1 /* 2 * Board functions for Gumstix Pepper and AM335x-based boards 3 * 4 * Copyright (C) 2014, Gumstix, Incorporated - http://www.gumstix.com/ 5 * Based on board/ti/am335x/board.c from Texas Instruments, Inc. 6 * 7 * SPDX-License-Identifier: GPL-2.0+ 8 */ 9 10 #include <common.h> 11 #include <errno.h> 12 #include <spl.h> 13 #include <asm/arch/cpu.h> 14 #include <asm/arch/hardware.h> 15 #include <asm/arch/omap.h> 16 #include <asm/arch/ddr_defs.h> 17 #include <asm/arch/clock.h> 18 #include <asm/arch/gpio.h> 19 #include <asm/arch/mmc_host_def.h> 20 #include <asm/arch/sys_proto.h> 21 #include <asm/arch/mem.h> 22 #include <asm/io.h> 23 #include <asm/emif.h> 24 #include <asm/gpio.h> 25 #include <i2c.h> 26 #include <miiphy.h> 27 #include <cpsw.h> 28 #include <power/tps65217.h> 29 #include <environment.h> 30 #include <watchdog.h> 31 #include "board.h" 32 33 DECLARE_GLOBAL_DATA_PTR; 34 35 #ifdef CONFIG_SPL_BUILD 36 #define OSC (V_OSCK/1000000) 37 38 static const struct ddr_data ddr3_data = { 39 .datardsratio0 = MT41K256M16HA125E_RD_DQS, 40 .datawdsratio0 = MT41K256M16HA125E_WR_DQS, 41 .datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE, 42 .datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA, 43 }; 44 45 static const struct cmd_control ddr3_cmd_ctrl_data = { 46 .cmd0csratio = MT41K256M16HA125E_RATIO, 47 .cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT, 48 49 .cmd1csratio = MT41K256M16HA125E_RATIO, 50 .cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT, 51 52 .cmd2csratio = MT41K256M16HA125E_RATIO, 53 .cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT, 54 }; 55 56 static struct emif_regs ddr3_emif_reg_data = { 57 .sdram_config = MT41K256M16HA125E_EMIF_SDCFG, 58 .ref_ctrl = MT41K256M16HA125E_EMIF_SDREF, 59 .sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1, 60 .sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2, 61 .sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3, 62 .zq_config = MT41K256M16HA125E_ZQ_CFG, 63 .emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY, 64 }; 65 66 const struct dpll_params dpll_ddr3 = {400, OSC-1, 1, -1, -1, -1, -1}; 67 68 const struct ctrl_ioregs ioregs_ddr3 = { 69 .cm0ioctl = MT41K256M16HA125E_IOCTRL_VALUE, 70 .cm1ioctl = MT41K256M16HA125E_IOCTRL_VALUE, 71 .cm2ioctl = MT41K256M16HA125E_IOCTRL_VALUE, 72 .dt0ioctl = MT41K256M16HA125E_IOCTRL_VALUE, 73 .dt1ioctl = MT41K256M16HA125E_IOCTRL_VALUE, 74 }; 75 76 static const struct ddr_data ddr2_data = { 77 .datardsratio0 = MT47H128M16RT25E_RD_DQS, 78 .datafwsratio0 = MT47H128M16RT25E_PHY_FIFO_WE, 79 .datawrsratio0 = MT47H128M16RT25E_PHY_WR_DATA, 80 }; 81 82 static const struct cmd_control ddr2_cmd_ctrl_data = { 83 .cmd0csratio = MT47H128M16RT25E_RATIO, 84 85 .cmd1csratio = MT47H128M16RT25E_RATIO, 86 87 .cmd2csratio = MT47H128M16RT25E_RATIO, 88 }; 89 90 static const struct emif_regs ddr2_emif_reg_data = { 91 .sdram_config = MT47H128M16RT25E_EMIF_SDCFG, 92 .ref_ctrl = MT47H128M16RT25E_EMIF_SDREF, 93 .sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1, 94 .sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2, 95 .sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3, 96 .emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY, 97 }; 98 99 const struct dpll_params dpll_ddr2 = {266, OSC-1, 1, -1, -1, -1, -1}; 100 101 const struct ctrl_ioregs ioregs_ddr2 = { 102 .cm0ioctl = MT47H128M16RT25E_IOCTRL_VALUE, 103 .cm1ioctl = MT47H128M16RT25E_IOCTRL_VALUE, 104 .cm2ioctl = MT47H128M16RT25E_IOCTRL_VALUE, 105 .dt0ioctl = MT47H128M16RT25E_IOCTRL_VALUE, 106 .dt1ioctl = MT47H128M16RT25E_IOCTRL_VALUE, 107 }; 108 109 static int read_eeprom(struct pepper_board_id *header) 110 { 111 if (i2c_probe(CONFIG_SYS_I2C_EEPROM_ADDR)) { 112 return -ENODEV; 113 } 114 115 if (i2c_read(CONFIG_SYS_I2C_EEPROM_ADDR, 0, 1, (uchar *)header, 116 sizeof(struct pepper_board_id))) { 117 return -EIO; 118 } 119 120 return 0; 121 } 122 123 const struct dpll_params *get_dpll_ddr_params(void) 124 { 125 struct pepper_board_id header; 126 127 enable_i2c0_pin_mux(); 128 i2c_set_bus_num(0); 129 130 if (read_eeprom(&header) < 0) 131 return &dpll_ddr3; 132 133 switch (header.device_vendor) { 134 case GUMSTIX_PEPPER: 135 return &dpll_ddr2; 136 case GUMSTIX_PEPPER_DVI: 137 return &dpll_ddr3; 138 default: 139 return &dpll_ddr3; 140 } 141 } 142 143 void sdram_init(void) 144 { 145 const struct dpll_params *dpll = get_dpll_ddr_params(); 146 147 /* 148 * Here we are assuming PLL clock reveals the type of RAM. 149 * DDR2 = 266 150 * DDR3 = 400 151 * Note that DDR3 is the default. 152 */ 153 if (dpll->m == 266) { 154 config_ddr(dpll->m, &ioregs_ddr2, &ddr2_data, 155 &ddr2_cmd_ctrl_data, &ddr2_emif_reg_data, 0); 156 } 157 else if (dpll->m == 400) { 158 config_ddr(dpll->m, &ioregs_ddr3, &ddr3_data, 159 &ddr3_cmd_ctrl_data, &ddr3_emif_reg_data, 0); 160 } 161 } 162 163 #ifdef CONFIG_SPL_OS_BOOT 164 int spl_start_uboot(void) 165 { 166 /* break into full u-boot on 'c' */ 167 return serial_tstc() && serial_getc() == 'c'; 168 } 169 #endif 170 171 void set_uart_mux_conf(void) 172 { 173 enable_uart0_pin_mux(); 174 } 175 176 void set_mux_conf_regs(void) 177 { 178 enable_board_pin_mux(); 179 } 180 181 182 #endif 183 184 int board_init(void) 185 { 186 #if defined(CONFIG_HW_WATCHDOG) 187 hw_watchdog_init(); 188 #endif 189 190 gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100; 191 gpmc_init(); 192 193 return 0; 194 } 195 196 #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \ 197 (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD)) 198 static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE; 199 200 static void cpsw_control(int enabled) 201 { 202 /* VTP can be added here */ 203 204 return; 205 } 206 207 static struct cpsw_slave_data cpsw_slaves[] = { 208 { 209 .slave_reg_ofs = 0x208, 210 .sliver_reg_ofs = 0xd80, 211 .phy_addr = 0, 212 .phy_if = PHY_INTERFACE_MODE_RGMII, 213 }, 214 }; 215 216 static struct cpsw_platform_data cpsw_data = { 217 .mdio_base = CPSW_MDIO_BASE, 218 .cpsw_base = CPSW_BASE, 219 .mdio_div = 0xff, 220 .channels = 8, 221 .cpdma_reg_ofs = 0x800, 222 .slaves = 1, 223 .slave_data = cpsw_slaves, 224 .ale_reg_ofs = 0xd00, 225 .ale_entries = 1024, 226 .host_port_reg_ofs = 0x108, 227 .hw_stats_reg_ofs = 0x900, 228 .bd_ram_ofs = 0x2000, 229 .mac_control = (1 << 5), 230 .control = cpsw_control, 231 .host_port_num = 0, 232 .version = CPSW_CTRL_VERSION_2, 233 }; 234 235 int board_eth_init(bd_t *bis) 236 { 237 int rv, n = 0; 238 uint8_t mac_addr[6]; 239 uint32_t mac_hi, mac_lo; 240 const char *devname; 241 242 if (!eth_env_get_enetaddr("ethaddr", mac_addr)) { 243 /* try reading mac address from efuse */ 244 mac_lo = readl(&cdev->macid0l); 245 mac_hi = readl(&cdev->macid0h); 246 mac_addr[0] = mac_hi & 0xFF; 247 mac_addr[1] = (mac_hi & 0xFF00) >> 8; 248 mac_addr[2] = (mac_hi & 0xFF0000) >> 16; 249 mac_addr[3] = (mac_hi & 0xFF000000) >> 24; 250 mac_addr[4] = mac_lo & 0xFF; 251 mac_addr[5] = (mac_lo & 0xFF00) >> 8; 252 if (is_valid_ethaddr(mac_addr)) 253 eth_env_set_enetaddr("ethaddr", mac_addr); 254 } 255 256 writel((RGMII_MODE_ENABLE | RGMII_INT_DELAY), &cdev->miisel); 257 258 rv = cpsw_register(&cpsw_data); 259 if (rv < 0) 260 printf("Error %d registering CPSW switch\n", rv); 261 else 262 n += rv; 263 264 /* 265 * 266 * CPSW RGMII Internal Delay Mode is not supported in all PVT 267 * operating points. So we must set the TX clock delay feature 268 * in the KSZ9021 PHY. Since we only support a single ethernet 269 * device in U-Boot, we only do this for the current instance. 270 */ 271 devname = miiphy_get_current_dev(); 272 /* max rx/tx clock delay, min rx/tx control delay */ 273 miiphy_write(devname, 0x0, 0x0b, 0x8104); 274 miiphy_write(devname, 0x0, 0xc, 0xa0a0); 275 276 /* min rx data delay */ 277 miiphy_write(devname, 0x0, 0x0b, 0x8105); 278 miiphy_write(devname, 0x0, 0x0c, 0x0000); 279 280 /* min tx data delay */ 281 miiphy_write(devname, 0x0, 0x0b, 0x8106); 282 miiphy_write(devname, 0x0, 0x0c, 0x0000); 283 284 return n; 285 } 286 #endif 287