1 /* 2 * board.c 3 * 4 * Board functions for TI AM43XX based boards 5 * 6 * Copyright (C) 2013, Texas Instruments, Incorporated - http://www.ti.com/ 7 * 8 * SPDX-License-Identifier: GPL-2.0+ 9 */ 10 11 #include <common.h> 12 #include <i2c.h> 13 #include <asm/errno.h> 14 #include <spl.h> 15 #include <usb.h> 16 #include <asm/arch/clock.h> 17 #include <asm/arch/sys_proto.h> 18 #include <asm/arch/mux.h> 19 #include <asm/arch/ddr_defs.h> 20 #include <asm/arch/gpio.h> 21 #include <asm/emif.h> 22 #include "../common/board_detect.h" 23 #include "board.h" 24 #include <power/pmic.h> 25 #include <power/tps65218.h> 26 #include <power/tps62362.h> 27 #include <miiphy.h> 28 #include <cpsw.h> 29 #include <linux/usb/gadget.h> 30 #include <dwc3-uboot.h> 31 #include <dwc3-omap-uboot.h> 32 #include <ti-usb-phy-uboot.h> 33 34 DECLARE_GLOBAL_DATA_PTR; 35 36 static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE; 37 38 /* 39 * Read header information from EEPROM into global structure. 40 */ 41 static inline int __maybe_unused read_eeprom(void) 42 { 43 return ti_i2c_eeprom_am_get(-1, CONFIG_SYS_I2C_EEPROM_ADDR); 44 } 45 46 #ifndef CONFIG_SKIP_LOWLEVEL_INIT 47 48 #define NUM_OPPS 6 49 50 const struct dpll_params dpll_mpu[NUM_CRYSTAL_FREQ][NUM_OPPS] = { 51 { /* 19.2 MHz */ 52 {125, 3, 2, -1, -1, -1, -1}, /* OPP 50 */ 53 {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */ 54 {125, 3, 1, -1, -1, -1, -1}, /* OPP 100 */ 55 {150, 3, 1, -1, -1, -1, -1}, /* OPP 120 */ 56 {125, 2, 1, -1, -1, -1, -1}, /* OPP TB */ 57 {625, 11, 1, -1, -1, -1, -1} /* OPP NT */ 58 }, 59 { /* 24 MHz */ 60 {300, 23, 1, -1, -1, -1, -1}, /* OPP 50 */ 61 {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */ 62 {600, 23, 1, -1, -1, -1, -1}, /* OPP 100 */ 63 {720, 23, 1, -1, -1, -1, -1}, /* OPP 120 */ 64 {800, 23, 1, -1, -1, -1, -1}, /* OPP TB */ 65 {1000, 23, 1, -1, -1, -1, -1} /* OPP NT */ 66 }, 67 { /* 25 MHz */ 68 {300, 24, 1, -1, -1, -1, -1}, /* OPP 50 */ 69 {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */ 70 {600, 24, 1, -1, -1, -1, -1}, /* OPP 100 */ 71 {720, 24, 1, -1, -1, -1, -1}, /* OPP 120 */ 72 {800, 24, 1, -1, -1, -1, -1}, /* OPP TB */ 73 {1000, 24, 1, -1, -1, -1, -1} /* OPP NT */ 74 }, 75 { /* 26 MHz */ 76 {300, 25, 1, -1, -1, -1, -1}, /* OPP 50 */ 77 {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */ 78 {600, 25, 1, -1, -1, -1, -1}, /* OPP 100 */ 79 {720, 25, 1, -1, -1, -1, -1}, /* OPP 120 */ 80 {800, 25, 1, -1, -1, -1, -1}, /* OPP TB */ 81 {1000, 25, 1, -1, -1, -1, -1} /* OPP NT */ 82 }, 83 }; 84 85 const struct dpll_params dpll_core[NUM_CRYSTAL_FREQ] = { 86 {625, 11, -1, -1, 10, 8, 4}, /* 19.2 MHz */ 87 {1000, 23, -1, -1, 10, 8, 4}, /* 24 MHz */ 88 {1000, 24, -1, -1, 10, 8, 4}, /* 25 MHz */ 89 {1000, 25, -1, -1, 10, 8, 4} /* 26 MHz */ 90 }; 91 92 const struct dpll_params dpll_per[NUM_CRYSTAL_FREQ] = { 93 {400, 7, 5, -1, -1, -1, -1}, /* 19.2 MHz */ 94 {400, 9, 5, -1, -1, -1, -1}, /* 24 MHz */ 95 {384, 9, 5, -1, -1, -1, -1}, /* 25 MHz */ 96 {480, 12, 5, -1, -1, -1, -1} /* 26 MHz */ 97 }; 98 99 const struct dpll_params epos_evm_dpll_ddr[NUM_CRYSTAL_FREQ] = { 100 {665, 47, 1, -1, 4, -1, -1}, /*19.2*/ 101 {133, 11, 1, -1, 4, -1, -1}, /* 24 MHz */ 102 {266, 24, 1, -1, 4, -1, -1}, /* 25 MHz */ 103 {133, 12, 1, -1, 4, -1, -1} /* 26 MHz */ 104 }; 105 106 const struct dpll_params gp_evm_dpll_ddr = { 107 50, 2, 1, -1, 2, -1, -1}; 108 109 static const struct dpll_params idk_dpll_ddr = { 110 400, 23, 1, -1, 2, -1, -1 111 }; 112 113 static const u32 ext_phy_ctrl_const_base_lpddr2[] = { 114 0x00500050, 115 0x00350035, 116 0x00350035, 117 0x00350035, 118 0x00350035, 119 0x00350035, 120 0x00000000, 121 0x00000000, 122 0x00000000, 123 0x00000000, 124 0x00000000, 125 0x00000000, 126 0x00000000, 127 0x00000000, 128 0x00000000, 129 0x00000000, 130 0x00000000, 131 0x00000000, 132 0x40001000, 133 0x08102040 134 }; 135 136 const struct ctrl_ioregs ioregs_lpddr2 = { 137 .cm0ioctl = LPDDR2_ADDRCTRL_IOCTRL_VALUE, 138 .cm1ioctl = LPDDR2_ADDRCTRL_WD0_IOCTRL_VALUE, 139 .cm2ioctl = LPDDR2_ADDRCTRL_WD1_IOCTRL_VALUE, 140 .dt0ioctl = LPDDR2_DATA0_IOCTRL_VALUE, 141 .dt1ioctl = LPDDR2_DATA0_IOCTRL_VALUE, 142 .dt2ioctrl = LPDDR2_DATA0_IOCTRL_VALUE, 143 .dt3ioctrl = LPDDR2_DATA0_IOCTRL_VALUE, 144 .emif_sdram_config_ext = 0x1, 145 }; 146 147 const struct emif_regs emif_regs_lpddr2 = { 148 .sdram_config = 0x808012BA, 149 .ref_ctrl = 0x0000040D, 150 .sdram_tim1 = 0xEA86B411, 151 .sdram_tim2 = 0x103A094A, 152 .sdram_tim3 = 0x0F6BA37F, 153 .read_idle_ctrl = 0x00050000, 154 .zq_config = 0x50074BE4, 155 .temp_alert_config = 0x0, 156 .emif_rd_wr_lvl_rmp_win = 0x0, 157 .emif_rd_wr_lvl_rmp_ctl = 0x0, 158 .emif_rd_wr_lvl_ctl = 0x0, 159 .emif_ddr_phy_ctlr_1 = 0x0E284006, 160 .emif_rd_wr_exec_thresh = 0x80000405, 161 .emif_ddr_ext_phy_ctrl_1 = 0x04010040, 162 .emif_ddr_ext_phy_ctrl_2 = 0x00500050, 163 .emif_ddr_ext_phy_ctrl_3 = 0x00500050, 164 .emif_ddr_ext_phy_ctrl_4 = 0x00500050, 165 .emif_ddr_ext_phy_ctrl_5 = 0x00500050, 166 .emif_prio_class_serv_map = 0x80000001, 167 .emif_connect_id_serv_1_map = 0x80000094, 168 .emif_connect_id_serv_2_map = 0x00000000, 169 .emif_cos_config = 0x000FFFFF 170 }; 171 172 const struct ctrl_ioregs ioregs_ddr3 = { 173 .cm0ioctl = DDR3_ADDRCTRL_IOCTRL_VALUE, 174 .cm1ioctl = DDR3_ADDRCTRL_WD0_IOCTRL_VALUE, 175 .cm2ioctl = DDR3_ADDRCTRL_WD1_IOCTRL_VALUE, 176 .dt0ioctl = DDR3_DATA0_IOCTRL_VALUE, 177 .dt1ioctl = DDR3_DATA0_IOCTRL_VALUE, 178 .dt2ioctrl = DDR3_DATA0_IOCTRL_VALUE, 179 .dt3ioctrl = DDR3_DATA0_IOCTRL_VALUE, 180 .emif_sdram_config_ext = 0xc163, 181 }; 182 183 const struct emif_regs ddr3_emif_regs_400Mhz = { 184 .sdram_config = 0x638413B2, 185 .ref_ctrl = 0x00000C30, 186 .sdram_tim1 = 0xEAAAD4DB, 187 .sdram_tim2 = 0x266B7FDA, 188 .sdram_tim3 = 0x107F8678, 189 .read_idle_ctrl = 0x00050000, 190 .zq_config = 0x50074BE4, 191 .temp_alert_config = 0x0, 192 .emif_ddr_phy_ctlr_1 = 0x0E004008, 193 .emif_ddr_ext_phy_ctrl_1 = 0x08020080, 194 .emif_ddr_ext_phy_ctrl_2 = 0x00400040, 195 .emif_ddr_ext_phy_ctrl_3 = 0x00400040, 196 .emif_ddr_ext_phy_ctrl_4 = 0x00400040, 197 .emif_ddr_ext_phy_ctrl_5 = 0x00400040, 198 .emif_rd_wr_lvl_rmp_win = 0x0, 199 .emif_rd_wr_lvl_rmp_ctl = 0x0, 200 .emif_rd_wr_lvl_ctl = 0x0, 201 .emif_rd_wr_exec_thresh = 0x80000405, 202 .emif_prio_class_serv_map = 0x80000001, 203 .emif_connect_id_serv_1_map = 0x80000094, 204 .emif_connect_id_serv_2_map = 0x00000000, 205 .emif_cos_config = 0x000FFFFF 206 }; 207 208 /* EMIF DDR3 Configurations are different for beta AM43X GP EVMs */ 209 const struct emif_regs ddr3_emif_regs_400Mhz_beta = { 210 .sdram_config = 0x638413B2, 211 .ref_ctrl = 0x00000C30, 212 .sdram_tim1 = 0xEAAAD4DB, 213 .sdram_tim2 = 0x266B7FDA, 214 .sdram_tim3 = 0x107F8678, 215 .read_idle_ctrl = 0x00050000, 216 .zq_config = 0x50074BE4, 217 .temp_alert_config = 0x0, 218 .emif_ddr_phy_ctlr_1 = 0x0E004008, 219 .emif_ddr_ext_phy_ctrl_1 = 0x08020080, 220 .emif_ddr_ext_phy_ctrl_2 = 0x00000065, 221 .emif_ddr_ext_phy_ctrl_3 = 0x00000091, 222 .emif_ddr_ext_phy_ctrl_4 = 0x000000B5, 223 .emif_ddr_ext_phy_ctrl_5 = 0x000000E5, 224 .emif_rd_wr_exec_thresh = 0x80000405, 225 .emif_prio_class_serv_map = 0x80000001, 226 .emif_connect_id_serv_1_map = 0x80000094, 227 .emif_connect_id_serv_2_map = 0x00000000, 228 .emif_cos_config = 0x000FFFFF 229 }; 230 231 /* EMIF DDR3 Configurations are different for production AM43X GP EVMs */ 232 const struct emif_regs ddr3_emif_regs_400Mhz_production = { 233 .sdram_config = 0x638413B2, 234 .ref_ctrl = 0x00000C30, 235 .sdram_tim1 = 0xEAAAD4DB, 236 .sdram_tim2 = 0x266B7FDA, 237 .sdram_tim3 = 0x107F8678, 238 .read_idle_ctrl = 0x00050000, 239 .zq_config = 0x50074BE4, 240 .temp_alert_config = 0x0, 241 .emif_ddr_phy_ctlr_1 = 0x0E004008, 242 .emif_ddr_ext_phy_ctrl_1 = 0x08020080, 243 .emif_ddr_ext_phy_ctrl_2 = 0x00000066, 244 .emif_ddr_ext_phy_ctrl_3 = 0x00000091, 245 .emif_ddr_ext_phy_ctrl_4 = 0x000000B9, 246 .emif_ddr_ext_phy_ctrl_5 = 0x000000E6, 247 .emif_rd_wr_exec_thresh = 0x80000405, 248 .emif_prio_class_serv_map = 0x80000001, 249 .emif_connect_id_serv_1_map = 0x80000094, 250 .emif_connect_id_serv_2_map = 0x00000000, 251 .emif_cos_config = 0x000FFFFF 252 }; 253 254 static const struct emif_regs ddr3_sk_emif_regs_400Mhz = { 255 .sdram_config = 0x638413b2, 256 .sdram_config2 = 0x00000000, 257 .ref_ctrl = 0x00000c30, 258 .sdram_tim1 = 0xeaaad4db, 259 .sdram_tim2 = 0x266b7fda, 260 .sdram_tim3 = 0x107f8678, 261 .read_idle_ctrl = 0x00050000, 262 .zq_config = 0x50074be4, 263 .temp_alert_config = 0x0, 264 .emif_ddr_phy_ctlr_1 = 0x0e084008, 265 .emif_ddr_ext_phy_ctrl_1 = 0x08020080, 266 .emif_ddr_ext_phy_ctrl_2 = 0x89, 267 .emif_ddr_ext_phy_ctrl_3 = 0x90, 268 .emif_ddr_ext_phy_ctrl_4 = 0x8e, 269 .emif_ddr_ext_phy_ctrl_5 = 0x8d, 270 .emif_rd_wr_lvl_rmp_win = 0x0, 271 .emif_rd_wr_lvl_rmp_ctl = 0x00000000, 272 .emif_rd_wr_lvl_ctl = 0x00000000, 273 .emif_rd_wr_exec_thresh = 0x80000000, 274 .emif_prio_class_serv_map = 0x80000001, 275 .emif_connect_id_serv_1_map = 0x80000094, 276 .emif_connect_id_serv_2_map = 0x00000000, 277 .emif_cos_config = 0x000FFFFF 278 }; 279 280 static const struct emif_regs ddr3_idk_emif_regs_400Mhz = { 281 .sdram_config = 0x61a11b32, 282 .sdram_config2 = 0x00000000, 283 .ref_ctrl = 0x00000c30, 284 .sdram_tim1 = 0xeaaad4db, 285 .sdram_tim2 = 0x266b7fda, 286 .sdram_tim3 = 0x107f8678, 287 .read_idle_ctrl = 0x00050000, 288 .zq_config = 0x50074be4, 289 .temp_alert_config = 0x00000000, 290 .emif_ddr_phy_ctlr_1 = 0x00008009, 291 .emif_ddr_ext_phy_ctrl_1 = 0x08020080, 292 .emif_ddr_ext_phy_ctrl_2 = 0x00000040, 293 .emif_ddr_ext_phy_ctrl_3 = 0x0000003e, 294 .emif_ddr_ext_phy_ctrl_4 = 0x00000051, 295 .emif_ddr_ext_phy_ctrl_5 = 0x00000051, 296 .emif_rd_wr_lvl_rmp_win = 0x00000000, 297 .emif_rd_wr_lvl_rmp_ctl = 0x00000000, 298 .emif_rd_wr_lvl_ctl = 0x00000000, 299 .emif_rd_wr_exec_thresh = 0x00000405, 300 .emif_prio_class_serv_map = 0x00000000, 301 .emif_connect_id_serv_1_map = 0x00000000, 302 .emif_connect_id_serv_2_map = 0x00000000, 303 .emif_cos_config = 0x00ffffff 304 }; 305 306 void emif_get_ext_phy_ctrl_const_regs(const u32 **regs, u32 *size) 307 { 308 if (board_is_eposevm()) { 309 *regs = ext_phy_ctrl_const_base_lpddr2; 310 *size = ARRAY_SIZE(ext_phy_ctrl_const_base_lpddr2); 311 } 312 313 return; 314 } 315 316 /* 317 * get_sys_clk_index : returns the index of the sys_clk read from 318 * ctrl status register. This value is either 319 * read from efuse or sysboot pins. 320 */ 321 static u32 get_sys_clk_index(void) 322 { 323 struct ctrl_stat *ctrl = (struct ctrl_stat *)CTRL_BASE; 324 u32 ind = readl(&ctrl->statusreg), src; 325 326 src = (ind & CTRL_CRYSTAL_FREQ_SRC_MASK) >> CTRL_CRYSTAL_FREQ_SRC_SHIFT; 327 if (src == CTRL_CRYSTAL_FREQ_SRC_EFUSE) /* Value read from EFUSE */ 328 return ((ind & CTRL_CRYSTAL_FREQ_SELECTION_MASK) >> 329 CTRL_CRYSTAL_FREQ_SELECTION_SHIFT); 330 else /* Value read from SYS BOOT pins */ 331 return ((ind & CTRL_SYSBOOT_15_14_MASK) >> 332 CTRL_SYSBOOT_15_14_SHIFT); 333 } 334 335 const struct dpll_params *get_dpll_ddr_params(void) 336 { 337 int ind = get_sys_clk_index(); 338 339 if (read_eeprom() < 0) 340 return NULL; 341 342 if (board_is_eposevm()) 343 return &epos_evm_dpll_ddr[ind]; 344 else if (board_is_gpevm() || board_is_sk()) 345 return &gp_evm_dpll_ddr; 346 else if (board_is_idk()) 347 return &idk_dpll_ddr; 348 349 printf(" Board '%s' not supported\n", board_ti_get_name()); 350 return NULL; 351 } 352 353 354 /* 355 * get_opp_offset: 356 * Returns the index for safest OPP of the device to boot. 357 * max_off: Index of the MAX OPP in DEV ATTRIBUTE register. 358 * min_off: Index of the MIN OPP in DEV ATTRIBUTE register. 359 * This data is read from dev_attribute register which is e-fused. 360 * A'1' in bit indicates OPP disabled and not available, a '0' indicates 361 * OPP available. Lowest OPP starts with min_off. So returning the 362 * bit with rightmost '0'. 363 */ 364 static int get_opp_offset(int max_off, int min_off) 365 { 366 struct ctrl_stat *ctrl = (struct ctrl_stat *)CTRL_BASE; 367 int opp, offset, i; 368 369 /* Bits 0:11 are defined to be the MPU_MAX_FREQ */ 370 opp = readl(&ctrl->dev_attr) & ~0xFFFFF000; 371 372 for (i = max_off; i >= min_off; i--) { 373 offset = opp & (1 << i); 374 if (!offset) 375 return i; 376 } 377 378 return min_off; 379 } 380 381 const struct dpll_params *get_dpll_mpu_params(void) 382 { 383 int opp = get_opp_offset(DEV_ATTR_MAX_OFFSET, DEV_ATTR_MIN_OFFSET); 384 u32 ind = get_sys_clk_index(); 385 386 return &dpll_mpu[ind][opp]; 387 } 388 389 const struct dpll_params *get_dpll_core_params(void) 390 { 391 int ind = get_sys_clk_index(); 392 393 return &dpll_core[ind]; 394 } 395 396 const struct dpll_params *get_dpll_per_params(void) 397 { 398 int ind = get_sys_clk_index(); 399 400 return &dpll_per[ind]; 401 } 402 403 void scale_vcores_generic(u32 m) 404 { 405 int mpu_vdd; 406 407 if (i2c_probe(TPS65218_CHIP_PM)) 408 return; 409 410 switch (m) { 411 case 1000: 412 mpu_vdd = TPS65218_DCDC_VOLT_SEL_1330MV; 413 break; 414 case 800: 415 mpu_vdd = TPS65218_DCDC_VOLT_SEL_1260MV; 416 break; 417 case 720: 418 mpu_vdd = TPS65218_DCDC_VOLT_SEL_1200MV; 419 break; 420 case 600: 421 mpu_vdd = TPS65218_DCDC_VOLT_SEL_1100MV; 422 break; 423 case 300: 424 mpu_vdd = TPS65218_DCDC_VOLT_SEL_0950MV; 425 break; 426 default: 427 puts("Unknown MPU clock, not scaling\n"); 428 return; 429 } 430 431 /* Set DCDC1 (CORE) voltage to 1.1V */ 432 if (tps65218_voltage_update(TPS65218_DCDC1, 433 TPS65218_DCDC_VOLT_SEL_1100MV)) { 434 printf("%s failure\n", __func__); 435 return; 436 } 437 438 /* Set DCDC2 (MPU) voltage */ 439 if (tps65218_voltage_update(TPS65218_DCDC2, mpu_vdd)) { 440 printf("%s failure\n", __func__); 441 return; 442 } 443 } 444 445 void scale_vcores_idk(u32 m) 446 { 447 int mpu_vdd; 448 449 if (i2c_probe(TPS62362_I2C_ADDR)) 450 return; 451 452 switch (m) { 453 case 1000: 454 mpu_vdd = TPS62362_DCDC_VOLT_SEL_1330MV; 455 break; 456 case 800: 457 mpu_vdd = TPS62362_DCDC_VOLT_SEL_1260MV; 458 break; 459 case 720: 460 mpu_vdd = TPS62362_DCDC_VOLT_SEL_1200MV; 461 break; 462 case 600: 463 mpu_vdd = TPS62362_DCDC_VOLT_SEL_1100MV; 464 break; 465 case 300: 466 mpu_vdd = TPS62362_DCDC_VOLT_SEL_1330MV; 467 break; 468 default: 469 puts("Unknown MPU clock, not scaling\n"); 470 return; 471 } 472 473 /* Set VDD_MPU voltage */ 474 if (tps62362_voltage_update(TPS62362_SET3, mpu_vdd)) { 475 printf("%s failure\n", __func__); 476 return; 477 } 478 } 479 480 void gpi2c_init(void) 481 { 482 /* When needed to be invoked prior to BSS initialization */ 483 static bool first_time = true; 484 485 if (first_time) { 486 enable_i2c0_pin_mux(); 487 i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED, 488 CONFIG_SYS_OMAP24_I2C_SLAVE); 489 first_time = false; 490 } 491 } 492 493 void scale_vcores(void) 494 { 495 const struct dpll_params *mpu_params; 496 497 if (read_eeprom() < 0) 498 puts("Could not get board ID.\n"); 499 500 /* Ensure I2C is initialized for PMIC configuration */ 501 gpi2c_init(); 502 503 /* Get the frequency */ 504 mpu_params = get_dpll_mpu_params(); 505 506 if (board_is_idk()) 507 scale_vcores_idk(mpu_params->m); 508 else 509 scale_vcores_generic(mpu_params->m); 510 } 511 512 void set_uart_mux_conf(void) 513 { 514 enable_uart0_pin_mux(); 515 } 516 517 void set_mux_conf_regs(void) 518 { 519 enable_board_pin_mux(); 520 } 521 522 static void enable_vtt_regulator(void) 523 { 524 u32 temp; 525 526 /* enable module */ 527 writel(GPIO_CTRL_ENABLEMODULE, AM33XX_GPIO5_BASE + OMAP_GPIO_CTRL); 528 529 /* enable output for GPIO5_7 */ 530 writel(GPIO_SETDATAOUT(7), 531 AM33XX_GPIO5_BASE + OMAP_GPIO_SETDATAOUT); 532 temp = readl(AM33XX_GPIO5_BASE + OMAP_GPIO_OE); 533 temp = temp & ~(GPIO_OE_ENABLE(7)); 534 writel(temp, AM33XX_GPIO5_BASE + OMAP_GPIO_OE); 535 } 536 537 void sdram_init(void) 538 { 539 if (read_eeprom() < 0) 540 return; 541 /* 542 * EPOS EVM has 1GB LPDDR2 connected to EMIF. 543 * GP EMV has 1GB DDR3 connected to EMIF 544 * along with VTT regulator. 545 */ 546 if (board_is_eposevm()) { 547 config_ddr(0, &ioregs_lpddr2, NULL, NULL, &emif_regs_lpddr2, 0); 548 } else if (board_is_evm_14_or_later()) { 549 enable_vtt_regulator(); 550 config_ddr(0, &ioregs_ddr3, NULL, NULL, 551 &ddr3_emif_regs_400Mhz_production, 0); 552 } else if (board_is_evm_12_or_later()) { 553 enable_vtt_regulator(); 554 config_ddr(0, &ioregs_ddr3, NULL, NULL, 555 &ddr3_emif_regs_400Mhz_beta, 0); 556 } else if (board_is_gpevm()) { 557 enable_vtt_regulator(); 558 config_ddr(0, &ioregs_ddr3, NULL, NULL, 559 &ddr3_emif_regs_400Mhz, 0); 560 } else if (board_is_sk()) { 561 config_ddr(400, &ioregs_ddr3, NULL, NULL, 562 &ddr3_sk_emif_regs_400Mhz, 0); 563 } else if (board_is_idk()) { 564 config_ddr(400, &ioregs_ddr3, NULL, NULL, 565 &ddr3_idk_emif_regs_400Mhz, 0); 566 } 567 } 568 #endif 569 570 /* setup board specific PMIC */ 571 int power_init_board(void) 572 { 573 struct pmic *p; 574 575 if (board_is_idk()) { 576 power_tps62362_init(I2C_PMIC); 577 p = pmic_get("TPS62362"); 578 if (p && !pmic_probe(p)) 579 puts("PMIC: TPS62362\n"); 580 } else { 581 power_tps65218_init(I2C_PMIC); 582 p = pmic_get("TPS65218_PMIC"); 583 if (p && !pmic_probe(p)) 584 puts("PMIC: TPS65218\n"); 585 } 586 587 return 0; 588 } 589 590 int board_init(void) 591 { 592 struct l3f_cfg_bwlimiter *bwlimiter = (struct l3f_cfg_bwlimiter *)L3F_CFG_BWLIMITER; 593 u32 mreqprio_0, mreqprio_1, modena_init0_bw_fractional, 594 modena_init0_bw_integer, modena_init0_watermark_0; 595 596 gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100; 597 gpmc_init(); 598 599 /* Clear all important bits for DSS errata that may need to be tweaked*/ 600 mreqprio_0 = readl(&cdev->mreqprio_0) & MREQPRIO_0_SAB_INIT1_MASK & 601 MREQPRIO_0_SAB_INIT0_MASK; 602 603 mreqprio_1 = readl(&cdev->mreqprio_1) & MREQPRIO_1_DSS_MASK; 604 605 modena_init0_bw_fractional = readl(&bwlimiter->modena_init0_bw_fractional) & 606 BW_LIMITER_BW_FRAC_MASK; 607 608 modena_init0_bw_integer = readl(&bwlimiter->modena_init0_bw_integer) & 609 BW_LIMITER_BW_INT_MASK; 610 611 modena_init0_watermark_0 = readl(&bwlimiter->modena_init0_watermark_0) & 612 BW_LIMITER_BW_WATERMARK_MASK; 613 614 /* Setting MReq Priority of the DSS*/ 615 mreqprio_0 |= 0x77; 616 617 /* 618 * Set L3 Fast Configuration Register 619 * Limiting bandwith for ARM core to 700 MBPS 620 */ 621 modena_init0_bw_fractional |= 0x10; 622 modena_init0_bw_integer |= 0x3; 623 624 writel(mreqprio_0, &cdev->mreqprio_0); 625 writel(mreqprio_1, &cdev->mreqprio_1); 626 627 writel(modena_init0_bw_fractional, &bwlimiter->modena_init0_bw_fractional); 628 writel(modena_init0_bw_integer, &bwlimiter->modena_init0_bw_integer); 629 writel(modena_init0_watermark_0, &bwlimiter->modena_init0_watermark_0); 630 631 return 0; 632 } 633 634 #ifdef CONFIG_BOARD_LATE_INIT 635 int board_late_init(void) 636 { 637 #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG 638 set_board_info_env(NULL); 639 #endif 640 return 0; 641 } 642 #endif 643 644 #ifdef CONFIG_USB_DWC3 645 static struct dwc3_device usb_otg_ss1 = { 646 .maximum_speed = USB_SPEED_HIGH, 647 .base = USB_OTG_SS1_BASE, 648 .tx_fifo_resize = false, 649 .index = 0, 650 }; 651 652 static struct dwc3_omap_device usb_otg_ss1_glue = { 653 .base = (void *)USB_OTG_SS1_GLUE_BASE, 654 .utmi_mode = DWC3_OMAP_UTMI_MODE_SW, 655 .index = 0, 656 }; 657 658 static struct ti_usb_phy_device usb_phy1_device = { 659 .usb2_phy_power = (void *)USB2_PHY1_POWER, 660 .index = 0, 661 }; 662 663 static struct dwc3_device usb_otg_ss2 = { 664 .maximum_speed = USB_SPEED_HIGH, 665 .base = USB_OTG_SS2_BASE, 666 .tx_fifo_resize = false, 667 .index = 1, 668 }; 669 670 static struct dwc3_omap_device usb_otg_ss2_glue = { 671 .base = (void *)USB_OTG_SS2_GLUE_BASE, 672 .utmi_mode = DWC3_OMAP_UTMI_MODE_SW, 673 .index = 1, 674 }; 675 676 static struct ti_usb_phy_device usb_phy2_device = { 677 .usb2_phy_power = (void *)USB2_PHY2_POWER, 678 .index = 1, 679 }; 680 681 int board_usb_init(int index, enum usb_init_type init) 682 { 683 enable_usb_clocks(index); 684 switch (index) { 685 case 0: 686 if (init == USB_INIT_DEVICE) { 687 usb_otg_ss1.dr_mode = USB_DR_MODE_PERIPHERAL; 688 usb_otg_ss1_glue.vbus_id_status = OMAP_DWC3_VBUS_VALID; 689 } else { 690 usb_otg_ss1.dr_mode = USB_DR_MODE_HOST; 691 usb_otg_ss1_glue.vbus_id_status = OMAP_DWC3_ID_GROUND; 692 } 693 694 dwc3_omap_uboot_init(&usb_otg_ss1_glue); 695 ti_usb_phy_uboot_init(&usb_phy1_device); 696 dwc3_uboot_init(&usb_otg_ss1); 697 break; 698 case 1: 699 if (init == USB_INIT_DEVICE) { 700 usb_otg_ss2.dr_mode = USB_DR_MODE_PERIPHERAL; 701 usb_otg_ss2_glue.vbus_id_status = OMAP_DWC3_VBUS_VALID; 702 } else { 703 usb_otg_ss2.dr_mode = USB_DR_MODE_HOST; 704 usb_otg_ss2_glue.vbus_id_status = OMAP_DWC3_ID_GROUND; 705 } 706 707 ti_usb_phy_uboot_init(&usb_phy2_device); 708 dwc3_omap_uboot_init(&usb_otg_ss2_glue); 709 dwc3_uboot_init(&usb_otg_ss2); 710 break; 711 default: 712 printf("Invalid Controller Index\n"); 713 } 714 715 return 0; 716 } 717 718 int board_usb_cleanup(int index, enum usb_init_type init) 719 { 720 switch (index) { 721 case 0: 722 case 1: 723 ti_usb_phy_uboot_exit(index); 724 dwc3_uboot_exit(index); 725 dwc3_omap_uboot_exit(index); 726 break; 727 default: 728 printf("Invalid Controller Index\n"); 729 } 730 disable_usb_clocks(index); 731 732 return 0; 733 } 734 735 int usb_gadget_handle_interrupts(int index) 736 { 737 u32 status; 738 739 status = dwc3_omap_uboot_interrupt_status(index); 740 if (status) 741 dwc3_uboot_handle_interrupt(index); 742 743 return 0; 744 } 745 #endif 746 747 #ifdef CONFIG_DRIVER_TI_CPSW 748 749 static void cpsw_control(int enabled) 750 { 751 /* Additional controls can be added here */ 752 return; 753 } 754 755 static struct cpsw_slave_data cpsw_slaves[] = { 756 { 757 .slave_reg_ofs = 0x208, 758 .sliver_reg_ofs = 0xd80, 759 .phy_addr = 16, 760 }, 761 { 762 .slave_reg_ofs = 0x308, 763 .sliver_reg_ofs = 0xdc0, 764 .phy_addr = 1, 765 }, 766 }; 767 768 static struct cpsw_platform_data cpsw_data = { 769 .mdio_base = CPSW_MDIO_BASE, 770 .cpsw_base = CPSW_BASE, 771 .mdio_div = 0xff, 772 .channels = 8, 773 .cpdma_reg_ofs = 0x800, 774 .slaves = 1, 775 .slave_data = cpsw_slaves, 776 .ale_reg_ofs = 0xd00, 777 .ale_entries = 1024, 778 .host_port_reg_ofs = 0x108, 779 .hw_stats_reg_ofs = 0x900, 780 .bd_ram_ofs = 0x2000, 781 .mac_control = (1 << 5), 782 .control = cpsw_control, 783 .host_port_num = 0, 784 .version = CPSW_CTRL_VERSION_2, 785 }; 786 787 int board_eth_init(bd_t *bis) 788 { 789 int rv; 790 uint8_t mac_addr[6]; 791 uint32_t mac_hi, mac_lo; 792 793 /* try reading mac address from efuse */ 794 mac_lo = readl(&cdev->macid0l); 795 mac_hi = readl(&cdev->macid0h); 796 mac_addr[0] = mac_hi & 0xFF; 797 mac_addr[1] = (mac_hi & 0xFF00) >> 8; 798 mac_addr[2] = (mac_hi & 0xFF0000) >> 16; 799 mac_addr[3] = (mac_hi & 0xFF000000) >> 24; 800 mac_addr[4] = mac_lo & 0xFF; 801 mac_addr[5] = (mac_lo & 0xFF00) >> 8; 802 803 if (!getenv("ethaddr")) { 804 puts("<ethaddr> not set. Validating first E-fuse MAC\n"); 805 if (is_valid_ethaddr(mac_addr)) 806 eth_setenv_enetaddr("ethaddr", mac_addr); 807 } 808 809 mac_lo = readl(&cdev->macid1l); 810 mac_hi = readl(&cdev->macid1h); 811 mac_addr[0] = mac_hi & 0xFF; 812 mac_addr[1] = (mac_hi & 0xFF00) >> 8; 813 mac_addr[2] = (mac_hi & 0xFF0000) >> 16; 814 mac_addr[3] = (mac_hi & 0xFF000000) >> 24; 815 mac_addr[4] = mac_lo & 0xFF; 816 mac_addr[5] = (mac_lo & 0xFF00) >> 8; 817 818 if (!getenv("eth1addr")) { 819 if (is_valid_ethaddr(mac_addr)) 820 eth_setenv_enetaddr("eth1addr", mac_addr); 821 } 822 823 if (board_is_eposevm()) { 824 writel(RMII_MODE_ENABLE | RMII_CHIPCKL_ENABLE, &cdev->miisel); 825 cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RMII; 826 cpsw_slaves[0].phy_addr = 16; 827 } else if (board_is_sk()) { 828 writel(RGMII_MODE_ENABLE, &cdev->miisel); 829 cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RGMII; 830 cpsw_slaves[0].phy_addr = 4; 831 cpsw_slaves[1].phy_addr = 5; 832 } else if (board_is_idk()) { 833 writel(RGMII_MODE_ENABLE, &cdev->miisel); 834 cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RGMII; 835 cpsw_slaves[0].phy_addr = 0; 836 } else { 837 writel(RGMII_MODE_ENABLE, &cdev->miisel); 838 cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RGMII; 839 cpsw_slaves[0].phy_addr = 0; 840 } 841 842 rv = cpsw_register(&cpsw_data); 843 if (rv < 0) 844 printf("Error %d registering CPSW switch\n", rv); 845 846 return rv; 847 } 848 #endif 849