xref: /openbmc/u-boot/board/freescale/corenet_ds/eth_superhydra.c (revision 3fdf7596dff87a79e2b41d07479c608d91d06cb3)
1 /*
2  * Copyright 2009-2011 Freescale Semiconductor, Inc.
3  * Author: Srikanth Srinivasan <srikanth.srinivasan@freescale.com>
4  *
5  * See file CREDITS for list of people who contributed to this
6  * project.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 /*
25  * This file handles the board muxing between the Fman Ethernet MACs and
26  * the RGMII/SGMII/XGMII PHYs on a Freescale P5040 "Super Hydra" reference
27  * board. The RGMII PHYs are the two on-board 1Gb ports.  The SGMII PHYs are
28  * provided by the standard Freescale four-port SGMII riser card.  The 10Gb
29  * XGMII PHYs are provided via the XAUI riser card.  The P5040 has 2 FMans
30  * and 5 1G interfaces and 10G interface per FMan. Based on the options in
31  * the RCW, we could have upto 3 SGMII cards and 1 XAUI card at a time.
32  *
33  * Muxing is handled via the PIXIS BRDCFG1 register.  The EMI1 bits control
34  * muxing among the RGMII PHYs and the SGMII PHYs.  The value for RGMII is
35  * always the same (0).  The value for SGMII depends on which slot the riser is
36  * inserted in.  The EMI2 bits control muxing for the the XGMII.  Like SGMII,
37  * the value is based on which slot the XAUI is inserted in.
38  *
39  * The SERDES configuration is used to determine where the SGMII and XAUI cards
40  * exist, and also which Fman's MACs are routed to which PHYs.  So for a given
41  * Fman MAC, there is one and only PHY it connects to.  MACs cannot be routed
42  * to PHYs dynamically.
43  *
44  *
45  * This file also updates the device tree in three ways:
46  *
47  * 1) The status of each virtual MDIO node that is referenced by an Ethernet
48  *    node is set to "okay".
49  *
50  * 2) The phy-handle property of each active Ethernet MAC node is set to the
51  *    appropriate PHY node.
52  *
53  * 3) The "mux value" for each virtual MDIO node is set to the correct value,
54  *    if necessary.  Some virtual MDIO nodes do not have configurable mux
55  *    values, so those values are hard-coded in the DTS.  On the HYDRA board,
56  *    the virtual MDIO node for the SGMII card needs to be updated.
57  *
58  * For all this to work, the device tree needs to have the following:
59  *
60  * 1) An alias for each PHY node that an Ethernet node could be routed to.
61  *
62  * 2) An alias for each real and virtual MDIO node that is disabled by default
63  * and might need to be enabled, and also might need to have its mux-value
64  * updated.
65  */
66 
67 #include <common.h>
68 #include <netdev.h>
69 #include <asm/fsl_serdes.h>
70 #include <fm_eth.h>
71 #include <fsl_mdio.h>
72 #include <malloc.h>
73 #include <fdt_support.h>
74 #include <asm/fsl_dtsec.h>
75 
76 #include "../common/ngpixis.h"
77 #include "../common/fman.h"
78 
79 #ifdef CONFIG_FMAN_ENET
80 
81 #define BRDCFG1_EMI1_SEL_MASK	0x70
82 #define BRDCFG1_EMI1_SEL_SLOT1	0x10
83 #define BRDCFG1_EMI1_SEL_SLOT2	0x20
84 #define BRDCFG1_EMI1_SEL_SLOT5	0x30
85 #define BRDCFG1_EMI1_SEL_SLOT6	0x40
86 #define BRDCFG1_EMI1_SEL_SLOT7	0x50
87 #define BRDCFG1_EMI1_SEL_SLOT3	0x60
88 #define BRDCFG1_EMI1_SEL_RGMII	0x00
89 #define BRDCFG1_EMI1_EN		0x08
90 #define BRDCFG1_EMI2_SEL_MASK	0x06
91 #define BRDCFG1_EMI2_SEL_SLOT1	0x00
92 #define BRDCFG1_EMI2_SEL_SLOT2	0x02
93 
94 #define BRDCFG2_REG_GPIO_SEL	0x20
95 
96 /*
97  * BRDCFG1 mask and value for each MAC
98  *
99  * This array contains the BRDCFG1 values (in mask/val format) that route the
100  * MDIO bus to a particular RGMII or SGMII PHY.
101  */
102 static struct {
103 	u8 mask;
104 	u8 val;
105 } mdio_mux[NUM_FM_PORTS];
106 
107 /*
108  * Mapping of all 18 SERDES lanes to board slots. A value of '0' here means
109  * that the mapping must be determined dynamically, or that the lane maps to
110  * something other than a board slot
111  */
112 static u8 lane_to_slot[] = {
113 	7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0
114 };
115 
116 /*
117  * Set the board muxing for a given MAC
118  *
119  * The MDIO layer calls this function every time it wants to talk to a PHY.
120  */
121 void super_hydra_mux_mdio(u8 mask, u8 val)
122 {
123 	clrsetbits_8(&pixis->brdcfg1, mask, val);
124 }
125 
126 struct super_hydra_mdio {
127 	u8 mask;
128 	u8 val;
129 	struct mii_dev *realbus;
130 };
131 
132 static int super_hydra_mdio_read(struct mii_dev *bus, int addr, int devad,
133 				int regnum)
134 {
135 	struct super_hydra_mdio *priv = bus->priv;
136 
137 	super_hydra_mux_mdio(priv->mask, priv->val);
138 
139 	return priv->realbus->read(priv->realbus, addr, devad, regnum);
140 }
141 
142 static int super_hydra_mdio_write(struct mii_dev *bus, int addr, int devad,
143 				int regnum, u16 value)
144 {
145 	struct super_hydra_mdio *priv = bus->priv;
146 
147 	super_hydra_mux_mdio(priv->mask, priv->val);
148 
149 	return priv->realbus->write(priv->realbus, addr, devad, regnum, value);
150 }
151 
152 static int super_hydra_mdio_reset(struct mii_dev *bus)
153 {
154 	struct super_hydra_mdio *priv = bus->priv;
155 
156 	return priv->realbus->reset(priv->realbus);
157 }
158 
159 static void super_hydra_mdio_set_mux(char *name, u8 mask, u8 val)
160 {
161 	struct mii_dev *bus = miiphy_get_dev_by_name(name);
162 	struct super_hydra_mdio *priv = bus->priv;
163 
164 	priv->mask = mask;
165 	priv->val = val;
166 }
167 
168 static int super_hydra_mdio_init(char *realbusname, char *fakebusname)
169 {
170 	struct super_hydra_mdio *hmdio;
171 	struct mii_dev *bus = mdio_alloc();
172 
173 	if (!bus) {
174 		printf("Failed to allocate Hydra MDIO bus\n");
175 		return -1;
176 	}
177 
178 	hmdio = malloc(sizeof(*hmdio));
179 	if (!hmdio) {
180 		printf("Failed to allocate Hydra private data\n");
181 		free(bus);
182 		return -1;
183 	}
184 
185 	bus->read = super_hydra_mdio_read;
186 	bus->write = super_hydra_mdio_write;
187 	bus->reset = super_hydra_mdio_reset;
188 	sprintf(bus->name, fakebusname);
189 
190 	hmdio->realbus = miiphy_get_dev_by_name(realbusname);
191 
192 	if (!hmdio->realbus) {
193 		printf("No bus with name %s\n", realbusname);
194 		free(bus);
195 		free(hmdio);
196 		return -1;
197 	}
198 
199 	bus->priv = hmdio;
200 
201 	return mdio_register(bus);
202 }
203 
204 /*
205  * Given the following ...
206  *
207  * 1) A pointer to an Fman Ethernet node (as identified by the 'compat'
208  * compatible string and 'addr' physical address)
209  *
210  * 2) An Fman port
211  *
212  * ... update the phy-handle property of the Ethernet node to point to the
213  * right PHY.  This assumes that we already know the PHY for each port.  That
214  * information is stored in mdio_mux[].
215  *
216  * The offset of the Fman Ethernet node is also passed in for convenience, but
217  * it is not used.
218  *
219  * Note that what we call "Fman ports" (enum fm_port) is really an Fman MAC.
220  * Inside the Fman, "ports" are things that connect to MACs.  We only call them
221  * ports in U-Boot because on previous Ethernet devices (e.g. Gianfar), MACs
222  * and ports are the same thing.
223  */
224 void board_ft_fman_fixup_port(void *fdt, char *compat, phys_addr_t addr,
225 			      enum fm_port port, int offset)
226 {
227 	enum srds_prtcl device;
228 	int lane, slot, phy;
229 	char alias[32];
230 
231 	/* RGMII and XGMII are already mapped correctly in the DTS */
232 
233 	if (fm_info_get_enet_if(port) == PHY_INTERFACE_MODE_SGMII) {
234 		device = serdes_device_from_fm_port(port);
235 		lane = serdes_get_first_lane(device);
236 		slot = lane_to_slot[lane];
237 		phy = fm_info_get_phy_address(port);
238 
239 		sprintf(alias, "phy_sgmii_slot%u_%x", slot, phy);
240 		fdt_set_phy_handle(fdt, compat, addr, alias);
241 	}
242 }
243 
244 #define PIXIS_SW2_LANE_23_SEL		0x80
245 #define PIXIS_SW2_LANE_45_SEL		0x40
246 #define PIXIS_SW2_LANE_67_SEL_MASK	0x30
247 #define PIXIS_SW2_LANE_67_SEL_5		0x00
248 #define PIXIS_SW2_LANE_67_SEL_6		0x20
249 #define PIXIS_SW2_LANE_67_SEL_7		0x10
250 #define PIXIS_SW2_LANE_8_SEL		0x08
251 #define PIXIS_SW2_LANE_1617_SEL		0x04
252 #define PIXIS_SW11_LANE_9_SEL		0x04
253 /*
254  * Initialize the lane_to_slot[] array.
255  *
256  * On the P4080DS "Expedition" board, the mapping of SERDES lanes to board
257  * slots is hard-coded.  On the Hydra board, however, the mapping is controlled
258  * by board switch SW2, so the lane_to_slot[] array needs to be dynamically
259  * initialized.
260  */
261 static void initialize_lane_to_slot(void)
262 {
263 	u8 sw2 = in_8(&PIXIS_SW(2));
264 	/* SW11 appears in the programming model as SW9 */
265 	u8 sw11 = in_8(&PIXIS_SW(9));
266 
267 	lane_to_slot[2] = (sw2 & PIXIS_SW2_LANE_23_SEL) ? 7 : 4;
268 	lane_to_slot[3] = lane_to_slot[2];
269 
270 	lane_to_slot[4] = (sw2 & PIXIS_SW2_LANE_45_SEL) ? 7 : 6;
271 	lane_to_slot[5] = lane_to_slot[4];
272 
273 	switch (sw2 & PIXIS_SW2_LANE_67_SEL_MASK) {
274 	case PIXIS_SW2_LANE_67_SEL_5:
275 		lane_to_slot[6] = 5;
276 		break;
277 	case PIXIS_SW2_LANE_67_SEL_6:
278 		lane_to_slot[6] = 6;
279 		break;
280 	case PIXIS_SW2_LANE_67_SEL_7:
281 		lane_to_slot[6] = 7;
282 		break;
283 	}
284 	lane_to_slot[7] = lane_to_slot[6];
285 
286 	lane_to_slot[8] = (sw2 & PIXIS_SW2_LANE_8_SEL) ? 3 : 0;
287 	lane_to_slot[9] = (sw11 & PIXIS_SW11_LANE_9_SEL) ? 0 : 3;
288 
289 	lane_to_slot[16] = (sw2 & PIXIS_SW2_LANE_1617_SEL) ? 1 : 0;
290 	lane_to_slot[17] = lane_to_slot[16];
291 }
292 
293 #endif /* #ifdef CONFIG_FMAN_ENET */
294 
295 /*
296  * Configure the status for the virtual MDIO nodes
297  *
298  * Rather than create the virtual MDIO nodes from scratch for each active
299  * virtual MDIO, we expect the DTS to have the nodes defined already, and we
300  * only enable the ones that are actually active.
301  *
302  * We assume that the DTS already hard-codes the status for all the
303  * virtual MDIO nodes to "disabled", so all we need to do is enable the
304  * active ones.
305  */
306 void fdt_fixup_board_enet(void *fdt)
307 {
308 #ifdef CONFIG_FMAN_ENET
309 	enum fm_port i;
310 	int lane, slot;
311 
312 	for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
313 		int idx = i - FM1_DTSEC1;
314 
315 		switch (fm_info_get_enet_if(i)) {
316 		case PHY_INTERFACE_MODE_SGMII:
317 			lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx);
318 			if (lane >= 0) {
319 				char alias[32];
320 
321 				slot = lane_to_slot[lane];
322 				sprintf(alias, "hydra_sg_slot%u", slot);
323 				fdt_status_okay_by_alias(fdt, alias);
324 				debug("Enabled MDIO node %s (slot %i)\n",
325 				      alias, slot);
326 			}
327 			break;
328 		case PHY_INTERFACE_MODE_RGMII:
329 			fdt_status_okay_by_alias(fdt, "hydra_rg");
330 			debug("Enabled MDIO node hydra_rg\n");
331 			break;
332 		default:
333 			break;
334 		}
335 	}
336 
337 	lane = serdes_get_first_lane(XAUI_FM1);
338 	if (lane >= 0) {
339 		char alias[32];
340 
341 		slot = lane_to_slot[lane];
342 		sprintf(alias, "hydra_xg_slot%u", slot);
343 		fdt_status_okay_by_alias(fdt, alias);
344 		debug("Enabled MDIO node %s (slot %i)\n", alias, slot);
345 	}
346 
347 #if CONFIG_SYS_NUM_FMAN == 2
348 	for (i = FM2_DTSEC1; i < FM2_DTSEC1 + CONFIG_SYS_NUM_FM2_DTSEC; i++) {
349 		int idx = i - FM2_DTSEC1;
350 
351 		switch (fm_info_get_enet_if(i)) {
352 		case PHY_INTERFACE_MODE_SGMII:
353 			lane = serdes_get_first_lane(SGMII_FM2_DTSEC1 + idx);
354 			if (lane >= 0) {
355 				char alias[32];
356 
357 				slot = lane_to_slot[lane];
358 				sprintf(alias, "hydra_sg_slot%u", slot);
359 				fdt_status_okay_by_alias(fdt, alias);
360 				debug("Enabled MDIO node %s (slot %i)\n",
361 				      alias, slot);
362 			}
363 			break;
364 		case PHY_INTERFACE_MODE_RGMII:
365 			fdt_status_okay_by_alias(fdt, "hydra_rg");
366 			debug("Enabled MDIO node hydra_rg\n");
367 			break;
368 		default:
369 			break;
370 		}
371 	}
372 
373 	lane = serdes_get_first_lane(XAUI_FM2);
374 	if (lane >= 0) {
375 		char alias[32];
376 
377 		slot = lane_to_slot[lane];
378 		sprintf(alias, "hydra_xg_slot%u", slot);
379 		fdt_status_okay_by_alias(fdt, alias);
380 		debug("Enabled MDIO node %s (slot %i)\n", alias, slot);
381 	}
382 #endif /* CONFIG_SYS_NUM_FMAN == 2 */
383 #endif /* CONFIG_FMAN_ENET */
384 }
385 
386 /*
387  * Mapping of SerDes Protocol to MDIO MUX value and PHY address.
388  *
389  * Fman 1:
390  *       DTSEC1        |   DTSEC2        |   DTSEC3        |   DTSEC4
391  *       Mux     Phy   |   Mux     Phy   |   Mux     Phy   |   Mux     Phy
392  *       Value   Addr  |   Value   Addr  |   Value   Addr  |   Value   Addr
393  * 0x00  2       1c    |   2       1d    |   2       1e    |   2       1f
394  * 0x01                |                 |   6       1c    |
395  * 0x02                |                 |   3       1c    |   3       1d
396  * 0x03  2       1c    |   2       1d    |   2       1e    |   2       1f
397  * 0x04  2       1c    |   2       1d    |   2       1e    |   2       1f
398  * 0x05                |                 |   3       1c    |   3       1d
399  * 0x06  2       1c    |   2       1d    |   2       1e    |   2       1f
400  * 0x07                |                 |   6       1c    |
401  * 0x11  2       1c    |   2       1d    |   2       1e    |   2       1f
402  * 0x2a  2             |                 |   2       1e    |   2       1f
403  * 0x34  6       1c    |   6       1d    |   4       1e    |   4       1f
404  * 0x35                |                 |   3       1c    |   3       1d
405  * 0x36  6       1c    |   6       1d    |   4       1e    |   4       1f
406  *                     |                 |                 |
407  * Fman  2:            |                 |                 |
408  *       DTSEC1        |   DTSEC2        |   DTSEC3        |   DTSEC4
409  *       EMI1          |   EMI1          |   EMI1          |   EMI1
410  *       Mux     Phy   |   Mux     Phy   |   Mux     Phy   |   Mux     Phy
411  *       Value   Addr  |   Value   Addr  |   Value   Addr  |   Value   Addr
412  * 0x00                |                 |   6       1c    |   6       1d
413  * 0x01                |                 |                 |
414  * 0x02                |                 |   6       1c    |   6       1d
415  * 0x03  3       1c    |   3       1d    |   6       1c    |   6       1d
416  * 0x04  3       1c    |   3       1d    |   6       1c    |   6       1d
417  * 0x05                |                 |   6       1c    |   6       1d
418  * 0x06                |                 |   6       1c    |   6       1d
419  * 0x07                |                 |                 |
420  * 0x11                |                 |                 |
421  * 0x2a                |                 |                 |
422  * 0x34                |                 |                 |
423  * 0x35                |                 |                 |
424  * 0x36                |                 |                 |
425  */
426 
427 int board_eth_init(bd_t *bis)
428 {
429 #ifdef CONFIG_FMAN_ENET
430 	struct fsl_pq_mdio_info dtsec_mdio_info;
431 	struct tgec_mdio_info tgec_mdio_info;
432 	unsigned int i, slot;
433 	int lane;
434 	ccsr_gur_t *gur = (void *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
435 	int srds_prtcl = (in_be32(&gur->rcwsr[4]) &
436 				FSL_CORENET_RCWSR4_SRDS_PRTCL) >> 26;
437 
438 	printf("Initializing Fman\n");
439 
440 	initialize_lane_to_slot();
441 
442 	/* We want to use the PIXIS to configure MUX routing, not GPIOs. */
443 	setbits_8(&pixis->brdcfg2, BRDCFG2_REG_GPIO_SEL);
444 
445 	memset(mdio_mux, 0, sizeof(mdio_mux));
446 
447 	dtsec_mdio_info.regs =
448 		(struct tsec_mii_mng *)CONFIG_SYS_FM1_DTSEC1_MDIO_ADDR;
449 	dtsec_mdio_info.name = DEFAULT_FM_MDIO_NAME;
450 
451 	/* Register the real 1G MDIO bus */
452 	fsl_pq_mdio_init(bis, &dtsec_mdio_info);
453 
454 	tgec_mdio_info.regs =
455 		(struct tgec_mdio_controller *)CONFIG_SYS_FM1_TGEC_MDIO_ADDR;
456 	tgec_mdio_info.name = DEFAULT_FM_TGEC_MDIO_NAME;
457 
458 	/* Register the real 10G MDIO bus */
459 	fm_tgec_mdio_init(bis, &tgec_mdio_info);
460 
461 	/* Register the three virtual MDIO front-ends */
462 	super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME,
463 				"SUPER_HYDRA_RGMII_MDIO");
464 	super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME,
465 				"SUPER_HYDRA_FM1_SGMII_MDIO");
466 	super_hydra_mdio_init(DEFAULT_FM_MDIO_NAME,
467 				"SUPER_HYDRA_FM2_SGMII_MDIO");
468 	super_hydra_mdio_init(DEFAULT_FM_TGEC_MDIO_NAME,
469 				"SUPER_HYDRA_FM1_TGEC_MDIO");
470 	super_hydra_mdio_init(DEFAULT_FM_TGEC_MDIO_NAME,
471 				"SUPER_HYDRA_FM2_TGEC_MDIO");
472 
473 	/*
474 	 * Program the DTSEC PHY addresses assuming that they are all SGMII.
475 	 * For any DTSEC that's RGMII, we'll override its PHY address later.
476 	 * We assume that DTSEC5 is only used for RGMII.
477 	 */
478 	fm_info_set_phy_address(FM1_DTSEC1, CONFIG_SYS_FM1_DTSEC1_PHY_ADDR);
479 	fm_info_set_phy_address(FM1_DTSEC2, CONFIG_SYS_FM1_DTSEC2_PHY_ADDR);
480 	fm_info_set_phy_address(FM1_10GEC1, CONFIG_SYS_FM2_10GEC1_PHY_ADDR);
481 
482 #if (CONFIG_SYS_NUM_FMAN == 2)
483 	fm_info_set_phy_address(FM2_DTSEC1, CONFIG_SYS_FM2_DTSEC1_PHY_ADDR);
484 	fm_info_set_phy_address(FM2_DTSEC2, CONFIG_SYS_FM2_DTSEC2_PHY_ADDR);
485 	fm_info_set_phy_address(FM2_DTSEC3, CONFIG_SYS_FM2_DTSEC1_PHY_ADDR);
486 	fm_info_set_phy_address(FM2_DTSEC4, CONFIG_SYS_FM2_DTSEC2_PHY_ADDR);
487 	fm_info_set_phy_address(FM2_10GEC1, CONFIG_SYS_FM1_10GEC1_PHY_ADDR);
488 #endif
489 
490 	switch (srds_prtcl) {
491 	case 0:
492 	case 3:
493 	case 4:
494 	case 6:
495 	case 0x11:
496 	case 0x2a:
497 	case 0x34:
498 	case 0x36:
499 		fm_info_set_phy_address(FM1_DTSEC3,
500 					CONFIG_SYS_FM1_DTSEC3_PHY_ADDR);
501 		fm_info_set_phy_address(FM1_DTSEC4,
502 					CONFIG_SYS_FM1_DTSEC4_PHY_ADDR);
503 		break;
504 	case 1:
505 	case 2:
506 	case 5:
507 	case 7:
508 	case 0x35:
509 		fm_info_set_phy_address(FM1_DTSEC3,
510 					CONFIG_SYS_FM1_DTSEC1_PHY_ADDR);
511 		fm_info_set_phy_address(FM1_DTSEC4,
512 					CONFIG_SYS_FM1_DTSEC2_PHY_ADDR);
513 		break;
514 	default:
515 		printf("Fman:  Unsupport SerDes Protocol 0x%02x\n", srds_prtcl);
516 		break;
517 	}
518 
519 	for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) {
520 		int idx = i - FM1_DTSEC1;
521 
522 		switch (fm_info_get_enet_if(i)) {
523 		case PHY_INTERFACE_MODE_SGMII:
524 			lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx);
525 			if (lane < 0)
526 				break;
527 			slot = lane_to_slot[lane];
528 			mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
529 			debug("FM1@DTSEC%u expects SGMII in slot %u\n",
530 			      idx + 1, slot);
531 			switch (slot) {
532 			case 1:
533 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT1 |
534 						BRDCFG1_EMI1_EN;
535 				break;
536 			case 2:
537 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT2 |
538 						BRDCFG1_EMI1_EN;
539 				break;
540 			case 3:
541 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT3 |
542 						BRDCFG1_EMI1_EN;
543 				break;
544 			case 5:
545 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT5 |
546 						BRDCFG1_EMI1_EN;
547 				break;
548 			case 6:
549 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT6 |
550 						BRDCFG1_EMI1_EN;
551 				break;
552 			case 7:
553 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT7 |
554 						BRDCFG1_EMI1_EN;
555 				break;
556 			};
557 
558 			super_hydra_mdio_set_mux("SUPER_HYDRA_FM1_SGMII_MDIO",
559 					mdio_mux[i].mask, mdio_mux[i].val);
560 			fm_info_set_mdio(i,
561 			miiphy_get_dev_by_name("SUPER_HYDRA_FM1_SGMII_MDIO"));
562 			break;
563 		case PHY_INTERFACE_MODE_RGMII:
564 			/*
565 			 * FM1 DTSEC5 is routed via EC1 to the first on-board
566 			 * RGMII port. FM2 DTSEC5 is routed via EC2 to the
567 			 * second on-board RGMII port. The other DTSECs cannot
568 			 * be routed to RGMII.
569 			 */
570 			debug("FM1@DTSEC%u is RGMII at address %u\n",
571 			      idx + 1, 0);
572 			fm_info_set_phy_address(i, 0);
573 			mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
574 			mdio_mux[i].val  = BRDCFG1_EMI1_SEL_RGMII |
575 					   BRDCFG1_EMI1_EN;
576 			super_hydra_mdio_set_mux("SUPER_HYDRA_RGMII_MDIO",
577 					mdio_mux[i].mask, mdio_mux[i].val);
578 			fm_info_set_mdio(i,
579 				miiphy_get_dev_by_name("SUPER_HYDRA_RGMII_MDIO"));
580 			break;
581 		case PHY_INTERFACE_MODE_NONE:
582 			fm_info_set_phy_address(i, 0);
583 			break;
584 		default:
585 			printf("Fman1: DTSEC%u set to unknown interface %i\n",
586 			       idx + 1, fm_info_get_enet_if(i));
587 			fm_info_set_phy_address(i, 0);
588 			break;
589 		}
590 	}
591 
592 	/*
593 	 * For 10G, we only support one XAUI card per Fman.  If present, then we
594 	 * force its routing and never touch those bits again, which removes the
595 	 * need for Linux to do any muxing.  This works because of the way
596 	 * BRDCFG1 is defined, but it's a bit hackish.
597 	 *
598 	 * The PHY address for the XAUI card depends on which slot it's in. The
599 	 * macros we use imply that the PHY address is based on which FM, but
600 	 * that's not true.  On the P4080DS, FM1 could only use XAUI in slot 5,
601 	 * and FM2 could only use a XAUI in slot 4.  On the Hydra board, we
602 	 * check the actual slot and just use the macros as-is, even though
603 	 * the P3041 and P5020 only have one Fman.
604 	 */
605 	lane = serdes_get_first_lane(XAUI_FM1);
606 	if (lane >= 0) {
607 		debug("FM1@TGEC1 expects XAUI in slot %u\n", lane_to_slot[lane]);
608 		mdio_mux[FM1_10GEC1].mask = BRDCFG1_EMI2_SEL_MASK;
609 		mdio_mux[FM1_10GEC1].val = BRDCFG1_EMI2_SEL_SLOT2;
610 		super_hydra_mdio_set_mux("SUPER_HYDRA_FM1_TGEC_MDIO",
611 					mdio_mux[i].mask, mdio_mux[i].val);
612 	}
613 
614 	fm_info_set_mdio(FM1_10GEC1,
615 			miiphy_get_dev_by_name("SUPER_HYDRA_FM1_TGEC_MDIO"));
616 
617 #if (CONFIG_SYS_NUM_FMAN == 2)
618 	for (i = FM2_DTSEC1; i < FM2_DTSEC1 + CONFIG_SYS_NUM_FM2_DTSEC; i++) {
619 		int idx = i - FM2_DTSEC1;
620 
621 		switch (fm_info_get_enet_if(i)) {
622 		case PHY_INTERFACE_MODE_SGMII:
623 			lane = serdes_get_first_lane(SGMII_FM2_DTSEC1 + idx);
624 			if (lane < 0)
625 				break;
626 			slot = lane_to_slot[lane];
627 			mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
628 			debug("FM2@DTSEC%u expects SGMII in slot %u\n",
629 			      idx + 1, slot);
630 			switch (slot) {
631 			case 1:
632 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT1 |
633 						BRDCFG1_EMI1_EN;
634 				break;
635 			case 2:
636 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT2 |
637 						BRDCFG1_EMI1_EN;
638 				break;
639 			case 3:
640 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT3 |
641 						BRDCFG1_EMI1_EN;
642 				break;
643 			case 5:
644 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT5 |
645 						BRDCFG1_EMI1_EN;
646 				break;
647 			case 6:
648 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT6 |
649 						BRDCFG1_EMI1_EN;
650 				break;
651 			case 7:
652 				mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT7 |
653 						BRDCFG1_EMI1_EN;
654 				break;
655 			};
656 
657 			super_hydra_mdio_set_mux("SUPER_HYDRA_FM2_SGMII_MDIO",
658 					mdio_mux[i].mask, mdio_mux[i].val);
659 			fm_info_set_mdio(i,
660 			miiphy_get_dev_by_name("SUPER_HYDRA_FM2_SGMII_MDIO"));
661 			break;
662 		case PHY_INTERFACE_MODE_RGMII:
663 			/*
664 			 * FM1 DTSEC5 is routed via EC1 to the first on-board
665 			 * RGMII port. FM2 DTSEC5 is routed via EC2 to the
666 			 * second on-board RGMII port. The other DTSECs cannot
667 			 * be routed to RGMII.
668 			 */
669 			debug("FM2@DTSEC%u is RGMII at address %u\n",
670 			      idx + 1, 1);
671 			fm_info_set_phy_address(i, 1);
672 			mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK;
673 			mdio_mux[i].val  = BRDCFG1_EMI1_SEL_RGMII |
674 					BRDCFG1_EMI1_EN;
675 			super_hydra_mdio_set_mux("SUPER_HYDRA_RGMII_MDIO",
676 					mdio_mux[i].mask, mdio_mux[i].val);
677 			fm_info_set_mdio(i,
678 			miiphy_get_dev_by_name("SUPER_HYDRA_RGMII_MDIO"));
679 			break;
680 		case PHY_INTERFACE_MODE_NONE:
681 			fm_info_set_phy_address(i, 0);
682 			break;
683 		default:
684 			printf("Fman2: DTSEC%u set to unknown interface %i\n",
685 				idx + 1, fm_info_get_enet_if(i));
686 			fm_info_set_phy_address(i, 0);
687 			break;
688 		}
689 	}
690 
691 	/*
692 	 * For 10G, we only support one XAUI card per Fman.  If present, then we
693 	 * force its routing and never touch those bits again, which removes the
694 	 * need for Linux to do any muxing.  This works because of the way
695 	 * BRDCFG1 is defined, but it's a bit hackish.
696 	 *
697 	 * The PHY address for the XAUI card depends on which slot it's in. The
698 	 * macros we use imply that the PHY address is based on which FM, but
699 	 * that's not true.  On the P4080DS, FM1 could only use XAUI in slot 5,
700 	 * and FM2 could only use a XAUI in slot 4.  On the Hydra board, we
701 	 * check the actual slot and just use the macros as-is, even though
702 	 * the P3041 and P5020 only have one Fman.
703 	 */
704 	lane = serdes_get_first_lane(XAUI_FM2);
705 	if (lane >= 0) {
706 		debug("FM2@TGEC1 expects XAUI in slot %u\n", lane_to_slot[lane]);
707 		mdio_mux[FM2_10GEC1].mask = BRDCFG1_EMI2_SEL_MASK;
708 		mdio_mux[FM2_10GEC1].val = BRDCFG1_EMI2_SEL_SLOT1;
709 		super_hydra_mdio_set_mux("SUPER_HYDRA_FM2_TGEC_MDIO",
710 					mdio_mux[i].mask, mdio_mux[i].val);
711 	}
712 
713 	fm_info_set_mdio(FM2_10GEC1,
714 			miiphy_get_dev_by_name("SUPER_HYDRA_FM2_TGEC_MDIO"));
715 
716 #endif
717 
718 	cpu_eth_init(bis);
719 #endif
720 
721 	return pci_eth_init(bis);
722 }
723