xref: /openbmc/u-boot/board/samsung/odroid/odroid.c (revision e77e65df)
1 /*
2  * Copyright (C) 2014 Samsung Electronics
3  * Przemyslaw Marczak <p.marczak@samsung.com>
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  */
7 
8 #include <common.h>
9 #include <asm/arch/pinmux.h>
10 #include <asm/arch/power.h>
11 #include <asm/arch/clock.h>
12 #include <asm/arch/gpio.h>
13 #include <asm/gpio.h>
14 #include <asm/arch/cpu.h>
15 #include <power/pmic.h>
16 #include <power/max77686_pmic.h>
17 #include <errno.h>
18 #include <mmc.h>
19 #include <usb.h>
20 #include <usb/s3c_udc.h>
21 #include <samsung/misc.h>
22 #include "setup.h"
23 
24 DECLARE_GLOBAL_DATA_PTR;
25 
26 #ifdef CONFIG_BOARD_TYPES
27 /* Odroid board types */
28 enum {
29 	ODROID_TYPE_U3,
30 	ODROID_TYPE_X2,
31 	ODROID_TYPES,
32 };
33 
34 void set_board_type(void)
35 {
36 	/* Set GPA1 pin 1 to HI - enable XCL205 output */
37 	writel(XCL205_EN_GPIO_CON_CFG, XCL205_EN_GPIO_CON);
38 	writel(XCL205_EN_GPIO_DAT_CFG, XCL205_EN_GPIO_CON + 0x4);
39 	writel(XCL205_EN_GPIO_PUD_CFG, XCL205_EN_GPIO_CON + 0x8);
40 	writel(XCL205_EN_GPIO_DRV_CFG, XCL205_EN_GPIO_CON + 0xc);
41 
42 	/* Set GPC1 pin 2 to IN - check XCL205 output state */
43 	writel(XCL205_STATE_GPIO_CON_CFG, XCL205_STATE_GPIO_CON);
44 	writel(XCL205_STATE_GPIO_PUD_CFG, XCL205_STATE_GPIO_CON + 0x8);
45 
46 	/* XCL205 - needs some latch time */
47 	sdelay(200000);
48 
49 	/* Check GPC1 pin2 - LED supplied by XCL205 - X2 only */
50 	if (readl(XCL205_STATE_GPIO_DAT) & (1 << XCL205_STATE_GPIO_PIN))
51 		gd->board_type = ODROID_TYPE_X2;
52 	else
53 		gd->board_type = ODROID_TYPE_U3;
54 }
55 
56 const char *get_board_type(void)
57 {
58 	const char *board_type[] = {"u3", "x2"};
59 
60 	return board_type[gd->board_type];
61 }
62 #endif
63 
64 #ifdef CONFIG_SET_DFU_ALT_INFO
65 char *get_dfu_alt_system(char *interface, char *devstr)
66 {
67 	return getenv("dfu_alt_system");
68 }
69 
70 char *get_dfu_alt_boot(char *interface, char *devstr)
71 {
72 	struct mmc *mmc;
73 	char *alt_boot;
74 	int dev_num;
75 
76 	dev_num = simple_strtoul(devstr, NULL, 10);
77 
78 	mmc = find_mmc_device(dev_num);
79 	if (!mmc)
80 		return NULL;
81 
82 	if (mmc_init(mmc))
83 		return NULL;
84 
85 	alt_boot = IS_SD(mmc) ? CONFIG_DFU_ALT_BOOT_SD :
86 				CONFIG_DFU_ALT_BOOT_EMMC;
87 
88 	return alt_boot;
89 }
90 #endif
91 
92 static void board_clock_init(void)
93 {
94 	unsigned int set, clr, clr_src_cpu, clr_pll_con0, clr_src_dmc;
95 	struct exynos4x12_clock *clk = (struct exynos4x12_clock *)
96 						samsung_get_base_clock();
97 
98 	/*
99 	 * CMU_CPU clocks src to MPLL
100 	 * Bit values:                 0  ; 1
101 	 * MUX_APLL_SEL:        FIN_PLL   ; FOUT_APLL
102 	 * MUX_CORE_SEL:        MOUT_APLL ; SCLK_MPLL
103 	 * MUX_HPM_SEL:         MOUT_APLL ; SCLK_MPLL_USER_C
104 	 * MUX_MPLL_USER_SEL_C: FIN_PLL   ; SCLK_MPLL
105 	*/
106 	clr_src_cpu = MUX_APLL_SEL(1) | MUX_CORE_SEL(1) |
107 		      MUX_HPM_SEL(1) | MUX_MPLL_USER_SEL_C(1);
108 	set = MUX_APLL_SEL(0) | MUX_CORE_SEL(1) | MUX_HPM_SEL(1) |
109 	      MUX_MPLL_USER_SEL_C(1);
110 
111 	clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
112 
113 	/* Wait for mux change */
114 	while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
115 		continue;
116 
117 	/* Set APLL to 1000MHz */
118 	clr_pll_con0 = SDIV(7) | PDIV(63) | MDIV(1023) | FSEL(1);
119 	set = SDIV(0) | PDIV(3) | MDIV(125) | FSEL(1);
120 
121 	clrsetbits_le32(&clk->apll_con0, clr_pll_con0, set);
122 
123 	/* Wait for PLL to be locked */
124 	while (!(readl(&clk->apll_con0) & PLL_LOCKED_BIT))
125 		continue;
126 
127 	/* Set CMU_CPU clocks src to APLL */
128 	set = MUX_APLL_SEL(1) | MUX_CORE_SEL(0) | MUX_HPM_SEL(0) |
129 	      MUX_MPLL_USER_SEL_C(1);
130 	clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
131 
132 	/* Wait for mux change */
133 	while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
134 		continue;
135 
136 	set = CORE_RATIO(0) | COREM0_RATIO(2) | COREM1_RATIO(5) |
137 	      PERIPH_RATIO(0) | ATB_RATIO(4) | PCLK_DBG_RATIO(1) |
138 	      APLL_RATIO(0) | CORE2_RATIO(0);
139 	/*
140 	 * Set dividers for MOUTcore = 1000 MHz
141 	 * coreout =      MOUT / (ratio + 1) = 1000 MHz (0)
142 	 * corem0 =     armclk / (ratio + 1) = 333 MHz (2)
143 	 * corem1 =     armclk / (ratio + 1) = 166 MHz (5)
144 	 * periph =     armclk / (ratio + 1) = 1000 MHz (0)
145 	 * atbout =       MOUT / (ratio + 1) = 200 MHz (4)
146 	 * pclkdbgout = atbout / (ratio + 1) = 100 MHz (1)
147 	 * sclkapll = MOUTapll / (ratio + 1) = 1000 MHz (0)
148 	 * core2out = core_out / (ratio + 1) = 1000 MHz (0) (armclk)
149 	*/
150 	clr = CORE_RATIO(7) | COREM0_RATIO(7) | COREM1_RATIO(7) |
151 	      PERIPH_RATIO(7) | ATB_RATIO(7) | PCLK_DBG_RATIO(7) |
152 	      APLL_RATIO(7) | CORE2_RATIO(7);
153 
154 	clrsetbits_le32(&clk->div_cpu0, clr, set);
155 
156 	/* Wait for divider ready status */
157 	while (readl(&clk->div_stat_cpu0) & DIV_STAT_CPU0_CHANGING)
158 		continue;
159 
160 	/*
161 	 * For MOUThpm = 1000 MHz (MOUTapll)
162 	 * doutcopy = MOUThpm / (ratio + 1) = 200 (4)
163 	 * sclkhpm = doutcopy / (ratio + 1) = 200 (4)
164 	 * cores_out = armclk / (ratio + 1) = 200 (4)
165 	 */
166 	clr = COPY_RATIO(7) | HPM_RATIO(7) | CORES_RATIO(7);
167 	set = COPY_RATIO(4) | HPM_RATIO(4) | CORES_RATIO(4);
168 
169 	clrsetbits_le32(&clk->div_cpu1, clr, set);
170 
171 	/* Wait for divider ready status */
172 	while (readl(&clk->div_stat_cpu1) & DIV_STAT_CPU1_CHANGING)
173 		continue;
174 
175 	/*
176 	 * Set CMU_DMC clocks src to APLL
177 	 * Bit values:             0  ; 1
178 	 * MUX_C2C_SEL:      SCLKMPLL ; SCLKAPLL
179 	 * MUX_DMC_BUS_SEL:  SCLKMPLL ; SCLKAPLL
180 	 * MUX_DPHY_SEL:     SCLKMPLL ; SCLKAPLL
181 	 * MUX_MPLL_SEL:     FINPLL   ; MOUT_MPLL_FOUT
182 	 * MUX_PWI_SEL:      0110 (MPLL); 0111 (EPLL); 1000 (VPLL); 0(XXTI)
183 	 * MUX_G2D_ACP0_SEL: SCLKMPLL ; SCLKAPLL
184 	 * MUX_G2D_ACP1_SEL: SCLKEPLL ; SCLKVPLL
185 	 * MUX_G2D_ACP_SEL:  OUT_ACP0 ; OUT_ACP1
186 	*/
187 	clr_src_dmc = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) |
188 		      MUX_DPHY_SEL(1) | MUX_MPLL_SEL(1) |
189 		      MUX_PWI_SEL(15) | MUX_G2D_ACP0_SEL(1) |
190 		      MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
191 	set = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) | MUX_DPHY_SEL(1) |
192 	      MUX_MPLL_SEL(0) | MUX_PWI_SEL(0) | MUX_G2D_ACP0_SEL(1) |
193 	      MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
194 
195 	clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
196 
197 	/* Wait for mux change */
198 	while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
199 		continue;
200 
201 	/* Set MPLL to 800MHz */
202 	set = SDIV(0) | PDIV(3) | MDIV(100) | FSEL(0) | PLL_ENABLE(1);
203 
204 	clrsetbits_le32(&clk->mpll_con0, clr_pll_con0, set);
205 
206 	/* Wait for PLL to be locked */
207 	while (!(readl(&clk->mpll_con0) & PLL_LOCKED_BIT))
208 		continue;
209 
210 	/* Switch back CMU_DMC mux */
211 	set = MUX_C2C_SEL(0) | MUX_DMC_BUS_SEL(0) | MUX_DPHY_SEL(0) |
212 	      MUX_MPLL_SEL(1) | MUX_PWI_SEL(8) | MUX_G2D_ACP0_SEL(0) |
213 	      MUX_G2D_ACP1_SEL(0) | MUX_G2D_ACP_SEL(0);
214 
215 	clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
216 
217 	/* Wait for mux change */
218 	while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
219 		continue;
220 
221 	/* CLK_DIV_DMC0 */
222 	clr = ACP_RATIO(7) | ACP_PCLK_RATIO(7) | DPHY_RATIO(7) |
223 	      DMC_RATIO(7) | DMCD_RATIO(7) | DMCP_RATIO(7);
224 	/*
225 	 * For:
226 	 * MOUTdmc = 800 MHz
227 	 * MOUTdphy = 800 MHz
228 	 *
229 	 * aclk_acp = MOUTdmc / (ratio + 1) = 200 (3)
230 	 * pclk_acp = aclk_acp / (ratio + 1) = 100 (1)
231 	 * sclk_dphy = MOUTdphy / (ratio + 1) = 400 (1)
232 	 * sclk_dmc = MOUTdmc / (ratio + 1) = 400 (1)
233 	 * aclk_dmcd = sclk_dmc / (ratio + 1) = 200 (1)
234 	 * aclk_dmcp = aclk_dmcd / (ratio + 1) = 100 (1)
235 	 */
236 	set = ACP_RATIO(3) | ACP_PCLK_RATIO(1) | DPHY_RATIO(1) |
237 	      DMC_RATIO(1) | DMCD_RATIO(1) | DMCP_RATIO(1);
238 
239 	clrsetbits_le32(&clk->div_dmc0, clr, set);
240 
241 	/* Wait for divider ready status */
242 	while (readl(&clk->div_stat_dmc0) & DIV_STAT_DMC0_CHANGING)
243 		continue;
244 
245 	/* CLK_DIV_DMC1 */
246 	clr = G2D_ACP_RATIO(15) | C2C_RATIO(7) | PWI_RATIO(15) |
247 	      C2C_ACLK_RATIO(7) | DVSEM_RATIO(127) | DPM_RATIO(127);
248 	/*
249 	 * For:
250 	 * MOUTg2d = 800 MHz
251 	 * MOUTc2c = 800 Mhz
252 	 * MOUTpwi = 108 MHz
253 	 *
254 	 * sclk_g2d_acp = MOUTg2d / (ratio + 1) = 200 (3)
255 	 * sclk_c2c = MOUTc2c / (ratio + 1) = 400 (1)
256 	 * aclk_c2c = sclk_c2c / (ratio + 1) = 200 (1)
257 	 * sclk_pwi = MOUTpwi / (ratio + 1) = 18 (5)
258 	 */
259 	set = G2D_ACP_RATIO(3) | C2C_RATIO(1) | PWI_RATIO(5) |
260 	      C2C_ACLK_RATIO(1) | DVSEM_RATIO(1) | DPM_RATIO(1);
261 
262 	clrsetbits_le32(&clk->div_dmc1, clr, set);
263 
264 	/* Wait for divider ready status */
265 	while (readl(&clk->div_stat_dmc1) & DIV_STAT_DMC1_CHANGING)
266 		continue;
267 
268 	/* CLK_SRC_PERIL0 */
269 	clr = UART0_SEL(15) | UART1_SEL(15) | UART2_SEL(15) |
270 	      UART3_SEL(15) | UART4_SEL(15);
271 	/*
272 	 * Set CLK_SRC_PERIL0 clocks src to MPLL
273 	 * src values: 0(XXTI); 1(XusbXTI); 2(SCLK_HDMI24M); 3(SCLK_USBPHY0);
274 	 *             5(SCLK_HDMIPHY); 6(SCLK_MPLL_USER_T); 7(SCLK_EPLL);
275 	 *             8(SCLK_VPLL)
276 	 *
277 	 * Set all to SCLK_MPLL_USER_T
278 	 */
279 	set = UART0_SEL(6) | UART1_SEL(6) | UART2_SEL(6) | UART3_SEL(6) |
280 	      UART4_SEL(6);
281 
282 	clrsetbits_le32(&clk->src_peril0, clr, set);
283 
284 	/* CLK_DIV_PERIL0 */
285 	clr = UART0_RATIO(15) | UART1_RATIO(15) | UART2_RATIO(15) |
286 	      UART3_RATIO(15) | UART4_RATIO(15);
287 	/*
288 	 * For MOUTuart0-4: 800MHz
289 	 *
290 	 * SCLK_UARTx = MOUTuartX / (ratio + 1) = 100 (7)
291 	*/
292 	set = UART0_RATIO(7) | UART1_RATIO(7) | UART2_RATIO(7) |
293 	      UART3_RATIO(7) | UART4_RATIO(7);
294 
295 	clrsetbits_le32(&clk->div_peril0, clr, set);
296 
297 	while (readl(&clk->div_stat_peril0) & DIV_STAT_PERIL0_CHANGING)
298 		continue;
299 
300 	/* CLK_DIV_FSYS1 */
301 	clr = MMC0_RATIO(15) | MMC0_PRE_RATIO(255) | MMC1_RATIO(15) |
302 	      MMC1_PRE_RATIO(255);
303 	/*
304 	 * For MOUTmmc0-3 = 800 MHz (MPLL)
305 	 *
306 	 * DOUTmmc1 = MOUTmmc1 / (ratio + 1) = 100 (7)
307 	 * sclk_mmc1 = DOUTmmc1 / (ratio + 1) = 50 (1)
308 	 * DOUTmmc0 = MOUTmmc0 / (ratio + 1) = 100 (7)
309 	 * sclk_mmc0 = DOUTmmc0 / (ratio + 1) = 50 (1)
310 	*/
311 	set = MMC0_RATIO(7) | MMC0_PRE_RATIO(1) | MMC1_RATIO(7) |
312 	      MMC1_PRE_RATIO(1);
313 
314 	clrsetbits_le32(&clk->div_fsys1, clr, set);
315 
316 	/* Wait for divider ready status */
317 	while (readl(&clk->div_stat_fsys1) & DIV_STAT_FSYS1_CHANGING)
318 		continue;
319 
320 	/* CLK_DIV_FSYS2 */
321 	clr = MMC2_RATIO(15) | MMC2_PRE_RATIO(255) | MMC3_RATIO(15) |
322 	      MMC3_PRE_RATIO(255);
323 	/*
324 	 * For MOUTmmc0-3 = 800 MHz (MPLL)
325 	 *
326 	 * DOUTmmc3 = MOUTmmc3 / (ratio + 1) = 100 (7)
327 	 * sclk_mmc3 = DOUTmmc3 / (ratio + 1) = 50 (1)
328 	 * DOUTmmc2 = MOUTmmc2 / (ratio + 1) = 100 (7)
329 	 * sclk_mmc2 = DOUTmmc2 / (ratio + 1) = 50 (1)
330 	*/
331 	set = MMC2_RATIO(7) | MMC2_PRE_RATIO(1) | MMC3_RATIO(7) |
332 	      MMC3_PRE_RATIO(1);
333 
334 	clrsetbits_le32(&clk->div_fsys2, clr, set);
335 
336 	/* Wait for divider ready status */
337 	while (readl(&clk->div_stat_fsys2) & DIV_STAT_FSYS2_CHANGING)
338 		continue;
339 
340 	/* CLK_DIV_FSYS3 */
341 	clr = MMC4_RATIO(15) | MMC4_PRE_RATIO(255);
342 	/*
343 	 * For MOUTmmc4 = 800 MHz (MPLL)
344 	 *
345 	 * DOUTmmc4 = MOUTmmc4 / (ratio + 1) = 100 (7)
346 	 * sclk_mmc4 = DOUTmmc4 / (ratio + 1) = 100 (0)
347 	*/
348 	set = MMC4_RATIO(7) | MMC4_PRE_RATIO(0);
349 
350 	clrsetbits_le32(&clk->div_fsys3, clr, set);
351 
352 	/* Wait for divider ready status */
353 	while (readl(&clk->div_stat_fsys3) & DIV_STAT_FSYS3_CHANGING)
354 		continue;
355 
356 	return;
357 }
358 
359 static void board_gpio_init(void)
360 {
361 	/* eMMC Reset Pin */
362 	gpio_request(EXYNOS4X12_GPIO_K12, "eMMC Reset");
363 
364 	gpio_cfg_pin(EXYNOS4X12_GPIO_K12, S5P_GPIO_FUNC(0x1));
365 	gpio_set_pull(EXYNOS4X12_GPIO_K12, S5P_GPIO_PULL_NONE);
366 	gpio_set_drv(EXYNOS4X12_GPIO_K12, S5P_GPIO_DRV_4X);
367 
368 	/* Enable FAN (Odroid U3) */
369 	gpio_request(EXYNOS4X12_GPIO_D00, "FAN Control");
370 
371 	gpio_set_pull(EXYNOS4X12_GPIO_D00, S5P_GPIO_PULL_UP);
372 	gpio_set_drv(EXYNOS4X12_GPIO_D00, S5P_GPIO_DRV_4X);
373 	gpio_direction_output(EXYNOS4X12_GPIO_D00, 1);
374 
375 	/* OTG Vbus output (Odroid U3+) */
376 	gpio_request(EXYNOS4X12_GPIO_L20, "OTG Vbus");
377 
378 	gpio_set_pull(EXYNOS4X12_GPIO_L20, S5P_GPIO_PULL_NONE);
379 	gpio_set_drv(EXYNOS4X12_GPIO_L20, S5P_GPIO_DRV_4X);
380 	gpio_direction_output(EXYNOS4X12_GPIO_L20, 0);
381 
382 	/* OTG INT (Odroid U3+) */
383 	gpio_request(EXYNOS4X12_GPIO_X31, "OTG INT");
384 
385 	gpio_set_pull(EXYNOS4X12_GPIO_X31, S5P_GPIO_PULL_UP);
386 	gpio_set_drv(EXYNOS4X12_GPIO_X31, S5P_GPIO_DRV_4X);
387 	gpio_direction_input(EXYNOS4X12_GPIO_X31);
388 
389 	/* Blue LED (Odroid X2/U2/U3) */
390 	gpio_request(EXYNOS4X12_GPIO_C10, "Blue LED");
391 
392 	gpio_direction_output(EXYNOS4X12_GPIO_C10, 0);
393 
394 #ifdef CONFIG_CMD_USB
395 	/* USB3503A Reference frequency */
396 	gpio_request(EXYNOS4X12_GPIO_X30, "USB3503A RefFreq");
397 
398 	/* USB3503A Connect */
399 	gpio_request(EXYNOS4X12_GPIO_X34, "USB3503A Connect");
400 
401 	/* USB3503A Reset */
402 	gpio_request(EXYNOS4X12_GPIO_X35, "USB3503A Reset");
403 #endif
404 }
405 
406 static int pmic_init_max77686(void)
407 {
408 	struct pmic *p = pmic_get("MAX77686_PMIC");
409 
410 	if (pmic_probe(p))
411 		return -ENODEV;
412 
413 	/* Set LDO Voltage */
414 	max77686_set_ldo_voltage(p, 20, 1800000);	/* LDO20 eMMC */
415 	max77686_set_ldo_voltage(p, 21, 2800000);	/* LDO21 SD */
416 	max77686_set_ldo_voltage(p, 22, 2800000);	/* LDO22 eMMC */
417 
418 	return 0;
419 }
420 
421 int exynos_early_init_f(void)
422 {
423 	board_clock_init();
424 
425 	return 0;
426 }
427 
428 int exynos_init(void)
429 {
430 	board_gpio_init();
431 
432 	return 0;
433 }
434 
435 int exynos_power_init(void)
436 {
437 	pmic_init(0);
438 	pmic_init_max77686();
439 
440 	return 0;
441 }
442 
443 #ifdef CONFIG_USB_GADGET
444 static int s5pc210_phy_control(int on)
445 {
446 	struct pmic *p_pmic;
447 
448 	p_pmic = pmic_get("MAX77686_PMIC");
449 	if (!p_pmic)
450 		return -ENODEV;
451 
452 	if (pmic_probe(p_pmic))
453 		return -1;
454 
455 	if (on)
456 		return max77686_set_ldo_mode(p_pmic, 12, OPMODE_ON);
457 	else
458 		return max77686_set_ldo_mode(p_pmic, 12, OPMODE_LPM);
459 }
460 
461 struct s3c_plat_otg_data s5pc210_otg_data = {
462 	.phy_control	= s5pc210_phy_control,
463 	.regs_phy	= EXYNOS4X12_USBPHY_BASE,
464 	.regs_otg	= EXYNOS4X12_USBOTG_BASE,
465 	.usb_phy_ctrl	= EXYNOS4X12_USBPHY_CONTROL,
466 	.usb_flags	= PHY0_SLEEP,
467 };
468 #endif
469 
470 #if defined(CONFIG_USB_GADGET) || defined(CONFIG_CMD_USB)
471 
472 int board_usb_init(int index, enum usb_init_type init)
473 {
474 #ifdef CONFIG_CMD_USB
475 	struct pmic *p_pmic;
476 
477 	/* Set Ref freq 0 => 24MHz, 1 => 26MHz*/
478 	/* Odroid Us have it at 24MHz, Odroid Xs at 26MHz */
479 	if (gd->board_type == ODROID_TYPE_U3)
480 		gpio_direction_output(EXYNOS4X12_GPIO_X30, 0);
481 	else
482 		gpio_direction_output(EXYNOS4X12_GPIO_X30, 1);
483 
484 	/* Disconnect, Reset, Connect */
485 	gpio_direction_output(EXYNOS4X12_GPIO_X34, 0);
486 	gpio_direction_output(EXYNOS4X12_GPIO_X35, 0);
487 	gpio_direction_output(EXYNOS4X12_GPIO_X35, 1);
488 	gpio_direction_output(EXYNOS4X12_GPIO_X34, 1);
489 
490 	/* Power off and on BUCK8 for LAN9730 */
491 	debug("LAN9730 - Turning power buck 8 OFF and ON.\n");
492 
493 	p_pmic = pmic_get("MAX77686_PMIC");
494 	if (p_pmic && !pmic_probe(p_pmic)) {
495 		max77686_set_buck_voltage(p_pmic, 8, 750000);
496 		max77686_set_buck_voltage(p_pmic, 8, 3300000);
497 	}
498 
499 #endif
500 
501 	debug("USB_udc_probe\n");
502 	return s3c_udc_probe(&s5pc210_otg_data);
503 }
504 #endif
505