xref: /openbmc/u-boot/board/ti/am335x/board.c (revision d7c11502)
1 /*
2  * board.c
3  *
4  * Board functions for TI AM335X based boards
5  *
6  * Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #include <common.h>
12 #include <dm.h>
13 #include <errno.h>
14 #include <spl.h>
15 #include <serial.h>
16 #include <asm/arch/cpu.h>
17 #include <asm/arch/hardware.h>
18 #include <asm/arch/omap.h>
19 #include <asm/arch/ddr_defs.h>
20 #include <asm/arch/clock.h>
21 #include <asm/arch/clk_synthesizer.h>
22 #include <asm/arch/gpio.h>
23 #include <asm/arch/mmc_host_def.h>
24 #include <asm/arch/sys_proto.h>
25 #include <asm/arch/mem.h>
26 #include <asm/io.h>
27 #include <asm/emif.h>
28 #include <asm/gpio.h>
29 #include <asm/omap_common.h>
30 #include <asm/omap_sec_common.h>
31 #include <asm/omap_mmc.h>
32 #include <i2c.h>
33 #include <miiphy.h>
34 #include <cpsw.h>
35 #include <power/tps65217.h>
36 #include <power/tps65910.h>
37 #include <environment.h>
38 #include <watchdog.h>
39 #include <environment.h>
40 #include "../common/board_detect.h"
41 #include "board.h"
42 
43 DECLARE_GLOBAL_DATA_PTR;
44 
45 /* GPIO that controls power to DDR on EVM-SK */
46 #define GPIO_TO_PIN(bank, gpio)		(32 * (bank) + (gpio))
47 #define GPIO_DDR_VTT_EN		GPIO_TO_PIN(0, 7)
48 #define ICE_GPIO_DDR_VTT_EN	GPIO_TO_PIN(0, 18)
49 #define GPIO_PR1_MII_CTRL	GPIO_TO_PIN(3, 4)
50 #define GPIO_MUX_MII_CTRL	GPIO_TO_PIN(3, 10)
51 #define GPIO_FET_SWITCH_CTRL	GPIO_TO_PIN(0, 7)
52 #define GPIO_PHY_RESET		GPIO_TO_PIN(2, 5)
53 #define GPIO_ETH0_MODE		GPIO_TO_PIN(0, 11)
54 #define GPIO_ETH1_MODE		GPIO_TO_PIN(1, 26)
55 
56 static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
57 
58 #define GPIO0_RISINGDETECT	(AM33XX_GPIO0_BASE + OMAP_GPIO_RISINGDETECT)
59 #define GPIO1_RISINGDETECT	(AM33XX_GPIO1_BASE + OMAP_GPIO_RISINGDETECT)
60 
61 #define GPIO0_IRQSTATUS1	(AM33XX_GPIO0_BASE + OMAP_GPIO_IRQSTATUS1)
62 #define GPIO1_IRQSTATUS1	(AM33XX_GPIO1_BASE + OMAP_GPIO_IRQSTATUS1)
63 
64 #define GPIO0_IRQSTATUSRAW	(AM33XX_GPIO0_BASE + 0x024)
65 #define GPIO1_IRQSTATUSRAW	(AM33XX_GPIO1_BASE + 0x024)
66 
67 /*
68  * Read header information from EEPROM into global structure.
69  */
70 #ifdef CONFIG_TI_I2C_BOARD_DETECT
71 void do_board_detect(void)
72 {
73 	enable_i2c0_pin_mux();
74 	i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED, CONFIG_SYS_OMAP24_I2C_SLAVE);
75 
76 	if (ti_i2c_eeprom_am_get(CONFIG_EEPROM_BUS_ADDRESS,
77 				 CONFIG_EEPROM_CHIP_ADDRESS))
78 		printf("ti_i2c_eeprom_init failed\n");
79 }
80 #endif
81 
82 #ifndef CONFIG_DM_SERIAL
83 struct serial_device *default_serial_console(void)
84 {
85 	if (board_is_icev2())
86 		return &eserial4_device;
87 	else
88 		return &eserial1_device;
89 }
90 #endif
91 
92 #ifndef CONFIG_SKIP_LOWLEVEL_INIT
93 static const struct ddr_data ddr2_data = {
94 	.datardsratio0 = MT47H128M16RT25E_RD_DQS,
95 	.datafwsratio0 = MT47H128M16RT25E_PHY_FIFO_WE,
96 	.datawrsratio0 = MT47H128M16RT25E_PHY_WR_DATA,
97 };
98 
99 static const struct cmd_control ddr2_cmd_ctrl_data = {
100 	.cmd0csratio = MT47H128M16RT25E_RATIO,
101 
102 	.cmd1csratio = MT47H128M16RT25E_RATIO,
103 
104 	.cmd2csratio = MT47H128M16RT25E_RATIO,
105 };
106 
107 static const struct emif_regs ddr2_emif_reg_data = {
108 	.sdram_config = MT47H128M16RT25E_EMIF_SDCFG,
109 	.ref_ctrl = MT47H128M16RT25E_EMIF_SDREF,
110 	.sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1,
111 	.sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2,
112 	.sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3,
113 	.emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY,
114 };
115 
116 static const struct emif_regs ddr2_evm_emif_reg_data = {
117 	.sdram_config = MT47H128M16RT25E_EMIF_SDCFG,
118 	.ref_ctrl = MT47H128M16RT25E_EMIF_SDREF,
119 	.sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1,
120 	.sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2,
121 	.sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3,
122 	.ocp_config = EMIF_OCP_CONFIG_AM335X_EVM,
123 	.emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY,
124 };
125 
126 static const struct ddr_data ddr3_data = {
127 	.datardsratio0 = MT41J128MJT125_RD_DQS,
128 	.datawdsratio0 = MT41J128MJT125_WR_DQS,
129 	.datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE,
130 	.datawrsratio0 = MT41J128MJT125_PHY_WR_DATA,
131 };
132 
133 static const struct ddr_data ddr3_beagleblack_data = {
134 	.datardsratio0 = MT41K256M16HA125E_RD_DQS,
135 	.datawdsratio0 = MT41K256M16HA125E_WR_DQS,
136 	.datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE,
137 	.datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA,
138 };
139 
140 static const struct ddr_data ddr3_evm_data = {
141 	.datardsratio0 = MT41J512M8RH125_RD_DQS,
142 	.datawdsratio0 = MT41J512M8RH125_WR_DQS,
143 	.datafwsratio0 = MT41J512M8RH125_PHY_FIFO_WE,
144 	.datawrsratio0 = MT41J512M8RH125_PHY_WR_DATA,
145 };
146 
147 static const struct ddr_data ddr3_icev2_data = {
148 	.datardsratio0 = MT41J128MJT125_RD_DQS_400MHz,
149 	.datawdsratio0 = MT41J128MJT125_WR_DQS_400MHz,
150 	.datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE_400MHz,
151 	.datawrsratio0 = MT41J128MJT125_PHY_WR_DATA_400MHz,
152 };
153 
154 static const struct cmd_control ddr3_cmd_ctrl_data = {
155 	.cmd0csratio = MT41J128MJT125_RATIO,
156 	.cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT,
157 
158 	.cmd1csratio = MT41J128MJT125_RATIO,
159 	.cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT,
160 
161 	.cmd2csratio = MT41J128MJT125_RATIO,
162 	.cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT,
163 };
164 
165 static const struct cmd_control ddr3_beagleblack_cmd_ctrl_data = {
166 	.cmd0csratio = MT41K256M16HA125E_RATIO,
167 	.cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
168 
169 	.cmd1csratio = MT41K256M16HA125E_RATIO,
170 	.cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
171 
172 	.cmd2csratio = MT41K256M16HA125E_RATIO,
173 	.cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
174 };
175 
176 static const struct cmd_control ddr3_evm_cmd_ctrl_data = {
177 	.cmd0csratio = MT41J512M8RH125_RATIO,
178 	.cmd0iclkout = MT41J512M8RH125_INVERT_CLKOUT,
179 
180 	.cmd1csratio = MT41J512M8RH125_RATIO,
181 	.cmd1iclkout = MT41J512M8RH125_INVERT_CLKOUT,
182 
183 	.cmd2csratio = MT41J512M8RH125_RATIO,
184 	.cmd2iclkout = MT41J512M8RH125_INVERT_CLKOUT,
185 };
186 
187 static const struct cmd_control ddr3_icev2_cmd_ctrl_data = {
188 	.cmd0csratio = MT41J128MJT125_RATIO_400MHz,
189 	.cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
190 
191 	.cmd1csratio = MT41J128MJT125_RATIO_400MHz,
192 	.cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
193 
194 	.cmd2csratio = MT41J128MJT125_RATIO_400MHz,
195 	.cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
196 };
197 
198 static struct emif_regs ddr3_emif_reg_data = {
199 	.sdram_config = MT41J128MJT125_EMIF_SDCFG,
200 	.ref_ctrl = MT41J128MJT125_EMIF_SDREF,
201 	.sdram_tim1 = MT41J128MJT125_EMIF_TIM1,
202 	.sdram_tim2 = MT41J128MJT125_EMIF_TIM2,
203 	.sdram_tim3 = MT41J128MJT125_EMIF_TIM3,
204 	.zq_config = MT41J128MJT125_ZQ_CFG,
205 	.emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY |
206 				PHY_EN_DYN_PWRDN,
207 };
208 
209 static struct emif_regs ddr3_beagleblack_emif_reg_data = {
210 	.sdram_config = MT41K256M16HA125E_EMIF_SDCFG,
211 	.ref_ctrl = MT41K256M16HA125E_EMIF_SDREF,
212 	.sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1,
213 	.sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2,
214 	.sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3,
215 	.ocp_config = EMIF_OCP_CONFIG_BEAGLEBONE_BLACK,
216 	.zq_config = MT41K256M16HA125E_ZQ_CFG,
217 	.emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY,
218 };
219 
220 static struct emif_regs ddr3_evm_emif_reg_data = {
221 	.sdram_config = MT41J512M8RH125_EMIF_SDCFG,
222 	.ref_ctrl = MT41J512M8RH125_EMIF_SDREF,
223 	.sdram_tim1 = MT41J512M8RH125_EMIF_TIM1,
224 	.sdram_tim2 = MT41J512M8RH125_EMIF_TIM2,
225 	.sdram_tim3 = MT41J512M8RH125_EMIF_TIM3,
226 	.ocp_config = EMIF_OCP_CONFIG_AM335X_EVM,
227 	.zq_config = MT41J512M8RH125_ZQ_CFG,
228 	.emif_ddr_phy_ctlr_1 = MT41J512M8RH125_EMIF_READ_LATENCY |
229 				PHY_EN_DYN_PWRDN,
230 };
231 
232 static struct emif_regs ddr3_icev2_emif_reg_data = {
233 	.sdram_config = MT41J128MJT125_EMIF_SDCFG_400MHz,
234 	.ref_ctrl = MT41J128MJT125_EMIF_SDREF_400MHz,
235 	.sdram_tim1 = MT41J128MJT125_EMIF_TIM1_400MHz,
236 	.sdram_tim2 = MT41J128MJT125_EMIF_TIM2_400MHz,
237 	.sdram_tim3 = MT41J128MJT125_EMIF_TIM3_400MHz,
238 	.zq_config = MT41J128MJT125_ZQ_CFG_400MHz,
239 	.emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY_400MHz |
240 				PHY_EN_DYN_PWRDN,
241 };
242 
243 #ifdef CONFIG_SPL_OS_BOOT
244 int spl_start_uboot(void)
245 {
246 	/* break into full u-boot on 'c' */
247 	if (serial_tstc() && serial_getc() == 'c')
248 		return 1;
249 
250 #ifdef CONFIG_SPL_ENV_SUPPORT
251 	env_init();
252 	env_relocate_spec();
253 	if (getenv_yesno("boot_os") != 1)
254 		return 1;
255 #endif
256 
257 	return 0;
258 }
259 #endif
260 
261 const struct dpll_params *get_dpll_ddr_params(void)
262 {
263 	int ind = get_sys_clk_index();
264 
265 	if (board_is_evm_sk())
266 		return &dpll_ddr3_303MHz[ind];
267 	else if (board_is_bone_lt() || board_is_icev2())
268 		return &dpll_ddr3_400MHz[ind];
269 	else if (board_is_evm_15_or_later())
270 		return &dpll_ddr3_303MHz[ind];
271 	else
272 		return &dpll_ddr2_266MHz[ind];
273 }
274 
275 static u8 bone_not_connected_to_ac_power(void)
276 {
277 	if (board_is_bone()) {
278 		uchar pmic_status_reg;
279 		if (tps65217_reg_read(TPS65217_STATUS,
280 				      &pmic_status_reg))
281 			return 1;
282 		if (!(pmic_status_reg & TPS65217_PWR_SRC_AC_BITMASK)) {
283 			puts("No AC power, switching to default OPP\n");
284 			return 1;
285 		}
286 	}
287 	return 0;
288 }
289 
290 const struct dpll_params *get_dpll_mpu_params(void)
291 {
292 	int ind = get_sys_clk_index();
293 	int freq = am335x_get_efuse_mpu_max_freq(cdev);
294 
295 	if (bone_not_connected_to_ac_power())
296 		freq = MPUPLL_M_600;
297 
298 	if (board_is_bone_lt())
299 		freq = MPUPLL_M_1000;
300 
301 	switch (freq) {
302 	case MPUPLL_M_1000:
303 		return &dpll_mpu_opp[ind][5];
304 	case MPUPLL_M_800:
305 		return &dpll_mpu_opp[ind][4];
306 	case MPUPLL_M_720:
307 		return &dpll_mpu_opp[ind][3];
308 	case MPUPLL_M_600:
309 		return &dpll_mpu_opp[ind][2];
310 	case MPUPLL_M_500:
311 		return &dpll_mpu_opp100;
312 	case MPUPLL_M_300:
313 		return &dpll_mpu_opp[ind][0];
314 	}
315 
316 	return &dpll_mpu_opp[ind][0];
317 }
318 
319 static void scale_vcores_bone(int freq)
320 {
321 	int usb_cur_lim, mpu_vdd;
322 
323 	/*
324 	 * Only perform PMIC configurations if board rev > A1
325 	 * on Beaglebone White
326 	 */
327 	if (board_is_bone() && !strncmp(board_ti_get_rev(), "00A1", 4))
328 		return;
329 
330 	if (i2c_probe(TPS65217_CHIP_PM))
331 		return;
332 
333 	/*
334 	 * On Beaglebone White we need to ensure we have AC power
335 	 * before increasing the frequency.
336 	 */
337 	if (bone_not_connected_to_ac_power())
338 		freq = MPUPLL_M_600;
339 
340 	/*
341 	 * Override what we have detected since we know if we have
342 	 * a Beaglebone Black it supports 1GHz.
343 	 */
344 	if (board_is_bone_lt())
345 		freq = MPUPLL_M_1000;
346 
347 	switch (freq) {
348 	case MPUPLL_M_1000:
349 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV;
350 		usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1800MA;
351 		break;
352 	case MPUPLL_M_800:
353 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV;
354 		usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
355 		break;
356 	case MPUPLL_M_720:
357 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_1200MV;
358 		usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
359 		break;
360 	case MPUPLL_M_600:
361 	case MPUPLL_M_500:
362 	case MPUPLL_M_300:
363 	default:
364 		mpu_vdd = TPS65217_DCDC_VOLT_SEL_1100MV;
365 		usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
366 		break;
367 	}
368 
369 	if (tps65217_reg_write(TPS65217_PROT_LEVEL_NONE,
370 			       TPS65217_POWER_PATH,
371 			       usb_cur_lim,
372 			       TPS65217_USB_INPUT_CUR_LIMIT_MASK))
373 		puts("tps65217_reg_write failure\n");
374 
375 	/* Set DCDC3 (CORE) voltage to 1.10V */
376 	if (tps65217_voltage_update(TPS65217_DEFDCDC3,
377 				    TPS65217_DCDC_VOLT_SEL_1100MV)) {
378 		puts("tps65217_voltage_update failure\n");
379 		return;
380 	}
381 
382 	/* Set DCDC2 (MPU) voltage */
383 	if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) {
384 		puts("tps65217_voltage_update failure\n");
385 		return;
386 	}
387 
388 	/*
389 	 * Set LDO3, LDO4 output voltage to 3.3V for Beaglebone.
390 	 * Set LDO3 to 1.8V and LDO4 to 3.3V for Beaglebone Black.
391 	 */
392 	if (board_is_bone()) {
393 		if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
394 				       TPS65217_DEFLS1,
395 				       TPS65217_LDO_VOLTAGE_OUT_3_3,
396 				       TPS65217_LDO_MASK))
397 			puts("tps65217_reg_write failure\n");
398 	} else {
399 		if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
400 				       TPS65217_DEFLS1,
401 				       TPS65217_LDO_VOLTAGE_OUT_1_8,
402 				       TPS65217_LDO_MASK))
403 			puts("tps65217_reg_write failure\n");
404 	}
405 
406 	if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
407 			       TPS65217_DEFLS2,
408 			       TPS65217_LDO_VOLTAGE_OUT_3_3,
409 			       TPS65217_LDO_MASK))
410 		puts("tps65217_reg_write failure\n");
411 }
412 
413 void scale_vcores_generic(int freq)
414 {
415 	int sil_rev, mpu_vdd;
416 
417 	/*
418 	 * The GP EVM, IDK and EVM SK use a TPS65910 PMIC.  For all
419 	 * MPU frequencies we support we use a CORE voltage of
420 	 * 1.10V.  For MPU voltage we need to switch based on
421 	 * the frequency we are running at.
422 	 */
423 	if (i2c_probe(TPS65910_CTRL_I2C_ADDR))
424 		return;
425 
426 	/*
427 	 * Depending on MPU clock and PG we will need a different
428 	 * VDD to drive at that speed.
429 	 */
430 	sil_rev = readl(&cdev->deviceid) >> 28;
431 	mpu_vdd = am335x_get_tps65910_mpu_vdd(sil_rev, freq);
432 
433 	/* Tell the TPS65910 to use i2c */
434 	tps65910_set_i2c_control();
435 
436 	/* First update MPU voltage. */
437 	if (tps65910_voltage_update(MPU, mpu_vdd))
438 		return;
439 
440 	/* Second, update the CORE voltage. */
441 	if (tps65910_voltage_update(CORE, TPS65910_OP_REG_SEL_1_1_0))
442 		return;
443 
444 }
445 
446 void gpi2c_init(void)
447 {
448 	/* When needed to be invoked prior to BSS initialization */
449 	static bool first_time = true;
450 
451 	if (first_time) {
452 		enable_i2c0_pin_mux();
453 		i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED,
454 			 CONFIG_SYS_OMAP24_I2C_SLAVE);
455 		first_time = false;
456 	}
457 }
458 
459 void scale_vcores(void)
460 {
461 	int freq;
462 
463 	gpi2c_init();
464 	freq = am335x_get_efuse_mpu_max_freq(cdev);
465 
466 	if (board_is_beaglebonex())
467 		scale_vcores_bone(freq);
468 	else
469 		scale_vcores_generic(freq);
470 }
471 
472 void set_uart_mux_conf(void)
473 {
474 #if CONFIG_CONS_INDEX == 1
475 	enable_uart0_pin_mux();
476 #elif CONFIG_CONS_INDEX == 2
477 	enable_uart1_pin_mux();
478 #elif CONFIG_CONS_INDEX == 3
479 	enable_uart2_pin_mux();
480 #elif CONFIG_CONS_INDEX == 4
481 	enable_uart3_pin_mux();
482 #elif CONFIG_CONS_INDEX == 5
483 	enable_uart4_pin_mux();
484 #elif CONFIG_CONS_INDEX == 6
485 	enable_uart5_pin_mux();
486 #endif
487 }
488 
489 void set_mux_conf_regs(void)
490 {
491 	enable_board_pin_mux();
492 }
493 
494 const struct ctrl_ioregs ioregs_evmsk = {
495 	.cm0ioctl		= MT41J128MJT125_IOCTRL_VALUE,
496 	.cm1ioctl		= MT41J128MJT125_IOCTRL_VALUE,
497 	.cm2ioctl		= MT41J128MJT125_IOCTRL_VALUE,
498 	.dt0ioctl		= MT41J128MJT125_IOCTRL_VALUE,
499 	.dt1ioctl		= MT41J128MJT125_IOCTRL_VALUE,
500 };
501 
502 const struct ctrl_ioregs ioregs_bonelt = {
503 	.cm0ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
504 	.cm1ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
505 	.cm2ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
506 	.dt0ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
507 	.dt1ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
508 };
509 
510 const struct ctrl_ioregs ioregs_evm15 = {
511 	.cm0ioctl		= MT41J512M8RH125_IOCTRL_VALUE,
512 	.cm1ioctl		= MT41J512M8RH125_IOCTRL_VALUE,
513 	.cm2ioctl		= MT41J512M8RH125_IOCTRL_VALUE,
514 	.dt0ioctl		= MT41J512M8RH125_IOCTRL_VALUE,
515 	.dt1ioctl		= MT41J512M8RH125_IOCTRL_VALUE,
516 };
517 
518 const struct ctrl_ioregs ioregs = {
519 	.cm0ioctl		= MT47H128M16RT25E_IOCTRL_VALUE,
520 	.cm1ioctl		= MT47H128M16RT25E_IOCTRL_VALUE,
521 	.cm2ioctl		= MT47H128M16RT25E_IOCTRL_VALUE,
522 	.dt0ioctl		= MT47H128M16RT25E_IOCTRL_VALUE,
523 	.dt1ioctl		= MT47H128M16RT25E_IOCTRL_VALUE,
524 };
525 
526 void sdram_init(void)
527 {
528 	if (board_is_evm_sk()) {
529 		/*
530 		 * EVM SK 1.2A and later use gpio0_7 to enable DDR3.
531 		 * This is safe enough to do on older revs.
532 		 */
533 		gpio_request(GPIO_DDR_VTT_EN, "ddr_vtt_en");
534 		gpio_direction_output(GPIO_DDR_VTT_EN, 1);
535 	}
536 
537 	if (board_is_icev2()) {
538 		gpio_request(ICE_GPIO_DDR_VTT_EN, "ddr_vtt_en");
539 		gpio_direction_output(ICE_GPIO_DDR_VTT_EN, 1);
540 	}
541 
542 	if (board_is_evm_sk())
543 		config_ddr(303, &ioregs_evmsk, &ddr3_data,
544 			   &ddr3_cmd_ctrl_data, &ddr3_emif_reg_data, 0);
545 	else if (board_is_bone_lt())
546 		config_ddr(400, &ioregs_bonelt,
547 			   &ddr3_beagleblack_data,
548 			   &ddr3_beagleblack_cmd_ctrl_data,
549 			   &ddr3_beagleblack_emif_reg_data, 0);
550 	else if (board_is_evm_15_or_later())
551 		config_ddr(303, &ioregs_evm15, &ddr3_evm_data,
552 			   &ddr3_evm_cmd_ctrl_data, &ddr3_evm_emif_reg_data, 0);
553 	else if (board_is_icev2())
554 		config_ddr(400, &ioregs_evmsk, &ddr3_icev2_data,
555 			   &ddr3_icev2_cmd_ctrl_data, &ddr3_icev2_emif_reg_data,
556 			   0);
557 	else if (board_is_gp_evm())
558 		config_ddr(266, &ioregs, &ddr2_data,
559 			   &ddr2_cmd_ctrl_data, &ddr2_evm_emif_reg_data, 0);
560 	else
561 		config_ddr(266, &ioregs, &ddr2_data,
562 			   &ddr2_cmd_ctrl_data, &ddr2_emif_reg_data, 0);
563 }
564 #endif
565 
566 #if !defined(CONFIG_SPL_BUILD) || \
567 	(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
568 static void request_and_set_gpio(int gpio, char *name, int val)
569 {
570 	int ret;
571 
572 	ret = gpio_request(gpio, name);
573 	if (ret < 0) {
574 		printf("%s: Unable to request %s\n", __func__, name);
575 		return;
576 	}
577 
578 	ret = gpio_direction_output(gpio, 0);
579 	if (ret < 0) {
580 		printf("%s: Unable to set %s  as output\n", __func__, name);
581 		goto err_free_gpio;
582 	}
583 
584 	gpio_set_value(gpio, val);
585 
586 	return;
587 
588 err_free_gpio:
589 	gpio_free(gpio);
590 }
591 
592 #define REQUEST_AND_SET_GPIO(N)	request_and_set_gpio(N, #N, 1);
593 #define REQUEST_AND_CLR_GPIO(N)	request_and_set_gpio(N, #N, 0);
594 
595 /**
596  * RMII mode on ICEv2 board needs 50MHz clock. Given the clock
597  * synthesizer With a capacitor of 18pF, and 25MHz input clock cycle
598  * PLL1 gives an output of 100MHz. So, configuring the div2/3 as 2 to
599  * give 50MHz output for Eth0 and 1.
600  */
601 static struct clk_synth cdce913_data = {
602 	.id = 0x81,
603 	.capacitor = 0x90,
604 	.mux = 0x6d,
605 	.pdiv2 = 0x2,
606 	.pdiv3 = 0x2,
607 };
608 #endif
609 
610 /*
611  * Basic board specific setup.  Pinmux has been handled already.
612  */
613 int board_init(void)
614 {
615 #if defined(CONFIG_HW_WATCHDOG)
616 	hw_watchdog_init();
617 #endif
618 
619 	gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
620 #if defined(CONFIG_NOR) || defined(CONFIG_NAND)
621 	gpmc_init();
622 #endif
623 
624 #if !defined(CONFIG_SPL_BUILD) || \
625 	(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
626 	if (board_is_icev2()) {
627 		int rv;
628 		u32 reg;
629 
630 		REQUEST_AND_SET_GPIO(GPIO_PR1_MII_CTRL);
631 		/* Make J19 status available on GPIO1_26 */
632 		REQUEST_AND_CLR_GPIO(GPIO_MUX_MII_CTRL);
633 
634 		REQUEST_AND_SET_GPIO(GPIO_FET_SWITCH_CTRL);
635 		/*
636 		 * Both ports can be set as RMII-CPSW or MII-PRU-ETH using
637 		 * jumpers near the port. Read the jumper value and set
638 		 * the pinmux, external mux and PHY clock accordingly.
639 		 * As jumper line is overridden by PHY RX_DV pin immediately
640 		 * after bootstrap (power-up/reset), we need to sample
641 		 * it during PHY reset using GPIO rising edge detection.
642 		 */
643 		REQUEST_AND_SET_GPIO(GPIO_PHY_RESET);
644 		/* Enable rising edge IRQ on GPIO0_11 and GPIO 1_26 */
645 		reg = readl(GPIO0_RISINGDETECT) | BIT(11);
646 		writel(reg, GPIO0_RISINGDETECT);
647 		reg = readl(GPIO1_RISINGDETECT) | BIT(26);
648 		writel(reg, GPIO1_RISINGDETECT);
649 		/* Reset PHYs to capture the Jumper setting */
650 		gpio_set_value(GPIO_PHY_RESET, 0);
651 		udelay(2);	/* PHY datasheet states 1uS min. */
652 		gpio_set_value(GPIO_PHY_RESET, 1);
653 
654 		reg = readl(GPIO0_IRQSTATUSRAW) & BIT(11);
655 		if (reg) {
656 			writel(reg, GPIO0_IRQSTATUS1); /* clear irq */
657 			/* RMII mode */
658 			printf("ETH0, CPSW\n");
659 		} else {
660 			/* MII mode */
661 			printf("ETH0, PRU\n");
662 			cdce913_data.pdiv3 = 4;	/* 25MHz PHY clk */
663 		}
664 
665 		reg = readl(GPIO1_IRQSTATUSRAW) & BIT(26);
666 		if (reg) {
667 			writel(reg, GPIO1_IRQSTATUS1); /* clear irq */
668 			/* RMII mode */
669 			printf("ETH1, CPSW\n");
670 			gpio_set_value(GPIO_MUX_MII_CTRL, 1);
671 		} else {
672 			/* MII mode */
673 			printf("ETH1, PRU\n");
674 			cdce913_data.pdiv2 = 4;	/* 25MHz PHY clk */
675 		}
676 
677 		/* disable rising edge IRQs */
678 		reg = readl(GPIO0_RISINGDETECT) & ~BIT(11);
679 		writel(reg, GPIO0_RISINGDETECT);
680 		reg = readl(GPIO1_RISINGDETECT) & ~BIT(26);
681 		writel(reg, GPIO1_RISINGDETECT);
682 
683 		rv = setup_clock_synthesizer(&cdce913_data);
684 		if (rv) {
685 			printf("Clock synthesizer setup failed %d\n", rv);
686 			return rv;
687 		}
688 
689 		/* reset PHYs */
690 		gpio_set_value(GPIO_PHY_RESET, 0);
691 		udelay(2);	/* PHY datasheet states 1uS min. */
692 		gpio_set_value(GPIO_PHY_RESET, 1);
693 	}
694 #endif
695 
696 	return 0;
697 }
698 
699 #ifdef CONFIG_BOARD_LATE_INIT
700 int board_late_init(void)
701 {
702 #if !defined(CONFIG_SPL_BUILD)
703 	uint8_t mac_addr[6];
704 	uint32_t mac_hi, mac_lo;
705 #endif
706 
707 #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
708 	char *name = NULL;
709 
710 	if (board_is_bone_lt()) {
711 		/* BeagleBoard.org BeagleBone Black Wireless: */
712 		if (!strncmp(board_ti_get_rev(), "BWA", 3)) {
713 			name = "BBBW";
714 		}
715 		/* SeeedStudio BeagleBone Green Wireless */
716 		if (!strncmp(board_ti_get_rev(), "GW1", 3)) {
717 			name = "BBGW";
718 		}
719 		/* BeagleBoard.org BeagleBone Blue */
720 		if (!strncmp(board_ti_get_rev(), "BLA", 3)) {
721 			name = "BBBL";
722 		}
723 	}
724 
725 	if (board_is_bbg1())
726 		name = "BBG1";
727 	set_board_info_env(name);
728 
729 	/*
730 	 * Default FIT boot on HS devices. Non FIT images are not allowed
731 	 * on HS devices.
732 	 */
733 	if (get_device_type() == HS_DEVICE)
734 		setenv("boot_fit", "1");
735 #endif
736 
737 #if !defined(CONFIG_SPL_BUILD)
738 	/* try reading mac address from efuse */
739 	mac_lo = readl(&cdev->macid0l);
740 	mac_hi = readl(&cdev->macid0h);
741 	mac_addr[0] = mac_hi & 0xFF;
742 	mac_addr[1] = (mac_hi & 0xFF00) >> 8;
743 	mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
744 	mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
745 	mac_addr[4] = mac_lo & 0xFF;
746 	mac_addr[5] = (mac_lo & 0xFF00) >> 8;
747 
748 	if (!getenv("ethaddr")) {
749 		printf("<ethaddr> not set. Validating first E-fuse MAC\n");
750 
751 		if (is_valid_ethaddr(mac_addr))
752 			eth_setenv_enetaddr("ethaddr", mac_addr);
753 	}
754 
755 	mac_lo = readl(&cdev->macid1l);
756 	mac_hi = readl(&cdev->macid1h);
757 	mac_addr[0] = mac_hi & 0xFF;
758 	mac_addr[1] = (mac_hi & 0xFF00) >> 8;
759 	mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
760 	mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
761 	mac_addr[4] = mac_lo & 0xFF;
762 	mac_addr[5] = (mac_lo & 0xFF00) >> 8;
763 
764 	if (!getenv("eth1addr")) {
765 		if (is_valid_ethaddr(mac_addr))
766 			eth_setenv_enetaddr("eth1addr", mac_addr);
767 	}
768 #endif
769 
770 	return 0;
771 }
772 #endif
773 
774 #ifndef CONFIG_DM_ETH
775 
776 #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
777 	(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
778 static void cpsw_control(int enabled)
779 {
780 	/* VTP can be added here */
781 
782 	return;
783 }
784 
785 static struct cpsw_slave_data cpsw_slaves[] = {
786 	{
787 		.slave_reg_ofs	= 0x208,
788 		.sliver_reg_ofs	= 0xd80,
789 		.phy_addr	= 0,
790 	},
791 	{
792 		.slave_reg_ofs	= 0x308,
793 		.sliver_reg_ofs	= 0xdc0,
794 		.phy_addr	= 1,
795 	},
796 };
797 
798 static struct cpsw_platform_data cpsw_data = {
799 	.mdio_base		= CPSW_MDIO_BASE,
800 	.cpsw_base		= CPSW_BASE,
801 	.mdio_div		= 0xff,
802 	.channels		= 8,
803 	.cpdma_reg_ofs		= 0x800,
804 	.slaves			= 1,
805 	.slave_data		= cpsw_slaves,
806 	.ale_reg_ofs		= 0xd00,
807 	.ale_entries		= 1024,
808 	.host_port_reg_ofs	= 0x108,
809 	.hw_stats_reg_ofs	= 0x900,
810 	.bd_ram_ofs		= 0x2000,
811 	.mac_control		= (1 << 5),
812 	.control		= cpsw_control,
813 	.host_port_num		= 0,
814 	.version		= CPSW_CTRL_VERSION_2,
815 };
816 #endif
817 
818 #if ((defined(CONFIG_SPL_ETH_SUPPORT) || defined(CONFIG_SPL_USBETH_SUPPORT)) &&\
819 	defined(CONFIG_SPL_BUILD)) || \
820 	((defined(CONFIG_DRIVER_TI_CPSW) || \
821 	  defined(CONFIG_USB_ETHER) && defined(CONFIG_MUSB_GADGET)) && \
822 	 !defined(CONFIG_SPL_BUILD))
823 
824 /*
825  * This function will:
826  * Read the eFuse for MAC addresses, and set ethaddr/eth1addr/usbnet_devaddr
827  * in the environment
828  * Perform fixups to the PHY present on certain boards.  We only need this
829  * function in:
830  * - SPL with either CPSW or USB ethernet support
831  * - Full U-Boot, with either CPSW or USB ethernet
832  * Build in only these cases to avoid warnings about unused variables
833  * when we build an SPL that has neither option but full U-Boot will.
834  */
835 int board_eth_init(bd_t *bis)
836 {
837 	int rv, n = 0;
838 #if defined(CONFIG_USB_ETHER) && \
839 	(!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USBETH_SUPPORT))
840 	uint8_t mac_addr[6];
841 	uint32_t mac_hi, mac_lo;
842 
843 	/*
844 	 * use efuse mac address for USB ethernet as we know that
845 	 * both CPSW and USB ethernet will never be active at the same time
846 	 */
847 	mac_lo = readl(&cdev->macid0l);
848 	mac_hi = readl(&cdev->macid0h);
849 	mac_addr[0] = mac_hi & 0xFF;
850 	mac_addr[1] = (mac_hi & 0xFF00) >> 8;
851 	mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
852 	mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
853 	mac_addr[4] = mac_lo & 0xFF;
854 	mac_addr[5] = (mac_lo & 0xFF00) >> 8;
855 #endif
856 
857 
858 #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
859 	(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
860 
861 #ifdef CONFIG_DRIVER_TI_CPSW
862 	if (board_is_bone() || board_is_bone_lt() ||
863 	    board_is_idk()) {
864 		writel(MII_MODE_ENABLE, &cdev->miisel);
865 		cpsw_slaves[0].phy_if = cpsw_slaves[1].phy_if =
866 				PHY_INTERFACE_MODE_MII;
867 	} else if (board_is_icev2()) {
868 		writel(RMII_MODE_ENABLE | RMII_CHIPCKL_ENABLE, &cdev->miisel);
869 		cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RMII;
870 		cpsw_slaves[1].phy_if = PHY_INTERFACE_MODE_RMII;
871 		cpsw_slaves[0].phy_addr = 1;
872 		cpsw_slaves[1].phy_addr = 3;
873 	} else {
874 		writel((RGMII_MODE_ENABLE | RGMII_INT_DELAY), &cdev->miisel);
875 		cpsw_slaves[0].phy_if = cpsw_slaves[1].phy_if =
876 				PHY_INTERFACE_MODE_RGMII;
877 	}
878 
879 	rv = cpsw_register(&cpsw_data);
880 	if (rv < 0)
881 		printf("Error %d registering CPSW switch\n", rv);
882 	else
883 		n += rv;
884 #endif
885 
886 	/*
887 	 *
888 	 * CPSW RGMII Internal Delay Mode is not supported in all PVT
889 	 * operating points.  So we must set the TX clock delay feature
890 	 * in the AR8051 PHY.  Since we only support a single ethernet
891 	 * device in U-Boot, we only do this for the first instance.
892 	 */
893 #define AR8051_PHY_DEBUG_ADDR_REG	0x1d
894 #define AR8051_PHY_DEBUG_DATA_REG	0x1e
895 #define AR8051_DEBUG_RGMII_CLK_DLY_REG	0x5
896 #define AR8051_RGMII_TX_CLK_DLY		0x100
897 
898 	if (board_is_evm_sk() || board_is_gp_evm()) {
899 		const char *devname;
900 		devname = miiphy_get_current_dev();
901 
902 		miiphy_write(devname, 0x0, AR8051_PHY_DEBUG_ADDR_REG,
903 				AR8051_DEBUG_RGMII_CLK_DLY_REG);
904 		miiphy_write(devname, 0x0, AR8051_PHY_DEBUG_DATA_REG,
905 				AR8051_RGMII_TX_CLK_DLY);
906 	}
907 #endif
908 #if defined(CONFIG_USB_ETHER) && \
909 	(!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USBETH_SUPPORT))
910 	if (is_valid_ethaddr(mac_addr))
911 		eth_setenv_enetaddr("usbnet_devaddr", mac_addr);
912 
913 	rv = usb_eth_initialize(bis);
914 	if (rv < 0)
915 		printf("Error %d registering USB_ETHER\n", rv);
916 	else
917 		n += rv;
918 #endif
919 	return n;
920 }
921 #endif
922 
923 #endif /* CONFIG_DM_ETH */
924 
925 #ifdef CONFIG_SPL_LOAD_FIT
926 int board_fit_config_name_match(const char *name)
927 {
928 	if (board_is_gp_evm() && !strcmp(name, "am335x-evm"))
929 		return 0;
930 	else if (board_is_bone() && !strcmp(name, "am335x-bone"))
931 		return 0;
932 	else if (board_is_bone_lt() && !strcmp(name, "am335x-boneblack"))
933 		return 0;
934 	else if (board_is_evm_sk() && !strcmp(name, "am335x-evmsk"))
935 		return 0;
936 	else if (board_is_bbg1() && !strcmp(name, "am335x-bonegreen"))
937 		return 0;
938 	else if (board_is_icev2() && !strcmp(name, "am335x-icev2"))
939 		return 0;
940 	else
941 		return -1;
942 }
943 #endif
944 
945 #ifdef CONFIG_TI_SECURE_DEVICE
946 void board_fit_image_post_process(void **p_image, size_t *p_size)
947 {
948 	secure_boot_verify_image(p_image, p_size);
949 }
950 #endif
951 
952 #if !CONFIG_IS_ENABLED(OF_CONTROL)
953 static const struct omap_hsmmc_plat am335x_mmc0_platdata = {
954 	.base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE,
955 	.cfg.host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS | MMC_MODE_4BIT,
956 	.cfg.f_min = 400000,
957 	.cfg.f_max = 52000000,
958 	.cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195,
959 	.cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT,
960 };
961 
962 U_BOOT_DEVICE(am335x_mmc0) = {
963 	.name = "omap_hsmmc",
964 	.platdata = &am335x_mmc0_platdata,
965 };
966 
967 static const struct omap_hsmmc_plat am335x_mmc1_platdata = {
968 	.base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE,
969 	.cfg.host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS | MMC_MODE_8BIT,
970 	.cfg.f_min = 400000,
971 	.cfg.f_max = 52000000,
972 	.cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195,
973 	.cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT,
974 };
975 
976 U_BOOT_DEVICE(am335x_mmc1) = {
977 	.name = "omap_hsmmc",
978 	.platdata = &am335x_mmc1_platdata,
979 };
980 #endif
981