xref: /openbmc/u-boot/board/samsung/odroid/odroid.c (revision 85231c08)
1 /*
2  * Copyright (C) 2014 Samsung Electronics
3  * Przemyslaw Marczak <p.marczak@samsung.com>
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  */
7 
8 #include <common.h>
9 #include <asm/arch/pinmux.h>
10 #include <asm/arch/power.h>
11 #include <asm/arch/clock.h>
12 #include <asm/arch/gpio.h>
13 #include <asm/gpio.h>
14 #include <asm/arch/cpu.h>
15 #include <dm.h>
16 #include <power/pmic.h>
17 #include <power/regulator.h>
18 #include <power/max77686_pmic.h>
19 #include <errno.h>
20 #include <mmc.h>
21 #include <usb.h>
22 #include <usb/dwc2_udc.h>
23 #include <samsung/misc.h>
24 #include "setup.h"
25 
26 DECLARE_GLOBAL_DATA_PTR;
27 
28 #ifdef CONFIG_BOARD_TYPES
29 /* Odroid board types */
30 enum {
31 	ODROID_TYPE_U3,
32 	ODROID_TYPE_X2,
33 	ODROID_TYPES,
34 };
35 
36 void set_board_type(void)
37 {
38 	/* Set GPA1 pin 1 to HI - enable XCL205 output */
39 	writel(XCL205_EN_GPIO_CON_CFG, XCL205_EN_GPIO_CON);
40 	writel(XCL205_EN_GPIO_DAT_CFG, XCL205_EN_GPIO_CON + 0x4);
41 	writel(XCL205_EN_GPIO_PUD_CFG, XCL205_EN_GPIO_CON + 0x8);
42 	writel(XCL205_EN_GPIO_DRV_CFG, XCL205_EN_GPIO_CON + 0xc);
43 
44 	/* Set GPC1 pin 2 to IN - check XCL205 output state */
45 	writel(XCL205_STATE_GPIO_CON_CFG, XCL205_STATE_GPIO_CON);
46 	writel(XCL205_STATE_GPIO_PUD_CFG, XCL205_STATE_GPIO_CON + 0x8);
47 
48 	/* XCL205 - needs some latch time */
49 	sdelay(200000);
50 
51 	/* Check GPC1 pin2 - LED supplied by XCL205 - X2 only */
52 	if (readl(XCL205_STATE_GPIO_DAT) & (1 << XCL205_STATE_GPIO_PIN))
53 		gd->board_type = ODROID_TYPE_X2;
54 	else
55 		gd->board_type = ODROID_TYPE_U3;
56 }
57 
58 const char *get_board_type(void)
59 {
60 	const char *board_type[] = {"u3", "x2"};
61 
62 	return board_type[gd->board_type];
63 }
64 #endif
65 
66 #ifdef CONFIG_SET_DFU_ALT_INFO
67 char *get_dfu_alt_system(char *interface, char *devstr)
68 {
69 	return env_get("dfu_alt_system");
70 }
71 
72 char *get_dfu_alt_boot(char *interface, char *devstr)
73 {
74 	struct mmc *mmc;
75 	char *alt_boot;
76 	int dev_num;
77 
78 	dev_num = simple_strtoul(devstr, NULL, 10);
79 
80 	mmc = find_mmc_device(dev_num);
81 	if (!mmc)
82 		return NULL;
83 
84 	if (mmc_init(mmc))
85 		return NULL;
86 
87 	alt_boot = IS_SD(mmc) ? CONFIG_DFU_ALT_BOOT_SD :
88 				CONFIG_DFU_ALT_BOOT_EMMC;
89 
90 	return alt_boot;
91 }
92 #endif
93 
94 static void board_clock_init(void)
95 {
96 	unsigned int set, clr, clr_src_cpu, clr_pll_con0, clr_src_dmc;
97 	struct exynos4x12_clock *clk = (struct exynos4x12_clock *)
98 						samsung_get_base_clock();
99 
100 	/*
101 	 * CMU_CPU clocks src to MPLL
102 	 * Bit values:                 0  ; 1
103 	 * MUX_APLL_SEL:        FIN_PLL   ; FOUT_APLL
104 	 * MUX_CORE_SEL:        MOUT_APLL ; SCLK_MPLL
105 	 * MUX_HPM_SEL:         MOUT_APLL ; SCLK_MPLL_USER_C
106 	 * MUX_MPLL_USER_SEL_C: FIN_PLL   ; SCLK_MPLL
107 	*/
108 	clr_src_cpu = MUX_APLL_SEL(1) | MUX_CORE_SEL(1) |
109 		      MUX_HPM_SEL(1) | MUX_MPLL_USER_SEL_C(1);
110 	set = MUX_APLL_SEL(0) | MUX_CORE_SEL(1) | MUX_HPM_SEL(1) |
111 	      MUX_MPLL_USER_SEL_C(1);
112 
113 	clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
114 
115 	/* Wait for mux change */
116 	while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
117 		continue;
118 
119 	/* Set APLL to 1000MHz */
120 	clr_pll_con0 = SDIV(7) | PDIV(63) | MDIV(1023) | FSEL(1);
121 	set = SDIV(0) | PDIV(3) | MDIV(125) | FSEL(1);
122 
123 	clrsetbits_le32(&clk->apll_con0, clr_pll_con0, set);
124 
125 	/* Wait for PLL to be locked */
126 	while (!(readl(&clk->apll_con0) & PLL_LOCKED_BIT))
127 		continue;
128 
129 	/* Set CMU_CPU clocks src to APLL */
130 	set = MUX_APLL_SEL(1) | MUX_CORE_SEL(0) | MUX_HPM_SEL(0) |
131 	      MUX_MPLL_USER_SEL_C(1);
132 	clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
133 
134 	/* Wait for mux change */
135 	while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
136 		continue;
137 
138 	set = CORE_RATIO(0) | COREM0_RATIO(2) | COREM1_RATIO(5) |
139 	      PERIPH_RATIO(0) | ATB_RATIO(4) | PCLK_DBG_RATIO(1) |
140 	      APLL_RATIO(0) | CORE2_RATIO(0);
141 	/*
142 	 * Set dividers for MOUTcore = 1000 MHz
143 	 * coreout =      MOUT / (ratio + 1) = 1000 MHz (0)
144 	 * corem0 =     armclk / (ratio + 1) = 333 MHz (2)
145 	 * corem1 =     armclk / (ratio + 1) = 166 MHz (5)
146 	 * periph =     armclk / (ratio + 1) = 1000 MHz (0)
147 	 * atbout =       MOUT / (ratio + 1) = 200 MHz (4)
148 	 * pclkdbgout = atbout / (ratio + 1) = 100 MHz (1)
149 	 * sclkapll = MOUTapll / (ratio + 1) = 1000 MHz (0)
150 	 * core2out = core_out / (ratio + 1) = 1000 MHz (0) (armclk)
151 	*/
152 	clr = CORE_RATIO(7) | COREM0_RATIO(7) | COREM1_RATIO(7) |
153 	      PERIPH_RATIO(7) | ATB_RATIO(7) | PCLK_DBG_RATIO(7) |
154 	      APLL_RATIO(7) | CORE2_RATIO(7);
155 
156 	clrsetbits_le32(&clk->div_cpu0, clr, set);
157 
158 	/* Wait for divider ready status */
159 	while (readl(&clk->div_stat_cpu0) & DIV_STAT_CPU0_CHANGING)
160 		continue;
161 
162 	/*
163 	 * For MOUThpm = 1000 MHz (MOUTapll)
164 	 * doutcopy = MOUThpm / (ratio + 1) = 200 (4)
165 	 * sclkhpm = doutcopy / (ratio + 1) = 200 (4)
166 	 * cores_out = armclk / (ratio + 1) = 200 (4)
167 	 */
168 	clr = COPY_RATIO(7) | HPM_RATIO(7) | CORES_RATIO(7);
169 	set = COPY_RATIO(4) | HPM_RATIO(4) | CORES_RATIO(4);
170 
171 	clrsetbits_le32(&clk->div_cpu1, clr, set);
172 
173 	/* Wait for divider ready status */
174 	while (readl(&clk->div_stat_cpu1) & DIV_STAT_CPU1_CHANGING)
175 		continue;
176 
177 	/*
178 	 * Set CMU_DMC clocks src to APLL
179 	 * Bit values:             0  ; 1
180 	 * MUX_C2C_SEL:      SCLKMPLL ; SCLKAPLL
181 	 * MUX_DMC_BUS_SEL:  SCLKMPLL ; SCLKAPLL
182 	 * MUX_DPHY_SEL:     SCLKMPLL ; SCLKAPLL
183 	 * MUX_MPLL_SEL:     FINPLL   ; MOUT_MPLL_FOUT
184 	 * MUX_PWI_SEL:      0110 (MPLL); 0111 (EPLL); 1000 (VPLL); 0(XXTI)
185 	 * MUX_G2D_ACP0_SEL: SCLKMPLL ; SCLKAPLL
186 	 * MUX_G2D_ACP1_SEL: SCLKEPLL ; SCLKVPLL
187 	 * MUX_G2D_ACP_SEL:  OUT_ACP0 ; OUT_ACP1
188 	*/
189 	clr_src_dmc = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) |
190 		      MUX_DPHY_SEL(1) | MUX_MPLL_SEL(1) |
191 		      MUX_PWI_SEL(15) | MUX_G2D_ACP0_SEL(1) |
192 		      MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
193 	set = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) | MUX_DPHY_SEL(1) |
194 	      MUX_MPLL_SEL(0) | MUX_PWI_SEL(0) | MUX_G2D_ACP0_SEL(1) |
195 	      MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
196 
197 	clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
198 
199 	/* Wait for mux change */
200 	while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
201 		continue;
202 
203 	/* Set MPLL to 800MHz */
204 	set = SDIV(0) | PDIV(3) | MDIV(100) | FSEL(0) | PLL_ENABLE(1);
205 
206 	clrsetbits_le32(&clk->mpll_con0, clr_pll_con0, set);
207 
208 	/* Wait for PLL to be locked */
209 	while (!(readl(&clk->mpll_con0) & PLL_LOCKED_BIT))
210 		continue;
211 
212 	/* Switch back CMU_DMC mux */
213 	set = MUX_C2C_SEL(0) | MUX_DMC_BUS_SEL(0) | MUX_DPHY_SEL(0) |
214 	      MUX_MPLL_SEL(1) | MUX_PWI_SEL(8) | MUX_G2D_ACP0_SEL(0) |
215 	      MUX_G2D_ACP1_SEL(0) | MUX_G2D_ACP_SEL(0);
216 
217 	clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
218 
219 	/* Wait for mux change */
220 	while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
221 		continue;
222 
223 	/* CLK_DIV_DMC0 */
224 	clr = ACP_RATIO(7) | ACP_PCLK_RATIO(7) | DPHY_RATIO(7) |
225 	      DMC_RATIO(7) | DMCD_RATIO(7) | DMCP_RATIO(7);
226 	/*
227 	 * For:
228 	 * MOUTdmc = 800 MHz
229 	 * MOUTdphy = 800 MHz
230 	 *
231 	 * aclk_acp = MOUTdmc / (ratio + 1) = 200 (3)
232 	 * pclk_acp = aclk_acp / (ratio + 1) = 100 (1)
233 	 * sclk_dphy = MOUTdphy / (ratio + 1) = 400 (1)
234 	 * sclk_dmc = MOUTdmc / (ratio + 1) = 400 (1)
235 	 * aclk_dmcd = sclk_dmc / (ratio + 1) = 200 (1)
236 	 * aclk_dmcp = aclk_dmcd / (ratio + 1) = 100 (1)
237 	 */
238 	set = ACP_RATIO(3) | ACP_PCLK_RATIO(1) | DPHY_RATIO(1) |
239 	      DMC_RATIO(1) | DMCD_RATIO(1) | DMCP_RATIO(1);
240 
241 	clrsetbits_le32(&clk->div_dmc0, clr, set);
242 
243 	/* Wait for divider ready status */
244 	while (readl(&clk->div_stat_dmc0) & DIV_STAT_DMC0_CHANGING)
245 		continue;
246 
247 	/* CLK_DIV_DMC1 */
248 	clr = G2D_ACP_RATIO(15) | C2C_RATIO(7) | PWI_RATIO(15) |
249 	      C2C_ACLK_RATIO(7) | DVSEM_RATIO(127) | DPM_RATIO(127);
250 	/*
251 	 * For:
252 	 * MOUTg2d = 800 MHz
253 	 * MOUTc2c = 800 Mhz
254 	 * MOUTpwi = 108 MHz
255 	 *
256 	 * sclk_g2d_acp = MOUTg2d / (ratio + 1) = 200 (3)
257 	 * sclk_c2c = MOUTc2c / (ratio + 1) = 400 (1)
258 	 * aclk_c2c = sclk_c2c / (ratio + 1) = 200 (1)
259 	 * sclk_pwi = MOUTpwi / (ratio + 1) = 18 (5)
260 	 */
261 	set = G2D_ACP_RATIO(3) | C2C_RATIO(1) | PWI_RATIO(5) |
262 	      C2C_ACLK_RATIO(1) | DVSEM_RATIO(1) | DPM_RATIO(1);
263 
264 	clrsetbits_le32(&clk->div_dmc1, clr, set);
265 
266 	/* Wait for divider ready status */
267 	while (readl(&clk->div_stat_dmc1) & DIV_STAT_DMC1_CHANGING)
268 		continue;
269 
270 	/* CLK_SRC_PERIL0 */
271 	clr = UART0_SEL(15) | UART1_SEL(15) | UART2_SEL(15) |
272 	      UART3_SEL(15) | UART4_SEL(15);
273 	/*
274 	 * Set CLK_SRC_PERIL0 clocks src to MPLL
275 	 * src values: 0(XXTI); 1(XusbXTI); 2(SCLK_HDMI24M); 3(SCLK_USBPHY0);
276 	 *             5(SCLK_HDMIPHY); 6(SCLK_MPLL_USER_T); 7(SCLK_EPLL);
277 	 *             8(SCLK_VPLL)
278 	 *
279 	 * Set all to SCLK_MPLL_USER_T
280 	 */
281 	set = UART0_SEL(6) | UART1_SEL(6) | UART2_SEL(6) | UART3_SEL(6) |
282 	      UART4_SEL(6);
283 
284 	clrsetbits_le32(&clk->src_peril0, clr, set);
285 
286 	/* CLK_DIV_PERIL0 */
287 	clr = UART0_RATIO(15) | UART1_RATIO(15) | UART2_RATIO(15) |
288 	      UART3_RATIO(15) | UART4_RATIO(15);
289 	/*
290 	 * For MOUTuart0-4: 800MHz
291 	 *
292 	 * SCLK_UARTx = MOUTuartX / (ratio + 1) = 100 (7)
293 	*/
294 	set = UART0_RATIO(7) | UART1_RATIO(7) | UART2_RATIO(7) |
295 	      UART3_RATIO(7) | UART4_RATIO(7);
296 
297 	clrsetbits_le32(&clk->div_peril0, clr, set);
298 
299 	while (readl(&clk->div_stat_peril0) & DIV_STAT_PERIL0_CHANGING)
300 		continue;
301 
302 	/* CLK_DIV_FSYS1 */
303 	clr = MMC0_RATIO(15) | MMC0_PRE_RATIO(255) | MMC1_RATIO(15) |
304 	      MMC1_PRE_RATIO(255);
305 	/*
306 	 * For MOUTmmc0-3 = 800 MHz (MPLL)
307 	 *
308 	 * DOUTmmc1 = MOUTmmc1 / (ratio + 1) = 100 (7)
309 	 * sclk_mmc1 = DOUTmmc1 / (ratio + 1) = 50 (1)
310 	 * DOUTmmc0 = MOUTmmc0 / (ratio + 1) = 100 (7)
311 	 * sclk_mmc0 = DOUTmmc0 / (ratio + 1) = 50 (1)
312 	*/
313 	set = MMC0_RATIO(7) | MMC0_PRE_RATIO(1) | MMC1_RATIO(7) |
314 	      MMC1_PRE_RATIO(1);
315 
316 	clrsetbits_le32(&clk->div_fsys1, clr, set);
317 
318 	/* Wait for divider ready status */
319 	while (readl(&clk->div_stat_fsys1) & DIV_STAT_FSYS1_CHANGING)
320 		continue;
321 
322 	/* CLK_DIV_FSYS2 */
323 	clr = MMC2_RATIO(15) | MMC2_PRE_RATIO(255) | MMC3_RATIO(15) |
324 	      MMC3_PRE_RATIO(255);
325 	/*
326 	 * For MOUTmmc0-3 = 800 MHz (MPLL)
327 	 *
328 	 * DOUTmmc3 = MOUTmmc3 / (ratio + 1) = 100 (7)
329 	 * sclk_mmc3 = DOUTmmc3 / (ratio + 1) = 50 (1)
330 	 * DOUTmmc2 = MOUTmmc2 / (ratio + 1) = 100 (7)
331 	 * sclk_mmc2 = DOUTmmc2 / (ratio + 1) = 50 (1)
332 	*/
333 	set = MMC2_RATIO(7) | MMC2_PRE_RATIO(1) | MMC3_RATIO(7) |
334 	      MMC3_PRE_RATIO(1);
335 
336 	clrsetbits_le32(&clk->div_fsys2, clr, set);
337 
338 	/* Wait for divider ready status */
339 	while (readl(&clk->div_stat_fsys2) & DIV_STAT_FSYS2_CHANGING)
340 		continue;
341 
342 	/* CLK_DIV_FSYS3 */
343 	clr = MMC4_RATIO(15) | MMC4_PRE_RATIO(255);
344 	/*
345 	 * For MOUTmmc4 = 800 MHz (MPLL)
346 	 *
347 	 * DOUTmmc4 = MOUTmmc4 / (ratio + 1) = 100 (7)
348 	 * sclk_mmc4 = DOUTmmc4 / (ratio + 1) = 100 (0)
349 	*/
350 	set = MMC4_RATIO(7) | MMC4_PRE_RATIO(0);
351 
352 	clrsetbits_le32(&clk->div_fsys3, clr, set);
353 
354 	/* Wait for divider ready status */
355 	while (readl(&clk->div_stat_fsys3) & DIV_STAT_FSYS3_CHANGING)
356 		continue;
357 
358 	return;
359 }
360 
361 static void board_gpio_init(void)
362 {
363 	/* eMMC Reset Pin */
364 	gpio_request(EXYNOS4X12_GPIO_K12, "eMMC Reset");
365 
366 	gpio_cfg_pin(EXYNOS4X12_GPIO_K12, S5P_GPIO_FUNC(0x1));
367 	gpio_set_pull(EXYNOS4X12_GPIO_K12, S5P_GPIO_PULL_NONE);
368 	gpio_set_drv(EXYNOS4X12_GPIO_K12, S5P_GPIO_DRV_4X);
369 
370 	/* Enable FAN (Odroid U3) */
371 	gpio_request(EXYNOS4X12_GPIO_D00, "FAN Control");
372 
373 	gpio_set_pull(EXYNOS4X12_GPIO_D00, S5P_GPIO_PULL_UP);
374 	gpio_set_drv(EXYNOS4X12_GPIO_D00, S5P_GPIO_DRV_4X);
375 	gpio_direction_output(EXYNOS4X12_GPIO_D00, 1);
376 
377 	/* OTG Vbus output (Odroid U3+) */
378 	gpio_request(EXYNOS4X12_GPIO_L20, "OTG Vbus");
379 
380 	gpio_set_pull(EXYNOS4X12_GPIO_L20, S5P_GPIO_PULL_NONE);
381 	gpio_set_drv(EXYNOS4X12_GPIO_L20, S5P_GPIO_DRV_4X);
382 	gpio_direction_output(EXYNOS4X12_GPIO_L20, 0);
383 
384 	/* OTG INT (Odroid U3+) */
385 	gpio_request(EXYNOS4X12_GPIO_X31, "OTG INT");
386 
387 	gpio_set_pull(EXYNOS4X12_GPIO_X31, S5P_GPIO_PULL_UP);
388 	gpio_set_drv(EXYNOS4X12_GPIO_X31, S5P_GPIO_DRV_4X);
389 	gpio_direction_input(EXYNOS4X12_GPIO_X31);
390 
391 	/* Blue LED (Odroid X2/U2/U3) */
392 	gpio_request(EXYNOS4X12_GPIO_C10, "Blue LED");
393 
394 	gpio_direction_output(EXYNOS4X12_GPIO_C10, 0);
395 
396 #ifdef CONFIG_CMD_USB
397 	/* USB3503A Reference frequency */
398 	gpio_request(EXYNOS4X12_GPIO_X30, "USB3503A RefFreq");
399 
400 	/* USB3503A Connect */
401 	gpio_request(EXYNOS4X12_GPIO_X34, "USB3503A Connect");
402 
403 	/* USB3503A Reset */
404 	gpio_request(EXYNOS4X12_GPIO_X35, "USB3503A Reset");
405 #endif
406 }
407 
408 int exynos_early_init_f(void)
409 {
410 	board_clock_init();
411 
412 	return 0;
413 }
414 
415 int exynos_init(void)
416 {
417 	board_gpio_init();
418 
419 	return 0;
420 }
421 
422 int exynos_power_init(void)
423 {
424 	const char *mmc_regulators[] = {
425 		"VDDQ_EMMC_1.8V",
426 		"VDDQ_EMMC_2.8V",
427 		"TFLASH_2.8V",
428 		NULL,
429 	};
430 
431 	if (regulator_list_autoset(mmc_regulators, NULL, true))
432 		pr_err("Unable to init all mmc regulators");
433 
434 	return 0;
435 }
436 
437 #ifdef CONFIG_USB_GADGET
438 static int s5pc210_phy_control(int on)
439 {
440 	struct udevice *dev;
441 	int ret;
442 
443 	ret = regulator_get_by_platname("VDD_UOTG_3.0V", &dev);
444 	if (ret) {
445 		pr_err("Regulator get error: %d", ret);
446 		return ret;
447 	}
448 
449 	if (on)
450 		return regulator_set_mode(dev, OPMODE_ON);
451 	else
452 		return regulator_set_mode(dev, OPMODE_LPM);
453 }
454 
455 struct dwc2_plat_otg_data s5pc210_otg_data = {
456 	.phy_control	= s5pc210_phy_control,
457 	.regs_phy	= EXYNOS4X12_USBPHY_BASE,
458 	.regs_otg	= EXYNOS4X12_USBOTG_BASE,
459 	.usb_phy_ctrl	= EXYNOS4X12_USBPHY_CONTROL,
460 	.usb_flags	= PHY0_SLEEP,
461 };
462 #endif
463 
464 #if defined(CONFIG_USB_GADGET) || defined(CONFIG_CMD_USB)
465 
466 int board_usb_init(int index, enum usb_init_type init)
467 {
468 #ifdef CONFIG_CMD_USB
469 	struct udevice *dev;
470 	int ret;
471 
472 	/* Set Ref freq 0 => 24MHz, 1 => 26MHz*/
473 	/* Odroid Us have it at 24MHz, Odroid Xs at 26MHz */
474 	if (gd->board_type == ODROID_TYPE_U3)
475 		gpio_direction_output(EXYNOS4X12_GPIO_X30, 0);
476 	else
477 		gpio_direction_output(EXYNOS4X12_GPIO_X30, 1);
478 
479 	/* Disconnect, Reset, Connect */
480 	gpio_direction_output(EXYNOS4X12_GPIO_X34, 0);
481 	gpio_direction_output(EXYNOS4X12_GPIO_X35, 0);
482 	gpio_direction_output(EXYNOS4X12_GPIO_X35, 1);
483 	gpio_direction_output(EXYNOS4X12_GPIO_X34, 1);
484 
485 	/* Power off and on BUCK8 for LAN9730 */
486 	debug("LAN9730 - Turning power buck 8 OFF and ON.\n");
487 
488 	ret = regulator_get_by_platname("VCC_P3V3_2.85V", &dev);
489 	if (ret) {
490 		pr_err("Regulator get error: %d", ret);
491 		return ret;
492 	}
493 
494 	ret = regulator_set_enable(dev, true);
495 	if (ret) {
496 		pr_err("Regulator %s enable setting error: %d", dev->name, ret);
497 		return ret;
498 	}
499 
500 	ret = regulator_set_value(dev, 750000);
501 	if (ret) {
502 		pr_err("Regulator %s value setting error: %d", dev->name, ret);
503 		return ret;
504 	}
505 
506 	ret = regulator_set_value(dev, 3300000);
507 	if (ret) {
508 		pr_err("Regulator %s value setting error: %d", dev->name, ret);
509 		return ret;
510 	}
511 #endif
512 	debug("USB_udc_probe\n");
513 	return dwc2_udc_probe(&s5pc210_otg_data);
514 }
515 #endif
516