xref: /openbmc/u-boot/board/freescale/t1040qds/eth.c (revision b2e02d28)
1 /*
2  * Copyright 2013 Freescale Semiconductor, Inc.
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  */
6 
7 /*
8  * The RGMII PHYs are provided by the two on-board PHY connected to
9  * dTSEC instances 4 and 5. The SGMII PHYs are provided by one on-board
10  * PHY or by the standard four-port SGMII riser card (VSC).
11  */
12 
13 #include <common.h>
14 #include <netdev.h>
15 #include <asm/fsl_serdes.h>
16 #include <asm/immap_85xx.h>
17 #include <fm_eth.h>
18 #include <fsl_mdio.h>
19 #include <malloc.h>
20 #include <asm/fsl_dtsec.h>
21 
22 #include "../common/fman.h"
23 #include "../common/qixis.h"
24 
25 #include "t1040qds_qixis.h"
26 
27 #ifdef CONFIG_FMAN_ENET
28  /* - In T1040 there are only 8 SERDES lanes, spread across 2 SERDES banks.
29  *   Bank 1 -> Lanes A, B, C, D
30  *   Bank 2 -> Lanes E, F, G, H
31  */
32 
33  /* Mapping of 8 SERDES lanes to T1040 QDS board slots. A value of '0' here
34   * means that the mapping must be determined dynamically, or that the lane
35   * maps to something other than a board slot.
36   */
37 static u8 lane_to_slot[] = {
38 	0, 0, 0, 0, 0, 0, 0, 0
39 };
40 
41 /* On the Vitesse VSC8234XHG SGMII riser card there are 4 SGMII PHYs
42  * housed.
43  */
44 static int riser_phy_addr[] = {
45 	CONFIG_SYS_FM1_DTSEC1_RISER_PHY_ADDR,
46 	CONFIG_SYS_FM1_DTSEC2_RISER_PHY_ADDR,
47 	CONFIG_SYS_FM1_DTSEC3_RISER_PHY_ADDR,
48 	CONFIG_SYS_FM1_DTSEC4_RISER_PHY_ADDR,
49 };
50 
51 /* Slot2 does not have EMI connections */
52 #define EMI_NONE	0xFFFFFFFF
53 #define EMI1_RGMII0	0
54 #define EMI1_RGMII1	1
55 #define EMI1_SLOT1	2
56 #define EMI1_SLOT3	3
57 #define EMI1_SLOT4	4
58 #define EMI1_SLOT5	5
59 #define EMI1_SLOT6	6
60 #define EMI1_SLOT7	7
61 #define EMI2		8
62 
63 static int mdio_mux[NUM_FM_PORTS];
64 
65 static const char * const mdio_names[] = {
66 	"T1040_QDS_MDIO0",
67 	"T1040_QDS_MDIO1",
68 	"T1040_QDS_MDIO2",
69 	"T1040_QDS_MDIO3",
70 	"T1040_QDS_MDIO4",
71 	"T1040_QDS_MDIO5",
72 	"T1040_QDS_MDIO6",
73 	"T1040_QDS_MDIO7",
74 };
75 
76 struct t1040_qds_mdio {
77 	u8 muxval;
78 	struct mii_dev *realbus;
79 };
80 
81 static const char *t1040_qds_mdio_name_for_muxval(u8 muxval)
82 {
83 	return mdio_names[muxval];
84 }
85 
86 struct mii_dev *mii_dev_for_muxval(u8 muxval)
87 {
88 	struct mii_dev *bus;
89 	const char *name = t1040_qds_mdio_name_for_muxval(muxval);
90 
91 	if (!name) {
92 		printf("No bus for muxval %x\n", muxval);
93 		return NULL;
94 	}
95 
96 	bus = miiphy_get_dev_by_name(name);
97 
98 	if (!bus) {
99 		printf("No bus by name %s\n", name);
100 		return NULL;
101 	}
102 
103 	return bus;
104 }
105 
106 static void t1040_qds_mux_mdio(u8 muxval)
107 {
108 	u8 brdcfg4;
109 	if (muxval <= 7) {
110 		brdcfg4 = QIXIS_READ(brdcfg[4]);
111 		brdcfg4 &= ~BRDCFG4_EMISEL_MASK;
112 		brdcfg4 |= (muxval << BRDCFG4_EMISEL_SHIFT);
113 		QIXIS_WRITE(brdcfg[4], brdcfg4);
114 	}
115 }
116 
117 static int t1040_qds_mdio_read(struct mii_dev *bus, int addr, int devad,
118 				int regnum)
119 {
120 	struct t1040_qds_mdio *priv = bus->priv;
121 
122 	t1040_qds_mux_mdio(priv->muxval);
123 
124 	return priv->realbus->read(priv->realbus, addr, devad, regnum);
125 }
126 
127 static int t1040_qds_mdio_write(struct mii_dev *bus, int addr, int devad,
128 				int regnum, u16 value)
129 {
130 	struct t1040_qds_mdio *priv = bus->priv;
131 
132 	t1040_qds_mux_mdio(priv->muxval);
133 
134 	return priv->realbus->write(priv->realbus, addr, devad, regnum, value);
135 }
136 
137 static int t1040_qds_mdio_reset(struct mii_dev *bus)
138 {
139 	struct t1040_qds_mdio *priv = bus->priv;
140 
141 	return priv->realbus->reset(priv->realbus);
142 }
143 
144 static int t1040_qds_mdio_init(char *realbusname, u8 muxval)
145 {
146 	struct t1040_qds_mdio *pmdio;
147 	struct mii_dev *bus = mdio_alloc();
148 
149 	if (!bus) {
150 		printf("Failed to allocate t1040_qds MDIO bus\n");
151 		return -1;
152 	}
153 
154 	pmdio = malloc(sizeof(*pmdio));
155 	if (!pmdio) {
156 		printf("Failed to allocate t1040_qds private data\n");
157 		free(bus);
158 		return -1;
159 	}
160 
161 	bus->read = t1040_qds_mdio_read;
162 	bus->write = t1040_qds_mdio_write;
163 	bus->reset = t1040_qds_mdio_reset;
164 	sprintf(bus->name, t1040_qds_mdio_name_for_muxval(muxval));
165 
166 	pmdio->realbus = miiphy_get_dev_by_name(realbusname);
167 
168 	if (!pmdio->realbus) {
169 		printf("No bus with name %s\n", realbusname);
170 		free(bus);
171 		free(pmdio);
172 		return -1;
173 	}
174 
175 	pmdio->muxval = muxval;
176 	bus->priv = pmdio;
177 
178 	return mdio_register(bus);
179 }
180 
181 /*
182  * Initialize the lane_to_slot[] array.
183  *
184  * On the T1040QDS board the mapping is controlled by ?? register.
185  */
186 static void initialize_lane_to_slot(void)
187 {
188 	ccsr_gur_t *gur = (void *)CONFIG_SYS_MPC85xx_GUTS_ADDR;
189 	int serdes1_prtcl = (in_be32(&gur->rcwsr[4]) &
190 				FSL_CORENET2_RCWSR4_SRDS1_PRTCL)
191 		>> FSL_CORENET2_RCWSR4_SRDS1_PRTCL_SHIFT;
192 
193 	QIXIS_WRITE(cms[0], 0x07);
194 
195 	switch (serdes1_prtcl) {
196 	case 0x60:
197 	case 0x66:
198 	case 0x67:
199 	case 0x69:
200 		lane_to_slot[1] = 7;
201 		lane_to_slot[2] = 6;
202 		lane_to_slot[3] = 5;
203 		break;
204 	case 0x86:
205 		lane_to_slot[1] = 7;
206 		lane_to_slot[2] = 7;
207 		lane_to_slot[3] = 7;
208 		break;
209 	case 0x87:
210 		lane_to_slot[1] = 7;
211 		lane_to_slot[2] = 7;
212 		lane_to_slot[3] = 7;
213 		lane_to_slot[7] = 7;
214 		break;
215 	case 0x89:
216 		lane_to_slot[1] = 7;
217 		lane_to_slot[2] = 7;
218 		lane_to_slot[3] = 7;
219 		lane_to_slot[7] = 7;
220 		break;
221 	case 0x8d:
222 		lane_to_slot[1] = 7;
223 		lane_to_slot[2] = 7;
224 		lane_to_slot[3] = 7;
225 		lane_to_slot[5] = 3;
226 		lane_to_slot[6] = 3;
227 		lane_to_slot[7] = 3;
228 		break;
229 	case 0x8F:
230 	case 0x85:
231 		lane_to_slot[1] = 7;
232 		lane_to_slot[2] = 6;
233 		lane_to_slot[3] = 5;
234 		lane_to_slot[6] = 3;
235 		lane_to_slot[7] = 3;
236 		break;
237 	case 0xA5:
238 		lane_to_slot[1] = 7;
239 		lane_to_slot[6] = 3;
240 		lane_to_slot[7] = 3;
241 		break;
242 	case 0xA7:
243 		lane_to_slot[1] = 7;
244 		lane_to_slot[2] = 6;
245 		lane_to_slot[3] = 5;
246 		lane_to_slot[7] = 7;
247 		break;
248 	case 0xAA:
249 		lane_to_slot[1] = 7;
250 		lane_to_slot[6] = 7;
251 		lane_to_slot[7] = 7;
252 		break;
253 	case 0x40:
254 		lane_to_slot[2] = 7;
255 		lane_to_slot[3] = 7;
256 		break;
257 	default:
258 		printf("qds: Fman: Unsupported SerDes Protocol 0x%02x\n",
259 		       serdes1_prtcl);
260 		break;
261 	}
262 }
263 
264 /*
265  * Given the following ...
266  *
267  * 1) A pointer to an Fman Ethernet node (as identified by the 'compat'
268  * compatible string and 'addr' physical address)
269  *
270  * 2) An Fman port
271  *
272  * ... update the phy-handle property of the Ethernet node to point to the
273  * right PHY. This assumes that we already know the PHY for each port.
274  *
275  * The offset of the Fman Ethernet node is also passed in for convenience, but
276  * it is not used, and we recalculate the offset anyway.
277  *
278  * Note that what we call "Fman ports" (enum fm_port) is really an Fman MAC.
279  * Inside the Fman, "ports" are things that connect to MACs. We only call them
280  * ports in U-Boot because on previous Ethernet devices (e.g. Gianfar), MACs
281  * and ports are the same thing.
282  *
283  */
284 void board_ft_fman_fixup_port(void *fdt, char *compat, phys_addr_t addr,
285 			      enum fm_port port, int offset)
286 {
287 	phy_interface_t intf = fm_info_get_enet_if(port);
288 	char phy[16];
289 
290 	/* The RGMII PHY is identified by the MAC connected to it */
291 	if (intf == PHY_INTERFACE_MODE_RGMII) {
292 		sprintf(phy, "rgmii_phy%u", port == FM1_DTSEC4 ? 1 : 2);
293 		fdt_set_phy_handle(fdt, compat, addr, phy);
294 	}
295 
296 	/* The SGMII PHY is identified by the MAC connected to it */
297 	if (intf == PHY_INTERFACE_MODE_SGMII) {
298 		int lane = serdes_get_first_lane(FSL_SRDS_1, SGMII_FM1_DTSEC1
299 						 + port);
300 		u8 slot;
301 		if (lane < 0)
302 			return;
303 		slot = lane_to_slot[lane];
304 		if (slot) {
305 			/* Slot housing a SGMII riser card */
306 			sprintf(phy, "phy_s%x_%02x", slot,
307 				(fm_info_get_phy_address(port - FM1_DTSEC1)-
308 				CONFIG_SYS_FM1_DTSEC1_RISER_PHY_ADDR + 1));
309 			fdt_set_phy_handle(fdt, compat, addr, phy);
310 		}
311 	}
312 }
313 
314 void fdt_fixup_board_enet(void *fdt)
315 {
316 	int i, lane, idx;
317 
318 	for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
319 		idx = i - FM1_DTSEC1;
320 		switch (fm_info_get_enet_if(i)) {
321 		case PHY_INTERFACE_MODE_SGMII:
322 			lane = serdes_get_first_lane(FSL_SRDS_1,
323 						     SGMII_FM1_DTSEC1 + idx);
324 			if (lane < 0)
325 				break;
326 
327 			switch (mdio_mux[i]) {
328 			case EMI1_SLOT3:
329 				fdt_status_okay_by_alias(fdt, "emi1_slot3");
330 				break;
331 			case EMI1_SLOT5:
332 				fdt_status_okay_by_alias(fdt, "emi1_slot5");
333 				break;
334 			case EMI1_SLOT6:
335 				fdt_status_okay_by_alias(fdt, "emi1_slot6");
336 				break;
337 			case EMI1_SLOT7:
338 				fdt_status_okay_by_alias(fdt, "emi1_slot7");
339 				break;
340 			}
341 		break;
342 		case PHY_INTERFACE_MODE_RGMII:
343 			if (i == FM1_DTSEC4)
344 				fdt_status_okay_by_alias(fdt, "emi1_rgmii0");
345 
346 			if (i == FM1_DTSEC5)
347 				fdt_status_okay_by_alias(fdt, "emi1_rgmii1");
348 			break;
349 		default:
350 			break;
351 		}
352 	}
353 }
354 #endif /* #ifdef CONFIG_FMAN_ENET */
355 
356 static void set_brdcfg9_for_gtx_clk(void)
357 {
358 	u8 brdcfg9;
359 	brdcfg9 = QIXIS_READ(brdcfg[9]);
360 /* Initializing EPHY2 clock to RGMII mode */
361 	brdcfg9 &= ~(BRDCFG9_EPHY2_MASK);
362 	brdcfg9 |= (BRDCFG9_EPHY2_VAL);
363 	QIXIS_WRITE(brdcfg[9], brdcfg9);
364 }
365 
366 void t1040_handle_phy_interface_sgmii(int i)
367 {
368 	int lane, idx, slot;
369 	idx = i - FM1_DTSEC1;
370 	lane = serdes_get_first_lane(FSL_SRDS_1,
371 			SGMII_FM1_DTSEC1 + idx);
372 
373 	if (lane < 0)
374 		return;
375 	slot = lane_to_slot[lane];
376 
377 	switch (slot) {
378 	case 1:
379 		mdio_mux[i] = EMI1_SLOT1;
380 		fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i]));
381 		break;
382 	case 3:
383 		if (FM1_DTSEC4 == i)
384 			fm_info_set_phy_address(i, riser_phy_addr[0]);
385 		if (FM1_DTSEC5 == i)
386 			fm_info_set_phy_address(i, riser_phy_addr[1]);
387 
388 		mdio_mux[i] = EMI1_SLOT3;
389 
390 		fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i]));
391 		break;
392 	case 4:
393 		mdio_mux[i] = EMI1_SLOT4;
394 		fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i]));
395 		break;
396 	case 5:
397 		/* Slot housing a SGMII riser card? */
398 		fm_info_set_phy_address(i, riser_phy_addr[0]);
399 		mdio_mux[i] = EMI1_SLOT5;
400 		fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i]));
401 		break;
402 	case 6:
403 		/* Slot housing a SGMII riser card? */
404 		fm_info_set_phy_address(i, riser_phy_addr[0]);
405 		mdio_mux[i] = EMI1_SLOT6;
406 		fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i]));
407 		break;
408 	case 7:
409 		if (FM1_DTSEC1 == i)
410 			fm_info_set_phy_address(i, riser_phy_addr[0]);
411 		if (FM1_DTSEC2 == i)
412 			fm_info_set_phy_address(i, riser_phy_addr[1]);
413 		if (FM1_DTSEC3 == i)
414 			fm_info_set_phy_address(i, riser_phy_addr[2]);
415 		if (FM1_DTSEC5 == i)
416 			fm_info_set_phy_address(i, riser_phy_addr[3]);
417 
418 		mdio_mux[i] = EMI1_SLOT7;
419 		fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i]));
420 		break;
421 	default:
422 		break;
423 	}
424 	fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i]));
425 }
426 void t1040_handle_phy_interface_rgmii(int i)
427 {
428 	fm_info_set_phy_address(i, i == FM1_DTSEC5 ?
429 			CONFIG_SYS_FM1_DTSEC5_PHY_ADDR :
430 			CONFIG_SYS_FM1_DTSEC4_PHY_ADDR);
431 	mdio_mux[i] = (i == FM1_DTSEC5) ? EMI1_RGMII1 :
432 		EMI1_RGMII0;
433 	fm_info_set_mdio(i, mii_dev_for_muxval(mdio_mux[i]));
434 }
435 
436 int board_eth_init(bd_t *bis)
437 {
438 #ifdef CONFIG_FMAN_ENET
439 	struct memac_mdio_info memac_mdio_info;
440 	unsigned int i;
441 
442 	printf("Initializing Fman\n");
443 	set_brdcfg9_for_gtx_clk();
444 
445 	initialize_lane_to_slot();
446 
447 	/* Initialize the mdio_mux array so we can recognize empty elements */
448 	for (i = 0; i < NUM_FM_PORTS; i++)
449 		mdio_mux[i] = EMI_NONE;
450 
451 	memac_mdio_info.regs =
452 		(struct memac_mdio_controller *)CONFIG_SYS_FM1_DTSEC_MDIO_ADDR;
453 	memac_mdio_info.name = DEFAULT_FM_MDIO_NAME;
454 
455 	/* Register the real 1G MDIO bus */
456 	fm_memac_mdio_init(bis, &memac_mdio_info);
457 
458 	/* Register the muxing front-ends to the MDIO buses */
459 	t1040_qds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_RGMII0);
460 	t1040_qds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_RGMII1);
461 	t1040_qds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT1);
462 	t1040_qds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT3);
463 	t1040_qds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT4);
464 	t1040_qds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT5);
465 	t1040_qds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT6);
466 	t1040_qds_mdio_init(DEFAULT_FM_MDIO_NAME, EMI1_SLOT7);
467 
468 	/*
469 	 * Program on board RGMII PHY addresses. If the SGMII Riser
470 	 * card used, we'll override the PHY address later. For any DTSEC that
471 	 * is RGMII, we'll also override its PHY address later. We assume that
472 	 * DTSEC4 and DTSEC5 are used for RGMII.
473 	 */
474 	fm_info_set_phy_address(FM1_DTSEC4, CONFIG_SYS_FM1_DTSEC4_PHY_ADDR);
475 	fm_info_set_phy_address(FM1_DTSEC5, CONFIG_SYS_FM1_DTSEC5_PHY_ADDR);
476 
477 	for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
478 		switch (fm_info_get_enet_if(i)) {
479 		case PHY_INTERFACE_MODE_QSGMII:
480 			break;
481 		case PHY_INTERFACE_MODE_SGMII:
482 			t1040_handle_phy_interface_sgmii(i);
483 			break;
484 
485 		case PHY_INTERFACE_MODE_RGMII:
486 			/* Only DTSEC4 and DTSEC5 can be routed to RGMII */
487 			t1040_handle_phy_interface_rgmii(i);
488 			break;
489 		default:
490 			break;
491 		}
492 	}
493 
494 	cpu_eth_init(bis);
495 #endif
496 
497 	return pci_eth_init(bis);
498 }
499