xref: /openbmc/u-boot/board/samsung/odroid/odroid.c (revision 3ba98ed8)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2014 Samsung Electronics
4  * Przemyslaw Marczak <p.marczak@samsung.com>
5  */
6 
7 #include <common.h>
8 #include <asm/arch/pinmux.h>
9 #include <asm/arch/power.h>
10 #include <asm/arch/clock.h>
11 #include <asm/arch/gpio.h>
12 #include <asm/gpio.h>
13 #include <asm/arch/cpu.h>
14 #include <dm.h>
15 #include <power/pmic.h>
16 #include <power/regulator.h>
17 #include <power/max77686_pmic.h>
18 #include <errno.h>
19 #include <mmc.h>
20 #include <usb.h>
21 #include <usb/dwc2_udc.h>
22 #include <samsung/misc.h>
23 #include "setup.h"
24 
25 DECLARE_GLOBAL_DATA_PTR;
26 
27 #ifdef CONFIG_BOARD_TYPES
28 /* Odroid board types */
29 enum {
30 	ODROID_TYPE_U3,
31 	ODROID_TYPE_X2,
32 	ODROID_TYPES,
33 };
34 
35 void set_board_type(void)
36 {
37 	/* Set GPA1 pin 1 to HI - enable XCL205 output */
38 	writel(XCL205_EN_GPIO_CON_CFG, XCL205_EN_GPIO_CON);
39 	writel(XCL205_EN_GPIO_DAT_CFG, XCL205_EN_GPIO_CON + 0x4);
40 	writel(XCL205_EN_GPIO_PUD_CFG, XCL205_EN_GPIO_CON + 0x8);
41 	writel(XCL205_EN_GPIO_DRV_CFG, XCL205_EN_GPIO_CON + 0xc);
42 
43 	/* Set GPC1 pin 2 to IN - check XCL205 output state */
44 	writel(XCL205_STATE_GPIO_CON_CFG, XCL205_STATE_GPIO_CON);
45 	writel(XCL205_STATE_GPIO_PUD_CFG, XCL205_STATE_GPIO_CON + 0x8);
46 
47 	/* XCL205 - needs some latch time */
48 	sdelay(200000);
49 
50 	/* Check GPC1 pin2 - LED supplied by XCL205 - X2 only */
51 	if (readl(XCL205_STATE_GPIO_DAT) & (1 << XCL205_STATE_GPIO_PIN))
52 		gd->board_type = ODROID_TYPE_X2;
53 	else
54 		gd->board_type = ODROID_TYPE_U3;
55 }
56 
57 void set_board_revision(void)
58 {
59 	/*
60 	 * Revision already set by set_board_type() because it can be
61 	 * executed early.
62 	 */
63 }
64 
65 const char *get_board_type(void)
66 {
67 	const char *board_type[] = {"u3", "x2"};
68 
69 	return board_type[gd->board_type];
70 }
71 #endif
72 
73 #ifdef CONFIG_SET_DFU_ALT_INFO
74 char *get_dfu_alt_system(char *interface, char *devstr)
75 {
76 	return env_get("dfu_alt_system");
77 }
78 
79 char *get_dfu_alt_boot(char *interface, char *devstr)
80 {
81 	struct mmc *mmc;
82 	char *alt_boot;
83 	int dev_num;
84 
85 	dev_num = simple_strtoul(devstr, NULL, 10);
86 
87 	mmc = find_mmc_device(dev_num);
88 	if (!mmc)
89 		return NULL;
90 
91 	if (mmc_init(mmc))
92 		return NULL;
93 
94 	alt_boot = IS_SD(mmc) ? CONFIG_DFU_ALT_BOOT_SD :
95 				CONFIG_DFU_ALT_BOOT_EMMC;
96 
97 	return alt_boot;
98 }
99 #endif
100 
101 static void board_clock_init(void)
102 {
103 	unsigned int set, clr, clr_src_cpu, clr_pll_con0, clr_src_dmc;
104 	struct exynos4x12_clock *clk = (struct exynos4x12_clock *)
105 						samsung_get_base_clock();
106 
107 	/*
108 	 * CMU_CPU clocks src to MPLL
109 	 * Bit values:                 0  ; 1
110 	 * MUX_APLL_SEL:        FIN_PLL   ; FOUT_APLL
111 	 * MUX_CORE_SEL:        MOUT_APLL ; SCLK_MPLL
112 	 * MUX_HPM_SEL:         MOUT_APLL ; SCLK_MPLL_USER_C
113 	 * MUX_MPLL_USER_SEL_C: FIN_PLL   ; SCLK_MPLL
114 	*/
115 	clr_src_cpu = MUX_APLL_SEL(1) | MUX_CORE_SEL(1) |
116 		      MUX_HPM_SEL(1) | MUX_MPLL_USER_SEL_C(1);
117 	set = MUX_APLL_SEL(0) | MUX_CORE_SEL(1) | MUX_HPM_SEL(1) |
118 	      MUX_MPLL_USER_SEL_C(1);
119 
120 	clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
121 
122 	/* Wait for mux change */
123 	while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
124 		continue;
125 
126 	/* Set APLL to 1000MHz */
127 	clr_pll_con0 = SDIV(7) | PDIV(63) | MDIV(1023) | FSEL(1);
128 	set = SDIV(0) | PDIV(3) | MDIV(125) | FSEL(1);
129 
130 	clrsetbits_le32(&clk->apll_con0, clr_pll_con0, set);
131 
132 	/* Wait for PLL to be locked */
133 	while (!(readl(&clk->apll_con0) & PLL_LOCKED_BIT))
134 		continue;
135 
136 	/* Set CMU_CPU clocks src to APLL */
137 	set = MUX_APLL_SEL(1) | MUX_CORE_SEL(0) | MUX_HPM_SEL(0) |
138 	      MUX_MPLL_USER_SEL_C(1);
139 	clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set);
140 
141 	/* Wait for mux change */
142 	while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING)
143 		continue;
144 
145 	set = CORE_RATIO(0) | COREM0_RATIO(2) | COREM1_RATIO(5) |
146 	      PERIPH_RATIO(0) | ATB_RATIO(4) | PCLK_DBG_RATIO(1) |
147 	      APLL_RATIO(0) | CORE2_RATIO(0);
148 	/*
149 	 * Set dividers for MOUTcore = 1000 MHz
150 	 * coreout =      MOUT / (ratio + 1) = 1000 MHz (0)
151 	 * corem0 =     armclk / (ratio + 1) = 333 MHz (2)
152 	 * corem1 =     armclk / (ratio + 1) = 166 MHz (5)
153 	 * periph =     armclk / (ratio + 1) = 1000 MHz (0)
154 	 * atbout =       MOUT / (ratio + 1) = 200 MHz (4)
155 	 * pclkdbgout = atbout / (ratio + 1) = 100 MHz (1)
156 	 * sclkapll = MOUTapll / (ratio + 1) = 1000 MHz (0)
157 	 * core2out = core_out / (ratio + 1) = 1000 MHz (0) (armclk)
158 	*/
159 	clr = CORE_RATIO(7) | COREM0_RATIO(7) | COREM1_RATIO(7) |
160 	      PERIPH_RATIO(7) | ATB_RATIO(7) | PCLK_DBG_RATIO(7) |
161 	      APLL_RATIO(7) | CORE2_RATIO(7);
162 
163 	clrsetbits_le32(&clk->div_cpu0, clr, set);
164 
165 	/* Wait for divider ready status */
166 	while (readl(&clk->div_stat_cpu0) & DIV_STAT_CPU0_CHANGING)
167 		continue;
168 
169 	/*
170 	 * For MOUThpm = 1000 MHz (MOUTapll)
171 	 * doutcopy = MOUThpm / (ratio + 1) = 200 (4)
172 	 * sclkhpm = doutcopy / (ratio + 1) = 200 (4)
173 	 * cores_out = armclk / (ratio + 1) = 200 (4)
174 	 */
175 	clr = COPY_RATIO(7) | HPM_RATIO(7) | CORES_RATIO(7);
176 	set = COPY_RATIO(4) | HPM_RATIO(4) | CORES_RATIO(4);
177 
178 	clrsetbits_le32(&clk->div_cpu1, clr, set);
179 
180 	/* Wait for divider ready status */
181 	while (readl(&clk->div_stat_cpu1) & DIV_STAT_CPU1_CHANGING)
182 		continue;
183 
184 	/*
185 	 * Set CMU_DMC clocks src to APLL
186 	 * Bit values:             0  ; 1
187 	 * MUX_C2C_SEL:      SCLKMPLL ; SCLKAPLL
188 	 * MUX_DMC_BUS_SEL:  SCLKMPLL ; SCLKAPLL
189 	 * MUX_DPHY_SEL:     SCLKMPLL ; SCLKAPLL
190 	 * MUX_MPLL_SEL:     FINPLL   ; MOUT_MPLL_FOUT
191 	 * MUX_PWI_SEL:      0110 (MPLL); 0111 (EPLL); 1000 (VPLL); 0(XXTI)
192 	 * MUX_G2D_ACP0_SEL: SCLKMPLL ; SCLKAPLL
193 	 * MUX_G2D_ACP1_SEL: SCLKEPLL ; SCLKVPLL
194 	 * MUX_G2D_ACP_SEL:  OUT_ACP0 ; OUT_ACP1
195 	*/
196 	clr_src_dmc = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) |
197 		      MUX_DPHY_SEL(1) | MUX_MPLL_SEL(1) |
198 		      MUX_PWI_SEL(15) | MUX_G2D_ACP0_SEL(1) |
199 		      MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
200 	set = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) | MUX_DPHY_SEL(1) |
201 	      MUX_MPLL_SEL(0) | MUX_PWI_SEL(0) | MUX_G2D_ACP0_SEL(1) |
202 	      MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1);
203 
204 	clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
205 
206 	/* Wait for mux change */
207 	while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
208 		continue;
209 
210 	/* Set MPLL to 800MHz */
211 	set = SDIV(0) | PDIV(3) | MDIV(100) | FSEL(0) | PLL_ENABLE(1);
212 
213 	clrsetbits_le32(&clk->mpll_con0, clr_pll_con0, set);
214 
215 	/* Wait for PLL to be locked */
216 	while (!(readl(&clk->mpll_con0) & PLL_LOCKED_BIT))
217 		continue;
218 
219 	/* Switch back CMU_DMC mux */
220 	set = MUX_C2C_SEL(0) | MUX_DMC_BUS_SEL(0) | MUX_DPHY_SEL(0) |
221 	      MUX_MPLL_SEL(1) | MUX_PWI_SEL(8) | MUX_G2D_ACP0_SEL(0) |
222 	      MUX_G2D_ACP1_SEL(0) | MUX_G2D_ACP_SEL(0);
223 
224 	clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set);
225 
226 	/* Wait for mux change */
227 	while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING)
228 		continue;
229 
230 	/* CLK_DIV_DMC0 */
231 	clr = ACP_RATIO(7) | ACP_PCLK_RATIO(7) | DPHY_RATIO(7) |
232 	      DMC_RATIO(7) | DMCD_RATIO(7) | DMCP_RATIO(7);
233 	/*
234 	 * For:
235 	 * MOUTdmc = 800 MHz
236 	 * MOUTdphy = 800 MHz
237 	 *
238 	 * aclk_acp = MOUTdmc / (ratio + 1) = 200 (3)
239 	 * pclk_acp = aclk_acp / (ratio + 1) = 100 (1)
240 	 * sclk_dphy = MOUTdphy / (ratio + 1) = 400 (1)
241 	 * sclk_dmc = MOUTdmc / (ratio + 1) = 400 (1)
242 	 * aclk_dmcd = sclk_dmc / (ratio + 1) = 200 (1)
243 	 * aclk_dmcp = aclk_dmcd / (ratio + 1) = 100 (1)
244 	 */
245 	set = ACP_RATIO(3) | ACP_PCLK_RATIO(1) | DPHY_RATIO(1) |
246 	      DMC_RATIO(1) | DMCD_RATIO(1) | DMCP_RATIO(1);
247 
248 	clrsetbits_le32(&clk->div_dmc0, clr, set);
249 
250 	/* Wait for divider ready status */
251 	while (readl(&clk->div_stat_dmc0) & DIV_STAT_DMC0_CHANGING)
252 		continue;
253 
254 	/* CLK_DIV_DMC1 */
255 	clr = G2D_ACP_RATIO(15) | C2C_RATIO(7) | PWI_RATIO(15) |
256 	      C2C_ACLK_RATIO(7) | DVSEM_RATIO(127) | DPM_RATIO(127);
257 	/*
258 	 * For:
259 	 * MOUTg2d = 800 MHz
260 	 * MOUTc2c = 800 Mhz
261 	 * MOUTpwi = 108 MHz
262 	 *
263 	 * sclk_g2d_acp = MOUTg2d / (ratio + 1) = 200 (3)
264 	 * sclk_c2c = MOUTc2c / (ratio + 1) = 400 (1)
265 	 * aclk_c2c = sclk_c2c / (ratio + 1) = 200 (1)
266 	 * sclk_pwi = MOUTpwi / (ratio + 1) = 18 (5)
267 	 */
268 	set = G2D_ACP_RATIO(3) | C2C_RATIO(1) | PWI_RATIO(5) |
269 	      C2C_ACLK_RATIO(1) | DVSEM_RATIO(1) | DPM_RATIO(1);
270 
271 	clrsetbits_le32(&clk->div_dmc1, clr, set);
272 
273 	/* Wait for divider ready status */
274 	while (readl(&clk->div_stat_dmc1) & DIV_STAT_DMC1_CHANGING)
275 		continue;
276 
277 	/* CLK_SRC_PERIL0 */
278 	clr = UART0_SEL(15) | UART1_SEL(15) | UART2_SEL(15) |
279 	      UART3_SEL(15) | UART4_SEL(15);
280 	/*
281 	 * Set CLK_SRC_PERIL0 clocks src to MPLL
282 	 * src values: 0(XXTI); 1(XusbXTI); 2(SCLK_HDMI24M); 3(SCLK_USBPHY0);
283 	 *             5(SCLK_HDMIPHY); 6(SCLK_MPLL_USER_T); 7(SCLK_EPLL);
284 	 *             8(SCLK_VPLL)
285 	 *
286 	 * Set all to SCLK_MPLL_USER_T
287 	 */
288 	set = UART0_SEL(6) | UART1_SEL(6) | UART2_SEL(6) | UART3_SEL(6) |
289 	      UART4_SEL(6);
290 
291 	clrsetbits_le32(&clk->src_peril0, clr, set);
292 
293 	/* CLK_DIV_PERIL0 */
294 	clr = UART0_RATIO(15) | UART1_RATIO(15) | UART2_RATIO(15) |
295 	      UART3_RATIO(15) | UART4_RATIO(15);
296 	/*
297 	 * For MOUTuart0-4: 800MHz
298 	 *
299 	 * SCLK_UARTx = MOUTuartX / (ratio + 1) = 100 (7)
300 	*/
301 	set = UART0_RATIO(7) | UART1_RATIO(7) | UART2_RATIO(7) |
302 	      UART3_RATIO(7) | UART4_RATIO(7);
303 
304 	clrsetbits_le32(&clk->div_peril0, clr, set);
305 
306 	while (readl(&clk->div_stat_peril0) & DIV_STAT_PERIL0_CHANGING)
307 		continue;
308 
309 	/* CLK_DIV_FSYS1 */
310 	clr = MMC0_RATIO(15) | MMC0_PRE_RATIO(255) | MMC1_RATIO(15) |
311 	      MMC1_PRE_RATIO(255);
312 	/*
313 	 * For MOUTmmc0-3 = 800 MHz (MPLL)
314 	 *
315 	 * DOUTmmc1 = MOUTmmc1 / (ratio + 1) = 100 (7)
316 	 * sclk_mmc1 = DOUTmmc1 / (ratio + 1) = 50 (1)
317 	 * DOUTmmc0 = MOUTmmc0 / (ratio + 1) = 100 (7)
318 	 * sclk_mmc0 = DOUTmmc0 / (ratio + 1) = 50 (1)
319 	*/
320 	set = MMC0_RATIO(7) | MMC0_PRE_RATIO(1) | MMC1_RATIO(7) |
321 	      MMC1_PRE_RATIO(1);
322 
323 	clrsetbits_le32(&clk->div_fsys1, clr, set);
324 
325 	/* Wait for divider ready status */
326 	while (readl(&clk->div_stat_fsys1) & DIV_STAT_FSYS1_CHANGING)
327 		continue;
328 
329 	/* CLK_DIV_FSYS2 */
330 	clr = MMC2_RATIO(15) | MMC2_PRE_RATIO(255) | MMC3_RATIO(15) |
331 	      MMC3_PRE_RATIO(255);
332 	/*
333 	 * For MOUTmmc0-3 = 800 MHz (MPLL)
334 	 *
335 	 * DOUTmmc3 = MOUTmmc3 / (ratio + 1) = 100 (7)
336 	 * sclk_mmc3 = DOUTmmc3 / (ratio + 1) = 50 (1)
337 	 * DOUTmmc2 = MOUTmmc2 / (ratio + 1) = 100 (7)
338 	 * sclk_mmc2 = DOUTmmc2 / (ratio + 1) = 50 (1)
339 	*/
340 	set = MMC2_RATIO(7) | MMC2_PRE_RATIO(1) | MMC3_RATIO(7) |
341 	      MMC3_PRE_RATIO(1);
342 
343 	clrsetbits_le32(&clk->div_fsys2, clr, set);
344 
345 	/* Wait for divider ready status */
346 	while (readl(&clk->div_stat_fsys2) & DIV_STAT_FSYS2_CHANGING)
347 		continue;
348 
349 	/* CLK_DIV_FSYS3 */
350 	clr = MMC4_RATIO(15) | MMC4_PRE_RATIO(255);
351 	/*
352 	 * For MOUTmmc4 = 800 MHz (MPLL)
353 	 *
354 	 * DOUTmmc4 = MOUTmmc4 / (ratio + 1) = 100 (7)
355 	 * sclk_mmc4 = DOUTmmc4 / (ratio + 1) = 100 (0)
356 	*/
357 	set = MMC4_RATIO(7) | MMC4_PRE_RATIO(0);
358 
359 	clrsetbits_le32(&clk->div_fsys3, clr, set);
360 
361 	/* Wait for divider ready status */
362 	while (readl(&clk->div_stat_fsys3) & DIV_STAT_FSYS3_CHANGING)
363 		continue;
364 
365 	return;
366 }
367 
368 static void board_gpio_init(void)
369 {
370 	/* eMMC Reset Pin */
371 	gpio_request(EXYNOS4X12_GPIO_K12, "eMMC Reset");
372 
373 	gpio_cfg_pin(EXYNOS4X12_GPIO_K12, S5P_GPIO_FUNC(0x1));
374 	gpio_set_pull(EXYNOS4X12_GPIO_K12, S5P_GPIO_PULL_NONE);
375 	gpio_set_drv(EXYNOS4X12_GPIO_K12, S5P_GPIO_DRV_4X);
376 
377 	/* Enable FAN (Odroid U3) */
378 	gpio_request(EXYNOS4X12_GPIO_D00, "FAN Control");
379 
380 	gpio_set_pull(EXYNOS4X12_GPIO_D00, S5P_GPIO_PULL_UP);
381 	gpio_set_drv(EXYNOS4X12_GPIO_D00, S5P_GPIO_DRV_4X);
382 	gpio_direction_output(EXYNOS4X12_GPIO_D00, 1);
383 
384 	/* OTG Vbus output (Odroid U3+) */
385 	gpio_request(EXYNOS4X12_GPIO_L20, "OTG Vbus");
386 
387 	gpio_set_pull(EXYNOS4X12_GPIO_L20, S5P_GPIO_PULL_NONE);
388 	gpio_set_drv(EXYNOS4X12_GPIO_L20, S5P_GPIO_DRV_4X);
389 	gpio_direction_output(EXYNOS4X12_GPIO_L20, 0);
390 
391 	/* OTG INT (Odroid U3+) */
392 	gpio_request(EXYNOS4X12_GPIO_X31, "OTG INT");
393 
394 	gpio_set_pull(EXYNOS4X12_GPIO_X31, S5P_GPIO_PULL_UP);
395 	gpio_set_drv(EXYNOS4X12_GPIO_X31, S5P_GPIO_DRV_4X);
396 	gpio_direction_input(EXYNOS4X12_GPIO_X31);
397 
398 	/* Blue LED (Odroid X2/U2/U3) */
399 	gpio_request(EXYNOS4X12_GPIO_C10, "Blue LED");
400 
401 	gpio_direction_output(EXYNOS4X12_GPIO_C10, 0);
402 
403 #ifdef CONFIG_CMD_USB
404 	/* USB3503A Reference frequency */
405 	gpio_request(EXYNOS4X12_GPIO_X30, "USB3503A RefFreq");
406 
407 	/* USB3503A Connect */
408 	gpio_request(EXYNOS4X12_GPIO_X34, "USB3503A Connect");
409 
410 	/* USB3503A Reset */
411 	gpio_request(EXYNOS4X12_GPIO_X35, "USB3503A Reset");
412 #endif
413 }
414 
415 int exynos_early_init_f(void)
416 {
417 	board_clock_init();
418 
419 	return 0;
420 }
421 
422 int exynos_init(void)
423 {
424 	board_gpio_init();
425 
426 	return 0;
427 }
428 
429 int exynos_power_init(void)
430 {
431 	const char *mmc_regulators[] = {
432 		"VDDQ_EMMC_1.8V",
433 		"VDDQ_EMMC_2.8V",
434 		"TFLASH_2.8V",
435 		NULL,
436 	};
437 
438 	if (regulator_list_autoset(mmc_regulators, NULL, true))
439 		pr_err("Unable to init all mmc regulators\n");
440 
441 	return 0;
442 }
443 
444 #ifdef CONFIG_USB_GADGET
445 static int s5pc210_phy_control(int on)
446 {
447 	struct udevice *dev;
448 	int ret;
449 
450 	ret = regulator_get_by_platname("VDD_UOTG_3.0V", &dev);
451 	if (ret) {
452 		pr_err("Regulator get error: %d\n", ret);
453 		return ret;
454 	}
455 
456 	if (on)
457 		return regulator_set_mode(dev, OPMODE_ON);
458 	else
459 		return regulator_set_mode(dev, OPMODE_LPM);
460 }
461 
462 struct dwc2_plat_otg_data s5pc210_otg_data = {
463 	.phy_control	= s5pc210_phy_control,
464 	.regs_phy	= EXYNOS4X12_USBPHY_BASE,
465 	.regs_otg	= EXYNOS4X12_USBOTG_BASE,
466 	.usb_phy_ctrl	= EXYNOS4X12_USBPHY_CONTROL,
467 	.usb_flags	= PHY0_SLEEP,
468 };
469 #endif
470 
471 #if defined(CONFIG_USB_GADGET) || defined(CONFIG_CMD_USB)
472 
473 static void set_usb3503_ref_clk(void)
474 {
475 #ifdef CONFIG_BOARD_TYPES
476 	/*
477 	 * gpx3-0 chooses primary (low) or secondary (high) reference clock
478 	 * frequencies table.  The choice of clock is done through hard-wired
479 	 * REF_SEL pins.
480 	 * The Odroid Us have reference clock at 24 MHz (00 entry from secondary
481 	 * table) and Odroid Xs have it at 26 MHz (01 entry from primary table).
482 	 */
483 	if (gd->board_type == ODROID_TYPE_U3)
484 		gpio_direction_output(EXYNOS4X12_GPIO_X30, 0);
485 	else
486 		gpio_direction_output(EXYNOS4X12_GPIO_X30, 1);
487 #else
488 	/* Choose Odroid Xs frequency without board types */
489 	gpio_direction_output(EXYNOS4X12_GPIO_X30, 1);
490 #endif /* CONFIG_BOARD_TYPES */
491 }
492 
493 int board_usb_init(int index, enum usb_init_type init)
494 {
495 #ifdef CONFIG_CMD_USB
496 	struct udevice *dev;
497 	int ret;
498 
499 	set_usb3503_ref_clk();
500 
501 	/* Disconnect, Reset, Connect */
502 	gpio_direction_output(EXYNOS4X12_GPIO_X34, 0);
503 	gpio_direction_output(EXYNOS4X12_GPIO_X35, 0);
504 	gpio_direction_output(EXYNOS4X12_GPIO_X35, 1);
505 	gpio_direction_output(EXYNOS4X12_GPIO_X34, 1);
506 
507 	/* Power off and on BUCK8 for LAN9730 */
508 	debug("LAN9730 - Turning power buck 8 OFF and ON.\n");
509 
510 	ret = regulator_get_by_platname("VCC_P3V3_2.85V", &dev);
511 	if (ret) {
512 		pr_err("Regulator get error: %d\n", ret);
513 		return ret;
514 	}
515 
516 	ret = regulator_set_enable(dev, true);
517 	if (ret) {
518 		pr_err("Regulator %s enable setting error: %d\n", dev->name, ret);
519 		return ret;
520 	}
521 
522 	ret = regulator_set_value(dev, 750000);
523 	if (ret) {
524 		pr_err("Regulator %s value setting error: %d\n", dev->name, ret);
525 		return ret;
526 	}
527 
528 	ret = regulator_set_value(dev, 3300000);
529 	if (ret) {
530 		pr_err("Regulator %s value setting error: %d\n", dev->name, ret);
531 		return ret;
532 	}
533 #endif
534 	debug("USB_udc_probe\n");
535 	return dwc2_udc_probe(&s5pc210_otg_data);
536 }
537 #endif
538