xref: /openbmc/u-boot/cmd/i2c.c (revision d024236e)
1 /*
2  * (C) Copyright 2009
3  * Sergey Kubushyn, himself, ksi@koi8.net
4  *
5  * Changes for unified multibus/multiadapter I2C support.
6  *
7  * (C) Copyright 2001
8  * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
9  *
10  * SPDX-License-Identifier:	GPL-2.0+
11  */
12 
13 /*
14  * I2C Functions similar to the standard memory functions.
15  *
16  * There are several parameters in many of the commands that bear further
17  * explanations:
18  *
19  * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
20  *   Each I2C chip on the bus has a unique address.  On the I2C data bus,
21  *   the address is the upper seven bits and the LSB is the "read/write"
22  *   bit.  Note that the {i2c_chip} address specified on the command
23  *   line is not shifted up: e.g. a typical EEPROM memory chip may have
24  *   an I2C address of 0x50, but the data put on the bus will be 0xA0
25  *   for write and 0xA1 for read.  This "non shifted" address notation
26  *   matches at least half of the data sheets :-/.
27  *
28  * {addr} is the address (or offset) within the chip.  Small memory
29  *   chips have 8 bit addresses.  Large memory chips have 16 bit
30  *   addresses.  Other memory chips have 9, 10, or 11 bit addresses.
31  *   Many non-memory chips have multiple registers and {addr} is used
32  *   as the register index.  Some non-memory chips have only one register
33  *   and therefore don't need any {addr} parameter.
34  *
35  *   The default {addr} parameter is one byte (.1) which works well for
36  *   memories and registers with 8 bits of address space.
37  *
38  *   You can specify the length of the {addr} field with the optional .0,
39  *   .1, or .2 modifier (similar to the .b, .w, .l modifier).  If you are
40  *   manipulating a single register device which doesn't use an address
41  *   field, use "0.0" for the address and the ".0" length field will
42  *   suppress the address in the I2C data stream.  This also works for
43  *   successive reads using the I2C auto-incrementing memory pointer.
44  *
45  *   If you are manipulating a large memory with 2-byte addresses, use
46  *   the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
47  *
48  *   Then there are the unfortunate memory chips that spill the most
49  *   significant 1, 2, or 3 bits of address into the chip address byte.
50  *   This effectively makes one chip (logically) look like 2, 4, or
51  *   8 chips.  This is handled (awkwardly) by #defining
52  *   CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
53  *   {addr} field (since .1 is the default, it doesn't actually have to
54  *   be specified).  Examples: given a memory chip at I2C chip address
55  *   0x50, the following would happen...
56  *     i2c md 50 0 10   display 16 bytes starting at 0x000
57  *                      On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
58  *     i2c md 50 100 10 display 16 bytes starting at 0x100
59  *                      On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
60  *     i2c md 50 210 10 display 16 bytes starting at 0x210
61  *                      On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
62  *   This is awfully ugly.  It would be nice if someone would think up
63  *   a better way of handling this.
64  *
65  * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
66  */
67 
68 #include <common.h>
69 #include <bootretry.h>
70 #include <cli.h>
71 #include <command.h>
72 #include <console.h>
73 #include <dm.h>
74 #include <edid.h>
75 #include <environment.h>
76 #include <errno.h>
77 #include <i2c.h>
78 #include <malloc.h>
79 #include <asm/byteorder.h>
80 #include <linux/compiler.h>
81 
82 /* Display values from last command.
83  * Memory modify remembered values are different from display memory.
84  */
85 static uint	i2c_dp_last_chip;
86 static uint	i2c_dp_last_addr;
87 static uint	i2c_dp_last_alen;
88 static uint	i2c_dp_last_length = 0x10;
89 
90 static uint	i2c_mm_last_chip;
91 static uint	i2c_mm_last_addr;
92 static uint	i2c_mm_last_alen;
93 
94 /* If only one I2C bus is present, the list of devices to ignore when
95  * the probe command is issued is represented by a 1D array of addresses.
96  * When multiple buses are present, the list is an array of bus-address
97  * pairs.  The following macros take care of this */
98 
99 #if defined(CONFIG_SYS_I2C_NOPROBES)
100 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS)
101 static struct
102 {
103 	uchar	bus;
104 	uchar	addr;
105 } i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
106 #define GET_BUS_NUM	i2c_get_bus_num()
107 #define COMPARE_BUS(b,i)	(i2c_no_probes[(i)].bus == (b))
108 #define COMPARE_ADDR(a,i)	(i2c_no_probes[(i)].addr == (a))
109 #define NO_PROBE_ADDR(i)	i2c_no_probes[(i)].addr
110 #else		/* single bus */
111 static uchar i2c_no_probes[] = CONFIG_SYS_I2C_NOPROBES;
112 #define GET_BUS_NUM	0
113 #define COMPARE_BUS(b,i)	((b) == 0)	/* Make compiler happy */
114 #define COMPARE_ADDR(a,i)	(i2c_no_probes[(i)] == (a))
115 #define NO_PROBE_ADDR(i)	i2c_no_probes[(i)]
116 #endif	/* defined(CONFIG_SYS_I2C) */
117 #endif
118 
119 #define DISP_LINE_LEN	16
120 
121 /*
122  * Default for driver model is to use the chip's existing address length.
123  * For legacy code, this is not stored, so we need to use a suitable
124  * default.
125  */
126 #ifdef CONFIG_DM_I2C
127 #define DEFAULT_ADDR_LEN	(-1)
128 #else
129 #define DEFAULT_ADDR_LEN	1
130 #endif
131 
132 #ifdef CONFIG_DM_I2C
133 static struct udevice *i2c_cur_bus;
134 
135 static int cmd_i2c_set_bus_num(unsigned int busnum)
136 {
137 	struct udevice *bus;
138 	int ret;
139 
140 	ret = uclass_get_device_by_seq(UCLASS_I2C, busnum, &bus);
141 	if (ret) {
142 		debug("%s: No bus %d\n", __func__, busnum);
143 		return ret;
144 	}
145 	i2c_cur_bus = bus;
146 
147 	return 0;
148 }
149 
150 static int i2c_get_cur_bus(struct udevice **busp)
151 {
152 #ifdef CONFIG_I2C_SET_DEFAULT_BUS_NUM
153 	if (!i2c_cur_bus) {
154 		if (cmd_i2c_set_bus_num(CONFIG_I2C_DEFAULT_BUS_NUMBER)) {
155 			printf("Default I2C bus %d not found\n",
156 			       CONFIG_I2C_DEFAULT_BUS_NUMBER);
157 			return -ENODEV;
158 		}
159 	}
160 #endif
161 
162 	if (!i2c_cur_bus) {
163 		puts("No I2C bus selected\n");
164 		return -ENODEV;
165 	}
166 	*busp = i2c_cur_bus;
167 
168 	return 0;
169 }
170 
171 static int i2c_get_cur_bus_chip(uint chip_addr, struct udevice **devp)
172 {
173 	struct udevice *bus;
174 	int ret;
175 
176 	ret = i2c_get_cur_bus(&bus);
177 	if (ret)
178 		return ret;
179 
180 	return i2c_get_chip(bus, chip_addr, 1, devp);
181 }
182 
183 #endif
184 
185 /**
186  * i2c_init_board() - Board-specific I2C bus init
187  *
188  * This function is the default no-op implementation of I2C bus
189  * initialization. This function can be overridden by board-specific
190  * implementation if needed.
191  */
192 __weak
193 void i2c_init_board(void)
194 {
195 }
196 
197 /* TODO: Implement architecture-specific get/set functions */
198 
199 /**
200  * i2c_get_bus_speed() - Return I2C bus speed
201  *
202  * This function is the default implementation of function for retrieveing
203  * the current I2C bus speed in Hz.
204  *
205  * A driver implementing runtime switching of I2C bus speed must override
206  * this function to report the speed correctly. Simple or legacy drivers
207  * can use this fallback.
208  *
209  * Returns I2C bus speed in Hz.
210  */
211 #if !defined(CONFIG_SYS_I2C) && !defined(CONFIG_DM_I2C)
212 /*
213  * TODO: Implement architecture-specific get/set functions
214  * Should go away, if we switched completely to new multibus support
215  */
216 __weak
217 unsigned int i2c_get_bus_speed(void)
218 {
219 	return CONFIG_SYS_I2C_SPEED;
220 }
221 
222 /**
223  * i2c_set_bus_speed() - Configure I2C bus speed
224  * @speed:	Newly set speed of the I2C bus in Hz
225  *
226  * This function is the default implementation of function for setting
227  * the I2C bus speed in Hz.
228  *
229  * A driver implementing runtime switching of I2C bus speed must override
230  * this function to report the speed correctly. Simple or legacy drivers
231  * can use this fallback.
232  *
233  * Returns zero on success, negative value on error.
234  */
235 __weak
236 int i2c_set_bus_speed(unsigned int speed)
237 {
238 	if (speed != CONFIG_SYS_I2C_SPEED)
239 		return -1;
240 
241 	return 0;
242 }
243 #endif
244 
245 /**
246  * get_alen() - Small parser helper function to get address length
247  *
248  * Returns the address length.
249  */
250 static uint get_alen(char *arg, int default_len)
251 {
252 	int	j;
253 	int	alen;
254 
255 	alen = default_len;
256 	for (j = 0; j < 8; j++) {
257 		if (arg[j] == '.') {
258 			alen = arg[j+1] - '0';
259 			break;
260 		} else if (arg[j] == '\0')
261 			break;
262 	}
263 	return alen;
264 }
265 
266 enum i2c_err_op {
267 	I2C_ERR_READ,
268 	I2C_ERR_WRITE,
269 };
270 
271 static int i2c_report_err(int ret, enum i2c_err_op op)
272 {
273 	printf("Error %s the chip: %d\n",
274 	       op == I2C_ERR_READ ? "reading" : "writing", ret);
275 
276 	return CMD_RET_FAILURE;
277 }
278 
279 /**
280  * do_i2c_read() - Handle the "i2c read" command-line command
281  * @cmdtp:	Command data struct pointer
282  * @flag:	Command flag
283  * @argc:	Command-line argument count
284  * @argv:	Array of command-line arguments
285  *
286  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
287  * on error.
288  *
289  * Syntax:
290  *	i2c read {i2c_chip} {devaddr}{.0, .1, .2} {len} {memaddr}
291  */
292 static int do_i2c_read ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
293 {
294 	uint	chip;
295 	uint	devaddr, length;
296 	int alen;
297 	u_char  *memaddr;
298 	int ret;
299 #ifdef CONFIG_DM_I2C
300 	struct udevice *dev;
301 #endif
302 
303 	if (argc != 5)
304 		return CMD_RET_USAGE;
305 
306 	/*
307 	 * I2C chip address
308 	 */
309 	chip = simple_strtoul(argv[1], NULL, 16);
310 
311 	/*
312 	 * I2C data address within the chip.  This can be 1 or
313 	 * 2 bytes long.  Some day it might be 3 bytes long :-).
314 	 */
315 	devaddr = simple_strtoul(argv[2], NULL, 16);
316 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
317 	if (alen > 3)
318 		return CMD_RET_USAGE;
319 
320 	/*
321 	 * Length is the number of objects, not number of bytes.
322 	 */
323 	length = simple_strtoul(argv[3], NULL, 16);
324 
325 	/*
326 	 * memaddr is the address where to store things in memory
327 	 */
328 	memaddr = (u_char *)simple_strtoul(argv[4], NULL, 16);
329 
330 #ifdef CONFIG_DM_I2C
331 	ret = i2c_get_cur_bus_chip(chip, &dev);
332 	if (!ret && alen != -1)
333 		ret = i2c_set_chip_offset_len(dev, alen);
334 	if (!ret)
335 		ret = dm_i2c_read(dev, devaddr, memaddr, length);
336 #else
337 	ret = i2c_read(chip, devaddr, alen, memaddr, length);
338 #endif
339 	if (ret)
340 		return i2c_report_err(ret, I2C_ERR_READ);
341 
342 	return 0;
343 }
344 
345 static int do_i2c_write(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
346 {
347 	uint	chip;
348 	uint	devaddr, length;
349 	int alen;
350 	u_char  *memaddr;
351 	int ret;
352 #ifdef CONFIG_DM_I2C
353 	struct udevice *dev;
354 	struct dm_i2c_chip *i2c_chip;
355 #endif
356 
357 	if ((argc < 5) || (argc > 6))
358 		return cmd_usage(cmdtp);
359 
360 	/*
361 	 * memaddr is the address where to store things in memory
362 	 */
363 	memaddr = (u_char *)simple_strtoul(argv[1], NULL, 16);
364 
365 	/*
366 	 * I2C chip address
367 	 */
368 	chip = simple_strtoul(argv[2], NULL, 16);
369 
370 	/*
371 	 * I2C data address within the chip.  This can be 1 or
372 	 * 2 bytes long.  Some day it might be 3 bytes long :-).
373 	 */
374 	devaddr = simple_strtoul(argv[3], NULL, 16);
375 	alen = get_alen(argv[3], DEFAULT_ADDR_LEN);
376 	if (alen > 3)
377 		return cmd_usage(cmdtp);
378 
379 	/*
380 	 * Length is the number of bytes.
381 	 */
382 	length = simple_strtoul(argv[4], NULL, 16);
383 
384 #ifdef CONFIG_DM_I2C
385 	ret = i2c_get_cur_bus_chip(chip, &dev);
386 	if (!ret && alen != -1)
387 		ret = i2c_set_chip_offset_len(dev, alen);
388 	if (ret)
389 		return i2c_report_err(ret, I2C_ERR_WRITE);
390 	i2c_chip = dev_get_parent_platdata(dev);
391 	if (!i2c_chip)
392 		return i2c_report_err(ret, I2C_ERR_WRITE);
393 #endif
394 
395 	if (argc == 6 && !strcmp(argv[5], "-s")) {
396 		/*
397 		 * Write all bytes in a single I2C transaction. If the target
398 		 * device is an EEPROM, it is your responsibility to not cross
399 		 * a page boundary. No write delay upon completion, take this
400 		 * into account if linking commands.
401 		 */
402 #ifdef CONFIG_DM_I2C
403 		i2c_chip->flags &= ~DM_I2C_CHIP_WR_ADDRESS;
404 		ret = dm_i2c_write(dev, devaddr, memaddr, length);
405 #else
406 		ret = i2c_write(chip, devaddr, alen, memaddr, length);
407 #endif
408 		if (ret)
409 			return i2c_report_err(ret, I2C_ERR_WRITE);
410 	} else {
411 		/*
412 		 * Repeated addressing - perform <length> separate
413 		 * write transactions of one byte each
414 		 */
415 		while (length-- > 0) {
416 #ifdef CONFIG_DM_I2C
417 			i2c_chip->flags |= DM_I2C_CHIP_WR_ADDRESS;
418 			ret = dm_i2c_write(dev, devaddr++, memaddr++, 1);
419 #else
420 			ret = i2c_write(chip, devaddr++, alen, memaddr++, 1);
421 #endif
422 			if (ret)
423 				return i2c_report_err(ret, I2C_ERR_WRITE);
424 /*
425  * No write delay with FRAM devices.
426  */
427 #if !defined(CONFIG_SYS_I2C_FRAM)
428 			udelay(11000);
429 #endif
430 		}
431 	}
432 	return 0;
433 }
434 
435 #ifdef CONFIG_DM_I2C
436 static int do_i2c_flags(cmd_tbl_t *cmdtp, int flag, int argc,
437 			char *const argv[])
438 {
439 	struct udevice *dev;
440 	uint flags;
441 	int chip;
442 	int ret;
443 
444 	if (argc < 2)
445 		return CMD_RET_USAGE;
446 
447 	chip = simple_strtoul(argv[1], NULL, 16);
448 	ret = i2c_get_cur_bus_chip(chip, &dev);
449 	if (ret)
450 		return i2c_report_err(ret, I2C_ERR_READ);
451 
452 	if (argc > 2) {
453 		flags = simple_strtoul(argv[2], NULL, 16);
454 		ret = i2c_set_chip_flags(dev, flags);
455 	} else  {
456 		ret = i2c_get_chip_flags(dev, &flags);
457 		if (!ret)
458 			printf("%x\n", flags);
459 	}
460 	if (ret)
461 		return i2c_report_err(ret, I2C_ERR_READ);
462 
463 	return 0;
464 }
465 
466 static int do_i2c_olen(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
467 {
468 	struct udevice *dev;
469 	uint olen;
470 	int chip;
471 	int ret;
472 
473 	if (argc < 2)
474 		return CMD_RET_USAGE;
475 
476 	chip = simple_strtoul(argv[1], NULL, 16);
477 	ret = i2c_get_cur_bus_chip(chip, &dev);
478 	if (ret)
479 		return i2c_report_err(ret, I2C_ERR_READ);
480 
481 	if (argc > 2) {
482 		olen = simple_strtoul(argv[2], NULL, 16);
483 		ret = i2c_set_chip_offset_len(dev, olen);
484 	} else  {
485 		ret = i2c_get_chip_offset_len(dev);
486 		if (ret >= 0) {
487 			printf("%x\n", ret);
488 			ret = 0;
489 		}
490 	}
491 	if (ret)
492 		return i2c_report_err(ret, I2C_ERR_READ);
493 
494 	return 0;
495 }
496 #endif
497 
498 /**
499  * do_i2c_md() - Handle the "i2c md" command-line command
500  * @cmdtp:	Command data struct pointer
501  * @flag:	Command flag
502  * @argc:	Command-line argument count
503  * @argv:	Array of command-line arguments
504  *
505  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
506  * on error.
507  *
508  * Syntax:
509  *	i2c md {i2c_chip} {addr}{.0, .1, .2} {len}
510  */
511 static int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
512 {
513 	uint	chip;
514 	uint	addr, length;
515 	int alen;
516 	int	j, nbytes, linebytes;
517 	int ret;
518 #ifdef CONFIG_DM_I2C
519 	struct udevice *dev;
520 #endif
521 
522 	/* We use the last specified parameters, unless new ones are
523 	 * entered.
524 	 */
525 	chip   = i2c_dp_last_chip;
526 	addr   = i2c_dp_last_addr;
527 	alen   = i2c_dp_last_alen;
528 	length = i2c_dp_last_length;
529 
530 	if (argc < 3)
531 		return CMD_RET_USAGE;
532 
533 	if ((flag & CMD_FLAG_REPEAT) == 0) {
534 		/*
535 		 * New command specified.
536 		 */
537 
538 		/*
539 		 * I2C chip address
540 		 */
541 		chip = simple_strtoul(argv[1], NULL, 16);
542 
543 		/*
544 		 * I2C data address within the chip.  This can be 1 or
545 		 * 2 bytes long.  Some day it might be 3 bytes long :-).
546 		 */
547 		addr = simple_strtoul(argv[2], NULL, 16);
548 		alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
549 		if (alen > 3)
550 			return CMD_RET_USAGE;
551 
552 		/*
553 		 * If another parameter, it is the length to display.
554 		 * Length is the number of objects, not number of bytes.
555 		 */
556 		if (argc > 3)
557 			length = simple_strtoul(argv[3], NULL, 16);
558 	}
559 
560 #ifdef CONFIG_DM_I2C
561 	ret = i2c_get_cur_bus_chip(chip, &dev);
562 	if (!ret && alen != -1)
563 		ret = i2c_set_chip_offset_len(dev, alen);
564 	if (ret)
565 		return i2c_report_err(ret, I2C_ERR_READ);
566 #endif
567 
568 	/*
569 	 * Print the lines.
570 	 *
571 	 * We buffer all read data, so we can make sure data is read only
572 	 * once.
573 	 */
574 	nbytes = length;
575 	do {
576 		unsigned char	linebuf[DISP_LINE_LEN];
577 		unsigned char	*cp;
578 
579 		linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
580 
581 #ifdef CONFIG_DM_I2C
582 		ret = dm_i2c_read(dev, addr, linebuf, linebytes);
583 #else
584 		ret = i2c_read(chip, addr, alen, linebuf, linebytes);
585 #endif
586 		if (ret)
587 			return i2c_report_err(ret, I2C_ERR_READ);
588 		else {
589 			printf("%04x:", addr);
590 			cp = linebuf;
591 			for (j=0; j<linebytes; j++) {
592 				printf(" %02x", *cp++);
593 				addr++;
594 			}
595 			puts ("    ");
596 			cp = linebuf;
597 			for (j=0; j<linebytes; j++) {
598 				if ((*cp < 0x20) || (*cp > 0x7e))
599 					puts (".");
600 				else
601 					printf("%c", *cp);
602 				cp++;
603 			}
604 			putc ('\n');
605 		}
606 		nbytes -= linebytes;
607 	} while (nbytes > 0);
608 
609 	i2c_dp_last_chip   = chip;
610 	i2c_dp_last_addr   = addr;
611 	i2c_dp_last_alen   = alen;
612 	i2c_dp_last_length = length;
613 
614 	return 0;
615 }
616 
617 /**
618  * do_i2c_mw() - Handle the "i2c mw" command-line command
619  * @cmdtp:	Command data struct pointer
620  * @flag:	Command flag
621  * @argc:	Command-line argument count
622  * @argv:	Array of command-line arguments
623  *
624  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
625  * on error.
626  *
627  * Syntax:
628  *	i2c mw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
629  */
630 static int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
631 {
632 	uint	chip;
633 	ulong	addr;
634 	int	alen;
635 	uchar	byte;
636 	int	count;
637 	int ret;
638 #ifdef CONFIG_DM_I2C
639 	struct udevice *dev;
640 #endif
641 
642 	if ((argc < 4) || (argc > 5))
643 		return CMD_RET_USAGE;
644 
645 	/*
646 	 * Chip is always specified.
647 	 */
648 	chip = simple_strtoul(argv[1], NULL, 16);
649 
650 	/*
651 	 * Address is always specified.
652 	 */
653 	addr = simple_strtoul(argv[2], NULL, 16);
654 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
655 	if (alen > 3)
656 		return CMD_RET_USAGE;
657 
658 #ifdef CONFIG_DM_I2C
659 	ret = i2c_get_cur_bus_chip(chip, &dev);
660 	if (!ret && alen != -1)
661 		ret = i2c_set_chip_offset_len(dev, alen);
662 	if (ret)
663 		return i2c_report_err(ret, I2C_ERR_WRITE);
664 #endif
665 	/*
666 	 * Value to write is always specified.
667 	 */
668 	byte = simple_strtoul(argv[3], NULL, 16);
669 
670 	/*
671 	 * Optional count
672 	 */
673 	if (argc == 5)
674 		count = simple_strtoul(argv[4], NULL, 16);
675 	else
676 		count = 1;
677 
678 	while (count-- > 0) {
679 #ifdef CONFIG_DM_I2C
680 		ret = dm_i2c_write(dev, addr++, &byte, 1);
681 #else
682 		ret = i2c_write(chip, addr++, alen, &byte, 1);
683 #endif
684 		if (ret)
685 			return i2c_report_err(ret, I2C_ERR_WRITE);
686 		/*
687 		 * Wait for the write to complete.  The write can take
688 		 * up to 10mSec (we allow a little more time).
689 		 */
690 /*
691  * No write delay with FRAM devices.
692  */
693 #if !defined(CONFIG_SYS_I2C_FRAM)
694 		udelay(11000);
695 #endif
696 	}
697 
698 	return 0;
699 }
700 
701 /**
702  * do_i2c_crc() - Handle the "i2c crc32" command-line command
703  * @cmdtp:	Command data struct pointer
704  * @flag:	Command flag
705  * @argc:	Command-line argument count
706  * @argv:	Array of command-line arguments
707  *
708  * Calculate a CRC on memory
709  *
710  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
711  * on error.
712  *
713  * Syntax:
714  *	i2c crc32 {i2c_chip} {addr}{.0, .1, .2} {count}
715  */
716 static int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
717 {
718 	uint	chip;
719 	ulong	addr;
720 	int	alen;
721 	int	count;
722 	uchar	byte;
723 	ulong	crc;
724 	ulong	err;
725 	int ret = 0;
726 #ifdef CONFIG_DM_I2C
727 	struct udevice *dev;
728 #endif
729 
730 	if (argc < 4)
731 		return CMD_RET_USAGE;
732 
733 	/*
734 	 * Chip is always specified.
735 	 */
736 	chip = simple_strtoul(argv[1], NULL, 16);
737 
738 	/*
739 	 * Address is always specified.
740 	 */
741 	addr = simple_strtoul(argv[2], NULL, 16);
742 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
743 	if (alen > 3)
744 		return CMD_RET_USAGE;
745 
746 #ifdef CONFIG_DM_I2C
747 	ret = i2c_get_cur_bus_chip(chip, &dev);
748 	if (!ret && alen != -1)
749 		ret = i2c_set_chip_offset_len(dev, alen);
750 	if (ret)
751 		return i2c_report_err(ret, I2C_ERR_READ);
752 #endif
753 	/*
754 	 * Count is always specified
755 	 */
756 	count = simple_strtoul(argv[3], NULL, 16);
757 
758 	printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
759 	/*
760 	 * CRC a byte at a time.  This is going to be slooow, but hey, the
761 	 * memories are small and slow too so hopefully nobody notices.
762 	 */
763 	crc = 0;
764 	err = 0;
765 	while (count-- > 0) {
766 #ifdef CONFIG_DM_I2C
767 		ret = dm_i2c_read(dev, addr, &byte, 1);
768 #else
769 		ret = i2c_read(chip, addr, alen, &byte, 1);
770 #endif
771 		if (ret)
772 			err++;
773 		crc = crc32 (crc, &byte, 1);
774 		addr++;
775 	}
776 	if (err > 0)
777 		i2c_report_err(ret, I2C_ERR_READ);
778 	else
779 		printf ("%08lx\n", crc);
780 
781 	return 0;
782 }
783 
784 /**
785  * mod_i2c_mem() - Handle the "i2c mm" and "i2c nm" command-line command
786  * @cmdtp:	Command data struct pointer
787  * @flag:	Command flag
788  * @argc:	Command-line argument count
789  * @argv:	Array of command-line arguments
790  *
791  * Modify memory.
792  *
793  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
794  * on error.
795  *
796  * Syntax:
797  *	i2c mm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
798  *	i2c nm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
799  */
800 static int
801 mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char * const argv[])
802 {
803 	uint	chip;
804 	ulong	addr;
805 	int	alen;
806 	ulong	data;
807 	int	size = 1;
808 	int	nbytes;
809 	int ret;
810 #ifdef CONFIG_DM_I2C
811 	struct udevice *dev;
812 #endif
813 
814 	if (argc != 3)
815 		return CMD_RET_USAGE;
816 
817 	bootretry_reset_cmd_timeout();	/* got a good command to get here */
818 	/*
819 	 * We use the last specified parameters, unless new ones are
820 	 * entered.
821 	 */
822 	chip = i2c_mm_last_chip;
823 	addr = i2c_mm_last_addr;
824 	alen = i2c_mm_last_alen;
825 
826 	if ((flag & CMD_FLAG_REPEAT) == 0) {
827 		/*
828 		 * New command specified.  Check for a size specification.
829 		 * Defaults to byte if no or incorrect specification.
830 		 */
831 		size = cmd_get_data_size(argv[0], 1);
832 
833 		/*
834 		 * Chip is always specified.
835 		 */
836 		chip = simple_strtoul(argv[1], NULL, 16);
837 
838 		/*
839 		 * Address is always specified.
840 		 */
841 		addr = simple_strtoul(argv[2], NULL, 16);
842 		alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
843 		if (alen > 3)
844 			return CMD_RET_USAGE;
845 	}
846 
847 #ifdef CONFIG_DM_I2C
848 	ret = i2c_get_cur_bus_chip(chip, &dev);
849 	if (!ret && alen != -1)
850 		ret = i2c_set_chip_offset_len(dev, alen);
851 	if (ret)
852 		return i2c_report_err(ret, I2C_ERR_WRITE);
853 #endif
854 
855 	/*
856 	 * Print the address, followed by value.  Then accept input for
857 	 * the next value.  A non-converted value exits.
858 	 */
859 	do {
860 		printf("%08lx:", addr);
861 #ifdef CONFIG_DM_I2C
862 		ret = dm_i2c_read(dev, addr, (uchar *)&data, size);
863 #else
864 		ret = i2c_read(chip, addr, alen, (uchar *)&data, size);
865 #endif
866 		if (ret)
867 			return i2c_report_err(ret, I2C_ERR_READ);
868 
869 		data = cpu_to_be32(data);
870 		if (size == 1)
871 			printf(" %02lx", (data >> 24) & 0x000000FF);
872 		else if (size == 2)
873 			printf(" %04lx", (data >> 16) & 0x0000FFFF);
874 		else
875 			printf(" %08lx", data);
876 
877 		nbytes = cli_readline(" ? ");
878 		if (nbytes == 0) {
879 			/*
880 			 * <CR> pressed as only input, don't modify current
881 			 * location and move to next.
882 			 */
883 			if (incrflag)
884 				addr += size;
885 			nbytes = size;
886 			/* good enough to not time out */
887 			bootretry_reset_cmd_timeout();
888 		}
889 #ifdef CONFIG_BOOT_RETRY_TIME
890 		else if (nbytes == -2)
891 			break;	/* timed out, exit the command	*/
892 #endif
893 		else {
894 			char *endp;
895 
896 			data = simple_strtoul(console_buffer, &endp, 16);
897 			if (size == 1)
898 				data = data << 24;
899 			else if (size == 2)
900 				data = data << 16;
901 			data = be32_to_cpu(data);
902 			nbytes = endp - console_buffer;
903 			if (nbytes) {
904 				/*
905 				 * good enough to not time out
906 				 */
907 				bootretry_reset_cmd_timeout();
908 #ifdef CONFIG_DM_I2C
909 				ret = dm_i2c_write(dev, addr, (uchar *)&data,
910 						   size);
911 #else
912 				ret = i2c_write(chip, addr, alen,
913 						(uchar *)&data, size);
914 #endif
915 				if (ret)
916 					return i2c_report_err(ret,
917 							      I2C_ERR_WRITE);
918 #ifdef CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS
919 				udelay(CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
920 #endif
921 				if (incrflag)
922 					addr += size;
923 			}
924 		}
925 	} while (nbytes);
926 
927 	i2c_mm_last_chip = chip;
928 	i2c_mm_last_addr = addr;
929 	i2c_mm_last_alen = alen;
930 
931 	return 0;
932 }
933 
934 /**
935  * do_i2c_probe() - Handle the "i2c probe" command-line command
936  * @cmdtp:	Command data struct pointer
937  * @flag:	Command flag
938  * @argc:	Command-line argument count
939  * @argv:	Array of command-line arguments
940  *
941  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
942  * on error.
943  *
944  * Syntax:
945  *	i2c probe {addr}
946  *
947  * Returns zero (success) if one or more I2C devices was found
948  */
949 static int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
950 {
951 	int j;
952 	int addr = -1;
953 	int found = 0;
954 #if defined(CONFIG_SYS_I2C_NOPROBES)
955 	int k, skip;
956 	unsigned int bus = GET_BUS_NUM;
957 #endif	/* NOPROBES */
958 	int ret;
959 #ifdef CONFIG_DM_I2C
960 	struct udevice *bus, *dev;
961 
962 	if (i2c_get_cur_bus(&bus))
963 		return CMD_RET_FAILURE;
964 #endif
965 
966 	if (argc == 2)
967 		addr = simple_strtol(argv[1], 0, 16);
968 
969 	puts ("Valid chip addresses:");
970 	for (j = 0; j < 128; j++) {
971 		if ((0 <= addr) && (j != addr))
972 			continue;
973 
974 #if defined(CONFIG_SYS_I2C_NOPROBES)
975 		skip = 0;
976 		for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
977 			if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
978 				skip = 1;
979 				break;
980 			}
981 		}
982 		if (skip)
983 			continue;
984 #endif
985 #ifdef CONFIG_DM_I2C
986 		ret = dm_i2c_probe(bus, j, 0, &dev);
987 #else
988 		ret = i2c_probe(j);
989 #endif
990 		if (ret == 0) {
991 			printf(" %02X", j);
992 			found++;
993 		}
994 	}
995 	putc ('\n');
996 
997 #if defined(CONFIG_SYS_I2C_NOPROBES)
998 	puts ("Excluded chip addresses:");
999 	for (k = 0; k < ARRAY_SIZE(i2c_no_probes); k++) {
1000 		if (COMPARE_BUS(bus,k))
1001 			printf(" %02X", NO_PROBE_ADDR(k));
1002 	}
1003 	putc ('\n');
1004 #endif
1005 
1006 	return (0 == found);
1007 }
1008 
1009 /**
1010  * do_i2c_loop() - Handle the "i2c loop" command-line command
1011  * @cmdtp:	Command data struct pointer
1012  * @flag:	Command flag
1013  * @argc:	Command-line argument count
1014  * @argv:	Array of command-line arguments
1015  *
1016  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1017  * on error.
1018  *
1019  * Syntax:
1020  *	i2c loop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
1021  *	{length} - Number of bytes to read
1022  *	{delay}  - A DECIMAL number and defaults to 1000 uSec
1023  */
1024 static int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1025 {
1026 	uint	chip;
1027 	int alen;
1028 	uint	addr;
1029 	uint	length;
1030 	u_char	bytes[16];
1031 	int	delay;
1032 	int ret;
1033 #ifdef CONFIG_DM_I2C
1034 	struct udevice *dev;
1035 #endif
1036 
1037 	if (argc < 3)
1038 		return CMD_RET_USAGE;
1039 
1040 	/*
1041 	 * Chip is always specified.
1042 	 */
1043 	chip = simple_strtoul(argv[1], NULL, 16);
1044 
1045 	/*
1046 	 * Address is always specified.
1047 	 */
1048 	addr = simple_strtoul(argv[2], NULL, 16);
1049 	alen = get_alen(argv[2], DEFAULT_ADDR_LEN);
1050 	if (alen > 3)
1051 		return CMD_RET_USAGE;
1052 #ifdef CONFIG_DM_I2C
1053 	ret = i2c_get_cur_bus_chip(chip, &dev);
1054 	if (!ret && alen != -1)
1055 		ret = i2c_set_chip_offset_len(dev, alen);
1056 	if (ret)
1057 		return i2c_report_err(ret, I2C_ERR_WRITE);
1058 #endif
1059 
1060 	/*
1061 	 * Length is the number of objects, not number of bytes.
1062 	 */
1063 	length = 1;
1064 	length = simple_strtoul(argv[3], NULL, 16);
1065 	if (length > sizeof(bytes))
1066 		length = sizeof(bytes);
1067 
1068 	/*
1069 	 * The delay time (uSec) is optional.
1070 	 */
1071 	delay = 1000;
1072 	if (argc > 3)
1073 		delay = simple_strtoul(argv[4], NULL, 10);
1074 	/*
1075 	 * Run the loop...
1076 	 */
1077 	while (1) {
1078 #ifdef CONFIG_DM_I2C
1079 		ret = dm_i2c_read(dev, addr, bytes, length);
1080 #else
1081 		ret = i2c_read(chip, addr, alen, bytes, length);
1082 #endif
1083 		if (ret)
1084 			i2c_report_err(ret, I2C_ERR_READ);
1085 		udelay(delay);
1086 	}
1087 
1088 	/* NOTREACHED */
1089 	return 0;
1090 }
1091 
1092 /*
1093  * The SDRAM command is separately configured because many
1094  * (most?) embedded boards don't use SDRAM DIMMs.
1095  *
1096  * FIXME: Document and probably move elsewhere!
1097  */
1098 #if defined(CONFIG_CMD_SDRAM)
1099 static void print_ddr2_tcyc (u_char const b)
1100 {
1101 	printf ("%d.", (b >> 4) & 0x0F);
1102 	switch (b & 0x0F) {
1103 	case 0x0:
1104 	case 0x1:
1105 	case 0x2:
1106 	case 0x3:
1107 	case 0x4:
1108 	case 0x5:
1109 	case 0x6:
1110 	case 0x7:
1111 	case 0x8:
1112 	case 0x9:
1113 		printf ("%d ns\n", b & 0x0F);
1114 		break;
1115 	case 0xA:
1116 		puts ("25 ns\n");
1117 		break;
1118 	case 0xB:
1119 		puts ("33 ns\n");
1120 		break;
1121 	case 0xC:
1122 		puts ("66 ns\n");
1123 		break;
1124 	case 0xD:
1125 		puts ("75 ns\n");
1126 		break;
1127 	default:
1128 		puts ("?? ns\n");
1129 		break;
1130 	}
1131 }
1132 
1133 static void decode_bits (u_char const b, char const *str[], int const do_once)
1134 {
1135 	u_char mask;
1136 
1137 	for (mask = 0x80; mask != 0x00; mask >>= 1, ++str) {
1138 		if (b & mask) {
1139 			puts (*str);
1140 			if (do_once)
1141 				return;
1142 		}
1143 	}
1144 }
1145 
1146 /*
1147  * Syntax:
1148  *	i2c sdram {i2c_chip}
1149  */
1150 static int do_sdram (cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1151 {
1152 	enum { unknown, EDO, SDRAM, DDR, DDR2, DDR3, DDR4 } type;
1153 
1154 	uint	chip;
1155 	u_char	data[128];
1156 	u_char	cksum;
1157 	int	j, ret;
1158 #ifdef CONFIG_DM_I2C
1159 	struct udevice *dev;
1160 #endif
1161 
1162 	static const char *decode_CAS_DDR2[] = {
1163 		" TBD", " 6", " 5", " 4", " 3", " 2", " TBD", " TBD"
1164 	};
1165 
1166 	static const char *decode_CAS_default[] = {
1167 		" TBD", " 7", " 6", " 5", " 4", " 3", " 2", " 1"
1168 	};
1169 
1170 	static const char *decode_CS_WE_default[] = {
1171 		" TBD", " 6", " 5", " 4", " 3", " 2", " 1", " 0"
1172 	};
1173 
1174 	static const char *decode_byte21_default[] = {
1175 		"  TBD (bit 7)\n",
1176 		"  Redundant row address\n",
1177 		"  Differential clock input\n",
1178 		"  Registerd DQMB inputs\n",
1179 		"  Buffered DQMB inputs\n",
1180 		"  On-card PLL\n",
1181 		"  Registered address/control lines\n",
1182 		"  Buffered address/control lines\n"
1183 	};
1184 
1185 	static const char *decode_byte22_DDR2[] = {
1186 		"  TBD (bit 7)\n",
1187 		"  TBD (bit 6)\n",
1188 		"  TBD (bit 5)\n",
1189 		"  TBD (bit 4)\n",
1190 		"  TBD (bit 3)\n",
1191 		"  Supports partial array self refresh\n",
1192 		"  Supports 50 ohm ODT\n",
1193 		"  Supports weak driver\n"
1194 	};
1195 
1196 	static const char *decode_row_density_DDR2[] = {
1197 		"512 MiB", "256 MiB", "128 MiB", "16 GiB",
1198 		"8 GiB", "4 GiB", "2 GiB", "1 GiB"
1199 	};
1200 
1201 	static const char *decode_row_density_default[] = {
1202 		"512 MiB", "256 MiB", "128 MiB", "64 MiB",
1203 		"32 MiB", "16 MiB", "8 MiB", "4 MiB"
1204 	};
1205 
1206 	if (argc < 2)
1207 		return CMD_RET_USAGE;
1208 
1209 	/*
1210 	 * Chip is always specified.
1211 	 */
1212 	chip = simple_strtoul (argv[1], NULL, 16);
1213 
1214 #ifdef CONFIG_DM_I2C
1215 	ret = i2c_get_cur_bus_chip(chip, &dev);
1216 	if (!ret)
1217 		ret = dm_i2c_read(dev, 0, data, sizeof(data));
1218 #else
1219 	ret = i2c_read(chip, 0, 1, data, sizeof(data));
1220 #endif
1221 	if (ret) {
1222 		puts ("No SDRAM Serial Presence Detect found.\n");
1223 		return 1;
1224 	}
1225 
1226 	cksum = 0;
1227 	for (j = 0; j < 63; j++) {
1228 		cksum += data[j];
1229 	}
1230 	if (cksum != data[63]) {
1231 		printf ("WARNING: Configuration data checksum failure:\n"
1232 			"  is 0x%02x, calculated 0x%02x\n", data[63], cksum);
1233 	}
1234 	printf ("SPD data revision            %d.%d\n",
1235 		(data[62] >> 4) & 0x0F, data[62] & 0x0F);
1236 	printf ("Bytes used                   0x%02X\n", data[0]);
1237 	printf ("Serial memory size           0x%02X\n", 1 << data[1]);
1238 
1239 	puts ("Memory type                  ");
1240 	switch (data[2]) {
1241 	case 2:
1242 		type = EDO;
1243 		puts ("EDO\n");
1244 		break;
1245 	case 4:
1246 		type = SDRAM;
1247 		puts ("SDRAM\n");
1248 		break;
1249 	case 7:
1250 		type = DDR;
1251 		puts("DDR\n");
1252 		break;
1253 	case 8:
1254 		type = DDR2;
1255 		puts ("DDR2\n");
1256 		break;
1257 	case 11:
1258 		type = DDR3;
1259 		puts("DDR3\n");
1260 		break;
1261 	case 12:
1262 		type = DDR4;
1263 		puts("DDR4\n");
1264 		break;
1265 	default:
1266 		type = unknown;
1267 		puts ("unknown\n");
1268 		break;
1269 	}
1270 
1271 	puts ("Row address bits             ");
1272 	if ((data[3] & 0x00F0) == 0)
1273 		printf ("%d\n", data[3] & 0x0F);
1274 	else
1275 		printf ("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
1276 
1277 	puts ("Column address bits          ");
1278 	if ((data[4] & 0x00F0) == 0)
1279 		printf ("%d\n", data[4] & 0x0F);
1280 	else
1281 		printf ("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
1282 
1283 	switch (type) {
1284 	case DDR2:
1285 		printf ("Number of ranks              %d\n",
1286 			(data[5] & 0x07) + 1);
1287 		break;
1288 	default:
1289 		printf ("Module rows                  %d\n", data[5]);
1290 		break;
1291 	}
1292 
1293 	switch (type) {
1294 	case DDR2:
1295 		printf ("Module data width            %d bits\n", data[6]);
1296 		break;
1297 	default:
1298 		printf ("Module data width            %d bits\n",
1299 			(data[7] << 8) | data[6]);
1300 		break;
1301 	}
1302 
1303 	puts ("Interface signal levels      ");
1304 	switch(data[8]) {
1305 		case 0:  puts ("TTL 5.0 V\n");	break;
1306 		case 1:  puts ("LVTTL\n");	break;
1307 		case 2:  puts ("HSTL 1.5 V\n");	break;
1308 		case 3:  puts ("SSTL 3.3 V\n");	break;
1309 		case 4:  puts ("SSTL 2.5 V\n");	break;
1310 		case 5:  puts ("SSTL 1.8 V\n");	break;
1311 		default: puts ("unknown\n");	break;
1312 	}
1313 
1314 	switch (type) {
1315 	case DDR2:
1316 		printf ("SDRAM cycle time             ");
1317 		print_ddr2_tcyc (data[9]);
1318 		break;
1319 	default:
1320 		printf ("SDRAM cycle time             %d.%d ns\n",
1321 			(data[9] >> 4) & 0x0F, data[9] & 0x0F);
1322 		break;
1323 	}
1324 
1325 	switch (type) {
1326 	case DDR2:
1327 		printf ("SDRAM access time            0.%d%d ns\n",
1328 			(data[10] >> 4) & 0x0F, data[10] & 0x0F);
1329 		break;
1330 	default:
1331 		printf ("SDRAM access time            %d.%d ns\n",
1332 			(data[10] >> 4) & 0x0F, data[10] & 0x0F);
1333 		break;
1334 	}
1335 
1336 	puts ("EDC configuration            ");
1337 	switch (data[11]) {
1338 		case 0:  puts ("None\n");	break;
1339 		case 1:  puts ("Parity\n");	break;
1340 		case 2:  puts ("ECC\n");	break;
1341 		default: puts ("unknown\n");	break;
1342 	}
1343 
1344 	if ((data[12] & 0x80) == 0)
1345 		puts ("No self refresh, rate        ");
1346 	else
1347 		puts ("Self refresh, rate           ");
1348 
1349 	switch(data[12] & 0x7F) {
1350 		case 0:  puts ("15.625 us\n");	break;
1351 		case 1:  puts ("3.9 us\n");	break;
1352 		case 2:  puts ("7.8 us\n");	break;
1353 		case 3:  puts ("31.3 us\n");	break;
1354 		case 4:  puts ("62.5 us\n");	break;
1355 		case 5:  puts ("125 us\n");	break;
1356 		default: puts ("unknown\n");	break;
1357 	}
1358 
1359 	switch (type) {
1360 	case DDR2:
1361 		printf ("SDRAM width (primary)        %d\n", data[13]);
1362 		break;
1363 	default:
1364 		printf ("SDRAM width (primary)        %d\n", data[13] & 0x7F);
1365 		if ((data[13] & 0x80) != 0) {
1366 			printf ("  (second bank)              %d\n",
1367 				2 * (data[13] & 0x7F));
1368 		}
1369 		break;
1370 	}
1371 
1372 	switch (type) {
1373 	case DDR2:
1374 		if (data[14] != 0)
1375 			printf ("EDC width                    %d\n", data[14]);
1376 		break;
1377 	default:
1378 		if (data[14] != 0) {
1379 			printf ("EDC width                    %d\n",
1380 				data[14] & 0x7F);
1381 
1382 			if ((data[14] & 0x80) != 0) {
1383 				printf ("  (second bank)              %d\n",
1384 					2 * (data[14] & 0x7F));
1385 			}
1386 		}
1387 		break;
1388 	}
1389 
1390 	if (DDR2 != type) {
1391 		printf ("Min clock delay, back-to-back random column addresses "
1392 			"%d\n", data[15]);
1393 	}
1394 
1395 	puts ("Burst length(s)             ");
1396 	if (data[16] & 0x80) puts (" Page");
1397 	if (data[16] & 0x08) puts (" 8");
1398 	if (data[16] & 0x04) puts (" 4");
1399 	if (data[16] & 0x02) puts (" 2");
1400 	if (data[16] & 0x01) puts (" 1");
1401 	putc ('\n');
1402 	printf ("Number of banks              %d\n", data[17]);
1403 
1404 	switch (type) {
1405 	case DDR2:
1406 		puts ("CAS latency(s)              ");
1407 		decode_bits (data[18], decode_CAS_DDR2, 0);
1408 		putc ('\n');
1409 		break;
1410 	default:
1411 		puts ("CAS latency(s)              ");
1412 		decode_bits (data[18], decode_CAS_default, 0);
1413 		putc ('\n');
1414 		break;
1415 	}
1416 
1417 	if (DDR2 != type) {
1418 		puts ("CS latency(s)               ");
1419 		decode_bits (data[19], decode_CS_WE_default, 0);
1420 		putc ('\n');
1421 	}
1422 
1423 	if (DDR2 != type) {
1424 		puts ("WE latency(s)               ");
1425 		decode_bits (data[20], decode_CS_WE_default, 0);
1426 		putc ('\n');
1427 	}
1428 
1429 	switch (type) {
1430 	case DDR2:
1431 		puts ("Module attributes:\n");
1432 		if (data[21] & 0x80)
1433 			puts ("  TBD (bit 7)\n");
1434 		if (data[21] & 0x40)
1435 			puts ("  Analysis probe installed\n");
1436 		if (data[21] & 0x20)
1437 			puts ("  TBD (bit 5)\n");
1438 		if (data[21] & 0x10)
1439 			puts ("  FET switch external enable\n");
1440 		printf ("  %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
1441 		if (data[20] & 0x11) {
1442 			printf ("  %d active registers on DIMM\n",
1443 				(data[21] & 0x03) + 1);
1444 		}
1445 		break;
1446 	default:
1447 		puts ("Module attributes:\n");
1448 		if (!data[21])
1449 			puts ("  (none)\n");
1450 		else
1451 			decode_bits (data[21], decode_byte21_default, 0);
1452 		break;
1453 	}
1454 
1455 	switch (type) {
1456 	case DDR2:
1457 		decode_bits (data[22], decode_byte22_DDR2, 0);
1458 		break;
1459 	default:
1460 		puts ("Device attributes:\n");
1461 		if (data[22] & 0x80) puts ("  TBD (bit 7)\n");
1462 		if (data[22] & 0x40) puts ("  TBD (bit 6)\n");
1463 		if (data[22] & 0x20) puts ("  Upper Vcc tolerance 5%\n");
1464 		else                 puts ("  Upper Vcc tolerance 10%\n");
1465 		if (data[22] & 0x10) puts ("  Lower Vcc tolerance 5%\n");
1466 		else                 puts ("  Lower Vcc tolerance 10%\n");
1467 		if (data[22] & 0x08) puts ("  Supports write1/read burst\n");
1468 		if (data[22] & 0x04) puts ("  Supports precharge all\n");
1469 		if (data[22] & 0x02) puts ("  Supports auto precharge\n");
1470 		if (data[22] & 0x01) puts ("  Supports early RAS# precharge\n");
1471 		break;
1472 	}
1473 
1474 	switch (type) {
1475 	case DDR2:
1476 		printf ("SDRAM cycle time (2nd highest CAS latency)        ");
1477 		print_ddr2_tcyc (data[23]);
1478 		break;
1479 	default:
1480 		printf ("SDRAM cycle time (2nd highest CAS latency)        %d."
1481 			"%d ns\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
1482 		break;
1483 	}
1484 
1485 	switch (type) {
1486 	case DDR2:
1487 		printf ("SDRAM access from clock (2nd highest CAS latency) 0."
1488 			"%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1489 		break;
1490 	default:
1491 		printf ("SDRAM access from clock (2nd highest CAS latency) %d."
1492 			"%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
1493 		break;
1494 	}
1495 
1496 	switch (type) {
1497 	case DDR2:
1498 		printf ("SDRAM cycle time (3rd highest CAS latency)        ");
1499 		print_ddr2_tcyc (data[25]);
1500 		break;
1501 	default:
1502 		printf ("SDRAM cycle time (3rd highest CAS latency)        %d."
1503 			"%d ns\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
1504 		break;
1505 	}
1506 
1507 	switch (type) {
1508 	case DDR2:
1509 		printf ("SDRAM access from clock (3rd highest CAS latency) 0."
1510 			"%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1511 		break;
1512 	default:
1513 		printf ("SDRAM access from clock (3rd highest CAS latency) %d."
1514 			"%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
1515 		break;
1516 	}
1517 
1518 	switch (type) {
1519 	case DDR2:
1520 		printf ("Minimum row precharge        %d.%02d ns\n",
1521 			(data[27] >> 2) & 0x3F, 25 * (data[27] & 0x03));
1522 		break;
1523 	default:
1524 		printf ("Minimum row precharge        %d ns\n", data[27]);
1525 		break;
1526 	}
1527 
1528 	switch (type) {
1529 	case DDR2:
1530 		printf ("Row active to row active min %d.%02d ns\n",
1531 			(data[28] >> 2) & 0x3F, 25 * (data[28] & 0x03));
1532 		break;
1533 	default:
1534 		printf ("Row active to row active min %d ns\n", data[28]);
1535 		break;
1536 	}
1537 
1538 	switch (type) {
1539 	case DDR2:
1540 		printf ("RAS to CAS delay min         %d.%02d ns\n",
1541 			(data[29] >> 2) & 0x3F, 25 * (data[29] & 0x03));
1542 		break;
1543 	default:
1544 		printf ("RAS to CAS delay min         %d ns\n", data[29]);
1545 		break;
1546 	}
1547 
1548 	printf ("Minimum RAS pulse width      %d ns\n", data[30]);
1549 
1550 	switch (type) {
1551 	case DDR2:
1552 		puts ("Density of each row          ");
1553 		decode_bits (data[31], decode_row_density_DDR2, 1);
1554 		putc ('\n');
1555 		break;
1556 	default:
1557 		puts ("Density of each row          ");
1558 		decode_bits (data[31], decode_row_density_default, 1);
1559 		putc ('\n');
1560 		break;
1561 	}
1562 
1563 	switch (type) {
1564 	case DDR2:
1565 		puts ("Command and Address setup    ");
1566 		if (data[32] >= 0xA0) {
1567 			printf ("1.%d%d ns\n",
1568 				((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
1569 		} else {
1570 			printf ("0.%d%d ns\n",
1571 				((data[32] >> 4) & 0x0F), data[32] & 0x0F);
1572 		}
1573 		break;
1574 	default:
1575 		printf ("Command and Address setup    %c%d.%d ns\n",
1576 			(data[32] & 0x80) ? '-' : '+',
1577 			(data[32] >> 4) & 0x07, data[32] & 0x0F);
1578 		break;
1579 	}
1580 
1581 	switch (type) {
1582 	case DDR2:
1583 		puts ("Command and Address hold     ");
1584 		if (data[33] >= 0xA0) {
1585 			printf ("1.%d%d ns\n",
1586 				((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
1587 		} else {
1588 			printf ("0.%d%d ns\n",
1589 				((data[33] >> 4) & 0x0F), data[33] & 0x0F);
1590 		}
1591 		break;
1592 	default:
1593 		printf ("Command and Address hold     %c%d.%d ns\n",
1594 			(data[33] & 0x80) ? '-' : '+',
1595 			(data[33] >> 4) & 0x07, data[33] & 0x0F);
1596 		break;
1597 	}
1598 
1599 	switch (type) {
1600 	case DDR2:
1601 		printf ("Data signal input setup      0.%d%d ns\n",
1602 			(data[34] >> 4) & 0x0F, data[34] & 0x0F);
1603 		break;
1604 	default:
1605 		printf ("Data signal input setup      %c%d.%d ns\n",
1606 			(data[34] & 0x80) ? '-' : '+',
1607 			(data[34] >> 4) & 0x07, data[34] & 0x0F);
1608 		break;
1609 	}
1610 
1611 	switch (type) {
1612 	case DDR2:
1613 		printf ("Data signal input hold       0.%d%d ns\n",
1614 			(data[35] >> 4) & 0x0F, data[35] & 0x0F);
1615 		break;
1616 	default:
1617 		printf ("Data signal input hold       %c%d.%d ns\n",
1618 			(data[35] & 0x80) ? '-' : '+',
1619 			(data[35] >> 4) & 0x07, data[35] & 0x0F);
1620 		break;
1621 	}
1622 
1623 	puts ("Manufacturer's JEDEC ID      ");
1624 	for (j = 64; j <= 71; j++)
1625 		printf ("%02X ", data[j]);
1626 	putc ('\n');
1627 	printf ("Manufacturing Location       %02X\n", data[72]);
1628 	puts ("Manufacturer's Part Number   ");
1629 	for (j = 73; j <= 90; j++)
1630 		printf ("%02X ", data[j]);
1631 	putc ('\n');
1632 	printf ("Revision Code                %02X %02X\n", data[91], data[92]);
1633 	printf ("Manufacturing Date           %02X %02X\n", data[93], data[94]);
1634 	puts ("Assembly Serial Number       ");
1635 	for (j = 95; j <= 98; j++)
1636 		printf ("%02X ", data[j]);
1637 	putc ('\n');
1638 
1639 	if (DDR2 != type) {
1640 		printf ("Speed rating                 PC%d\n",
1641 			data[126] == 0x66 ? 66 : data[126]);
1642 	}
1643 	return 0;
1644 }
1645 #endif
1646 
1647 /*
1648  * Syntax:
1649  *	i2c edid {i2c_chip}
1650  */
1651 #if defined(CONFIG_I2C_EDID)
1652 int do_edid(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
1653 {
1654 	uint chip;
1655 	struct edid1_info edid;
1656 	int ret;
1657 #ifdef CONFIG_DM_I2C
1658 	struct udevice *dev;
1659 #endif
1660 
1661 	if (argc < 2) {
1662 		cmd_usage(cmdtp);
1663 		return 1;
1664 	}
1665 
1666 	chip = simple_strtoul(argv[1], NULL, 16);
1667 #ifdef CONFIG_DM_I2C
1668 	ret = i2c_get_cur_bus_chip(chip, &dev);
1669 	if (!ret)
1670 		ret = dm_i2c_read(dev, 0, (uchar *)&edid, sizeof(edid));
1671 #else
1672 	ret = i2c_read(chip, 0, 1, (uchar *)&edid, sizeof(edid));
1673 #endif
1674 	if (ret)
1675 		return i2c_report_err(ret, I2C_ERR_READ);
1676 
1677 	if (edid_check_info(&edid)) {
1678 		puts("Content isn't valid EDID.\n");
1679 		return 1;
1680 	}
1681 
1682 	edid_print_info(&edid);
1683 	return 0;
1684 
1685 }
1686 #endif /* CONFIG_I2C_EDID */
1687 
1688 #ifdef CONFIG_DM_I2C
1689 static void show_bus(struct udevice *bus)
1690 {
1691 	struct udevice *dev;
1692 
1693 	printf("Bus %d:\t%s", bus->req_seq, bus->name);
1694 	if (device_active(bus))
1695 		printf("  (active %d)", bus->seq);
1696 	printf("\n");
1697 	for (device_find_first_child(bus, &dev);
1698 	     dev;
1699 	     device_find_next_child(&dev)) {
1700 		struct dm_i2c_chip *chip = dev_get_parent_platdata(dev);
1701 
1702 		printf("   %02x: %s, offset len %x, flags %x\n",
1703 		       chip->chip_addr, dev->name, chip->offset_len,
1704 		       chip->flags);
1705 	}
1706 }
1707 #endif
1708 
1709 /**
1710  * do_i2c_show_bus() - Handle the "i2c bus" command-line command
1711  * @cmdtp:	Command data struct pointer
1712  * @flag:	Command flag
1713  * @argc:	Command-line argument count
1714  * @argv:	Array of command-line arguments
1715  *
1716  * Returns zero always.
1717  */
1718 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_DM_I2C)
1719 static int do_i2c_show_bus(cmd_tbl_t *cmdtp, int flag, int argc,
1720 				char * const argv[])
1721 {
1722 	if (argc == 1) {
1723 		/* show all busses */
1724 #ifdef CONFIG_DM_I2C
1725 		struct udevice *bus;
1726 		struct uclass *uc;
1727 		int ret;
1728 
1729 		ret = uclass_get(UCLASS_I2C, &uc);
1730 		if (ret)
1731 			return CMD_RET_FAILURE;
1732 		uclass_foreach_dev(bus, uc)
1733 			show_bus(bus);
1734 #else
1735 		int i;
1736 
1737 		for (i = 0; i < CONFIG_SYS_NUM_I2C_BUSES; i++) {
1738 			printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1739 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1740 			int j;
1741 
1742 			for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1743 				if (i2c_bus[i].next_hop[j].chip == 0)
1744 					break;
1745 				printf("->%s@0x%2x:%d",
1746 				       i2c_bus[i].next_hop[j].mux.name,
1747 				       i2c_bus[i].next_hop[j].chip,
1748 				       i2c_bus[i].next_hop[j].channel);
1749 			}
1750 #endif
1751 			printf("\n");
1752 		}
1753 #endif
1754 	} else {
1755 		int i;
1756 
1757 		/* show specific bus */
1758 		i = simple_strtoul(argv[1], NULL, 10);
1759 #ifdef CONFIG_DM_I2C
1760 		struct udevice *bus;
1761 		int ret;
1762 
1763 		ret = uclass_get_device_by_seq(UCLASS_I2C, i, &bus);
1764 		if (ret) {
1765 			printf("Invalid bus %d: err=%d\n", i, ret);
1766 			return CMD_RET_FAILURE;
1767 		}
1768 		show_bus(bus);
1769 #else
1770 		if (i >= CONFIG_SYS_NUM_I2C_BUSES) {
1771 			printf("Invalid bus %d\n", i);
1772 			return -1;
1773 		}
1774 		printf("Bus %d:\t%s", i, I2C_ADAP_NR(i)->name);
1775 #ifndef CONFIG_SYS_I2C_DIRECT_BUS
1776 			int j;
1777 			for (j = 0; j < CONFIG_SYS_I2C_MAX_HOPS; j++) {
1778 				if (i2c_bus[i].next_hop[j].chip == 0)
1779 					break;
1780 				printf("->%s@0x%2x:%d",
1781 				       i2c_bus[i].next_hop[j].mux.name,
1782 				       i2c_bus[i].next_hop[j].chip,
1783 				       i2c_bus[i].next_hop[j].channel);
1784 			}
1785 #endif
1786 		printf("\n");
1787 #endif
1788 	}
1789 
1790 	return 0;
1791 }
1792 #endif
1793 
1794 /**
1795  * do_i2c_bus_num() - Handle the "i2c dev" command-line command
1796  * @cmdtp:	Command data struct pointer
1797  * @flag:	Command flag
1798  * @argc:	Command-line argument count
1799  * @argv:	Array of command-line arguments
1800  *
1801  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1802  * on error.
1803  */
1804 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_I2C_MULTI_BUS) || \
1805 		defined(CONFIG_DM_I2C)
1806 static int do_i2c_bus_num(cmd_tbl_t *cmdtp, int flag, int argc,
1807 				char * const argv[])
1808 {
1809 	int		ret = 0;
1810 	int	bus_no;
1811 
1812 	if (argc == 1) {
1813 		/* querying current setting */
1814 #ifdef CONFIG_DM_I2C
1815 		struct udevice *bus;
1816 
1817 		if (!i2c_get_cur_bus(&bus))
1818 			bus_no = bus->seq;
1819 		else
1820 			bus_no = -1;
1821 #else
1822 		bus_no = i2c_get_bus_num();
1823 #endif
1824 		printf("Current bus is %d\n", bus_no);
1825 	} else {
1826 		bus_no = simple_strtoul(argv[1], NULL, 10);
1827 #if defined(CONFIG_SYS_I2C)
1828 		if (bus_no >= CONFIG_SYS_NUM_I2C_BUSES) {
1829 			printf("Invalid bus %d\n", bus_no);
1830 			return -1;
1831 		}
1832 #endif
1833 		printf("Setting bus to %d\n", bus_no);
1834 #ifdef CONFIG_DM_I2C
1835 		ret = cmd_i2c_set_bus_num(bus_no);
1836 #else
1837 		ret = i2c_set_bus_num(bus_no);
1838 #endif
1839 		if (ret)
1840 			printf("Failure changing bus number (%d)\n", ret);
1841 	}
1842 
1843 	return ret ? CMD_RET_FAILURE : 0;
1844 }
1845 #endif  /* defined(CONFIG_SYS_I2C) */
1846 
1847 /**
1848  * do_i2c_bus_speed() - Handle the "i2c speed" command-line command
1849  * @cmdtp:	Command data struct pointer
1850  * @flag:	Command flag
1851  * @argc:	Command-line argument count
1852  * @argv:	Array of command-line arguments
1853  *
1854  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1855  * on error.
1856  */
1857 static int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1858 {
1859 	int speed, ret=0;
1860 
1861 #ifdef CONFIG_DM_I2C
1862 	struct udevice *bus;
1863 
1864 	if (i2c_get_cur_bus(&bus))
1865 		return 1;
1866 #endif
1867 	if (argc == 1) {
1868 #ifdef CONFIG_DM_I2C
1869 		speed = dm_i2c_get_bus_speed(bus);
1870 #else
1871 		speed = i2c_get_bus_speed();
1872 #endif
1873 		/* querying current speed */
1874 		printf("Current bus speed=%d\n", speed);
1875 	} else {
1876 		speed = simple_strtoul(argv[1], NULL, 10);
1877 		printf("Setting bus speed to %d Hz\n", speed);
1878 #ifdef CONFIG_DM_I2C
1879 		ret = dm_i2c_set_bus_speed(bus, speed);
1880 #else
1881 		ret = i2c_set_bus_speed(speed);
1882 #endif
1883 		if (ret)
1884 			printf("Failure changing bus speed (%d)\n", ret);
1885 	}
1886 
1887 	return ret ? CMD_RET_FAILURE : 0;
1888 }
1889 
1890 /**
1891  * do_i2c_mm() - Handle the "i2c mm" command-line command
1892  * @cmdtp:	Command data struct pointer
1893  * @flag:	Command flag
1894  * @argc:	Command-line argument count
1895  * @argv:	Array of command-line arguments
1896  *
1897  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1898  * on error.
1899  */
1900 static int do_i2c_mm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1901 {
1902 	return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
1903 }
1904 
1905 /**
1906  * do_i2c_nm() - Handle the "i2c nm" command-line command
1907  * @cmdtp:	Command data struct pointer
1908  * @flag:	Command flag
1909  * @argc:	Command-line argument count
1910  * @argv:	Array of command-line arguments
1911  *
1912  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1913  * on error.
1914  */
1915 static int do_i2c_nm(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1916 {
1917 	return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
1918 }
1919 
1920 /**
1921  * do_i2c_reset() - Handle the "i2c reset" command-line command
1922  * @cmdtp:	Command data struct pointer
1923  * @flag:	Command flag
1924  * @argc:	Command-line argument count
1925  * @argv:	Array of command-line arguments
1926  *
1927  * Returns zero always.
1928  */
1929 static int do_i2c_reset(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
1930 {
1931 #if defined(CONFIG_DM_I2C)
1932 	struct udevice *bus;
1933 
1934 	if (i2c_get_cur_bus(&bus))
1935 		return CMD_RET_FAILURE;
1936 	if (i2c_deblock(bus)) {
1937 		printf("Error: Not supported by the driver\n");
1938 		return CMD_RET_FAILURE;
1939 	}
1940 #elif defined(CONFIG_SYS_I2C)
1941 	i2c_init(I2C_ADAP->speed, I2C_ADAP->slaveaddr);
1942 #else
1943 	i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
1944 #endif
1945 	return 0;
1946 }
1947 
1948 static cmd_tbl_t cmd_i2c_sub[] = {
1949 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_DM_I2C)
1950 	U_BOOT_CMD_MKENT(bus, 1, 1, do_i2c_show_bus, "", ""),
1951 #endif
1952 	U_BOOT_CMD_MKENT(crc32, 3, 1, do_i2c_crc, "", ""),
1953 #if defined(CONFIG_SYS_I2C) || \
1954 	defined(CONFIG_I2C_MULTI_BUS) || defined(CONFIG_DM_I2C)
1955 	U_BOOT_CMD_MKENT(dev, 1, 1, do_i2c_bus_num, "", ""),
1956 #endif  /* CONFIG_I2C_MULTI_BUS */
1957 #if defined(CONFIG_I2C_EDID)
1958 	U_BOOT_CMD_MKENT(edid, 1, 1, do_edid, "", ""),
1959 #endif  /* CONFIG_I2C_EDID */
1960 	U_BOOT_CMD_MKENT(loop, 3, 1, do_i2c_loop, "", ""),
1961 	U_BOOT_CMD_MKENT(md, 3, 1, do_i2c_md, "", ""),
1962 	U_BOOT_CMD_MKENT(mm, 2, 1, do_i2c_mm, "", ""),
1963 	U_BOOT_CMD_MKENT(mw, 3, 1, do_i2c_mw, "", ""),
1964 	U_BOOT_CMD_MKENT(nm, 2, 1, do_i2c_nm, "", ""),
1965 	U_BOOT_CMD_MKENT(probe, 0, 1, do_i2c_probe, "", ""),
1966 	U_BOOT_CMD_MKENT(read, 5, 1, do_i2c_read, "", ""),
1967 	U_BOOT_CMD_MKENT(write, 6, 0, do_i2c_write, "", ""),
1968 #ifdef CONFIG_DM_I2C
1969 	U_BOOT_CMD_MKENT(flags, 2, 1, do_i2c_flags, "", ""),
1970 	U_BOOT_CMD_MKENT(olen, 2, 1, do_i2c_olen, "", ""),
1971 #endif
1972 	U_BOOT_CMD_MKENT(reset, 0, 1, do_i2c_reset, "", ""),
1973 #if defined(CONFIG_CMD_SDRAM)
1974 	U_BOOT_CMD_MKENT(sdram, 1, 1, do_sdram, "", ""),
1975 #endif
1976 	U_BOOT_CMD_MKENT(speed, 1, 1, do_i2c_bus_speed, "", ""),
1977 };
1978 
1979 static __maybe_unused void i2c_reloc(void)
1980 {
1981 	static int relocated;
1982 
1983 	if (!relocated) {
1984 		fixup_cmdtable(cmd_i2c_sub, ARRAY_SIZE(cmd_i2c_sub));
1985 		relocated = 1;
1986 	};
1987 }
1988 
1989 /**
1990  * do_i2c() - Handle the "i2c" command-line command
1991  * @cmdtp:	Command data struct pointer
1992  * @flag:	Command flag
1993  * @argc:	Command-line argument count
1994  * @argv:	Array of command-line arguments
1995  *
1996  * Returns zero on success, CMD_RET_USAGE in case of misuse and negative
1997  * on error.
1998  */
1999 static int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char * const argv[])
2000 {
2001 	cmd_tbl_t *c;
2002 
2003 #ifdef CONFIG_NEEDS_MANUAL_RELOC
2004 	i2c_reloc();
2005 #endif
2006 
2007 	if (argc < 2)
2008 		return CMD_RET_USAGE;
2009 
2010 	/* Strip off leading 'i2c' command argument */
2011 	argc--;
2012 	argv++;
2013 
2014 	c = find_cmd_tbl(argv[0], &cmd_i2c_sub[0], ARRAY_SIZE(cmd_i2c_sub));
2015 
2016 	if (c)
2017 		return c->cmd(cmdtp, flag, argc, argv);
2018 	else
2019 		return CMD_RET_USAGE;
2020 }
2021 
2022 /***************************************************/
2023 #ifdef CONFIG_SYS_LONGHELP
2024 static char i2c_help_text[] =
2025 #if defined(CONFIG_SYS_I2C) || defined(CONFIG_DM_I2C)
2026 	"bus [muxtype:muxaddr:muxchannel] - show I2C bus info\n"
2027 #endif
2028 	"crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
2029 #if defined(CONFIG_SYS_I2C) || \
2030 	defined(CONFIG_I2C_MULTI_BUS) || defined(CONFIG_DM_I2C)
2031 	"i2c dev [dev] - show or set current I2C bus\n"
2032 #endif  /* CONFIG_I2C_MULTI_BUS */
2033 #if defined(CONFIG_I2C_EDID)
2034 	"i2c edid chip - print EDID configuration information\n"
2035 #endif  /* CONFIG_I2C_EDID */
2036 	"i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
2037 	"i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
2038 	"i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
2039 	"i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
2040 	"i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
2041 	"i2c probe [address] - test for and show device(s) on the I2C bus\n"
2042 	"i2c read chip address[.0, .1, .2] length memaddress - read to memory\n"
2043 	"i2c write memaddress chip address[.0, .1, .2] length [-s] - write memory\n"
2044 	"          to I2C; the -s option selects bulk write in a single transaction\n"
2045 #ifdef CONFIG_DM_I2C
2046 	"i2c flags chip [flags] - set or get chip flags\n"
2047 	"i2c olen chip [offset_length] - set or get chip offset length\n"
2048 #endif
2049 	"i2c reset - re-init the I2C Controller\n"
2050 #if defined(CONFIG_CMD_SDRAM)
2051 	"i2c sdram chip - print SDRAM configuration information\n"
2052 #endif
2053 	"i2c speed [speed] - show or set I2C bus speed";
2054 #endif
2055 
2056 U_BOOT_CMD(
2057 	i2c, 7, 1, do_i2c,
2058 	"I2C sub-system",
2059 	i2c_help_text
2060 );
2061