xref: /openbmc/u-boot/board/samsung/odroid/odroid.c (revision 5c8fd32b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2014 Samsung Electronics
4  * Przemyslaw Marczak <p.marczak@samsung.com>
5  */
6 
7 #include <common.h>
8 #include <asm/arch/pinmux.h>
9 #include <asm/arch/power.h>
10 #include <asm/arch/clock.h>
11 #include <asm/arch/gpio.h>
12 #include <asm/gpio.h>
13 #include <asm/arch/cpu.h>
14 #include <dm.h>
15 #include <power/pmic.h>
16 #include <power/regulator.h>
17 #include <power/max77686_pmic.h>
18 #include <errno.h>
19 #include <mmc.h>
20 #include <usb.h>
21 #include <usb/dwc2_udc.h>
22 #include <samsung/misc.h>
23 #include "setup.h"
24 
25 DECLARE_GLOBAL_DATA_PTR;
26 
27 #ifdef CONFIG_BOARD_TYPES
28 /* Odroid board types */
29 enum {
30 	ODROID_TYPE_U3,
31 	ODROID_TYPE_X2,
32 	ODROID_TYPES,
33 };
34 
35 void set_board_type(void)
36 {
37 	/* Set GPA1 pin 1 to HI - enable XCL205 output */
38 	writel(XCL205_EN_GPIO_CON_CFG, XCL205_EN_GPIO_CON);
39 	writel(XCL205_EN_GPIO_DAT_CFG, XCL205_EN_GPIO_CON + 0x4);
40 	writel(XCL205_EN_GPIO_PUD_CFG, XCL205_EN_GPIO_CON + 0x8);
41 	writel(XCL205_EN_GPIO_DRV_CFG, XCL205_EN_GPIO_CON + 0xc);
42 
43 	/* Set GPC1 pin 2 to IN - check XCL205 output state */
44 	writel(XCL205_STATE_GPIO_CON_CFG, XCL205_STATE_GPIO_CON);
45 	writel(XCL205_STATE_GPIO_PUD_CFG, XCL205_STATE_GPIO_CON + 0x8);
46 
47 	/* XCL205 - needs some latch time */
48 	sdelay(200000);
49 
50 	/* Check GPC1 pin2 - LED supplied by XCL205 - X2 only */
51 	if (readl(XCL205_STATE_GPIO_DAT) & (1 << XCL205_STATE_GPIO_PIN))
52 		gd->board_type = ODROID_TYPE_X2;
53 	else
54 		gd->board_type = ODROID_TYPE_U3;
55 }
56 
57 const char *get_board_type(void)
58 {
59 	const char *board_type[] = {"u3", "x2"};
60 
61 	return board_type[gd->board_type];
62 }
63 #endif
64 
65 #ifdef CONFIG_SET_DFU_ALT_INFO
66 char *get_dfu_alt_system(char *interface, char *devstr)
67 {
68 	return env_get("dfu_alt_system");
69 }
70 
71 char *get_dfu_alt_boot(char *interface, char *devstr)
72 {
73 	struct mmc *mmc;
74 	char *alt_boot;
75 	int dev_num;
76 
77 	dev_num = simple_strtoul(devstr, NULL, 10);
78 
79 	mmc = find_mmc_device(dev_num);
80 	if (!mmc)
81 		return NULL;
82 
83 	if (mmc_init(mmc))
84 		return NULL;
85 
86 	alt_boot = IS_SD(mmc) ? CONFIG_DFU_ALT_BOOT_SD :
87 				CONFIG_DFU_ALT_BOOT_EMMC;
88 
89 	return alt_boot;
90 }
91 #endif
92 
93 static void board_clock_init(void)
94 {
95 	unsigned int set, clr, clr_src_cpu, clr_pll_con0, clr_src_dmc;
96 	struct exynos4x12_clock *clk = (struct exynos4x12_clock *)
97 						samsung_get_base_clock();
98 
99 	/*
100 	 * CMU_CPU clocks src to MPLL
101 	 * Bit values:                 0  ; 1
102 	 * MUX_APLL_SEL:        FIN_PLL   ; FOUT_APLL
103 	 * MUX_CORE_SEL:        MOUT_APLL ; SCLK_MPLL
104 	 * MUX_HPM_SEL:         MOUT_APLL ; SCLK_MPLL_USER_C
105 	 * MUX_MPLL_USER_SEL_C: FIN_PLL   ; SCLK_MPLL
106 	*/
107 	clr_src_cpu = MUX_APLL_SEL(1) | MUX_CORE_SEL(1) |
108 		      MUX_HPM_SEL(1) | MUX_MPLL_USER_SEL_C(1);
109 	set = MUX_APLL_SEL(0) | MUX_CORE_SEL(1) | MUX_HPM_SEL(1) |
110 	      MUX_MPLL_USER_SEL_C(1);
111 
112 	clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
113 
114 	/* Wait for mux change */
115 	while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
116 		continue;
117 
118 	/* Set APLL to 1000MHz */
119 	clr_pll_con0 = SDIV(7) | PDIV(63) | MDIV(1023) | FSEL(1);
120 	set = SDIV(0) | PDIV(3) | MDIV(125) | FSEL(1);
121 
122 	clrsetbits_le32(&clk->apll_con0, clr_pll_con0, set);
123 
124 	/* Wait for PLL to be locked */
125 	while (!(readl(&clk->apll_con0) & PLL_LOCKED_BIT))
126 		continue;
127 
128 	/* Set CMU_CPU clocks src to APLL */
129 	set = MUX_APLL_SEL(1) | MUX_CORE_SEL(0) | MUX_HPM_SEL(0) |
130 	      MUX_MPLL_USER_SEL_C(1);
131 	clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
132 
133 	/* Wait for mux change */
134 	while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
135 		continue;
136 
137 	set = CORE_RATIO(0) | COREM0_RATIO(2) | COREM1_RATIO(5) |
138 	      PERIPH_RATIO(0) | ATB_RATIO(4) | PCLK_DBG_RATIO(1) |
139 	      APLL_RATIO(0) | CORE2_RATIO(0);
140 	/*
141 	 * Set dividers for MOUTcore = 1000 MHz
142 	 * coreout =      MOUT / (ratio + 1) = 1000 MHz (0)
143 	 * corem0 =     armclk / (ratio + 1) = 333 MHz (2)
144 	 * corem1 =     armclk / (ratio + 1) = 166 MHz (5)
145 	 * periph =     armclk / (ratio + 1) = 1000 MHz (0)
146 	 * atbout =       MOUT / (ratio + 1) = 200 MHz (4)
147 	 * pclkdbgout = atbout / (ratio + 1) = 100 MHz (1)
148 	 * sclkapll = MOUTapll / (ratio + 1) = 1000 MHz (0)
149 	 * core2out = core_out / (ratio + 1) = 1000 MHz (0) (armclk)
150 	*/
151 	clr = CORE_RATIO(7) | COREM0_RATIO(7) | COREM1_RATIO(7) |
152 	      PERIPH_RATIO(7) | ATB_RATIO(7) | PCLK_DBG_RATIO(7) |
153 	      APLL_RATIO(7) | CORE2_RATIO(7);
154 
155 	clrsetbits_le32(&clk->div_cpu0, clr, set);
156 
157 	/* Wait for divider ready status */
158 	while (readl(&clk->div_stat_cpu0) & DIV_STAT_CPU0_CHANGING)
159 		continue;
160 
161 	/*
162 	 * For MOUThpm = 1000 MHz (MOUTapll)
163 	 * doutcopy = MOUThpm / (ratio + 1) = 200 (4)
164 	 * sclkhpm = doutcopy / (ratio + 1) = 200 (4)
165 	 * cores_out = armclk / (ratio + 1) = 200 (4)
166 	 */
167 	clr = COPY_RATIO(7) | HPM_RATIO(7) | CORES_RATIO(7);
168 	set = COPY_RATIO(4) | HPM_RATIO(4) | CORES_RATIO(4);
169 
170 	clrsetbits_le32(&clk->div_cpu1, clr, set);
171 
172 	/* Wait for divider ready status */
173 	while (readl(&clk->div_stat_cpu1) & DIV_STAT_CPU1_CHANGING)
174 		continue;
175 
176 	/*
177 	 * Set CMU_DMC clocks src to APLL
178 	 * Bit values:             0  ; 1
179 	 * MUX_C2C_SEL:      SCLKMPLL ; SCLKAPLL
180 	 * MUX_DMC_BUS_SEL:  SCLKMPLL ; SCLKAPLL
181 	 * MUX_DPHY_SEL:     SCLKMPLL ; SCLKAPLL
182 	 * MUX_MPLL_SEL:     FINPLL   ; MOUT_MPLL_FOUT
183 	 * MUX_PWI_SEL:      0110 (MPLL); 0111 (EPLL); 1000 (VPLL); 0(XXTI)
184 	 * MUX_G2D_ACP0_SEL: SCLKMPLL ; SCLKAPLL
185 	 * MUX_G2D_ACP1_SEL: SCLKEPLL ; SCLKVPLL
186 	 * MUX_G2D_ACP_SEL:  OUT_ACP0 ; OUT_ACP1
187 	*/
188 	clr_src_dmc = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) |
189 		      MUX_DPHY_SEL(1) | MUX_MPLL_SEL(1) |
190 		      MUX_PWI_SEL(15) | MUX_G2D_ACP0_SEL(1) |
191 		      MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
192 	set = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) | MUX_DPHY_SEL(1) |
193 	      MUX_MPLL_SEL(0) | MUX_PWI_SEL(0) | MUX_G2D_ACP0_SEL(1) |
194 	      MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
195 
196 	clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
197 
198 	/* Wait for mux change */
199 	while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
200 		continue;
201 
202 	/* Set MPLL to 800MHz */
203 	set = SDIV(0) | PDIV(3) | MDIV(100) | FSEL(0) | PLL_ENABLE(1);
204 
205 	clrsetbits_le32(&clk->mpll_con0, clr_pll_con0, set);
206 
207 	/* Wait for PLL to be locked */
208 	while (!(readl(&clk->mpll_con0) & PLL_LOCKED_BIT))
209 		continue;
210 
211 	/* Switch back CMU_DMC mux */
212 	set = MUX_C2C_SEL(0) | MUX_DMC_BUS_SEL(0) | MUX_DPHY_SEL(0) |
213 	      MUX_MPLL_SEL(1) | MUX_PWI_SEL(8) | MUX_G2D_ACP0_SEL(0) |
214 	      MUX_G2D_ACP1_SEL(0) | MUX_G2D_ACP_SEL(0);
215 
216 	clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
217 
218 	/* Wait for mux change */
219 	while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
220 		continue;
221 
222 	/* CLK_DIV_DMC0 */
223 	clr = ACP_RATIO(7) | ACP_PCLK_RATIO(7) | DPHY_RATIO(7) |
224 	      DMC_RATIO(7) | DMCD_RATIO(7) | DMCP_RATIO(7);
225 	/*
226 	 * For:
227 	 * MOUTdmc = 800 MHz
228 	 * MOUTdphy = 800 MHz
229 	 *
230 	 * aclk_acp = MOUTdmc / (ratio + 1) = 200 (3)
231 	 * pclk_acp = aclk_acp / (ratio + 1) = 100 (1)
232 	 * sclk_dphy = MOUTdphy / (ratio + 1) = 400 (1)
233 	 * sclk_dmc = MOUTdmc / (ratio + 1) = 400 (1)
234 	 * aclk_dmcd = sclk_dmc / (ratio + 1) = 200 (1)
235 	 * aclk_dmcp = aclk_dmcd / (ratio + 1) = 100 (1)
236 	 */
237 	set = ACP_RATIO(3) | ACP_PCLK_RATIO(1) | DPHY_RATIO(1) |
238 	      DMC_RATIO(1) | DMCD_RATIO(1) | DMCP_RATIO(1);
239 
240 	clrsetbits_le32(&clk->div_dmc0, clr, set);
241 
242 	/* Wait for divider ready status */
243 	while (readl(&clk->div_stat_dmc0) & DIV_STAT_DMC0_CHANGING)
244 		continue;
245 
246 	/* CLK_DIV_DMC1 */
247 	clr = G2D_ACP_RATIO(15) | C2C_RATIO(7) | PWI_RATIO(15) |
248 	      C2C_ACLK_RATIO(7) | DVSEM_RATIO(127) | DPM_RATIO(127);
249 	/*
250 	 * For:
251 	 * MOUTg2d = 800 MHz
252 	 * MOUTc2c = 800 Mhz
253 	 * MOUTpwi = 108 MHz
254 	 *
255 	 * sclk_g2d_acp = MOUTg2d / (ratio + 1) = 200 (3)
256 	 * sclk_c2c = MOUTc2c / (ratio + 1) = 400 (1)
257 	 * aclk_c2c = sclk_c2c / (ratio + 1) = 200 (1)
258 	 * sclk_pwi = MOUTpwi / (ratio + 1) = 18 (5)
259 	 */
260 	set = G2D_ACP_RATIO(3) | C2C_RATIO(1) | PWI_RATIO(5) |
261 	      C2C_ACLK_RATIO(1) | DVSEM_RATIO(1) | DPM_RATIO(1);
262 
263 	clrsetbits_le32(&clk->div_dmc1, clr, set);
264 
265 	/* Wait for divider ready status */
266 	while (readl(&clk->div_stat_dmc1) & DIV_STAT_DMC1_CHANGING)
267 		continue;
268 
269 	/* CLK_SRC_PERIL0 */
270 	clr = UART0_SEL(15) | UART1_SEL(15) | UART2_SEL(15) |
271 	      UART3_SEL(15) | UART4_SEL(15);
272 	/*
273 	 * Set CLK_SRC_PERIL0 clocks src to MPLL
274 	 * src values: 0(XXTI); 1(XusbXTI); 2(SCLK_HDMI24M); 3(SCLK_USBPHY0);
275 	 *             5(SCLK_HDMIPHY); 6(SCLK_MPLL_USER_T); 7(SCLK_EPLL);
276 	 *             8(SCLK_VPLL)
277 	 *
278 	 * Set all to SCLK_MPLL_USER_T
279 	 */
280 	set = UART0_SEL(6) | UART1_SEL(6) | UART2_SEL(6) | UART3_SEL(6) |
281 	      UART4_SEL(6);
282 
283 	clrsetbits_le32(&clk->src_peril0, clr, set);
284 
285 	/* CLK_DIV_PERIL0 */
286 	clr = UART0_RATIO(15) | UART1_RATIO(15) | UART2_RATIO(15) |
287 	      UART3_RATIO(15) | UART4_RATIO(15);
288 	/*
289 	 * For MOUTuart0-4: 800MHz
290 	 *
291 	 * SCLK_UARTx = MOUTuartX / (ratio + 1) = 100 (7)
292 	*/
293 	set = UART0_RATIO(7) | UART1_RATIO(7) | UART2_RATIO(7) |
294 	      UART3_RATIO(7) | UART4_RATIO(7);
295 
296 	clrsetbits_le32(&clk->div_peril0, clr, set);
297 
298 	while (readl(&clk->div_stat_peril0) & DIV_STAT_PERIL0_CHANGING)
299 		continue;
300 
301 	/* CLK_DIV_FSYS1 */
302 	clr = MMC0_RATIO(15) | MMC0_PRE_RATIO(255) | MMC1_RATIO(15) |
303 	      MMC1_PRE_RATIO(255);
304 	/*
305 	 * For MOUTmmc0-3 = 800 MHz (MPLL)
306 	 *
307 	 * DOUTmmc1 = MOUTmmc1 / (ratio + 1) = 100 (7)
308 	 * sclk_mmc1 = DOUTmmc1 / (ratio + 1) = 50 (1)
309 	 * DOUTmmc0 = MOUTmmc0 / (ratio + 1) = 100 (7)
310 	 * sclk_mmc0 = DOUTmmc0 / (ratio + 1) = 50 (1)
311 	*/
312 	set = MMC0_RATIO(7) | MMC0_PRE_RATIO(1) | MMC1_RATIO(7) |
313 	      MMC1_PRE_RATIO(1);
314 
315 	clrsetbits_le32(&clk->div_fsys1, clr, set);
316 
317 	/* Wait for divider ready status */
318 	while (readl(&clk->div_stat_fsys1) & DIV_STAT_FSYS1_CHANGING)
319 		continue;
320 
321 	/* CLK_DIV_FSYS2 */
322 	clr = MMC2_RATIO(15) | MMC2_PRE_RATIO(255) | MMC3_RATIO(15) |
323 	      MMC3_PRE_RATIO(255);
324 	/*
325 	 * For MOUTmmc0-3 = 800 MHz (MPLL)
326 	 *
327 	 * DOUTmmc3 = MOUTmmc3 / (ratio + 1) = 100 (7)
328 	 * sclk_mmc3 = DOUTmmc3 / (ratio + 1) = 50 (1)
329 	 * DOUTmmc2 = MOUTmmc2 / (ratio + 1) = 100 (7)
330 	 * sclk_mmc2 = DOUTmmc2 / (ratio + 1) = 50 (1)
331 	*/
332 	set = MMC2_RATIO(7) | MMC2_PRE_RATIO(1) | MMC3_RATIO(7) |
333 	      MMC3_PRE_RATIO(1);
334 
335 	clrsetbits_le32(&clk->div_fsys2, clr, set);
336 
337 	/* Wait for divider ready status */
338 	while (readl(&clk->div_stat_fsys2) & DIV_STAT_FSYS2_CHANGING)
339 		continue;
340 
341 	/* CLK_DIV_FSYS3 */
342 	clr = MMC4_RATIO(15) | MMC4_PRE_RATIO(255);
343 	/*
344 	 * For MOUTmmc4 = 800 MHz (MPLL)
345 	 *
346 	 * DOUTmmc4 = MOUTmmc4 / (ratio + 1) = 100 (7)
347 	 * sclk_mmc4 = DOUTmmc4 / (ratio + 1) = 100 (0)
348 	*/
349 	set = MMC4_RATIO(7) | MMC4_PRE_RATIO(0);
350 
351 	clrsetbits_le32(&clk->div_fsys3, clr, set);
352 
353 	/* Wait for divider ready status */
354 	while (readl(&clk->div_stat_fsys3) & DIV_STAT_FSYS3_CHANGING)
355 		continue;
356 
357 	return;
358 }
359 
360 static void board_gpio_init(void)
361 {
362 	/* eMMC Reset Pin */
363 	gpio_request(EXYNOS4X12_GPIO_K12, "eMMC Reset");
364 
365 	gpio_cfg_pin(EXYNOS4X12_GPIO_K12, S5P_GPIO_FUNC(0x1));
366 	gpio_set_pull(EXYNOS4X12_GPIO_K12, S5P_GPIO_PULL_NONE);
367 	gpio_set_drv(EXYNOS4X12_GPIO_K12, S5P_GPIO_DRV_4X);
368 
369 	/* Enable FAN (Odroid U3) */
370 	gpio_request(EXYNOS4X12_GPIO_D00, "FAN Control");
371 
372 	gpio_set_pull(EXYNOS4X12_GPIO_D00, S5P_GPIO_PULL_UP);
373 	gpio_set_drv(EXYNOS4X12_GPIO_D00, S5P_GPIO_DRV_4X);
374 	gpio_direction_output(EXYNOS4X12_GPIO_D00, 1);
375 
376 	/* OTG Vbus output (Odroid U3+) */
377 	gpio_request(EXYNOS4X12_GPIO_L20, "OTG Vbus");
378 
379 	gpio_set_pull(EXYNOS4X12_GPIO_L20, S5P_GPIO_PULL_NONE);
380 	gpio_set_drv(EXYNOS4X12_GPIO_L20, S5P_GPIO_DRV_4X);
381 	gpio_direction_output(EXYNOS4X12_GPIO_L20, 0);
382 
383 	/* OTG INT (Odroid U3+) */
384 	gpio_request(EXYNOS4X12_GPIO_X31, "OTG INT");
385 
386 	gpio_set_pull(EXYNOS4X12_GPIO_X31, S5P_GPIO_PULL_UP);
387 	gpio_set_drv(EXYNOS4X12_GPIO_X31, S5P_GPIO_DRV_4X);
388 	gpio_direction_input(EXYNOS4X12_GPIO_X31);
389 
390 	/* Blue LED (Odroid X2/U2/U3) */
391 	gpio_request(EXYNOS4X12_GPIO_C10, "Blue LED");
392 
393 	gpio_direction_output(EXYNOS4X12_GPIO_C10, 0);
394 
395 #ifdef CONFIG_CMD_USB
396 	/* USB3503A Reference frequency */
397 	gpio_request(EXYNOS4X12_GPIO_X30, "USB3503A RefFreq");
398 
399 	/* USB3503A Connect */
400 	gpio_request(EXYNOS4X12_GPIO_X34, "USB3503A Connect");
401 
402 	/* USB3503A Reset */
403 	gpio_request(EXYNOS4X12_GPIO_X35, "USB3503A Reset");
404 #endif
405 }
406 
407 int exynos_early_init_f(void)
408 {
409 	board_clock_init();
410 
411 	return 0;
412 }
413 
414 int exynos_init(void)
415 {
416 	board_gpio_init();
417 
418 	return 0;
419 }
420 
421 int exynos_power_init(void)
422 {
423 	const char *mmc_regulators[] = {
424 		"VDDQ_EMMC_1.8V",
425 		"VDDQ_EMMC_2.8V",
426 		"TFLASH_2.8V",
427 		NULL,
428 	};
429 
430 	if (regulator_list_autoset(mmc_regulators, NULL, true))
431 		pr_err("Unable to init all mmc regulators\n");
432 
433 	return 0;
434 }
435 
436 #ifdef CONFIG_USB_GADGET
437 static int s5pc210_phy_control(int on)
438 {
439 	struct udevice *dev;
440 	int ret;
441 
442 	ret = regulator_get_by_platname("VDD_UOTG_3.0V", &dev);
443 	if (ret) {
444 		pr_err("Regulator get error: %d\n", ret);
445 		return ret;
446 	}
447 
448 	if (on)
449 		return regulator_set_mode(dev, OPMODE_ON);
450 	else
451 		return regulator_set_mode(dev, OPMODE_LPM);
452 }
453 
454 struct dwc2_plat_otg_data s5pc210_otg_data = {
455 	.phy_control	= s5pc210_phy_control,
456 	.regs_phy	= EXYNOS4X12_USBPHY_BASE,
457 	.regs_otg	= EXYNOS4X12_USBOTG_BASE,
458 	.usb_phy_ctrl	= EXYNOS4X12_USBPHY_CONTROL,
459 	.usb_flags	= PHY0_SLEEP,
460 };
461 #endif
462 
463 #if defined(CONFIG_USB_GADGET) || defined(CONFIG_CMD_USB)
464 
465 int board_usb_init(int index, enum usb_init_type init)
466 {
467 #ifdef CONFIG_CMD_USB
468 	struct udevice *dev;
469 	int ret;
470 
471 	/* Set Ref freq 0 => 24MHz, 1 => 26MHz*/
472 	/* Odroid Us have it at 24MHz, Odroid Xs at 26MHz */
473 	if (gd->board_type == ODROID_TYPE_U3)
474 		gpio_direction_output(EXYNOS4X12_GPIO_X30, 0);
475 	else
476 		gpio_direction_output(EXYNOS4X12_GPIO_X30, 1);
477 
478 	/* Disconnect, Reset, Connect */
479 	gpio_direction_output(EXYNOS4X12_GPIO_X34, 0);
480 	gpio_direction_output(EXYNOS4X12_GPIO_X35, 0);
481 	gpio_direction_output(EXYNOS4X12_GPIO_X35, 1);
482 	gpio_direction_output(EXYNOS4X12_GPIO_X34, 1);
483 
484 	/* Power off and on BUCK8 for LAN9730 */
485 	debug("LAN9730 - Turning power buck 8 OFF and ON.\n");
486 
487 	ret = regulator_get_by_platname("VCC_P3V3_2.85V", &dev);
488 	if (ret) {
489 		pr_err("Regulator get error: %d\n", ret);
490 		return ret;
491 	}
492 
493 	ret = regulator_set_enable(dev, true);
494 	if (ret) {
495 		pr_err("Regulator %s enable setting error: %d\n", dev->name, ret);
496 		return ret;
497 	}
498 
499 	ret = regulator_set_value(dev, 750000);
500 	if (ret) {
501 		pr_err("Regulator %s value setting error: %d\n", dev->name, ret);
502 		return ret;
503 	}
504 
505 	ret = regulator_set_value(dev, 3300000);
506 	if (ret) {
507 		pr_err("Regulator %s value setting error: %d\n", dev->name, ret);
508 		return ret;
509 	}
510 #endif
511 	debug("USB_udc_probe\n");
512 	return dwc2_udc_probe(&s5pc210_otg_data);
513 }
514 #endif
515