xref: /openbmc/u-boot/board/ti/am335x/board.c (revision ba4e159f)
1 /*
2  * board.c
3  *
4  * Board functions for TI AM335X based boards
5  *
6  * Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/
7  *
8  * SPDX-License-Identifier:	GPL-2.0+
9  */
10 
11 #include <common.h>
12 #include <errno.h>
13 #include <spl.h>
14 #include <serial.h>
15 #include <asm/arch/cpu.h>
16 #include <asm/arch/hardware.h>
17 #include <asm/arch/omap.h>
18 #include <asm/arch/ddr_defs.h>
19 #include <asm/arch/clock.h>
20 #include <asm/arch/clk_synthesizer.h>
21 #include <asm/arch/gpio.h>
22 #include <asm/arch/mmc_host_def.h>
23 #include <asm/arch/sys_proto.h>
24 #include <asm/arch/mem.h>
25 #include <asm/io.h>
26 #include <asm/emif.h>
27 #include <asm/gpio.h>
28 #include <asm/omap_sec_common.h>
29 #include <i2c.h>
30 #include <miiphy.h>
31 #include <cpsw.h>
32 #include <power/tps65217.h>
33 #include <power/tps65910.h>
34 #include <environment.h>
35 #include <watchdog.h>
36 #include <environment.h>
37 #include "../common/board_detect.h"
38 #include "board.h"
39 
40 DECLARE_GLOBAL_DATA_PTR;
41 
42 /* GPIO that controls power to DDR on EVM-SK */
43 #define GPIO_TO_PIN(bank, gpio)		(32 * (bank) + (gpio))
44 #define GPIO_DDR_VTT_EN		GPIO_TO_PIN(0, 7)
45 #define ICE_GPIO_DDR_VTT_EN	GPIO_TO_PIN(0, 18)
46 #define GPIO_PR1_MII_CTRL	GPIO_TO_PIN(3, 4)
47 #define GPIO_MUX_MII_CTRL	GPIO_TO_PIN(3, 10)
48 #define GPIO_FET_SWITCH_CTRL	GPIO_TO_PIN(0, 7)
49 #define GPIO_PHY_RESET		GPIO_TO_PIN(2, 5)
50 
51 #if defined(CONFIG_SPL_BUILD) || \
52 	(defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_DM_ETH))
53 static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
54 #endif
55 
56 /*
57  * Read header information from EEPROM into global structure.
58  */
59 static inline int __maybe_unused read_eeprom(void)
60 {
61 	return ti_i2c_eeprom_am_get(-1, CONFIG_SYS_I2C_EEPROM_ADDR);
62 }
63 
64 #ifndef CONFIG_DM_SERIAL
65 struct serial_device *default_serial_console(void)
66 {
67 	if (board_is_icev2())
68 		return &eserial4_device;
69 	else
70 		return &eserial1_device;
71 }
72 #endif
73 
74 #ifndef CONFIG_SKIP_LOWLEVEL_INIT
75 static const struct ddr_data ddr2_data = {
76 	.datardsratio0 = MT47H128M16RT25E_RD_DQS,
77 	.datafwsratio0 = MT47H128M16RT25E_PHY_FIFO_WE,
78 	.datawrsratio0 = MT47H128M16RT25E_PHY_WR_DATA,
79 };
80 
81 static const struct cmd_control ddr2_cmd_ctrl_data = {
82 	.cmd0csratio = MT47H128M16RT25E_RATIO,
83 
84 	.cmd1csratio = MT47H128M16RT25E_RATIO,
85 
86 	.cmd2csratio = MT47H128M16RT25E_RATIO,
87 };
88 
89 static const struct emif_regs ddr2_emif_reg_data = {
90 	.sdram_config = MT47H128M16RT25E_EMIF_SDCFG,
91 	.ref_ctrl = MT47H128M16RT25E_EMIF_SDREF,
92 	.sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1,
93 	.sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2,
94 	.sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3,
95 	.emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY,
96 };
97 
98 static const struct ddr_data ddr3_data = {
99 	.datardsratio0 = MT41J128MJT125_RD_DQS,
100 	.datawdsratio0 = MT41J128MJT125_WR_DQS,
101 	.datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE,
102 	.datawrsratio0 = MT41J128MJT125_PHY_WR_DATA,
103 };
104 
105 static const struct ddr_data ddr3_beagleblack_data = {
106 	.datardsratio0 = MT41K256M16HA125E_RD_DQS,
107 	.datawdsratio0 = MT41K256M16HA125E_WR_DQS,
108 	.datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE,
109 	.datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA,
110 };
111 
112 static const struct ddr_data ddr3_evm_data = {
113 	.datardsratio0 = MT41J512M8RH125_RD_DQS,
114 	.datawdsratio0 = MT41J512M8RH125_WR_DQS,
115 	.datafwsratio0 = MT41J512M8RH125_PHY_FIFO_WE,
116 	.datawrsratio0 = MT41J512M8RH125_PHY_WR_DATA,
117 };
118 
119 static const struct ddr_data ddr3_icev2_data = {
120 	.datardsratio0 = MT41J128MJT125_RD_DQS_400MHz,
121 	.datawdsratio0 = MT41J128MJT125_WR_DQS_400MHz,
122 	.datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE_400MHz,
123 	.datawrsratio0 = MT41J128MJT125_PHY_WR_DATA_400MHz,
124 };
125 
126 static const struct cmd_control ddr3_cmd_ctrl_data = {
127 	.cmd0csratio = MT41J128MJT125_RATIO,
128 	.cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT,
129 
130 	.cmd1csratio = MT41J128MJT125_RATIO,
131 	.cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT,
132 
133 	.cmd2csratio = MT41J128MJT125_RATIO,
134 	.cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT,
135 };
136 
137 static const struct cmd_control ddr3_beagleblack_cmd_ctrl_data = {
138 	.cmd0csratio = MT41K256M16HA125E_RATIO,
139 	.cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
140 
141 	.cmd1csratio = MT41K256M16HA125E_RATIO,
142 	.cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
143 
144 	.cmd2csratio = MT41K256M16HA125E_RATIO,
145 	.cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
146 };
147 
148 static const struct cmd_control ddr3_evm_cmd_ctrl_data = {
149 	.cmd0csratio = MT41J512M8RH125_RATIO,
150 	.cmd0iclkout = MT41J512M8RH125_INVERT_CLKOUT,
151 
152 	.cmd1csratio = MT41J512M8RH125_RATIO,
153 	.cmd1iclkout = MT41J512M8RH125_INVERT_CLKOUT,
154 
155 	.cmd2csratio = MT41J512M8RH125_RATIO,
156 	.cmd2iclkout = MT41J512M8RH125_INVERT_CLKOUT,
157 };
158 
159 static const struct cmd_control ddr3_icev2_cmd_ctrl_data = {
160 	.cmd0csratio = MT41J128MJT125_RATIO_400MHz,
161 	.cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
162 
163 	.cmd1csratio = MT41J128MJT125_RATIO_400MHz,
164 	.cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
165 
166 	.cmd2csratio = MT41J128MJT125_RATIO_400MHz,
167 	.cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
168 };
169 
170 static struct emif_regs ddr3_emif_reg_data = {
171 	.sdram_config = MT41J128MJT125_EMIF_SDCFG,
172 	.ref_ctrl = MT41J128MJT125_EMIF_SDREF,
173 	.sdram_tim1 = MT41J128MJT125_EMIF_TIM1,
174 	.sdram_tim2 = MT41J128MJT125_EMIF_TIM2,
175 	.sdram_tim3 = MT41J128MJT125_EMIF_TIM3,
176 	.zq_config = MT41J128MJT125_ZQ_CFG,
177 	.emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY |
178 				PHY_EN_DYN_PWRDN,
179 };
180 
181 static struct emif_regs ddr3_beagleblack_emif_reg_data = {
182 	.sdram_config = MT41K256M16HA125E_EMIF_SDCFG,
183 	.ref_ctrl = MT41K256M16HA125E_EMIF_SDREF,
184 	.sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1,
185 	.sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2,
186 	.sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3,
187 	.zq_config = MT41K256M16HA125E_ZQ_CFG,
188 	.emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY,
189 };
190 
191 static struct emif_regs ddr3_evm_emif_reg_data = {
192 	.sdram_config = MT41J512M8RH125_EMIF_SDCFG,
193 	.ref_ctrl = MT41J512M8RH125_EMIF_SDREF,
194 	.sdram_tim1 = MT41J512M8RH125_EMIF_TIM1,
195 	.sdram_tim2 = MT41J512M8RH125_EMIF_TIM2,
196 	.sdram_tim3 = MT41J512M8RH125_EMIF_TIM3,
197 	.zq_config = MT41J512M8RH125_ZQ_CFG,
198 	.emif_ddr_phy_ctlr_1 = MT41J512M8RH125_EMIF_READ_LATENCY |
199 				PHY_EN_DYN_PWRDN,
200 };
201 
202 static struct emif_regs ddr3_icev2_emif_reg_data = {
203 	.sdram_config = MT41J128MJT125_EMIF_SDCFG_400MHz,
204 	.ref_ctrl = MT41J128MJT125_EMIF_SDREF_400MHz,
205 	.sdram_tim1 = MT41J128MJT125_EMIF_TIM1_400MHz,
206 	.sdram_tim2 = MT41J128MJT125_EMIF_TIM2_400MHz,
207 	.sdram_tim3 = MT41J128MJT125_EMIF_TIM3_400MHz,
208 	.zq_config = MT41J128MJT125_ZQ_CFG_400MHz,
209 	.emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY_400MHz |
210 				PHY_EN_DYN_PWRDN,
211 };
212 
213 #ifdef CONFIG_SPL_OS_BOOT
214 int spl_start_uboot(void)
215 {
216 	/* break into full u-boot on 'c' */
217 	if (serial_tstc() && serial_getc() == 'c')
218 		return 1;
219 
220 #ifdef CONFIG_SPL_ENV_SUPPORT
221 	env_init();
222 	env_relocate_spec();
223 	if (getenv_yesno("boot_os") != 1)
224 		return 1;
225 #endif
226 
227 	return 0;
228 }
229 #endif
230 
231 #define OSC	(V_OSCK/1000000)
232 const struct dpll_params dpll_ddr = {
233 		266, OSC-1, 1, -1, -1, -1, -1};
234 const struct dpll_params dpll_ddr_evm_sk = {
235 		303, OSC-1, 1, -1, -1, -1, -1};
236 const struct dpll_params dpll_ddr_bone_black = {
237 		400, OSC-1, 1, -1, -1, -1, -1};
238 
239 void am33xx_spl_board_init(void)
240 {
241 	int mpu_vdd;
242 
243 	if (read_eeprom() < 0)
244 		puts("Could not get board ID.\n");
245 
246 	/* Get the frequency */
247 	dpll_mpu_opp100.m = am335x_get_efuse_mpu_max_freq(cdev);
248 
249 	if (board_is_bone() || board_is_bone_lt()) {
250 		/* BeagleBone PMIC Code */
251 		int usb_cur_lim;
252 
253 		/*
254 		 * Only perform PMIC configurations if board rev > A1
255 		 * on Beaglebone White
256 		 */
257 		if (board_is_bone() && !strncmp(board_ti_get_rev(), "00A1", 4))
258 			return;
259 
260 		if (i2c_probe(TPS65217_CHIP_PM))
261 			return;
262 
263 		/*
264 		 * On Beaglebone White we need to ensure we have AC power
265 		 * before increasing the frequency.
266 		 */
267 		if (board_is_bone()) {
268 			uchar pmic_status_reg;
269 			if (tps65217_reg_read(TPS65217_STATUS,
270 					      &pmic_status_reg))
271 				return;
272 			if (!(pmic_status_reg & TPS65217_PWR_SRC_AC_BITMASK)) {
273 				puts("No AC power, disabling frequency switch\n");
274 				return;
275 			}
276 		}
277 
278 		/*
279 		 * Override what we have detected since we know if we have
280 		 * a Beaglebone Black it supports 1GHz.
281 		 */
282 		if (board_is_bone_lt())
283 			dpll_mpu_opp100.m = MPUPLL_M_1000;
284 
285 		/*
286 		 * Increase USB current limit to 1300mA or 1800mA and set
287 		 * the MPU voltage controller as needed.
288 		 */
289 		if (dpll_mpu_opp100.m == MPUPLL_M_1000) {
290 			usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1800MA;
291 			mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV;
292 		} else {
293 			usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
294 			mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV;
295 		}
296 
297 		if (tps65217_reg_write(TPS65217_PROT_LEVEL_NONE,
298 				       TPS65217_POWER_PATH,
299 				       usb_cur_lim,
300 				       TPS65217_USB_INPUT_CUR_LIMIT_MASK))
301 			puts("tps65217_reg_write failure\n");
302 
303 		/* Set DCDC3 (CORE) voltage to 1.125V */
304 		if (tps65217_voltage_update(TPS65217_DEFDCDC3,
305 					    TPS65217_DCDC_VOLT_SEL_1125MV)) {
306 			puts("tps65217_voltage_update failure\n");
307 			return;
308 		}
309 
310 		/* Set CORE Frequencies to OPP100 */
311 		do_setup_dpll(&dpll_core_regs, &dpll_core_opp100);
312 
313 		/* Set DCDC2 (MPU) voltage */
314 		if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) {
315 			puts("tps65217_voltage_update failure\n");
316 			return;
317 		}
318 
319 		/*
320 		 * Set LDO3, LDO4 output voltage to 3.3V for Beaglebone.
321 		 * Set LDO3 to 1.8V and LDO4 to 3.3V for Beaglebone Black.
322 		 */
323 		if (board_is_bone()) {
324 			if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
325 					       TPS65217_DEFLS1,
326 					       TPS65217_LDO_VOLTAGE_OUT_3_3,
327 					       TPS65217_LDO_MASK))
328 				puts("tps65217_reg_write failure\n");
329 		} else {
330 			if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
331 					       TPS65217_DEFLS1,
332 					       TPS65217_LDO_VOLTAGE_OUT_1_8,
333 					       TPS65217_LDO_MASK))
334 				puts("tps65217_reg_write failure\n");
335 		}
336 
337 		if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
338 				       TPS65217_DEFLS2,
339 				       TPS65217_LDO_VOLTAGE_OUT_3_3,
340 				       TPS65217_LDO_MASK))
341 			puts("tps65217_reg_write failure\n");
342 	} else {
343 		int sil_rev;
344 
345 		/*
346 		 * The GP EVM, IDK and EVM SK use a TPS65910 PMIC.  For all
347 		 * MPU frequencies we support we use a CORE voltage of
348 		 * 1.1375V.  For MPU voltage we need to switch based on
349 		 * the frequency we are running at.
350 		 */
351 		if (i2c_probe(TPS65910_CTRL_I2C_ADDR))
352 			return;
353 
354 		/*
355 		 * Depending on MPU clock and PG we will need a different
356 		 * VDD to drive at that speed.
357 		 */
358 		sil_rev = readl(&cdev->deviceid) >> 28;
359 		mpu_vdd = am335x_get_tps65910_mpu_vdd(sil_rev,
360 						      dpll_mpu_opp100.m);
361 
362 		/* Tell the TPS65910 to use i2c */
363 		tps65910_set_i2c_control();
364 
365 		/* First update MPU voltage. */
366 		if (tps65910_voltage_update(MPU, mpu_vdd))
367 			return;
368 
369 		/* Second, update the CORE voltage. */
370 		if (tps65910_voltage_update(CORE, TPS65910_OP_REG_SEL_1_1_3))
371 			return;
372 
373 		/* Set CORE Frequencies to OPP100 */
374 		do_setup_dpll(&dpll_core_regs, &dpll_core_opp100);
375 	}
376 
377 	/* Set MPU Frequency to what we detected now that voltages are set */
378 	do_setup_dpll(&dpll_mpu_regs, &dpll_mpu_opp100);
379 }
380 
381 const struct dpll_params *get_dpll_ddr_params(void)
382 {
383 	enable_i2c0_pin_mux();
384 	i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED, CONFIG_SYS_OMAP24_I2C_SLAVE);
385 	if (read_eeprom() < 0)
386 		puts("Could not get board ID.\n");
387 
388 	if (board_is_evm_sk())
389 		return &dpll_ddr_evm_sk;
390 	else if (board_is_bone_lt() || board_is_icev2())
391 		return &dpll_ddr_bone_black;
392 	else if (board_is_evm_15_or_later())
393 		return &dpll_ddr_evm_sk;
394 	else
395 		return &dpll_ddr;
396 }
397 
398 void set_uart_mux_conf(void)
399 {
400 #if CONFIG_CONS_INDEX == 1
401 	enable_uart0_pin_mux();
402 #elif CONFIG_CONS_INDEX == 2
403 	enable_uart1_pin_mux();
404 #elif CONFIG_CONS_INDEX == 3
405 	enable_uart2_pin_mux();
406 #elif CONFIG_CONS_INDEX == 4
407 	enable_uart3_pin_mux();
408 #elif CONFIG_CONS_INDEX == 5
409 	enable_uart4_pin_mux();
410 #elif CONFIG_CONS_INDEX == 6
411 	enable_uart5_pin_mux();
412 #endif
413 }
414 
415 void set_mux_conf_regs(void)
416 {
417 	if (read_eeprom() < 0)
418 		puts("Could not get board ID.\n");
419 
420 	enable_board_pin_mux();
421 }
422 
423 const struct ctrl_ioregs ioregs_evmsk = {
424 	.cm0ioctl		= MT41J128MJT125_IOCTRL_VALUE,
425 	.cm1ioctl		= MT41J128MJT125_IOCTRL_VALUE,
426 	.cm2ioctl		= MT41J128MJT125_IOCTRL_VALUE,
427 	.dt0ioctl		= MT41J128MJT125_IOCTRL_VALUE,
428 	.dt1ioctl		= MT41J128MJT125_IOCTRL_VALUE,
429 };
430 
431 const struct ctrl_ioregs ioregs_bonelt = {
432 	.cm0ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
433 	.cm1ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
434 	.cm2ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
435 	.dt0ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
436 	.dt1ioctl		= MT41K256M16HA125E_IOCTRL_VALUE,
437 };
438 
439 const struct ctrl_ioregs ioregs_evm15 = {
440 	.cm0ioctl		= MT41J512M8RH125_IOCTRL_VALUE,
441 	.cm1ioctl		= MT41J512M8RH125_IOCTRL_VALUE,
442 	.cm2ioctl		= MT41J512M8RH125_IOCTRL_VALUE,
443 	.dt0ioctl		= MT41J512M8RH125_IOCTRL_VALUE,
444 	.dt1ioctl		= MT41J512M8RH125_IOCTRL_VALUE,
445 };
446 
447 const struct ctrl_ioregs ioregs = {
448 	.cm0ioctl		= MT47H128M16RT25E_IOCTRL_VALUE,
449 	.cm1ioctl		= MT47H128M16RT25E_IOCTRL_VALUE,
450 	.cm2ioctl		= MT47H128M16RT25E_IOCTRL_VALUE,
451 	.dt0ioctl		= MT47H128M16RT25E_IOCTRL_VALUE,
452 	.dt1ioctl		= MT47H128M16RT25E_IOCTRL_VALUE,
453 };
454 
455 void sdram_init(void)
456 {
457 	if (read_eeprom() < 0)
458 		puts("Could not get board ID.\n");
459 
460 	if (board_is_evm_sk()) {
461 		/*
462 		 * EVM SK 1.2A and later use gpio0_7 to enable DDR3.
463 		 * This is safe enough to do on older revs.
464 		 */
465 		gpio_request(GPIO_DDR_VTT_EN, "ddr_vtt_en");
466 		gpio_direction_output(GPIO_DDR_VTT_EN, 1);
467 	}
468 
469 	if (board_is_icev2()) {
470 		gpio_request(ICE_GPIO_DDR_VTT_EN, "ddr_vtt_en");
471 		gpio_direction_output(ICE_GPIO_DDR_VTT_EN, 1);
472 	}
473 
474 	if (board_is_evm_sk())
475 		config_ddr(303, &ioregs_evmsk, &ddr3_data,
476 			   &ddr3_cmd_ctrl_data, &ddr3_emif_reg_data, 0);
477 	else if (board_is_bone_lt())
478 		config_ddr(400, &ioregs_bonelt,
479 			   &ddr3_beagleblack_data,
480 			   &ddr3_beagleblack_cmd_ctrl_data,
481 			   &ddr3_beagleblack_emif_reg_data, 0);
482 	else if (board_is_evm_15_or_later())
483 		config_ddr(303, &ioregs_evm15, &ddr3_evm_data,
484 			   &ddr3_evm_cmd_ctrl_data, &ddr3_evm_emif_reg_data, 0);
485 	else if (board_is_icev2())
486 		config_ddr(400, &ioregs_evmsk, &ddr3_icev2_data,
487 			   &ddr3_icev2_cmd_ctrl_data, &ddr3_icev2_emif_reg_data,
488 			   0);
489 	else
490 		config_ddr(266, &ioregs, &ddr2_data,
491 			   &ddr2_cmd_ctrl_data, &ddr2_emif_reg_data, 0);
492 }
493 #endif
494 
495 #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
496 	(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
497 static void request_and_set_gpio(int gpio, char *name)
498 {
499 	int ret;
500 
501 	ret = gpio_request(gpio, name);
502 	if (ret < 0) {
503 		printf("%s: Unable to request %s\n", __func__, name);
504 		return;
505 	}
506 
507 	ret = gpio_direction_output(gpio, 0);
508 	if (ret < 0) {
509 		printf("%s: Unable to set %s  as output\n", __func__, name);
510 		goto err_free_gpio;
511 	}
512 
513 	gpio_set_value(gpio, 1);
514 
515 	return;
516 
517 err_free_gpio:
518 	gpio_free(gpio);
519 }
520 
521 #define REQUEST_AND_SET_GPIO(N)	request_and_set_gpio(N, #N);
522 
523 /**
524  * RMII mode on ICEv2 board needs 50MHz clock. Given the clock
525  * synthesizer With a capacitor of 18pF, and 25MHz input clock cycle
526  * PLL1 gives an output of 100MHz. So, configuring the div2/3 as 2 to
527  * give 50MHz output for Eth0 and 1.
528  */
529 static struct clk_synth cdce913_data = {
530 	.id = 0x81,
531 	.capacitor = 0x90,
532 	.mux = 0x6d,
533 	.pdiv2 = 0x2,
534 	.pdiv3 = 0x2,
535 };
536 #endif
537 
538 /*
539  * Basic board specific setup.  Pinmux has been handled already.
540  */
541 int board_init(void)
542 {
543 #if defined(CONFIG_HW_WATCHDOG)
544 	hw_watchdog_init();
545 #endif
546 
547 	gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
548 #if defined(CONFIG_NOR) || defined(CONFIG_NAND)
549 	gpmc_init();
550 #endif
551 #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD))
552 	int rv;
553 
554 	if (board_is_icev2()) {
555 		REQUEST_AND_SET_GPIO(GPIO_PR1_MII_CTRL);
556 		REQUEST_AND_SET_GPIO(GPIO_MUX_MII_CTRL);
557 		REQUEST_AND_SET_GPIO(GPIO_FET_SWITCH_CTRL);
558 		REQUEST_AND_SET_GPIO(GPIO_PHY_RESET);
559 
560 		rv = setup_clock_synthesizer(&cdce913_data);
561 		if (rv) {
562 			printf("Clock synthesizer setup failed %d\n", rv);
563 			return rv;
564 		}
565 	}
566 #endif
567 
568 	return 0;
569 }
570 
571 #ifdef CONFIG_BOARD_LATE_INIT
572 int board_late_init(void)
573 {
574 #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
575 	int rc;
576 	char *name = NULL;
577 
578 	rc = read_eeprom();
579 	if (rc)
580 		puts("Could not get board ID.\n");
581 
582 	if (board_is_bbg1())
583 		name = "BBG1";
584 	set_board_info_env(name);
585 #endif
586 
587 	return 0;
588 }
589 #endif
590 
591 #ifndef CONFIG_DM_ETH
592 
593 #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
594 	(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
595 static void cpsw_control(int enabled)
596 {
597 	/* VTP can be added here */
598 
599 	return;
600 }
601 
602 static struct cpsw_slave_data cpsw_slaves[] = {
603 	{
604 		.slave_reg_ofs	= 0x208,
605 		.sliver_reg_ofs	= 0xd80,
606 		.phy_addr	= 0,
607 	},
608 	{
609 		.slave_reg_ofs	= 0x308,
610 		.sliver_reg_ofs	= 0xdc0,
611 		.phy_addr	= 1,
612 	},
613 };
614 
615 static struct cpsw_platform_data cpsw_data = {
616 	.mdio_base		= CPSW_MDIO_BASE,
617 	.cpsw_base		= CPSW_BASE,
618 	.mdio_div		= 0xff,
619 	.channels		= 8,
620 	.cpdma_reg_ofs		= 0x800,
621 	.slaves			= 1,
622 	.slave_data		= cpsw_slaves,
623 	.ale_reg_ofs		= 0xd00,
624 	.ale_entries		= 1024,
625 	.host_port_reg_ofs	= 0x108,
626 	.hw_stats_reg_ofs	= 0x900,
627 	.bd_ram_ofs		= 0x2000,
628 	.mac_control		= (1 << 5),
629 	.control		= cpsw_control,
630 	.host_port_num		= 0,
631 	.version		= CPSW_CTRL_VERSION_2,
632 };
633 #endif
634 
635 #if ((defined(CONFIG_SPL_ETH_SUPPORT) || defined(CONFIG_SPL_USBETH_SUPPORT)) &&\
636 	defined(CONFIG_SPL_BUILD)) || \
637 	((defined(CONFIG_DRIVER_TI_CPSW) || \
638 	  defined(CONFIG_USB_ETHER) && defined(CONFIG_MUSB_GADGET)) && \
639 	 !defined(CONFIG_SPL_BUILD))
640 
641 /*
642  * This function will:
643  * Read the eFuse for MAC addresses, and set ethaddr/eth1addr/usbnet_devaddr
644  * in the environment
645  * Perform fixups to the PHY present on certain boards.  We only need this
646  * function in:
647  * - SPL with either CPSW or USB ethernet support
648  * - Full U-Boot, with either CPSW or USB ethernet
649  * Build in only these cases to avoid warnings about unused variables
650  * when we build an SPL that has neither option but full U-Boot will.
651  */
652 int board_eth_init(bd_t *bis)
653 {
654 	int rv, n = 0;
655 	uint8_t mac_addr[6];
656 	uint32_t mac_hi, mac_lo;
657 	__maybe_unused struct ti_am_eeprom *header;
658 
659 	/* try reading mac address from efuse */
660 	mac_lo = readl(&cdev->macid0l);
661 	mac_hi = readl(&cdev->macid0h);
662 	mac_addr[0] = mac_hi & 0xFF;
663 	mac_addr[1] = (mac_hi & 0xFF00) >> 8;
664 	mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
665 	mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
666 	mac_addr[4] = mac_lo & 0xFF;
667 	mac_addr[5] = (mac_lo & 0xFF00) >> 8;
668 
669 #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
670 	(defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
671 	if (!getenv("ethaddr")) {
672 		printf("<ethaddr> not set. Validating first E-fuse MAC\n");
673 
674 		if (is_valid_ethaddr(mac_addr))
675 			eth_setenv_enetaddr("ethaddr", mac_addr);
676 	}
677 
678 #ifdef CONFIG_DRIVER_TI_CPSW
679 
680 	mac_lo = readl(&cdev->macid1l);
681 	mac_hi = readl(&cdev->macid1h);
682 	mac_addr[0] = mac_hi & 0xFF;
683 	mac_addr[1] = (mac_hi & 0xFF00) >> 8;
684 	mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
685 	mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
686 	mac_addr[4] = mac_lo & 0xFF;
687 	mac_addr[5] = (mac_lo & 0xFF00) >> 8;
688 
689 	if (!getenv("eth1addr")) {
690 		if (is_valid_ethaddr(mac_addr))
691 			eth_setenv_enetaddr("eth1addr", mac_addr);
692 	}
693 
694 	if (read_eeprom() < 0)
695 		puts("Could not get board ID.\n");
696 
697 	if (board_is_bone() || board_is_bone_lt() ||
698 	    board_is_idk()) {
699 		writel(MII_MODE_ENABLE, &cdev->miisel);
700 		cpsw_slaves[0].phy_if = cpsw_slaves[1].phy_if =
701 				PHY_INTERFACE_MODE_MII;
702 	} else if (board_is_icev2()) {
703 		writel(RMII_MODE_ENABLE | RMII_CHIPCKL_ENABLE, &cdev->miisel);
704 		cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RMII;
705 		cpsw_slaves[1].phy_if = PHY_INTERFACE_MODE_RMII;
706 		cpsw_slaves[0].phy_addr = 1;
707 		cpsw_slaves[1].phy_addr = 3;
708 	} else {
709 		writel((RGMII_MODE_ENABLE | RGMII_INT_DELAY), &cdev->miisel);
710 		cpsw_slaves[0].phy_if = cpsw_slaves[1].phy_if =
711 				PHY_INTERFACE_MODE_RGMII;
712 	}
713 
714 	rv = cpsw_register(&cpsw_data);
715 	if (rv < 0)
716 		printf("Error %d registering CPSW switch\n", rv);
717 	else
718 		n += rv;
719 #endif
720 
721 	/*
722 	 *
723 	 * CPSW RGMII Internal Delay Mode is not supported in all PVT
724 	 * operating points.  So we must set the TX clock delay feature
725 	 * in the AR8051 PHY.  Since we only support a single ethernet
726 	 * device in U-Boot, we only do this for the first instance.
727 	 */
728 #define AR8051_PHY_DEBUG_ADDR_REG	0x1d
729 #define AR8051_PHY_DEBUG_DATA_REG	0x1e
730 #define AR8051_DEBUG_RGMII_CLK_DLY_REG	0x5
731 #define AR8051_RGMII_TX_CLK_DLY		0x100
732 
733 	if (board_is_evm_sk() || board_is_gp_evm()) {
734 		const char *devname;
735 		devname = miiphy_get_current_dev();
736 
737 		miiphy_write(devname, 0x0, AR8051_PHY_DEBUG_ADDR_REG,
738 				AR8051_DEBUG_RGMII_CLK_DLY_REG);
739 		miiphy_write(devname, 0x0, AR8051_PHY_DEBUG_DATA_REG,
740 				AR8051_RGMII_TX_CLK_DLY);
741 	}
742 #endif
743 #if defined(CONFIG_USB_ETHER) && \
744 	(!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USBETH_SUPPORT))
745 	if (is_valid_ethaddr(mac_addr))
746 		eth_setenv_enetaddr("usbnet_devaddr", mac_addr);
747 
748 	rv = usb_eth_initialize(bis);
749 	if (rv < 0)
750 		printf("Error %d registering USB_ETHER\n", rv);
751 	else
752 		n += rv;
753 #endif
754 	return n;
755 }
756 #endif
757 
758 #endif /* CONFIG_DM_ETH */
759 
760 #ifdef CONFIG_SPL_LOAD_FIT
761 int board_fit_config_name_match(const char *name)
762 {
763 	if (board_is_gp_evm() && !strcmp(name, "am335x-evm"))
764 		return 0;
765 	else if (board_is_bone() && !strcmp(name, "am335x-bone"))
766 		return 0;
767 	else if (board_is_bone_lt() && !strcmp(name, "am335x-boneblack"))
768 		return 0;
769 	else if (board_is_evm_sk() && !strcmp(name, "am335x-evmsk"))
770 		return 0;
771 	else if (board_is_bbg1() && !strcmp(name, "am335x-bonegreen"))
772 		return 0;
773 	else if (board_is_icev2() && !strcmp(name, "am335x-icev2"))
774 		return 0;
775 	else
776 		return -1;
777 }
778 #endif
779 
780 #ifdef CONFIG_TI_SECURE_DEVICE
781 void board_fit_image_post_process(void **p_image, size_t *p_size)
782 {
783 	secure_boot_verify_image(p_image, p_size);
784 }
785 #endif
786