1 /*
2  * (C) Copyright 2013
3  * Reinhard Pfau, Guntermann & Drunck GmbH, reinhard.pfau@gdsys.cc
4  *
5  * SPDX-License-Identifier:	GPL-2.0+
6  */
7 
8 /* TODO: some more #ifdef's to avoid unneeded code for stage 1 / stage 2 */
9 
10 #ifdef CCDM_ID_DEBUG
11 #define DEBUG
12 #endif
13 
14 #include <common.h>
15 #include <malloc.h>
16 #include <fs.h>
17 #include <i2c.h>
18 #include <mmc.h>
19 #include <tpm.h>
20 #include <u-boot/sha1.h>
21 #include <asm/byteorder.h>
22 #include <asm/unaligned.h>
23 #include <pca9698.h>
24 
25 #undef CCDM_FIRST_STAGE
26 #undef CCDM_SECOND_STAGE
27 #undef CCDM_AUTO_FIRST_STAGE
28 
29 #ifdef CONFIG_DEVELOP
30 #define CCDM_DEVELOP
31 #endif
32 
33 #ifdef CONFIG_TRAILBLAZER
34 #define CCDM_FIRST_STAGE
35 #undef CCDM_SECOND_STAGE
36 #else
37 #undef CCDM_FIRST_STAGE
38 #define CCDM_SECOND_STAGE
39 #endif
40 
41 #if defined(CCDM_DEVELOP) && defined(CCDM_SECOND_STAGE) && \
42 	!defined(CCCM_FIRST_STAGE)
43 #define CCDM_AUTO_FIRST_STAGE
44 #endif
45 
46 /* enums from TCG specs */
47 enum {
48 	/* capability areas */
49 	TPM_CAP_NV_INDEX	= 0x00000011,
50 	TPM_CAP_HANDLE		= 0x00000014,
51 	/* resource types */
52 	TPM_RT_KEY	= 0x00000001,
53 };
54 
55 /* CCDM specific contants */
56 enum {
57 	/* NV indices */
58 	NV_COMMON_DATA_INDEX	= 0x40000001,
59 	/* magics for key blob chains */
60 	MAGIC_KEY_PROGRAM	= 0x68726500,
61 	MAGIC_HMAC		= 0x68616300,
62 	MAGIC_END_OF_CHAIN	= 0x00000000,
63 	/* sizes */
64 	NV_COMMON_DATA_MIN_SIZE	= 3 * sizeof(uint64_t) + 2 * sizeof(uint16_t),
65 };
66 
67 /* other constants */
68 enum {
69 	ESDHC_BOOT_IMAGE_SIG_OFS	= 0x40,
70 	ESDHC_BOOT_IMAGE_SIZE_OFS	= 0x48,
71 	ESDHC_BOOT_IMAGE_ADDR_OFS	= 0x50,
72 	ESDHC_BOOT_IMAGE_TARGET_OFS	= 0x58,
73 	ESDHC_BOOT_IMAGE_ENTRY_OFS	= 0x60,
74 };
75 
76 enum {
77 	I2C_SOC_0 = 0,
78 	I2C_SOC_1 = 1,
79 };
80 
81 struct key_program {
82 	uint32_t magic;
83 	uint32_t code_crc;
84 	uint32_t code_size;
85 	uint8_t code[];
86 };
87 
88 struct h_reg {
89 	bool valid;
90 	uint8_t digest[20];
91 };
92 
93 
94 enum access_mode {
95 	HREG_NONE	= 0,
96 	HREG_RD		= 1,
97 	HREG_WR		= 2,
98 	HREG_RDWR	= 3,
99 };
100 
101 /* register constants */
102 enum {
103 	FIX_HREG_DEVICE_ID_HASH	= 0,
104 	FIX_HREG_SELF_HASH	= 1,
105 	FIX_HREG_STAGE2_HASH	= 2,
106 	FIX_HREG_VENDOR		= 3,
107 	COUNT_FIX_HREGS
108 };
109 
110 
111 /* hre opcodes */
112 enum {
113 	/* opcodes w/o data */
114 	HRE_NOP		= 0x00,
115 	HRE_SYNC	= HRE_NOP,
116 	HRE_CHECK0	= 0x01,
117 	/* opcodes w/o data, w/ sync dst */
118 	/* opcodes w/ data */
119 	HRE_LOAD	= 0x81,
120 	/* opcodes w/data, w/sync dst */
121 	HRE_XOR		= 0xC1,
122 	HRE_AND		= 0xC2,
123 	HRE_OR		= 0xC3,
124 	HRE_EXTEND	= 0xC4,
125 	HRE_LOADKEY	= 0xC5,
126 };
127 
128 /* hre errors */
129 enum {
130 	HRE_E_OK	= 0,
131 	HRE_E_TPM_FAILURE,
132 	HRE_E_INVALID_HREG,
133 };
134 
135 static uint64_t device_id;
136 static uint64_t device_cl;
137 static uint64_t device_type;
138 
139 static uint32_t platform_key_handle;
140 
141 static void(*bl2_entry)(void);
142 
143 static struct h_reg pcr_hregs[24];
144 static struct h_reg fix_hregs[COUNT_FIX_HREGS];
145 static struct h_reg var_hregs[8];
146 static uint32_t hre_tpm_err;
147 static int hre_err = HRE_E_OK;
148 
149 #define IS_PCR_HREG(spec) ((spec) & 0x20)
150 #define IS_FIX_HREG(spec) (((spec) & 0x38) == 0x08)
151 #define IS_VAR_HREG(spec) (((spec) & 0x38) == 0x10)
152 #define HREG_IDX(spec) ((spec) & (IS_PCR_HREG(spec) ? 0x1f : 0x7))
153 
154 
155 static const uint8_t prg_stage1_prepare[] = {
156 	0x00, 0x20, 0x00, 0x00, /* opcode: SYNC f0 */
157 	0x00, 0x24, 0x00, 0x00, /* opcode: SYNC f1 */
158 	0x01, 0x80, 0x00, 0x00, /* opcode: CHECK0 PCR0 */
159 	0x81, 0x22, 0x00, 0x00, /* opcode: LOAD PCR0, f0 */
160 	0x01, 0x84, 0x00, 0x00, /* opcode: CHECK0 PCR1 */
161 	0x81, 0x26, 0x10, 0x00, /* opcode: LOAD PCR1, f1 */
162 	0x01, 0x88, 0x00, 0x00, /* opcode: CHECK0 PCR2 */
163 	0x81, 0x2a, 0x20, 0x00, /* opcode: LOAD PCR2, f2 */
164 	0x01, 0x8c, 0x00, 0x00, /* opcode: CHECK0 PCR3 */
165 	0x81, 0x2e, 0x30, 0x00, /* opcode: LOAD PCR3, f3 */
166 };
167 
168 static const uint8_t prg_stage2_prepare[] = {
169 	0x00, 0x80, 0x00, 0x00, /* opcode: SYNC PCR0 */
170 	0x00, 0x84, 0x00, 0x00, /* opcode: SYNC PCR1 */
171 	0x00, 0x88, 0x00, 0x00, /* opcode: SYNC PCR2 */
172 	0x00, 0x8c, 0x00, 0x00, /* opcode: SYNC PCR3 */
173 	0x00, 0x90, 0x00, 0x00, /* opcode: SYNC PCR4 */
174 };
175 
176 static const uint8_t prg_stage2_success[] = {
177 	0x81, 0x02, 0x40, 0x14, /* opcode: LOAD PCR4, #<20B data> */
178 	0x48, 0xfd, 0x95, 0x17, 0xe7, 0x54, 0x6b, 0x68, /* data */
179 	0x92, 0x31, 0x18, 0x05, 0xf8, 0x58, 0x58, 0x3c, /* data */
180 	0xe4, 0xd2, 0x81, 0xe0, /* data */
181 };
182 
183 static const uint8_t prg_stage_fail[] = {
184 	0x81, 0x01, 0x00, 0x14, /* opcode: LOAD v0, #<20B data> */
185 	0xc0, 0x32, 0xad, 0xc1, 0xff, 0x62, 0x9c, 0x9b, /* data */
186 	0x66, 0xf2, 0x27, 0x49, 0xad, 0x66, 0x7e, 0x6b, /* data */
187 	0xea, 0xdf, 0x14, 0x4b, /* data */
188 	0x81, 0x42, 0x30, 0x00, /* opcode: LOAD PCR3, v0 */
189 	0x81, 0x42, 0x40, 0x00, /* opcode: LOAD PCR4, v0 */
190 };
191 
192 static const uint8_t vendor[] = "Guntermann & Drunck";
193 
194 
195 /**
196  * @brief read a bunch of data from MMC into memory.
197  *
198  * @param mmc	pointer to the mmc structure to use.
199  * @param src	offset where the data starts on MMC/SD device (in bytes).
200  * @param dst	pointer to the location where the read data should be stored.
201  * @param size	number of bytes to read from the MMC/SD device.
202  * @return number of bytes read or -1 on error.
203  */
204 static int ccdm_mmc_read(struct mmc *mmc, u64 src, u8 *dst, int size)
205 {
206 	int result = 0;
207 	u32 blk_len, ofs;
208 	ulong block_no, n, cnt;
209 	u8 *tmp_buf = NULL;
210 
211 	if (size <= 0)
212 		goto end;
213 
214 	blk_len = mmc->read_bl_len;
215 	tmp_buf = malloc(blk_len);
216 	if (!tmp_buf)
217 		goto failure;
218 	block_no = src / blk_len;
219 	ofs = src % blk_len;
220 
221 	if (ofs) {
222 		n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
223 			tmp_buf);
224 		if (!n)
225 			goto failure;
226 		result = min(size, (int)(blk_len - ofs));
227 		memcpy(dst, tmp_buf + ofs, result);
228 		dst += result;
229 		size -= result;
230 	}
231 	cnt = size / blk_len;
232 	if (cnt) {
233 		n = mmc->block_dev.block_read(&mmc->block_dev, block_no, cnt,
234 			dst);
235 		if (n != cnt)
236 			goto failure;
237 		size -= cnt * blk_len;
238 		result += cnt * blk_len;
239 		dst += cnt * blk_len;
240 		block_no += cnt;
241 	}
242 	if (size) {
243 		n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
244 			tmp_buf);
245 		if (!n)
246 			goto failure;
247 		memcpy(dst, tmp_buf, size);
248 		result += size;
249 	}
250 	goto end;
251 failure:
252 	result = -1;
253 end:
254 	if (tmp_buf)
255 		free(tmp_buf);
256 	return result;
257 }
258 
259 /**
260  * @brief returns a location where the 2nd stage bootloader can be(/ is) placed.
261  *
262  * @return pointer to the location for/of the 2nd stage bootloader
263  */
264 static u8 *get_2nd_stage_bl_location(ulong target_addr)
265 {
266 	ulong addr;
267 #ifdef CCDM_SECOND_STAGE
268 	addr = getenv_ulong("loadaddr", 16, CONFIG_LOADADDR);
269 #else
270 	addr = target_addr;
271 #endif
272 	return (u8 *)(addr);
273 }
274 
275 
276 #ifdef CCDM_SECOND_STAGE
277 /**
278  * @brief returns a location where the image can be(/ is) placed.
279  *
280  * @return pointer to the location for/of the image
281  */
282 static u8 *get_image_location(void)
283 {
284 	ulong addr;
285 	/* TODO use other area? */
286 	addr = getenv_ulong("loadaddr", 16, CONFIG_LOADADDR);
287 	return (u8 *)(addr);
288 }
289 #endif
290 
291 /**
292  * @brief get the size of a given (TPM) NV area
293  * @param index	NV index of the area to get size for
294  * @param size	pointer to the size
295  * @return 0 on success, != 0 on error
296  */
297 static int get_tpm_nv_size(uint32_t index, uint32_t *size)
298 {
299 	uint32_t err;
300 	uint8_t info[72];
301 	uint8_t *ptr;
302 	uint16_t v16;
303 
304 	err = tpm_get_capability(TPM_CAP_NV_INDEX, index,
305 		info, sizeof(info));
306 	if (err) {
307 		printf("tpm_get_capability(CAP_NV_INDEX, %08x) failed: %u\n",
308 		       index, err);
309 		return 1;
310 	}
311 
312 	/* skip tag and nvIndex */
313 	ptr = info + 6;
314 	/* skip 2 pcr info fields */
315 	v16 = get_unaligned_be16(ptr);
316 	ptr += 2 + v16 + 1 + 20;
317 	v16 = get_unaligned_be16(ptr);
318 	ptr += 2 + v16 + 1 + 20;
319 	/* skip permission and flags */
320 	ptr += 6 + 3;
321 
322 	*size = get_unaligned_be32(ptr);
323 	return 0;
324 }
325 
326 /**
327  * @brief search for a key by usage auth and pub key hash.
328  * @param auth	usage auth of the key to search for
329  * @param pubkey_digest	(SHA1) hash of the pub key structure of the key
330  * @param[out] handle	the handle of the key iff found
331  * @return 0 if key was found in TPM; != 0 if not.
332  */
333 static int find_key(const uint8_t auth[20], const uint8_t pubkey_digest[20],
334 		uint32_t *handle)
335 {
336 	uint16_t key_count;
337 	uint32_t key_handles[10];
338 	uint8_t buf[288];
339 	uint8_t *ptr;
340 	uint32_t err;
341 	uint8_t digest[20];
342 	size_t buf_len;
343 	unsigned int i;
344 
345 	/* fetch list of already loaded keys in the TPM */
346 	err = tpm_get_capability(TPM_CAP_HANDLE, TPM_RT_KEY, buf, sizeof(buf));
347 	if (err)
348 		return -1;
349 	key_count = get_unaligned_be16(buf);
350 	ptr = buf + 2;
351 	for (i = 0; i < key_count; ++i, ptr += 4)
352 		key_handles[i] = get_unaligned_be32(ptr);
353 
354 	/* now search a(/ the) key which we can access with the given auth */
355 	for (i = 0; i < key_count; ++i) {
356 		buf_len = sizeof(buf);
357 		err = tpm_get_pub_key_oiap(key_handles[i], auth, buf, &buf_len);
358 		if (err && err != TPM_AUTHFAIL)
359 			return -1;
360 		if (err)
361 			continue;
362 		sha1_csum(buf, buf_len, digest);
363 		if (!memcmp(digest, pubkey_digest, 20)) {
364 			*handle = key_handles[i];
365 			return 0;
366 		}
367 	}
368 	return 1;
369 }
370 
371 /**
372  * @brief read CCDM common data from TPM NV
373  * @return 0 if CCDM common data was found and read, !=0 if something failed.
374  */
375 static int read_common_data(void)
376 {
377 	uint32_t size;
378 	uint32_t err;
379 	uint8_t buf[256];
380 	sha1_context ctx;
381 
382 	if (get_tpm_nv_size(NV_COMMON_DATA_INDEX, &size) ||
383 	    size < NV_COMMON_DATA_MIN_SIZE)
384 		return 1;
385 	err = tpm_nv_read_value(NV_COMMON_DATA_INDEX,
386 		buf, min(sizeof(buf), size));
387 	if (err) {
388 		printf("tpm_nv_read_value() failed: %u\n", err);
389 		return 1;
390 	}
391 
392 	device_id = get_unaligned_be64(buf);
393 	device_cl = get_unaligned_be64(buf + 8);
394 	device_type = get_unaligned_be64(buf + 16);
395 
396 	sha1_starts(&ctx);
397 	sha1_update(&ctx, buf, 24);
398 	sha1_finish(&ctx, fix_hregs[FIX_HREG_DEVICE_ID_HASH].digest);
399 	fix_hregs[FIX_HREG_DEVICE_ID_HASH].valid = true;
400 
401 	platform_key_handle = get_unaligned_be32(buf + 24);
402 
403 	return 0;
404 }
405 
406 /**
407  * @brief compute hash of bootloader itself.
408  * @param[out] dst	hash register where the hash should be stored
409  * @return 0 on success, != 0 on failure.
410  *
411  * @note MUST be called at a time where the boot loader is accessible at the
412  * configured location (; so take care when code is reallocated).
413  */
414 static int compute_self_hash(struct h_reg *dst)
415 {
416 	sha1_csum((const uint8_t *)CONFIG_SYS_MONITOR_BASE,
417 		  CONFIG_SYS_MONITOR_LEN, dst->digest);
418 	dst->valid = true;
419 	return 0;
420 }
421 
422 int ccdm_compute_self_hash(void)
423 {
424 	if (!fix_hregs[FIX_HREG_SELF_HASH].valid)
425 		compute_self_hash(&fix_hregs[FIX_HREG_SELF_HASH]);
426 	return 0;
427 }
428 
429 /**
430  * @brief compute the hash of the 2nd stage boot loader (on SD card)
431  * @param[out] dst	hash register to store the computed hash
432  * @return 0 on success, != 0 on failure
433  *
434  * Determines the size and location of the 2nd stage boot loader on SD card,
435  * loads the 2nd stage boot loader and computes the (SHA1) hash value.
436  * Within the 1st stage boot loader, the 2nd stage boot loader is loaded at
437  * the desired memory location and the variable @a bl2_entry is set.
438  *
439  * @note This sets the variable @a bl2_entry to the entry point when the
440  * 2nd stage boot loader is loaded at its configured memory location.
441  */
442 static int compute_second_stage_hash(struct h_reg *dst)
443 {
444 	int result = 0;
445 	u32 code_len, code_offset, target_addr, exec_entry;
446 	struct mmc *mmc;
447 	u8 *load_addr = NULL;
448 	u8 buf[128];
449 
450 	mmc = find_mmc_device(0);
451 	if (!mmc)
452 		goto failure;
453 	mmc_init(mmc);
454 
455 	if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) < 0)
456 		goto failure;
457 
458 	code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
459 	code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
460 	target_addr = *(u32 *)(buf + ESDHC_BOOT_IMAGE_TARGET_OFS);
461 	exec_entry =  *(u32 *)(buf + ESDHC_BOOT_IMAGE_ENTRY_OFS);
462 
463 	load_addr = get_2nd_stage_bl_location(target_addr);
464 	if (load_addr == (u8 *)target_addr)
465 		bl2_entry = (void(*)(void))exec_entry;
466 
467 	if (ccdm_mmc_read(mmc, code_offset, load_addr, code_len) < 0)
468 		goto failure;
469 
470 	sha1_csum(load_addr, code_len, dst->digest);
471 	dst->valid = true;
472 
473 	goto end;
474 failure:
475 	result = 1;
476 	bl2_entry = NULL;
477 end:
478 	return result;
479 }
480 
481 /**
482  * @brief get pointer to  hash register by specification
483  * @param spec	specification of a hash register
484  * @return pointer to hash register or NULL if @a spec does not qualify a
485  * valid hash register; NULL else.
486  */
487 static struct h_reg *get_hreg(uint8_t spec)
488 {
489 	uint8_t idx;
490 
491 	idx = HREG_IDX(spec);
492 	if (IS_FIX_HREG(spec)) {
493 		if (idx < ARRAY_SIZE(fix_hregs))
494 			return fix_hregs + idx;
495 		hre_err = HRE_E_INVALID_HREG;
496 	} else if (IS_PCR_HREG(spec)) {
497 		if (idx < ARRAY_SIZE(pcr_hregs))
498 			return pcr_hregs + idx;
499 		hre_err = HRE_E_INVALID_HREG;
500 	} else if (IS_VAR_HREG(spec)) {
501 		if (idx < ARRAY_SIZE(var_hregs))
502 			return var_hregs + idx;
503 		hre_err = HRE_E_INVALID_HREG;
504 	}
505 	return NULL;
506 }
507 
508 /**
509  * @brief get pointer of a hash register by specification and usage.
510  * @param spec	specification of a hash register
511  * @param mode	access mode (read or write or read/write)
512  * @return pointer to hash register if found and valid; NULL else.
513  *
514  * This func uses @a get_reg() to determine the hash register for a given spec.
515  * If a register is found it is validated according to the desired access mode.
516  * The value of automatic registers (PCR register and fixed registers) is
517  * loaded or computed on read access.
518  */
519 static struct h_reg *access_hreg(uint8_t spec, enum access_mode mode)
520 {
521 	struct h_reg *result;
522 
523 	result = get_hreg(spec);
524 	if (!result)
525 		return NULL;
526 
527 	if (mode & HREG_WR) {
528 		if (IS_FIX_HREG(spec)) {
529 			hre_err = HRE_E_INVALID_HREG;
530 			return NULL;
531 		}
532 	}
533 	if (mode & HREG_RD) {
534 		if (!result->valid) {
535 			if (IS_PCR_HREG(spec)) {
536 				hre_tpm_err = tpm_pcr_read(HREG_IDX(spec),
537 					result->digest, 20);
538 				result->valid = (hre_tpm_err == TPM_SUCCESS);
539 			} else if (IS_FIX_HREG(spec)) {
540 				switch (HREG_IDX(spec)) {
541 				case FIX_HREG_DEVICE_ID_HASH:
542 					read_common_data();
543 					break;
544 				case FIX_HREG_SELF_HASH:
545 					ccdm_compute_self_hash();
546 					break;
547 				case FIX_HREG_STAGE2_HASH:
548 					compute_second_stage_hash(result);
549 					break;
550 				case FIX_HREG_VENDOR:
551 					memcpy(result->digest, vendor, 20);
552 					result->valid = true;
553 					break;
554 				}
555 			} else {
556 				result->valid = true;
557 			}
558 		}
559 		if (!result->valid) {
560 			hre_err = HRE_E_INVALID_HREG;
561 			return NULL;
562 		}
563 	}
564 
565 	return result;
566 }
567 
568 static void *compute_and(void *_dst, const void *_src, size_t n)
569 {
570 	uint8_t *dst = _dst;
571 	const uint8_t *src = _src;
572 	size_t i;
573 
574 	for (i = n; i-- > 0; )
575 		*dst++ &= *src++;
576 
577 	return _dst;
578 }
579 
580 static void *compute_or(void *_dst, const void *_src, size_t n)
581 {
582 	uint8_t *dst = _dst;
583 	const uint8_t *src = _src;
584 	size_t i;
585 
586 	for (i = n; i-- > 0; )
587 		*dst++ |= *src++;
588 
589 	return _dst;
590 }
591 
592 static void *compute_xor(void *_dst, const void *_src, size_t n)
593 {
594 	uint8_t *dst = _dst;
595 	const uint8_t *src = _src;
596 	size_t i;
597 
598 	for (i = n; i-- > 0; )
599 		*dst++ ^= *src++;
600 
601 	return _dst;
602 }
603 
604 static void *compute_extend(void *_dst, const void *_src, size_t n)
605 {
606 	uint8_t digest[20];
607 	sha1_context ctx;
608 
609 	sha1_starts(&ctx);
610 	sha1_update(&ctx, _dst, n);
611 	sha1_update(&ctx, _src, n);
612 	sha1_finish(&ctx, digest);
613 	memcpy(_dst, digest, min(n, sizeof(digest)));
614 
615 	return _dst;
616 }
617 
618 static int hre_op_loadkey(struct h_reg *src_reg, struct h_reg *dst_reg,
619 		const void *key, size_t key_size)
620 {
621 	uint32_t parent_handle;
622 	uint32_t key_handle;
623 
624 	if (!src_reg || !dst_reg || !src_reg->valid || !dst_reg->valid)
625 		return -1;
626 	if (find_key(src_reg->digest, dst_reg->digest, &parent_handle))
627 		return -1;
628 	hre_tpm_err = tpm_load_key2_oiap(parent_handle, key, key_size,
629 		src_reg->digest, &key_handle);
630 	if (hre_tpm_err) {
631 		hre_err = HRE_E_TPM_FAILURE;
632 		return -1;
633 	}
634 	/* TODO remember key handle somehow? */
635 
636 	return 0;
637 }
638 
639 /**
640  * @brief executes the next opcode on the hash register engine.
641  * @param[in,out] ip	pointer to the opcode (instruction pointer)
642  * @param[in,out] code_size	(remaining) size of the code
643  * @return new instruction pointer on success, NULL on error.
644  */
645 static const uint8_t *hre_execute_op(const uint8_t **ip, size_t *code_size)
646 {
647 	bool dst_modified = false;
648 	uint32_t ins;
649 	uint8_t opcode;
650 	uint8_t src_spec;
651 	uint8_t dst_spec;
652 	uint16_t data_size;
653 	struct h_reg *src_reg, *dst_reg;
654 	uint8_t buf[20];
655 	const uint8_t *src_buf, *data;
656 	uint8_t *ptr;
657 	int i;
658 	void * (*bin_func)(void *, const void *, size_t);
659 
660 	if (*code_size < 4)
661 		return NULL;
662 
663 	ins = get_unaligned_be32(*ip);
664 	opcode = **ip;
665 	data = *ip + 4;
666 	src_spec = (ins >> 18) & 0x3f;
667 	dst_spec = (ins >> 12) & 0x3f;
668 	data_size = (ins & 0x7ff);
669 
670 	debug("HRE: ins=%08x (op=%02x, s=%02x, d=%02x, L=%d)\n", ins,
671 	      opcode, src_spec, dst_spec, data_size);
672 
673 	if ((opcode & 0x80) && (data_size + 4) > *code_size)
674 		return NULL;
675 
676 	src_reg = access_hreg(src_spec, HREG_RD);
677 	if (hre_err || hre_tpm_err)
678 		return NULL;
679 	dst_reg = access_hreg(dst_spec, (opcode & 0x40) ? HREG_RDWR : HREG_WR);
680 	if (hre_err || hre_tpm_err)
681 		return NULL;
682 
683 	switch (opcode) {
684 	case HRE_NOP:
685 		goto end;
686 	case HRE_CHECK0:
687 		if (src_reg) {
688 			for (i = 0; i < 20; ++i) {
689 				if (src_reg->digest[i])
690 					return NULL;
691 			}
692 		}
693 		break;
694 	case HRE_LOAD:
695 		bin_func = memcpy;
696 		goto do_bin_func;
697 	case HRE_XOR:
698 		bin_func = compute_xor;
699 		goto do_bin_func;
700 	case HRE_AND:
701 		bin_func = compute_and;
702 		goto do_bin_func;
703 	case HRE_OR:
704 		bin_func = compute_or;
705 		goto do_bin_func;
706 	case HRE_EXTEND:
707 		bin_func = compute_extend;
708 do_bin_func:
709 		if (!dst_reg)
710 			return NULL;
711 		if (src_reg) {
712 			src_buf = src_reg->digest;
713 		} else {
714 			if (!data_size) {
715 				memset(buf, 0, 20);
716 				src_buf = buf;
717 			} else if (data_size == 1) {
718 				memset(buf, *data, 20);
719 				src_buf = buf;
720 			} else if (data_size >= 20) {
721 				src_buf = data;
722 			} else {
723 				src_buf = buf;
724 				for (ptr = (uint8_t *)src_buf, i = 20; i > 0;
725 					i -= data_size, ptr += data_size)
726 					memcpy(ptr, data,
727 					       min_t(size_t, i, data_size));
728 			}
729 		}
730 		bin_func(dst_reg->digest, src_buf, 20);
731 		dst_reg->valid = true;
732 		dst_modified = true;
733 		break;
734 	case HRE_LOADKEY:
735 		if (hre_op_loadkey(src_reg, dst_reg, data, data_size))
736 			return NULL;
737 		break;
738 	default:
739 		return NULL;
740 	}
741 
742 	if (dst_reg && dst_modified && IS_PCR_HREG(dst_spec)) {
743 		hre_tpm_err = tpm_extend(HREG_IDX(dst_spec), dst_reg->digest,
744 			dst_reg->digest);
745 		if (hre_tpm_err) {
746 			hre_err = HRE_E_TPM_FAILURE;
747 			return NULL;
748 		}
749 	}
750 end:
751 	*ip += 4;
752 	*code_size -= 4;
753 	if (opcode & 0x80) {
754 		*ip += data_size;
755 		*code_size -= data_size;
756 	}
757 
758 	return *ip;
759 }
760 
761 /**
762  * @brief runs a program on the hash register engine.
763  * @param code		pointer to the (HRE) code.
764  * @param code_size	size of the code (in bytes).
765  * @return 0 on success, != 0 on failure.
766  */
767 static int hre_run_program(const uint8_t *code, size_t code_size)
768 {
769 	size_t code_left;
770 	const uint8_t *ip = code;
771 
772 	code_left = code_size;
773 	hre_tpm_err = 0;
774 	hre_err = HRE_E_OK;
775 	while (code_left > 0)
776 		if (!hre_execute_op(&ip, &code_left))
777 			return -1;
778 
779 	return hre_err;
780 }
781 
782 static int check_hmac(struct key_program *hmac,
783 	const uint8_t *data, size_t data_size)
784 {
785 	uint8_t key[20], computed_hmac[20];
786 	uint32_t type;
787 
788 	type = get_unaligned_be32(hmac->code);
789 	if (type != 0)
790 		return 1;
791 	memset(key, 0, sizeof(key));
792 	compute_extend(key, pcr_hregs[1].digest, 20);
793 	compute_extend(key, pcr_hregs[2].digest, 20);
794 	compute_extend(key, pcr_hregs[3].digest, 20);
795 	compute_extend(key, pcr_hregs[4].digest, 20);
796 
797 	sha1_hmac(key, sizeof(key), data, data_size, computed_hmac);
798 
799 	return memcmp(computed_hmac, hmac->code + 4, 20);
800 }
801 
802 static int verify_program(struct key_program *prg)
803 {
804 	uint32_t crc;
805 	crc = crc32(0, prg->code, prg->code_size);
806 
807 	if (crc != prg->code_crc) {
808 		printf("HRC crc mismatch: %08x != %08x\n",
809 		       crc, prg->code_crc);
810 		return 1;
811 	}
812 	return 0;
813 }
814 
815 #if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
816 static struct key_program *load_sd_key_program(void)
817 {
818 	u32 code_len, code_offset;
819 	struct mmc *mmc;
820 	u8 buf[128];
821 	struct key_program *result = NULL, *hmac = NULL;
822 	struct key_program header;
823 
824 	mmc = find_mmc_device(0);
825 	if (!mmc)
826 		return NULL;
827 	mmc_init(mmc);
828 
829 	if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) <= 0)
830 		goto failure;
831 
832 	code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
833 	code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
834 
835 	code_offset += code_len;
836 	/* TODO: the following needs to be the size of the 2nd stage env */
837 	code_offset += CONFIG_ENV_SIZE;
838 
839 	if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
840 		goto failure;
841 
842 	header.magic = get_unaligned_be32(buf);
843 	header.code_crc = get_unaligned_be32(buf + 4);
844 	header.code_size = get_unaligned_be32(buf + 8);
845 
846 	if (header.magic != MAGIC_KEY_PROGRAM)
847 		goto failure;
848 
849 	result = malloc(sizeof(struct key_program) + header.code_size);
850 	if (!result)
851 		goto failure;
852 	*result = header;
853 
854 	printf("load key program chunk from SD card (%u bytes) ",
855 	       header.code_size);
856 	code_offset += 12;
857 	if (ccdm_mmc_read(mmc, code_offset, result->code, header.code_size)
858 		< 0)
859 		goto failure;
860 	code_offset += header.code_size;
861 	puts("\n");
862 
863 	if (verify_program(result))
864 		goto failure;
865 
866 	if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
867 		goto failure;
868 
869 	header.magic = get_unaligned_be32(buf);
870 	header.code_crc = get_unaligned_be32(buf + 4);
871 	header.code_size = get_unaligned_be32(buf + 8);
872 
873 	if (header.magic == MAGIC_HMAC) {
874 		puts("check integrity\n");
875 		hmac = malloc(sizeof(struct key_program) + header.code_size);
876 		if (!hmac)
877 			goto failure;
878 		*hmac = header;
879 		code_offset += 12;
880 		if (ccdm_mmc_read(mmc, code_offset, hmac->code,
881 				  hmac->code_size) < 0)
882 			goto failure;
883 		if (verify_program(hmac))
884 			goto failure;
885 		if (check_hmac(hmac, result->code, result->code_size)) {
886 			puts("key program integrity could not be verified\n");
887 			goto failure;
888 		}
889 		puts("key program verified\n");
890 	}
891 
892 	goto end;
893 failure:
894 	if (result)
895 		free(result);
896 	result = NULL;
897 end:
898 	if (hmac)
899 		free(hmac);
900 
901 	return result;
902 }
903 #endif
904 
905 #ifdef CCDM_SECOND_STAGE
906 /**
907  * @brief load a key program from file system.
908  * @param ifname	interface of the file system
909  * @param dev_part_str	device part of the file system
910  * @param fs_type	tyep of the file system
911  * @param path		path of the file to load.
912  * @return the loaded structure or NULL on failure.
913  */
914 static struct key_program *load_key_chunk(const char *ifname,
915 	const char *dev_part_str, int fs_type,
916 	const char *path)
917 {
918 	struct key_program *result = NULL;
919 	struct key_program header;
920 	uint32_t crc;
921 	uint8_t buf[12];
922 	loff_t i;
923 
924 	if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
925 		goto failure;
926 	if (fs_read(path, (ulong)buf, 0, 12, &i) < 0)
927 		goto failure;
928 	if (i < 12)
929 		goto failure;
930 	header.magic = get_unaligned_be32(buf);
931 	header.code_crc = get_unaligned_be32(buf + 4);
932 	header.code_size = get_unaligned_be32(buf + 8);
933 
934 	if (header.magic != MAGIC_HMAC && header.magic != MAGIC_KEY_PROGRAM)
935 		goto failure;
936 
937 	result = malloc(sizeof(struct key_program) + header.code_size);
938 	if (!result)
939 		goto failure;
940 	if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
941 		goto failure;
942 	if (fs_read(path, (ulong)result, 0,
943 		    sizeof(struct key_program) + header.code_size, &i) < 0)
944 		goto failure;
945 	if (i <= 0)
946 		goto failure;
947 	*result = header;
948 
949 	crc = crc32(0, result->code, result->code_size);
950 
951 	if (crc != result->code_crc) {
952 		printf("%s: HRC crc mismatch: %08x != %08x\n",
953 		       path, crc, result->code_crc);
954 		goto failure;
955 	}
956 	goto end;
957 failure:
958 	if (result) {
959 		free(result);
960 		result = NULL;
961 	}
962 end:
963 	return result;
964 }
965 #endif
966 
967 #if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
968 static int first_stage_actions(void)
969 {
970 	int result = 0;
971 	struct key_program *sd_prg = NULL;
972 
973 	puts("CCDM S1: start actions\n");
974 #ifndef CCDM_SECOND_STAGE
975 	if (tpm_continue_self_test())
976 		goto failure;
977 #else
978 	tpm_continue_self_test();
979 #endif
980 	mdelay(37);
981 
982 	if (hre_run_program(prg_stage1_prepare, sizeof(prg_stage1_prepare)))
983 		goto failure;
984 
985 	sd_prg = load_sd_key_program();
986 	if (sd_prg) {
987 		if (hre_run_program(sd_prg->code, sd_prg->code_size))
988 			goto failure;
989 		puts("SD code run successfully\n");
990 	} else {
991 		puts("no key program found on SD\n");
992 		goto failure;
993 	}
994 	goto end;
995 failure:
996 	result = 1;
997 end:
998 	if (sd_prg)
999 		free(sd_prg);
1000 	printf("CCDM S1: actions done (%d)\n", result);
1001 	return result;
1002 }
1003 #endif
1004 
1005 #ifdef CCDM_FIRST_STAGE
1006 static int first_stage_init(void)
1007 {
1008 	int res = 0;
1009 	puts("CCDM S1\n");
1010 	if (tpm_init() || tpm_startup(TPM_ST_CLEAR))
1011 		return 1;
1012 	res = first_stage_actions();
1013 #ifndef CCDM_SECOND_STAGE
1014 	if (!res) {
1015 		if (bl2_entry)
1016 			(*bl2_entry)();
1017 		res = 1;
1018 	}
1019 #endif
1020 	return res;
1021 }
1022 #endif
1023 
1024 #ifdef CCDM_SECOND_STAGE
1025 static int second_stage_init(void)
1026 {
1027 	static const char mac_suffix[] = ".mac";
1028 	bool did_first_stage_run = true;
1029 	int result = 0;
1030 	char *cptr, *mmcdev = NULL;
1031 	struct key_program *hmac_blob = NULL;
1032 	const char *image_path = "/ccdm.itb";
1033 	char *mac_path = NULL;
1034 	ulong image_addr;
1035 	loff_t image_size;
1036 	uint32_t err;
1037 
1038 	printf("CCDM S2\n");
1039 	if (tpm_init())
1040 		return 1;
1041 	err = tpm_startup(TPM_ST_CLEAR);
1042 	if (err != TPM_INVALID_POSTINIT)
1043 		did_first_stage_run = false;
1044 
1045 #ifdef CCDM_AUTO_FIRST_STAGE
1046 	if (!did_first_stage_run && first_stage_actions())
1047 		goto failure;
1048 #else
1049 	if (!did_first_stage_run)
1050 		goto failure;
1051 #endif
1052 
1053 	if (hre_run_program(prg_stage2_prepare, sizeof(prg_stage2_prepare)))
1054 		goto failure;
1055 
1056 	/* run "prepboot" from env to get "mmcdev" set */
1057 	cptr = getenv("prepboot");
1058 	if (cptr && !run_command(cptr, 0))
1059 		mmcdev = getenv("mmcdev");
1060 	if (!mmcdev)
1061 		goto failure;
1062 
1063 	cptr = getenv("ramdiskimage");
1064 	if (cptr)
1065 		image_path = cptr;
1066 
1067 	mac_path = malloc(strlen(image_path) + strlen(mac_suffix) + 1);
1068 	if (mac_path == NULL)
1069 		goto failure;
1070 	strcpy(mac_path, image_path);
1071 	strcat(mac_path, mac_suffix);
1072 
1073 	/* read image from mmcdev (ccdm.itb) */
1074 	image_addr = (ulong)get_image_location();
1075 	if (fs_set_blk_dev("mmc", mmcdev, FS_TYPE_EXT))
1076 		goto failure;
1077 	if (fs_read(image_path, image_addr, 0, 0, &image_size) < 0)
1078 		goto failure;
1079 	if (image_size <= 0)
1080 		goto failure;
1081 	printf("CCDM image found on %s, %lld bytes\n", mmcdev, image_size);
1082 
1083 	hmac_blob = load_key_chunk("mmc", mmcdev, FS_TYPE_EXT, mac_path);
1084 	if (!hmac_blob) {
1085 		puts("failed to load mac file\n");
1086 		goto failure;
1087 	}
1088 	if (verify_program(hmac_blob)) {
1089 		puts("corrupted mac file\n");
1090 		goto failure;
1091 	}
1092 	if (check_hmac(hmac_blob, (u8 *)image_addr, image_size)) {
1093 		puts("image integrity could not be verified\n");
1094 		goto failure;
1095 	}
1096 	puts("CCDM image OK\n");
1097 
1098 	hre_run_program(prg_stage2_success, sizeof(prg_stage2_success));
1099 
1100 	goto end;
1101 failure:
1102 	result = 1;
1103 	hre_run_program(prg_stage_fail, sizeof(prg_stage_fail));
1104 end:
1105 	if (hmac_blob)
1106 		free(hmac_blob);
1107 	if (mac_path)
1108 		free(mac_path);
1109 
1110 	return result;
1111 }
1112 #endif
1113 
1114 int show_self_hash(void)
1115 {
1116 	struct h_reg *hash_ptr;
1117 #ifdef CCDM_SECOND_STAGE
1118 	struct h_reg hash;
1119 
1120 	hash_ptr = &hash;
1121 	if (compute_self_hash(hash_ptr))
1122 		return 1;
1123 #else
1124 	hash_ptr = &fix_hregs[FIX_HREG_SELF_HASH];
1125 #endif
1126 	puts("self hash: ");
1127 	if (hash_ptr && hash_ptr->valid)
1128 		print_buffer(0, hash_ptr->digest, 1, 20, 20);
1129 	else
1130 		puts("INVALID\n");
1131 
1132 	return 0;
1133 }
1134 
1135 /**
1136  * @brief let the system hang.
1137  *
1138  * Called on error.
1139  * Will stop the boot process; display a message and signal the error condition
1140  * by blinking the "status" and the "finder" LED of the controller board.
1141  *
1142  * @note the develop version runs the blink cycle 2 times and then returns.
1143  * The release version never returns.
1144  */
1145 static void ccdm_hang(void)
1146 {
1147 	static const u64 f0 = 0x0ba3bb8ba2e880; /* blink code "finder" LED */
1148 	static const u64 s0 = 0x00f0f0f0f0f0f0; /* blink code "status" LED */
1149 	u64 f, s;
1150 	int i;
1151 #ifdef CCDM_DEVELOP
1152 	int j;
1153 #endif
1154 
1155 	I2C_SET_BUS(I2C_SOC_0);
1156 	pca9698_direction_output(0x22, 0, 0); /* Finder */
1157 	pca9698_direction_output(0x22, 4, 0); /* Status */
1158 
1159 	puts("### ERROR ### Please RESET the board ###\n");
1160 	bootstage_error(BOOTSTAGE_ID_NEED_RESET);
1161 #ifdef CCDM_DEVELOP
1162 	puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1163 	puts("** but we continue since this is a DEVELOP version **\n");
1164 	puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
1165 	for (j = 2; j-- > 0;) {
1166 		putc('#');
1167 #else
1168 	for (;;) {
1169 #endif
1170 		f = f0;
1171 		s = s0;
1172 		for (i = 54; i-- > 0;) {
1173 			pca9698_set_value(0x22, 0, !(f & 1));
1174 			pca9698_set_value(0x22, 4, (s & 1));
1175 			f >>= 1;
1176 			s >>= 1;
1177 			mdelay(120);
1178 		}
1179 	}
1180 	puts("\ncontinue...\n");
1181 }
1182 
1183 int startup_ccdm_id_module(void)
1184 {
1185 	int result = 0;
1186 	unsigned int orig_i2c_bus;
1187 
1188 	orig_i2c_bus = i2c_get_bus_num();
1189 	i2c_set_bus_num(I2C_SOC_1);
1190 
1191 	/* goto end; */
1192 
1193 #ifdef CCDM_DEVELOP
1194 	show_self_hash();
1195 #endif
1196 #ifdef CCDM_FIRST_STAGE
1197 	result = first_stage_init();
1198 	if (result) {
1199 		puts("1st stage init failed\n");
1200 		goto failure;
1201 	}
1202 #endif
1203 #ifdef CCDM_SECOND_STAGE
1204 	result = second_stage_init();
1205 	if (result) {
1206 		puts("2nd stage init failed\n");
1207 		goto failure;
1208 	}
1209 #endif
1210 
1211 	goto end;
1212 failure:
1213 	result = 1;
1214 end:
1215 	i2c_set_bus_num(orig_i2c_bus);
1216 	if (result)
1217 		ccdm_hang();
1218 
1219 	return result;
1220 }
1221