554 	if (!ret && alen != -1)
555 		ret = i2c_set_chip_offset_len(dev, alen);
556 	if (ret)
557 		return i2c_report_err(ret, I2C_ERR_READ);
558 #endif
559 
560 	/*
561 	 * Print the lines.
562 	 *
563 	 * We buffer all read data, so we can make sure data is read only
564 	 * once.
565 	 */
566 	nbytes = length;
567 	do {
568 		unsigned char	linebuf[DISP_LINE_LEN];
569 		unsigned char	*cp;
570 
571 		linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
572 
573 #ifdef CONFIG_DM_I2C
574 		ret = dm_i2c_read(dev, addr, linebuf, linebytes);
575 #else
576 		ret = i2c_read(chip, addr, alen, linebuf, linebytes);
577 #endif
578 		if (ret)
579 			return i2c_report_err(ret, I2C_ERR_READ);
580 		else {
581 			printf("%04x:", addr);
582 			cp = linebuf;
583 			for (j=0; j<linebytes; j++) {
584 				printf(" %02x", *cp++);
585 				addr++;
586 			}
587 			puts ("    ");
588 			cp = linebuf;
589 			for (j=0; j<linebytes; j++) {
590 				if ((*cp < 0x20) || (*cp > 0x7e))
591 					puts (".");
592 				else
593 					printf("%c", *cp);
594 				cp++;
595 			}
596 			putc ('\n');
597 		}
598 		nbytes -= linebytes;
599 	} while (nbytes > 0);
600 
601 	i2c_dp_last_chip   = chip;
602 	i2c_dp_last_addr   = addr;
603 	i2c_dp_last_alen   = alen;
604 	i2c_dp_last_length = length;
605 
606 	return 0;
607 }
608 
609 /**
610  * do_i2c_mw() - Handle the "i2c mw" command-line command
611  * @cmdtp:	Command data struct pointer
612  * @flag:	Command flag
613  * @argc:	Command-line argument count
614  * @argv:	Array of command-line arguments
615  *
616  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
617  * on error.
618  *
619  * Syntax:
620  *	i2c mw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
621  */
622 static int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
623 {
624 	uint	chip;
625 	ulong	addr;
626 	int	alen;
627 	uchar	byte;
628 	int	count;
629 	int ret;
630 #ifdef CONFIG_DM_I2C
631 	struct udevice *dev;
632 #endif
633 
634 	if ((argc < 4) || (argc > 5))
635 		return CMD_RET_USAGE;
636 
637 	/*
638 	 * Chip is always specified.
639 	 */
640 	chip = simple_strtoul(argv[1], NULL, 16);
641 
642 	/*
643 	 * Address is always specified.
644 	 */
645 	addr = simple_strtoul(argv[2], NULL, 16);
646 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
647 	if (alen > 3)
648 		return CMD_RET_USAGE;
649 
650 #ifdef CONFIG_DM_I2C
651 	ret = i2c_get_cur_bus_chip(chip, &dev);
652 	if (!ret && alen != -1)
653 		ret = i2c_set_chip_offset_len(dev, alen);
654 	if (ret)
655 		return i2c_report_err(ret, I2C_ERR_WRITE);
656 #endif
657 	/*
658 	 * Value to write is always specified.
659 	 */
660 	byte = simple_strtoul(argv[3], NULL, 16);
661 
662 	/*
663 	 * Optional count
664 	 */
665 	if (argc == 5)
666 		count = simple_strtoul(argv[4], NULL, 16);
667 	else
668 		count = 1;
669 
670 	while (count-- > 0) {
671 #ifdef CONFIG_DM_I2C
672 		ret = dm_i2c_write(dev, addr++, &byte, 1);
673 #else
674 		ret = i2c_write(chip, addr++, alen, &byte, 1);
675 #endif
676 		if (ret)
677 			return i2c_report_err(ret, I2C_ERR_WRITE);
678 		/*
679 		 * Wait for the write to complete.  The write can take
680 		 * up to 10mSec (we allow a little more time).
681 		 */
682 /*
683  * No write delay with FRAM devices.
684  */
685 #if !defined(CONFIG_SYS_I2C_FRAM)
686 		udelay(11000);
687 #endif
688 	}
689 
690 	return 0;
691 }
692 
693 /**
694  * do_i2c_crc() - Handle the "i2c crc32" command-line command
695  * @cmdtp:	Command data struct pointer
696  * @flag:	Command flag
697  * @argc:	Command-line argument count
698  * @argv:	Array of command-line arguments
699  *
700  * Calculate a CRC on memory
701  *
702  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
703  * on error.
704  *
705  * Syntax:
706  *	i2c crc32 {i2c_chip} {addr}{.0, .1, .2} {count}
707  */
708 static int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
709 {
710 	uint	chip;
711 	ulong	addr;
712 	int	alen;
713 	int	count;
714 	uchar	byte;
715 	ulong	crc;
716 	ulong	err;
717 	int ret = 0;
718 #ifdef CONFIG_DM_I2C
719 	struct udevice *dev;
720 #endif
721 
722 	if (argc < 4)
723 		return CMD_RET_USAGE;
724 
725 	/*
726 	 * Chip is always specified.
727 	 */
728 	chip = simple_strtoul(argv[1], NULL, 16);
729 
730 	/*
731 	 * Address is always specified.
732 	 */
733 	addr = simple_strtoul(argv[2], NULL, 16);
734 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
735 	if (alen > 3)
736 		return CMD_RET_USAGE;
737 
738 #ifdef CONFIG_DM_I2C
739 	ret = i2c_get_cur_bus_chip(chip, &dev);
740 	if (!ret && alen != -1)
741 		ret = i2c_set_chip_offset_len(dev, alen);
742 	if (ret)
743 		return i2c_report_err(ret, I2C_ERR_READ);
744 #endif
745 	/*
746 	 * Count is always specified
747 	 */
748 	count = simple_strtoul(argv[3], NULL, 16);
749 
750 	printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
751 	/*
752 	 * CRC a byte at a time.  This is going to be slooow, but hey, the
753 	 * memories are small and slow too so hopefully nobody notices.
754 	 */
755 	crc = 0;
756 	err = 0;
757 	while (count-- > 0) {
758 #ifdef CONFIG_DM_I2C
759 		ret = dm_i2c_read(dev, addr, &byte, 1);
760 #else
761 		ret = i2c_read(chip, addr, alen, &byte, 1);
762 #endif
763 		if (ret)
764 			err++;
765 		crc = crc32 (crc, &byte, 1);
766 		addr++;
767 	}
768 	if (err > 0)
769 		i2c_report_err(ret, I2C_ERR_READ);
770 	else
771 		printf ("%08lx\n", crc);
772 
773 	return 0;
774 }
775 
776 /**
777  * mod_i2c_mem() - Handle the "i2c mm" and "i2c nm" command-line command
778  * @cmdtp:	Command data struct pointer
779  * @flag:	Command flag
780  * @argc:	Command-line argument count
781  * @argv:	Array of command-line arguments
782  *
783  * Modify memory.
784  *
785  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
786  * on error.
787  *
788  * Syntax:
789  *	i2c mm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
790  *	i2c nm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
791  */
792 static int
793 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char * const argv[])
794 {
795 	uint	chip;
796 	ulong	addr;
797 	int	alen;
798 	ulong	data;
799 	int	size = 1;
800 	int	nbytes;
801 	int ret;
802 #ifdef CONFIG_DM_I2C
803 	struct udevice *dev;
804 #endif
805 
806 	if (argc != 3)
807 		return CMD_RET_USAGE;
808 
809 	bootretry_reset_cmd_timeout();	/* got a good command to get here */
810 	/*
811 	 * We use the last specified parameters, unless new ones are
812 	 * entered.
813 	 */
814 	chip = i2c_mm_last_chip;
815 	addr = i2c_mm_last_addr;
816 	alen = i2c_mm_last_alen;
817 
818 	if ((flag & CMD_FLAG_REPEAT) == 0) {
819 		/*
820 		 * New command specified.  Check for a size specification.
821 		 * Defaults to byte if no or incorrect specification.
822 		 */
823 		size = cmd_get_data_size(argv[0], 1);
824 
825 		/*
826 		 * Chip is always specified.
827 		 */
828 		chip = simple_strtoul(argv[1], NULL, 16);
829 
830 		/*
831 		 * Address is always specified.
832 		 */
833 		addr = simple_strtoul(argv[2], NULL, 16);
834 		alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
835 		if (alen > 3)
836 			return CMD_RET_USAGE;
837 	}
838 
839 #ifdef CONFIG_DM_I2C
840 	ret = i2c_get_cur_bus_chip(chip, &dev);
841 	if (!ret && alen != -1)
842 		ret = i2c_set_chip_offset_len(dev, alen);
843 	if (ret)
844 		return i2c_report_err(ret, I2C_ERR_WRITE);
845 #endif
846 
847 	/*
848 	 * Print the address, followed by value.  Then accept input for
849 	 * the next value.  A non-converted value exits.
850 	 */
851 	do {
852 		printf("%08lx:", addr);
853 #ifdef CONFIG_DM_I2C
854 		ret = dm_i2c_read(dev, addr, (uchar *)&data, size);
855 #else
856 		ret = i2c_read(chip, addr, alen, (uchar *)&data, size);
857 #endif
858 		if (ret)
859 			return i2c_report_err(ret, I2C_ERR_READ);
860 
861 		data = cpu_to_be32(data);
862 		if (size == 1)
863 			printf(" %02lx", (data >> 24) & 0x000000FF);
864 		else if (size == 2)
865 			printf(" %04lx", (data >> 16) & 0x0000FFFF);
866 		else
867 			printf(" %08lx", data);
868 
869 		nbytes = cli_readline(" ? ");
870 		if (nbytes == 0) {
871 			/*
872 			 * <CR> pressed as only input, don't modify current
873 			 * location and move to next.
874 			 */
875 			if (incrflag)
876 				addr += size;
877 			nbytes = size;
878 			/* good enough to not time out */
879 			bootretry_reset_cmd_timeout();
880 		}
881 #ifdef CONFIG_BOOT_RETRY_TIME
882 		else if (nbytes == -2)
883 			break;	/* timed out, exit the command	*/
884 #endif
885 		else {
886 			char *endp;
887 
888 			data = simple_strtoul(console_buffer, &endp, 16);
889 			if (size == 1)
890 				data = data << 24;
891 			else if (size == 2)
892 				data = data << 16;
893 			data = be32_to_cpu(data);
894 			nbytes = endp - console_buffer;
895 			if (nbytes) {
896 				/*
897 				 * good enough to not time out
898 				 */
899 				bootretry_reset_cmd_timeout();
900 #ifdef CONFIG_DM_I2C
901 				ret = dm_i2c_write(dev, addr, (uchar *)&data,
902 						   size);
903 #else
904 				ret = i2c_write(chip, addr, alen,
905 						(uchar *)&data, size);
906 #endif
907 				if (ret)
908 					return i2c_report_err(ret,
909 							      I2C_ERR_WRITE);
910 #ifdef CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS
911 				udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
912 #endif
913 				if (incrflag)
914 					addr += size;
915 			}
916 		}
917 	} while (nbytes);
918 
919 	i2c_mm_last_chip = chip;
920 	i2c_mm_last_addr = addr;
921 	i2c_mm_last_alen = alen;
922 
923 	return 0;
924 }
925 
926 /**
927  * do_i2c_probe() - Handle the "i2c probe" command-line command
928  * @cmdtp:	Command data struct pointer
929  * @flag:	Command flag
930  * @argc:	Command-line argument count
931  * @argv:	Array of command-line arguments
932  *
933  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
934  * on error.
935  *
936  * Syntax:
937  *	i2c probe {addr}
938  *
939  * Returns zero (success) if one or more I2C devices was found
940  */
941 static int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
942 {
943 	int j;
944 	int addr = -1;
945 	int found = 0;
946 #if defined(CONFIG_SYS_I2C_NOPROBES)
947 	int k, skip;
948 	unsigned int bus = GET_BUS_NUM;
949 #endif	/* NOPROBES */
950 	int ret;
951 #ifdef CONFIG_DM_I2C
952 	struct udevice *bus, *dev;
953 
954 	if (i2c_get_cur_bus(&bus))
955 		return CMD_RET_FAILURE;
956 #endif
957 
958 	if (argc == 2)
959 		addr = simple_strtol(argv[1], 0, 16);
960 
961 	puts ("Valid chip addresses:");
962 	for (j = 0; j < 128; j++) {
963 		if ((0 <= addr) && (j != addr))
964 			continue;
965 
966 #if defined(CONFIG_SYS_I2C_NOPROBES)
967 		skip = 0;
968 		for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
969 			if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
970 				skip = 1;
971 				break;
972 			}
973 		}
974 		if (skip)
975 			continue;
976 #endif
977 #ifdef CONFIG_DM_I2C
978 		ret = dm_i2c_probe(bus, j, 0, &dev);
979 #else
980 		ret = i2c_probe(j);
981 #endif
982 		if (ret == 0) {
983 			printf(" %02X", j);
984 			found++;
985 		}
986 	}
987 	putc ('\n');
988 
989 #if defined(CONFIG_SYS_I2C_NOPROBES)
990 	puts ("Excluded chip addresses:");
991 	for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
992 		if (COMPARE_BUS(bus,k))
993 			printf(" %02X", NO_PROBE_ADDR(k));
994 	}
995 	putc ('\n');
996 #endif
997 
998 	return (0 == found);
999 }
1000 
1001 /**
1002  * do_i2c_loop() - Handle the "i2c loop" command-line command
1003  * @cmdtp:	Command data struct pointer
1004  * @flag:	Command flag
1005  * @argc:	Command-line argument count
1006  * @argv:	Array of command-line arguments
1007  *
1008  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1009  * on error.
1010  *
1011  * Syntax:
1012  *	i2c loop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
1013  *	{length} - Number of bytes to read
1014  *	{delay}  - A DECIMAL number and defaults to 1000 uSec
1015  */
1016 static int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1017 {
1018 	uint	chip;
1019 	int alen;
1020 	uint	addr;
1021 	uint	length;
1022 	u_char	bytes[16];
1023 	int	delay;
1024 	int ret;
1025 #ifdef CONFIG_DM_I2C
1026 	struct udevice *dev;
1027 #endif
1028 
1029 	if (argc < 3)
1030 		return CMD_RET_USAGE;
1031 
1032 	/*
1033 	 * Chip is always specified.
1034 	 */
1035 	chip = simple_strtoul(argv[1], NULL, 16);
1036 
1037 	/*
1038 	 * Address is always specified.
1039 	 */
1040 	addr = simple_strtoul(argv[2], NULL, 16);
1041 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
1042 	if (alen > 3)
1043 		return CMD_RET_USAGE;
1044 #ifdef CONFIG_DM_I2C
1045 	ret = i2c_get_cur_bus_chip(chip, &dev);
1046 	if (!ret && alen != -1)
1047 		ret = i2c_set_chip_offset_len(dev, alen);
1048 	if (ret)
1049 		return i2c_report_err(ret, I2C_ERR_WRITE);
1050 #endif
1051 
1052 	/*
1053 	 * Length is the number of objects, not number of bytes.
1054 	 */
1055 	length = 1;
1056 	length = simple_strtoul(argv[3], NULL, 16);
1057 	if (length > sizeof(bytes))
1058 		length = sizeof(bytes);
1059 
1060 	/*
1061 	 * The delay time (uSec) is optional.
1062 	 */
1063 	delay = 1000;
1064 	if (argc > 3)
1065 		delay = simple_strtoul(argv[4], NULL, 10);
1066 	/*
1067 	 * Run the loop...
1068 	 */
1069 	while (1) {
1070 #ifdef CONFIG_DM_I2C
1071 		ret = dm_i2c_read(dev, addr, bytes, length);
1072 #else
1073 		ret = i2c_read(chip, addr, alen, bytes, length);
1074 #endif
1075 		if (ret)
1076 			i2c_report_err(ret, I2C_ERR_READ);
1077 		udelay(delay);
1078 	}
1079 
1080 	/* NOTREACHED */
1081 	return 0;
1082 }
1083 
1084 /*
1085  * The SDRAM command is separately configured because many
1086  * (most?) embedded boards don't use SDRAM DIMMs.
1087  *
1088  * FIXME: Document and probably move elsewhere!
1089  */
1090 #if defined(CONFIG_CMD_SDRAM)
1091 static void print_ddr2_tcyc (u_char const b)
1092 {
1093 	printf ("%d.", (b >> 4) & 0x0F);
1094 	switch (b & 0x0F) {
1095 	case 0x0:
1096 	case 0x1:
1097 	case 0x2:
1098 	case 0x3:
1099 	case 0x4:
1100 	case 0x5:
1101 	case 0x6:
1102 	case 0x7:
1103 	case 0x8:
1104 	case 0x9:
1105 		printf ("%d ns\n", b & 0x0F);
1106 		break;
1107 	case 0xA:
1108 		puts ("25 ns\n");
1109 		break;
1110 	case 0xB:
1111 		puts ("33 ns\n");
1112 		break;
1113 	case 0xC:
1114 		puts ("66 ns\n");
1115 		break;
1116 	case 0xD:
1117 		puts ("75 ns\n");
1118 		break;
1119 	default:
1120 		puts ("?? ns\n");
1121 		break;
1122 	}
1123 }
1124 
1125 static void decode_bits (u_char const b, char const *str[], int const do_once)
1126 {
1127 	u_char mask;
1128 
1129 	for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
1130 		if (b & mask) {
1131 			puts (*str);
1132 			if (do_once)
1133 				return;
1134 		}
1135 	}
1136 }
1137 
1138 /*
1139  * Syntax:
1140  *	i2c sdram {i2c_chip}
1141  */
1142 static int do_sdram (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1143 {
1144 	enum { unknown, EDO, SDRAM, DDR, DDR2, DDR3, DDR4 } type;
1145 
1146 	uint	chip;
1147 	u_char	data[128];
1148 	u_char	cksum;
1149 	int	j;
1150 
1151 	static const char *decode_CAS_DDR2[] = {
1152 		" TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
1153 	};
1154 
1155 	static const char *decode_CAS_default[] = {
1156 		" TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
1157 	};
1158 
1159 	static const char *decode_CS_WE_default[] = {
1160 		" TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
1161 	};
1162 
1163 	static const char *decode_byte21_default[] = {
1164 		"  TBD (bit 7)\n",
1165 		"  Redundant row address\n",
1166 		"  Differential clock input\n",
1167 		"  Registerd DQMB inputs\n",
1168 		"  Buffered DQMB inputs\n",
1169 		"  On-card PLL\n",
1170 		"  Registered address/control lines\n",
1171 		"  Buffered address/control lines\n"
1172 	};
1173 
1174 	static const char *decode_byte22_DDR2[] = {
1175 		"  TBD (bit 7)\n",
1176 		"  TBD (bit 6)\n",
1177 		"  TBD (bit 5)\n",
1178 		"  TBD (bit 4)\n",
1179 		"  TBD (bit 3)\n",
1180 		"  Supports partial array self refresh\n",
1181 		"  Supports 50 ohm ODT\n",
1182 		"  Supports weak driver\n"
1183 	};
1184 
1185 	static const char *decode_row_density_DDR2[] = {
1186 		"512 MiB", "256 MiB", "128 MiB", "16 GiB",
1187 		"8 GiB", "4 GiB", "2 GiB", "1 GiB"
1188 	};
1189 
1190 	static const char *decode_row_density_default[] = {
1191 		"512 MiB", "256 MiB", "128 MiB", "64 MiB",
1192 		"32 MiB", "16 MiB", "8 MiB", "4 MiB"
1193 	};
1194 
1195 	if (argc < 2)
1196 		return CMD_RET_USAGE;
1197 
1198 	/*
1199 	 * Chip is always specified.
1200 	 */
1201 	chip = simple_strtoul (argv[1], NULL, 16);
1202 
1203 	if (i2c_read (chip, 0, 1, data, sizeof (data)) != 0) {
1204 		puts ("No SDRAM Serial Presence Detect found.\n");
1205 		return 1;
1206 	}
1207 
1208 	cksum = 0;
1209 	for (j = 0; j < 63; j++) {
1210 		cksum += data[j];
1211 	}
1212 	if (cksum != data[63]) {
1213 		printf ("WARNING: Configuration data checksum failure:\n"
1214 			"  is 0x%02x, calculated 0x%02x\n", data[63], cksum);
1215 	}
1216 	printf ("SPD data revision            %d.%d\n",
1217 		(data[62] >> 4) & 0x0F, data[62] & 0x0F);
1218 	printf ("Bytes used                   0x%02X\n", data[0]);
1219 	printf ("Serial memory size           0x%02X\n", 1 << data[1]);
1220 
1221 	puts ("Memory type                  ");
1222 	switch (data[2]) {
1223 	case 2:
1224 		type = EDO;
1225 		puts ("EDO\n");
1226 		break;
1227 	case 4:
1228 		type = SDRAM;
1229 		puts ("SDRAM\n");
1230 		break;
1231 	case 7:
1232 		type = DDR;
1233 		puts("DDR\n");
1234 		break;
1235 	case 8:
1236 		type = DDR2;
1237 		puts ("DDR2\n");
1238 		break;
1239 	case 11:
1240 		type = DDR3;
1241 		puts("DDR3\n");
1242 		break;
1243 	case 12:
1244 		type = DDR4;
1245 		puts("DDR4\n");
1246 		break;
1247 	default:
1248 		type = unknown;
1249 		puts ("unknown\n");
1250 		break;
1251 	}
1252 
1253 	puts ("Row address bits             ");
1254 	if ((data[3] & 0x00F0) == 0)
1255 		printf ("%d\n", data[3] & 0x0F);
1256 	else
1257 		printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
1258 
1259 	puts ("Column address bits          ");
1260 	if ((data[4] & 0x00F0) == 0)
1261 		printf ("%d\n", data[4] & 0x0F);
1262 	else
1263 		printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
1264 
1265 	switch (type) {
1266 	case DDR2:
1267 		printf ("Number of ranks              %d\n",
1268 			(data[5] & 0x07) + 1);
1269 		break;
1270 	default:
1271 		printf ("Module rows                  %d\n", data[5]);
1272 		break;
1273 	}
1274 
1275 	switch (type) {
1276 	case DDR2:
1277 		printf ("Module data width            %d bits\n", data[6]);
1278 		break;
1279 	default:
1280 		printf ("Module data width            %d bits\n",
1281 			(data[7] << 8) | data[6]);
1282 		break;
1283 	}
1284 
1285 	puts ("Interface signal levels      ");
1286 	switch(data[8]) {
1287 		case 0:  puts ("TTL 5.0 V\n");	break;
1288 		case 1:  puts ("LVTTL\n");	break;
1289 		case 2:  puts ("HSTL 1.5 V\n");	break;
1290 		case 3:  puts ("SSTL 3.3 V\n");	break;
1291 		case 4:  puts ("SSTL 2.5 V\n");	break;
1292 		case 5:  puts ("SSTL 1.8 V\n");	break;
1293 		default: puts ("unknown\n");	break;
1294 	}
1295 
1296 	switch (type) {
1297 	case DDR2:
1298 		printf ("SDRAM cycle time             ");
1299 		print_ddr2_tcyc (data[9]);
1300 		break;
1301 	default:
1302 		printf ("SDRAM cycle time             %d.%d ns\n",
1303 			(data[9] >> 4) & 0x0F, data[9] & 0x0F);
1304 		break;
1305 	}
1306 
1307 	switch (type) {
1308 	case DDR2:
1309 		printf ("SDRAM access time            0.%d%d ns\n",
1310 			(data[10] >> 4) & 0x0F, data[10] & 0x0F);
1311 		break;
1312 	default:
1313 		printf ("SDRAM access time            %d.%d ns\n",
1314 			(data[10] >> 4) & 0x0F, data[10] & 0x0F);
1315 		break;
1316 	}
1317 
1318 	puts ("EDC configuration            ");
1319 	switch (data[11]) {
1320 		case 0:  puts ("None\n");	break;
1321 		case 1:  puts ("Parity\n");	break;
1322 		case 2:  puts ("ECC\n");	break;
1323 		default: puts ("unknown\n");	break;
1324 	}
1325 
1326 	if ((data[12] & 0x80) == 0)
1327 		puts ("No self refresh, rate        ");
1328 	else
1329 		puts ("Self refresh, rate           ");
1330 
1331 	switch(data[12] & 0x7F) {
1332 		case 0:  puts ("15.625 us\n");	break;
1333 		case 1:  puts ("3.9 us\n");	break;
1334 		case 2:  puts ("7.8 us\n");	break;
1335 		case 3:  puts ("31.3 us\n");	break;
1336 		case 4:  puts ("62.5 us\n");	break;
1337 		case 5:  puts ("125 us\n");	break;
1338 		default: puts ("unknown\n");	break;
1339 	}
1340 
1341 	switch (type) {
1342 	case DDR2:
1343 		printf ("SDRAM width (primary)        %d\n", data[13]);
1344 		break;
1345 	default:
1346 		printf ("SDRAM width (primary)        %d\n", data[13] & 0x7F);
1347 		if ((data[13] & 0x80) != 0) {
1348 			printf ("  (second bank)              %d\n",
1349 				2 * (data[13] & 0x7F));
1350 		}
1351 		break;
1352 	}
1353 
1354 	switch (type) {
1355 	case DDR2:
1356 		if (data[14] != 0)
1357 			printf ("EDC width                    %d\n", data[14]);
1358 		break;
1359 	default:
1360 		if (data[14] != 0) {
1361 			printf ("EDC width                    %d\n",
1362 				data[14] & 0x7F);
1363 
1364 			if ((data[14] & 0x80) != 0) {
1365 				printf ("  (second bank)              %d\n",
1366 					2 * (data[14] & 0x7F));
1367 			}
1368 		}
1369 		break;
1370 	}
1371 
1372 	if (DDR2 != type) {
1373 		printf ("Min clock delay, back-to-back random column addresses "
1374 			"%d\n", data[15]);
1375 	}
1376 
1377 	puts ("Burst length(s)             ");
1378 	if (data[16] & 0x80) puts (" Page");
1379 	if (data[16] & 0x08) puts (" 8");
1380 	if (data[16] & 0x04) puts (" 4");
1381 	if (data[16] & 0x02) puts (" 2");
1382 	if (data[16] & 0x01) puts (" 1");
1383 	putc ('\n');
1384 	printf ("Number of banks              %d\n", data[17]);
1385 
1386 	switch (type) {
1387 	case DDR2:
1388 		puts ("CAS latency(s)              ");
1389 		decode_bits (data[18], decode_CAS_DDR2, 0);
1390 		putc ('\n');
1391 		break;
1392 	default:
1393 		puts ("CAS latency(s)              ");
1394 		decode_bits (data[18], decode_CAS_default, 0);
1395 		putc ('\n');
1396 		break;
1397 	}
1398 
1399 	if (DDR2 != type) {
1400 		puts ("CS latency(s)               ");
1401 		decode_bits (data[19], decode_CS_WE_default, 0);
1402 		putc ('\n');
1403 	}
1404 
1405 	if (DDR2 != type) {
1406 		puts ("WE latency(s)               ");
1407 		decode_bits (data[20], decode_CS_WE_default, 0);
1408 		putc ('\n');
1409 	}
1410 
1411 	switch (type) {
1412 	case DDR2:
1413 		puts ("Module attributes:\n");
1414 		if (data[21] & 0x80)
1415 			puts ("  TBD (bit 7)\n");
1416 		if (data[21] & 0x40)
1417 			puts ("  Analysis probe installed\n");
1418 		if (data[21] & 0x20)
1419 			puts ("  TBD (bit 5)\n");
1420 		if (data[21] & 0x10)
1421 			puts ("  FET switch external enable\n");
1422 		printf ("  %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
1423 		if (data[20] & 0x11) {
1424 			printf ("  %d active registers on DIMM\n",
1425 				(data[21] & 0x03) + 1);
1426 		}
1427 		break;
1428 	default:
1429 		puts ("Module attributes:\n");
1430 		if (!data[21])
1431 			puts ("  (none)\n");
1432 		else
1433 			decode_bits (data[21], decode_byte21_default, 0);
1434 		break;
1435 	}
1436 
1437 	switch (type) {
1438 	case DDR2:
1439 		decode_bits (data[22], decode_byte22_DDR2, 0);
1440 		break;
1441 	default:
1442 		puts ("Device attributes:\n");
1443 		if (data[22] & 0x80) puts ("  TBD (bit 7)\n");
1444 		if (data[22] & 0x40) puts ("  TBD (bit 6)\n");
1445 		if (data[22] & 0x20) puts ("  Upper Vcc tolerance 5%\n");
1446 		else                 puts ("  Upper Vcc tolerance 10%\n");
1447 		if (data[22] & 0x10) puts ("  Lower Vcc tolerance 5%\n");
1448 		else                 puts ("  Lower Vcc tolerance 10%\n");
1449 		if (data[22] & 0x08) puts ("  Supports write1/read burst\n");
1450 		if (data[22] & 0x04) puts ("  Supports precharge all\n");
1451 		if (data[22] & 0x02) puts ("  Supports auto precharge\n");
1452 		if (data[22] & 0x01) puts ("  Supports early RAS# precharge\n");
1453 		break;
1454 	}
1455 
1456 	switch (type) {
1457 	case DDR2:
1458 		printf ("SDRAM cycle time (2nd highest CAS latency)        ");
1459 		print_ddr2_tcyc (data[23]);
1460 		break;
1461 	default:
1462 		printf ("SDRAM cycle time (2nd highest CAS latency)        %d."
1463 			"%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
1464 		break;
1465 	}
1466 
1467 	switch (type) {
1468 	case DDR2:
1469 		printf ("SDRAM access from clock (2nd highest CAS latency) 0."
1470 			"%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1471 		break;
1472 	default:
1473 		printf ("SDRAM access from clock (2nd highest CAS latency) %d."
1474 			"%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1475 		break;
1476 	}
1477 
1478 	switch (type) {
1479 	case DDR2:
1480 		printf ("SDRAM cycle time (3rd highest CAS latency)        ");
1481 		print_ddr2_tcyc (data[25]);
1482 		break;
1483 	default:
1484 		printf ("SDRAM cycle time (3rd highest CAS latency)        %d."
1485 			"%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
1486 		break;
1487 	}
1488 
1489 	switch (type) {
1490 	case DDR2:
1491 		printf ("SDRAM access from clock (3rd highest CAS latency) 0."
1492 			"%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1493 		break;
1494 	default:
1495 		printf ("SDRAM access from clock (3rd highest CAS latency) %d."
1496 			"%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1497 		break;
1498 	}
1499 
1500 	switch (type) {
1501 	case DDR2:
1502 		printf ("Minimum row precharge        %d.%02d ns\n",
1503 			(data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
1504 		break;
1505 	default:
1506 		printf ("Minimum row precharge        %d ns\n", data[27]);
1507 		break;
1508 	}
1509 
1510 	switch (type) {
1511 	case DDR2:
1512 		printf ("Row active to row active min %d.%02d ns\n",
1513 			(data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
1514 		break;
1515 	default:
1516 		printf ("Row active to row active min %d ns\n", data[28]);
1517 		break;
1518 	}
1519 
1520 	switch (type) {
1521 	case DDR2:
1522 		printf ("RAS to CAS delay min         %d.%02d ns\n",
1523 			(data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
1524 		break;
1525 	default:
1526 		printf ("RAS to CAS delay min         %d ns\n", data[29]);
1527 		break;
1528 	}
1529 
1530 	printf ("Minimum RAS pulse width      %d ns\n", data[30]);
1531 
1532 	switch (type) {
1533 	case DDR2:
1534 		puts ("Density of each row          ");
1535 		decode_bits (data[31], decode_row_density_DDR2, 1);
1536 		putc ('\n');
1537 		break;
1538 	default:
1539 		puts ("Density of each row          ");
1540 		decode_bits (data[31], decode_row_density_default, 1);
1541 		putc ('\n');
1542 		break;
1543 	}
1544 
1545 	switch (type) {
1546 	case DDR2:
1547 		puts ("Command and Address setup    ");
1548 		if (data[32] >= 0xA0) {
1549 			printf ("1.%d%d ns\n",
1550 				((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
1551 		} else {
1552 			printf ("0.%d%d ns\n",
1553 				((data[32] >> 4) & 0x0F), data[32] & 0x0F);
1554 		}
1555 		break;
1556 	default:
1557 		printf ("Command and Address setup    %c%d.%d ns\n",
1558 			(data[32] & 0x80) ? '-' : '+',
1559 			(data[32] >> 4) & 0x07, data[32] & 0x0F);
1560 		break;
1561 	}
1562 
1563 	switch (type) {
1564 	case DDR2:
1565 		puts ("Command and Address hold     ");
1566 		if (data[33] >= 0xA0) {
1567 			printf ("1.%d%d ns\n",
1568 				((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
1569 		} else {
1570 			printf ("0.%d%d ns\n",
1571 				((data[33] >> 4) & 0x0F), data[33] & 0x0F);
1572 		}
1573 		break;
1574 	default:
1575 		printf ("Command and Address hold     %c%d.%d ns\n",
1576 			(data[33] & 0x80) ? '-' : '+',
1577 			(data[33] >> 4) & 0x07, data[33] & 0x0F);
1578 		break;
1579 	}
1580 
1581 	switch (type) {
1582 	case DDR2:
1583 		printf ("Data signal input setup      0.%d%d ns\n",
1584 			(data[34] >> 4) & 0x0F, data[34] & 0x0F);
1585 		break;
1586 	default:
1587 		printf ("Data signal input setup      %c%d.%d ns\n",
1588 			(data[34] & 0x80) ? '-' : '+',
1589 			(data[34] >> 4) & 0x07, data[34] & 0x0F);
1590 		break;
1591 	}
1592 
1593 	switch (type) {
1594 	case DDR2:
1595 		printf ("Data signal input hold       0.%d%d ns\n",
1596 			(data[35] >> 4) & 0x0F, data[35] & 0x0F);
1597 		break;
1598 	default:
1599 		printf ("Data signal input hold       %c%d.%d ns\n",
1600 			(data[35] & 0x80) ? '-' : '+',
1601 			(data[35] >> 4) & 0x07, data[35] & 0x0F);
1602 		break;
1603 	}
1604 
1605 	puts ("Manufacturer's JEDEC ID      ");
1606 	for (j = 64; j <= 71; j++)
1607 		printf ("%02X ", data[j]);
1608 	putc ('\n');
1609 	printf ("Manufacturing Location       %02X\n", data[72]);
1610 	puts ("Manufacturer's Part Number   ");
1611 	for (j = 73; j <= 90; j++)
1612 		printf ("%02X ", data[j]);
1613 	putc ('\n');
1614 	printf ("Revision Code                %02X %02X\n", data[91], data[92]);
1615 	printf ("Manufacturing Date           %02X %02X\n", data[93], data[94]);
1616 	puts ("Assembly Serial Number       ");
1617 	for (j = 95; j <= 98; j++)
1618 		printf ("%02X ", data[j]);
1619 	putc ('\n');
1620 
1621 	if (DDR2 != type) {
1622 		printf ("Speed rating                 PC%d\n",
1623 			data[126] == 0x66 ? 66 : data[126]);
1624 	}
1625 	return 0;
1626 }
1627 #endif
1628 
1629 /*
1630  * Syntax:
1631  *	i2c edid {i2c_chip}
1632  */
1633 #if defined(CONFIG_I2C_EDID)
1634 int do_edid(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
1635 {
1636 	uint chip;
1637 	struct edid1_info edid;
1638 	int ret;
1639 #ifdef CONFIG_DM_I2C
1640 	struct udevice *dev;
1641 #endif
1642 
1643 	if (argc < 2) {
1644 		cmd_usage(cmdtp);
1645 		return 1;
1646 	}
1647 
1648 	chip = simple_strtoul(argv[1], NULL, 16);
1649 #ifdef CONFIG_DM_I2C
1650 	ret = i2c_get_cur_bus_chip(chip, &dev);
1651 	if (!ret)
1652 		ret = dm_i2c_read(dev, 0, (uchar *)&edid, sizeof(edid));
1653 #else
1654 	ret = i2c_read(chip, 0, 1, (uchar *)&edid, sizeof(edid));
1655 #endif
1656 	if (ret)
1657 		return i2c_report_err(ret, I2C_ERR_READ);
1658 
1659 	if (edid_check_info(&edid)) {
1660 		puts("Content isn't valid EDID.\n");
1661 		return 1;
1662 	}
1663 
1664 	edid_print_info(&edid);
1665 	return 0;
1666 
1667 }
1668 #endif /* CONFIG_I2C_EDID */
1669 
1670 #ifdef CONFIG_DM_I2C
1671 static void show_bus(struct udevice *bus)
1672 {
1673 	struct udevice *dev;
1674 
1675 	printf("Bus %d:\t%s", bus->req_seq, bus->name);
1676 	if (device_active(bus))
1677 		printf("  (active %d)", bus->seq);
1678 	printf("\n");
1679 	for (device_find_first_child(bus, &dev);
1680 	     dev;
1681 	     device_find_next_child(&dev)) {
1682 		struct dm_i2c_chip *chip = dev_get_parent_platdata(dev);
1683 
1684 		printf("   %02x: %s, offset len %x, flags %x\n",
1685 		       chip->chip_addr, dev->name, chip->offset_len,
1686 		       chip->flags);
1687 	}
1688 }
1689 #endif
1690 
1691 /**
1692  * do_i2c_show_bus() - Handle the "i2c bus" command-line command
1693  * @cmdtp:	Command data struct pointer
1694  * @flag:	Command flag
1695  * @argc:	Command-line argument count
1696  * @argv:	Array of command-line arguments
1697  *
1698  * Returns zero always.
1699  */
1700 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_DM_I2C)
1701 static int do_i2c_show_bus(cmd_tbl_t *cmdtp, int flag, int argc,
1702 				char * const argv[])
1703 {
1704 	if (argc == 1) {
1705 		/* show all busses */
1706 #ifdef CONFIG_DM_I2C
1707 		struct udevice *bus;
1708 		struct uclass *uc;
1709 		int ret;
1710 
1711 		ret = uclass_get(UCLASS_I2C, &uc);
1712 		if (ret)
1713 			return CMD_RET_FAILURE;
1714 		uclass_foreach_dev(bus, uc)
1715 			show_bus(bus);
1716 #else
1717 		int i;
1718 
1719 		for (i = 0; i < CONFIG_SYS_NUM_I2C_BUSES; i++) {
1720 			printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1721 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1722 			int j;
1723 
1724 			for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1725 				if (i2c_bus[i].next_hop[j].chip == 0)
1726 					break;
1727 				printf("->%s@0x%2x:%d",
1728 				       i2c_bus[i].next_hop[j].mux.name,
1729 				       i2c_bus[i].next_hop[j].chip,
1730 				       i2c_bus[i].next_hop[j].channel);
1731 			}
1732 #endif
1733 			printf("\n");
1734 		}
1735 #endif
1736 	} else {
1737 		int i;
1738 
1739 		/* show specific bus */
1740 		i = simple_strtoul(argv[1], NULL, 10);
1741 #ifdef CONFIG_DM_I2C
1742 		struct udevice *bus;
1743 		int ret;
1744 
1745 		ret = uclass_get_device_by_seq(UCLASS_I2C, i, &bus);
1746 		if (ret) {
1747 			printf("Invalid bus %d: err=%d\n", i, ret);
1748 			return CMD_RET_FAILURE;
1749 		}
1750 		show_bus(bus);
1751 #else
1752 		if (i >= CONFIG_SYS_NUM_I2C_BUSES) {
1753 			printf("Invalid bus %d\n", i);
1754 			return -1;
1755 		}
1756 		printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1757 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1758 			int j;
1759 			for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1760 				if (i2c_bus[i].next_hop[j].chip == 0)
1761 					break;
1762 				printf("->%s@0x%2x:%d",
1763 				       i2c_bus[i].next_hop[j].mux.name,
1764 				       i2c_bus[i].next_hop[j].chip,
1765 				       i2c_bus[i].next_hop[j].channel);
1766 			}
1767 #endif
1768 		printf("\n");
1769 #endif
1770 	}
1771 
1772 	return 0;
1773 }
1774 #endif
1775 
1776 /**
1777  * do_i2c_bus_num() - Handle the "i2c dev" command-line command
1778  * @cmdtp:	Command data struct pointer
1779  * @flag:	Command flag
1780  * @argc:	Command-line argument count
1781  * @argv:	Array of command-line arguments
1782  *
1783  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1784  * on error.
1785  */
1786 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS) || \
1787 		defined(CONFIG_DM_I2C)
1788 static int do_i2c_bus_num(cmd_tbl_t *cmdtp, int flag, int argc,
1789 				char * const argv[])
1790 {
1791 	int		ret = 0;
1792 	int	bus_no;
1793 
1794 	if (argc == 1) {
1795 		/* querying current setting */
1796 #ifdef CONFIG_DM_I2C
1797 		struct udevice *bus;
1798 
1799 		if (!i2c_get_cur_bus(&bus))
1800 			bus_no = bus->seq;
1801 		else
1802 			bus_no = -1;
1803 #else
1804 		bus_no = i2c_get_bus_num();
1805 #endif
1806 		printf("Current bus is %d\n", bus_no);
1807 	} else {
1808 		bus_no = simple_strtoul(argv[1], NULL, 10);
1809 #if defined(CONFIG_SYS_I2C)
1810 		if (bus_no >= CONFIG_SYS_NUM_I2C_BUSES) {
1811 			printf("Invalid bus %d\n", bus_no);
1812 			return -1;
1813 		}
1814 #endif
1815 		printf("Setting bus to %d\n", bus_no);
1816 #ifdef CONFIG_DM_I2C
1817 		ret = cmd_i2c_set_bus_num(bus_no);
1818 #else
1819 		ret = i2c_set_bus_num(bus_no);
1820 #endif
1821 		if (ret)
1822 			printf("Failure changing bus number (%d)\n", ret);
1823 	}
1824 
1825 	return ret ? CMD_RET_FAILURE : 0;
1826 }
1827 #endif  /* defined(CONFIG_SYS_I2C) */
1828 
1829 /**
1830  * do_i2c_bus_speed() - Handle the "i2c speed" command-line command
1831  * @cmdtp:	Command data struct pointer
1832  * @flag:	Command flag
1833  * @argc:	Command-line argument count
1834  * @argv:	Array of command-line arguments
1835  *
1836  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1837  * on error.
1838  */
1839 static int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1840 {
1841 	int speed, ret=0;
1842 
1843 #ifdef CONFIG_DM_I2C
1844 	struct udevice *bus;
1845 
1846 	if (i2c_get_cur_bus(&bus))
1847 		return 1;
1848 #endif
1849 	if (argc == 1) {
1850 #ifdef CONFIG_DM_I2C
1851 		speed = dm_i2c_get_bus_speed(bus);
1852 #else
1853 		speed = i2c_get_bus_speed();
1854 #endif
1855 		/* querying current speed */
1856 		printf("Current bus speed=%d\n", speed);
1857 	} else {
1858 		speed = simple_strtoul(argv[1], NULL, 10);
1859 		printf("Setting bus speed to %d Hz\n", speed);
1860 #ifdef CONFIG_DM_I2C
1861 		ret = dm_i2c_set_bus_speed(bus, speed);
1862 #else
1863 		ret = i2c_set_bus_speed(speed);
1864 #endif
1865 		if (ret)
1866 			printf("Failure changing bus speed (%d)\n", ret);
1867 	}
1868 
1869 	return ret ? CMD_RET_FAILURE : 0;
1870 }
1871 
1872 /**
1873  * do_i2c_mm() - Handle the "i2c mm" command-line command
1874  * @cmdtp:	Command data struct pointer
1875  * @flag:	Command flag
1876  * @argc:	Command-line argument count
1877  * @argv:	Array of command-line arguments
1878  *
1879  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1880  * on error.
1881  */
1882 static int do_i2c_mm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1883 {
1884 	return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
1885 }
1886 
1887 /**
1888  * do_i2c_nm() - Handle the "i2c nm" command-line command
1889  * @cmdtp:	Command data struct pointer
1890  * @flag:	Command flag
1891  * @argc:	Command-line argument count
1892  * @argv:	Array of command-line arguments
1893  *
1894  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1895  * on error.
1896  */
1897 static int do_i2c_nm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1898 {
1899 	return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
1900 }
1901 
1902 /**
1903  * do_i2c_reset() - Handle the "i2c reset" command-line command
1904  * @cmdtp:	Command data struct pointer
1905  * @flag:	Command flag
1906  * @argc:	Command-line argument count
1907  * @argv:	Array of command-line arguments
1908  *
1909  * Returns zero always.
1910  */
1911 static int do_i2c_reset(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1912 {
1913 #if defined(CONFIG_DM_I2C)
1914 	struct udevice *bus;
1915 
1916 	if (i2c_get_cur_bus(&bus))
1917 		return CMD_RET_FAILURE;
1918 	if (i2c_deblock(bus)) {
1919 		printf("Error: Not supported by the driver\n");
1920 		return CMD_RET_FAILURE;
1921 	}
1922 #elif defined(CONFIG_SYS_I2C)
1923 	i2c_init(I2C_ADAP->speed, I2C_ADAP->slaveaddr);
1924 #else
1925 	i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
1926 #endif
1927 	return 0;
1928 }
1929 
1930 static cmd_tbl_t cmd_i2c_sub[] = {
1931 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_DM_I2C)
1932 	U_BOOT_CMD_MKENT(bus, 1, 1, do_i2c_show_bus, "", ""),
1933 #endif
1934 	U_BOOT_CMD_MKENT(crc32, 3, 1, do_i2c_crc, "", ""),
1935 #if defined(CONFIG_SYS_I2C) || \
1936 	defined(CONFIG_I2C_MULTI_BUS) || defined(CONFIG_DM_I2C)
1937 	U_BOOT_CMD_MKENT(dev, 1, 1, do_i2c_bus_num, "", ""),
1938 #endif  /* CONFIG_I2C_MULTI_BUS */
1939 #if defined(CONFIG_I2C_EDID)
1940 	U_BOOT_CMD_MKENT(edid, 1, 1, do_edid, "", ""),
1941 #endif  /* CONFIG_I2C_EDID */
1942 	U_BOOT_CMD_MKENT(loop, 3, 1, do_i2c_loop, "", ""),
1943 	U_BOOT_CMD_MKENT(md, 3, 1, do_i2c_md, "", ""),
1944 	U_BOOT_CMD_MKENT(mm, 2, 1, do_i2c_mm, "", ""),
1945 	U_BOOT_CMD_MKENT(mw, 3, 1, do_i2c_mw, "", ""),
1946 	U_BOOT_CMD_MKENT(nm, 2, 1, do_i2c_nm, "", ""),
1947 	U_BOOT_CMD_MKENT(probe, 0, 1, do_i2c_probe, "", ""),
1948 	U_BOOT_CMD_MKENT(read, 5, 1, do_i2c_read, "", ""),
1949 	U_BOOT_CMD_MKENT(write, 6, 0, do_i2c_write, "", ""),
1950 #ifdef CONFIG_DM_I2C
1951 	U_BOOT_CMD_MKENT(flags, 2, 1, do_i2c_flags, "", ""),
1952 	U_BOOT_CMD_MKENT(olen, 2, 1, do_i2c_olen, "", ""),
1953 #endif
1954 	U_BOOT_CMD_MKENT(reset, 0, 1, do_i2c_reset, "", ""),
1955 #if defined(CONFIG_CMD_SDRAM)
1956 	U_BOOT_CMD_MKENT(sdram, 1, 1, do_sdram, "", ""),
1957 #endif
1958 	U_BOOT_CMD_MKENT(speed, 1, 1, do_i2c_bus_speed, "", ""),
1959 };
1960 
1961 static __maybe_unused void i2c_reloc(void)
1962 {
1963 	static int relocated;
1964 
1965 	if (!relocated) {
1966 		fixup_cmdtable(cmd_i2c_sub, ARRAY_SIZE(cmd_i2c_sub));
1967 		relocated = 1;
1968 	};
1969 }
1970 
1971 /**
1972  * do_i2c() - Handle the "i2c" command-line command
1973  * @cmdtp:	Command data struct pointer
1974  * @flag:	Command flag
1975  * @argc:	Command-line argument count
1976  * @argv:	Array of command-line arguments
1977  *
1978  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1979  * on error.
1980  */
1981 static int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1982 {
1983 	cmd_tbl_t *c;
1984 
1985 #ifdef CONFIG_NEEDS_MANUAL_RELOC
1986 	i2c_reloc();
1987 #endif
1988 
1989 	if (argc < 2)
1990 		return CMD_RET_USAGE;
1991 
1992 	/* Strip off leading 'i2c' command argument */
1993 	argc--;
1994 	argv++;
1995 
1996 	c = find_cmd_tbl(argv[0], &cmd_i2c_sub[0], ARRAY_SIZE(cmd_i2c_sub));
1997 
1998 	if (c)
1999 		return c->cmd(cmdtp, flag, argc, argv);
2000 	else
2001 		return CMD_RET_USAGE;
2002 }
2003 
2004 /***************************************************/
2005 #ifdef CONFIG_SYS_LONGHELP
2006 static char i2c_help_text[] =
2007 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_DM_I2C)
2008 	"bus [muxtype:muxaddr:muxchannel] - show I2C bus info\n"
2009 #endif
2010 	"crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
2011 #if defined(CONFIG_SYS_I2C) || \
2012 	defined(CONFIG_I2C_MULTI_BUS) || defined(CONFIG_DM_I2C)
2013 	"i2c dev [dev] - show or set current I2C bus\n"
2014 #endif  /* CONFIG_I2C_MULTI_BUS */
2015 #if defined(CONFIG_I2C_EDID)
2016 	"i2c edid chip - print EDID configuration information\n"
2017 #endif  /* CONFIG_I2C_EDID */
2018 	"i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
2019 	"i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
2020 	"i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
2021 	"i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
2022 	"i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
2023 	"i2c probe [address] - test for and show device(s) on the I2C bus\n"
2024 	"i2c read chip address[.0, .1, .2] length memaddress - read to memory\n"
2025 	"i2c write memaddress chip address[.0, .1, .2] length [-s] - write memory\n"
2026 	"          to I2C; the -s option selects bulk write in a single transaction\n"
2027 #ifdef CONFIG_DM_I2C
2028 	"i2c flags chip [flags] - set or get chip flags\n"
2029 	"i2c olen chip [offset_length] - set or get chip offset length\n"
2030 #endif
2031 	"i2c reset - re-init the I2C Controller\n"
2032 #if defined(CONFIG_CMD_SDRAM)
2033 	"i2c sdram chip - print SDRAM configuration information\n"
2034 #endif
2035 	"i2c speed [speed] - show or set I2C bus speed";
2036 #endif
2037 
2038 U_BOOT_CMD(
2039 	i2c, 7, 1, do_i2c,
2040 	"I2C sub-system",
2041 	i2c_help_text
2042 );
2043