1 /* 2 * Copyright 2009-2011 Freescale Semiconductor, Inc. 3 * Author: Timur Tabi <timur@freescale.com> 4 * 5 * See file CREDITS for list of people who contributed to this 6 * project. 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License as 10 * published by the Free Software Foundation; either version 2 of 11 * the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, 21 * MA 02111-1307 USA 22 */ 23 24 /* 25 * This file handles the board muxing between the Fman Ethernet MACs and 26 * the RGMII/SGMII/XGMII PHYs on a Freescale P3041/P5020 "Hydra" reference 27 * board. The RGMII PHYs are the two on-board 1Gb ports. The SGMII PHYs are 28 * provided by the standard Freescale four-port SGMII riser card. The 10Gb 29 * XGMII PHY is provided via the XAUI riser card. Since there is only one 30 * Fman device on a P3041 and P5020, we only support one SGMII card and one 31 * RGMII card. 32 * 33 * Muxing is handled via the PIXIS BRDCFG1 register. The EMI1 bits control 34 * muxing among the RGMII PHYs and the SGMII PHYs. The value for RGMII is 35 * always the same (0). The value for SGMII depends on which slot the riser is 36 * inserted in. The EMI2 bits control muxing for the the XGMII. Like SGMII, 37 * the value is based on which slot the XAUI is inserted in. 38 * 39 * The SERDES configuration is used to determine where the SGMII and XAUI cards 40 * exist, and also which Fman MACs are routed to which PHYs. So for a given 41 * Fman MAC, there is one and only PHY it connects to. MACs cannot be routed 42 * to PHYs dynamically. 43 * 44 * 45 * This file also updates the device tree in three ways: 46 * 47 * 1) The status of each virtual MDIO node that is referenced by an Ethernet 48 * node is set to "okay". 49 * 50 * 2) The phy-handle property of each active Ethernet MAC node is set to the 51 * appropriate PHY node. 52 * 53 * 3) The "mux value" for each virtual MDIO node is set to the correct value, 54 * if necessary. Some virtual MDIO nodes do not have configurable mux 55 * values, so those values are hard-coded in the DTS. On the HYDRA board, 56 * the virtual MDIO node for the SGMII card needs to be updated. 57 * 58 * For all this to work, the device tree needs to have the following: 59 * 60 * 1) An alias for each PHY node that an Ethernet node could be routed to. 61 * 62 * 2) An alias for each real and virtual MDIO node that is disabled by default 63 * and might need to be enabled, and also might need to have its mux-value 64 * updated. 65 */ 66 67 #include <common.h> 68 #include <netdev.h> 69 #include <asm/fsl_serdes.h> 70 #include <fm_eth.h> 71 #include <fsl_mdio.h> 72 #include <malloc.h> 73 #include <fdt_support.h> 74 #include <asm/fsl_dtsec.h> 75 76 #include "../common/ngpixis.h" 77 #include "../common/fman.h" 78 79 #ifdef CONFIG_FMAN_ENET 80 81 #define BRDCFG1_EMI1_SEL_MASK 0x70 82 #define BRDCFG1_EMI1_SEL_SLOT1 0x10 83 #define BRDCFG1_EMI1_SEL_SLOT2 0x20 84 #define BRDCFG1_EMI1_SEL_SLOT5 0x30 85 #define BRDCFG1_EMI1_SEL_SLOT6 0x40 86 #define BRDCFG1_EMI1_SEL_SLOT7 0x50 87 #define BRDCFG1_EMI1_SEL_RGMII 0x00 88 #define BRDCFG1_EMI1_EN 0x08 89 #define BRDCFG1_EMI2_SEL_MASK 0x06 90 #define BRDCFG1_EMI2_SEL_SLOT1 0x00 91 #define BRDCFG1_EMI2_SEL_SLOT2 0x02 92 93 #define BRDCFG2_REG_GPIO_SEL 0x20 94 95 /* 96 * BRDCFG1 mask and value for each MAC 97 * 98 * This array contains the BRDCFG1 values (in mask/val format) that route the 99 * MDIO bus to a particular RGMII or SGMII PHY. 100 */ 101 struct { 102 u8 mask; 103 u8 val; 104 } mdio_mux[NUM_FM_PORTS]; 105 106 /* 107 * Mapping of all 18 SERDES lanes to board slots. A value of '0' here means 108 * that the mapping must be determined dynamically, or that the lane maps to 109 * something other than a board slot 110 */ 111 static u8 lane_to_slot[] = { 112 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 1, 1, 0, 0 113 }; 114 115 /* 116 * Set the board muxing for a given MAC 117 * 118 * The MDIO layer calls this function every time it wants to talk to a PHY. 119 */ 120 void hydra_mux_mdio(u8 mask, u8 val) 121 { 122 clrsetbits_8(&pixis->brdcfg1, mask, val); 123 } 124 125 struct hydra_mdio { 126 u8 mask; 127 u8 val; 128 struct mii_dev *realbus; 129 }; 130 131 static int hydra_mdio_read(struct mii_dev *bus, int addr, int devad, 132 int regnum) 133 { 134 struct hydra_mdio *priv = bus->priv; 135 136 hydra_mux_mdio(priv->mask, priv->val); 137 138 return priv->realbus->read(priv->realbus, addr, devad, regnum); 139 } 140 141 static int hydra_mdio_write(struct mii_dev *bus, int addr, int devad, 142 int regnum, u16 value) 143 { 144 struct hydra_mdio *priv = bus->priv; 145 146 hydra_mux_mdio(priv->mask, priv->val); 147 148 return priv->realbus->write(priv->realbus, addr, devad, regnum, value); 149 } 150 151 static int hydra_mdio_reset(struct mii_dev *bus) 152 { 153 struct hydra_mdio *priv = bus->priv; 154 155 return priv->realbus->reset(priv->realbus); 156 } 157 158 static void hydra_mdio_set_mux(char *name, u8 mask, u8 val) 159 { 160 struct mii_dev *bus = miiphy_get_dev_by_name(name); 161 struct hydra_mdio *priv = bus->priv; 162 163 priv->mask = mask; 164 priv->val = val; 165 } 166 167 static int hydra_mdio_init(char *realbusname, char *fakebusname) 168 { 169 struct hydra_mdio *hmdio; 170 struct mii_dev *bus = mdio_alloc(); 171 172 if (!bus) { 173 printf("Failed to allocate Hydra MDIO bus\n"); 174 return -1; 175 } 176 177 hmdio = malloc(sizeof(*hmdio)); 178 if (!hmdio) { 179 printf("Failed to allocate Hydra private data\n"); 180 free(bus); 181 return -1; 182 } 183 184 bus->read = hydra_mdio_read; 185 bus->write = hydra_mdio_write; 186 bus->reset = hydra_mdio_reset; 187 sprintf(bus->name, fakebusname); 188 189 hmdio->realbus = miiphy_get_dev_by_name(realbusname); 190 191 if (!hmdio->realbus) { 192 printf("No bus with name %s\n", realbusname); 193 free(bus); 194 free(hmdio); 195 return -1; 196 } 197 198 bus->priv = hmdio; 199 200 return mdio_register(bus); 201 } 202 203 /* 204 * Given an alias or a path for a node, set the mux value of that node. 205 * 206 * If 'alias' is not a valid alias, then it is treated as a full path to the 207 * node. No error checking is performed. 208 * 209 * This function is normally called to set the fsl,hydra-mdio-muxval property 210 * of a virtual MDIO node. 211 */ 212 static void fdt_set_mdio_mux(void *fdt, const char *alias, u32 mux) 213 { 214 const char *path = fdt_get_alias(fdt, alias); 215 216 if (!path) 217 path = alias; 218 219 do_fixup_by_path(fdt, path, "fsl,hydra-mdio-muxval", 220 &mux, sizeof(mux), 1); 221 } 222 223 /* 224 * Given the following ... 225 * 226 * 1) A pointer to an Fman Ethernet node (as identified by the 'compat' 227 * compatible string and 'addr' physical address) 228 * 229 * 2) An Fman port 230 * 231 * ... update the phy-handle property of the Ethernet node to point to the 232 * right PHY. This assumes that we already know the PHY for each port. That 233 * information is stored in mdio_mux[]. 234 * 235 * The offset of the Fman Ethernet node is also passed in for convenience, but 236 * it is not used, and we recalculate the offset anyway. 237 * 238 * Note that what we call "Fman ports" (enum fm_port) is really an Fman MAC. 239 * Inside the Fman, "ports" are things that connect to MACs. We only call them 240 * ports in U-Boot because on previous Ethernet devices (e.g. Gianfar), MACs 241 * and ports are the same thing. 242 * 243 * Note that this code would be cleaner if had a function called 244 * fm_info_get_phy_address(), which returns a value from the fm1_dtsec_info[] 245 * array. That's because all we're doing is figuring out the PHY address for 246 * a given Fman MAC and writing it to the device tree. Well, we already did 247 * the hard work to figure that out in board_eth_init(), so it's silly to 248 * repeat that here. 249 */ 250 void board_ft_fman_fixup_port(void *fdt, char *compat, phys_addr_t addr, 251 enum fm_port port, int offset) 252 { 253 unsigned int mux = mdio_mux[port].val & mdio_mux[port].mask; 254 char phy[16]; 255 256 if (port == FM1_10GEC1) { 257 /* XAUI */ 258 int lane = serdes_get_first_lane(XAUI_FM1); 259 if (lane >= 0) { 260 /* The XAUI PHY is identified by the slot */ 261 sprintf(phy, "phy_xgmii_%u", lane_to_slot[lane]); 262 fdt_set_phy_handle(fdt, compat, addr, phy); 263 } 264 return; 265 } 266 267 if (mux == BRDCFG1_EMI1_SEL_RGMII) { 268 /* RGMII */ 269 /* The RGMII PHY is identified by the MAC connected to it */ 270 sprintf(phy, "phy_rgmii_%u", port == FM1_DTSEC4 ? 0 : 1); 271 fdt_set_phy_handle(fdt, compat, addr, phy); 272 } 273 274 /* If it's not RGMII or XGMII, it must be SGMII */ 275 if (mux) { 276 /* The SGMII PHY is identified by the MAC connected to it */ 277 sprintf(phy, "phy_sgmii_%x", 278 CONFIG_SYS_FM1_DTSEC1_PHY_ADDR + (port - FM1_DTSEC1)); 279 fdt_set_phy_handle(fdt, compat, addr, phy); 280 } 281 } 282 283 #define PIXIS_SW2_LANE_23_SEL 0x80 284 #define PIXIS_SW2_LANE_45_SEL 0x40 285 #define PIXIS_SW2_LANE_67_SEL_MASK 0x30 286 #define PIXIS_SW2_LANE_67_SEL_5 0x00 287 #define PIXIS_SW2_LANE_67_SEL_6 0x20 288 #define PIXIS_SW2_LANE_67_SEL_7 0x10 289 #define PIXIS_SW2_LANE_8_SEL 0x08 290 #define PIXIS_SW2_LANE_1617_SEL 0x04 291 292 /* 293 * Initialize the lane_to_slot[] array. 294 * 295 * On the P4080DS "Expedition" board, the mapping of SERDES lanes to board 296 * slots is hard-coded. On the Hydra board, however, the mapping is controlled 297 * by board switch SW2, so the lane_to_slot[] array needs to be dynamically 298 * initialized. 299 */ 300 static void initialize_lane_to_slot(void) 301 { 302 u8 sw2 = in_8(&PIXIS_SW(2)); 303 304 lane_to_slot[2] = (sw2 & PIXIS_SW2_LANE_23_SEL) ? 7 : 4; 305 lane_to_slot[3] = lane_to_slot[2]; 306 307 lane_to_slot[4] = (sw2 & PIXIS_SW2_LANE_45_SEL) ? 7 : 6; 308 lane_to_slot[5] = lane_to_slot[4]; 309 310 switch (sw2 & PIXIS_SW2_LANE_67_SEL_MASK) { 311 case PIXIS_SW2_LANE_67_SEL_5: 312 lane_to_slot[6] = 5; 313 break; 314 case PIXIS_SW2_LANE_67_SEL_6: 315 lane_to_slot[6] = 6; 316 break; 317 case PIXIS_SW2_LANE_67_SEL_7: 318 lane_to_slot[6] = 7; 319 break; 320 } 321 lane_to_slot[7] = lane_to_slot[6]; 322 323 lane_to_slot[8] = (sw2 & PIXIS_SW2_LANE_8_SEL) ? 3 : 0; 324 325 lane_to_slot[16] = (sw2 & PIXIS_SW2_LANE_1617_SEL) ? 1 : 0; 326 lane_to_slot[17] = lane_to_slot[16]; 327 } 328 329 #endif /* #ifdef CONFIG_FMAN_ENET */ 330 331 /* 332 * Configure the status for the virtual MDIO nodes 333 * 334 * Rather than create the virtual MDIO nodes from scratch for each active 335 * virtual MDIO, we expect the DTS to have the nodes defined already, and we 336 * only enable the ones that are actually active. 337 * 338 * We assume that the DTS already hard-codes the status for all the 339 * virtual MDIO nodes to "disabled", so all we need to do is enable the 340 * active ones. 341 * 342 * For SGMII, we also need to set the mux value in the node. 343 */ 344 void fdt_fixup_board_enet(void *fdt) 345 { 346 #ifdef CONFIG_FMAN_ENET 347 unsigned int i; 348 int lane; 349 350 for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) { 351 int idx = i - FM1_DTSEC1; 352 353 switch (fm_info_get_enet_if(i)) { 354 case PHY_INTERFACE_MODE_SGMII: 355 lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx); 356 if (lane >= 0) { 357 fdt_status_okay_by_alias(fdt, "emi1_sgmii"); 358 /* Also set the MUX value */ 359 fdt_set_mdio_mux(fdt, "emi1_sgmii", 360 mdio_mux[i].val); 361 } 362 break; 363 case PHY_INTERFACE_MODE_RGMII: 364 fdt_status_okay_by_alias(fdt, "emi1_rgmii"); 365 break; 366 default: 367 break; 368 } 369 } 370 371 lane = serdes_get_first_lane(XAUI_FM1); 372 if (lane >= 0) 373 fdt_status_okay_by_alias(fdt, "emi2_xgmii"); 374 #endif 375 } 376 377 int board_eth_init(bd_t *bis) 378 { 379 #ifdef CONFIG_FMAN_ENET 380 struct fsl_pq_mdio_info dtsec_mdio_info; 381 struct tgec_mdio_info tgec_mdio_info; 382 unsigned int i, slot; 383 int lane; 384 385 printf("Initializing Fman\n"); 386 387 initialize_lane_to_slot(); 388 389 /* We want to use the PIXIS to configure MUX routing, not GPIOs. */ 390 setbits_8(&pixis->brdcfg2, BRDCFG2_REG_GPIO_SEL); 391 392 memset(mdio_mux, 0, sizeof(mdio_mux)); 393 394 dtsec_mdio_info.regs = 395 (struct tsec_mii_mng *)CONFIG_SYS_FM1_DTSEC1_MDIO_ADDR; 396 dtsec_mdio_info.name = DEFAULT_FM_MDIO_NAME; 397 398 /* Register the real 1G MDIO bus */ 399 fsl_pq_mdio_init(bis, &dtsec_mdio_info); 400 401 tgec_mdio_info.regs = 402 (struct tgec_mdio_controller *)CONFIG_SYS_FM1_TGEC_MDIO_ADDR; 403 tgec_mdio_info.name = DEFAULT_FM_TGEC_MDIO_NAME; 404 405 /* Register the real 10G MDIO bus */ 406 fm_tgec_mdio_init(bis, &tgec_mdio_info); 407 408 /* Register the three virtual MDIO front-ends */ 409 hydra_mdio_init(DEFAULT_FM_MDIO_NAME, "HYDRA_RGMII_MDIO"); 410 hydra_mdio_init(DEFAULT_FM_MDIO_NAME, "HYDRA_SGMII_MDIO"); 411 412 /* 413 * Program the DTSEC PHY addresses assuming that they are all SGMII. 414 * For any DTSEC that's RGMII, we'll override its PHY address later. 415 * We assume that DTSEC5 is only used for RGMII. 416 */ 417 fm_info_set_phy_address(FM1_DTSEC1, CONFIG_SYS_FM1_DTSEC1_PHY_ADDR); 418 fm_info_set_phy_address(FM1_DTSEC2, CONFIG_SYS_FM1_DTSEC2_PHY_ADDR); 419 fm_info_set_phy_address(FM1_DTSEC3, CONFIG_SYS_FM1_DTSEC3_PHY_ADDR); 420 fm_info_set_phy_address(FM1_DTSEC4, CONFIG_SYS_FM1_DTSEC4_PHY_ADDR); 421 422 for (i = FM1_DTSEC1; i < FM1_DTSEC1 + CONFIG_SYS_NUM_FM1_DTSEC; i++) { 423 int idx = i - FM1_DTSEC1; 424 425 switch (fm_info_get_enet_if(i)) { 426 case PHY_INTERFACE_MODE_SGMII: 427 lane = serdes_get_first_lane(SGMII_FM1_DTSEC1 + idx); 428 if (lane < 0) 429 break; 430 slot = lane_to_slot[lane]; 431 mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK; 432 switch (slot) { 433 case 1: 434 /* Always DTSEC5 on Bank 3 */ 435 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT1 | 436 BRDCFG1_EMI1_EN; 437 break; 438 case 2: 439 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT2 | 440 BRDCFG1_EMI1_EN; 441 break; 442 case 5: 443 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT5 | 444 BRDCFG1_EMI1_EN; 445 break; 446 case 6: 447 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT6 | 448 BRDCFG1_EMI1_EN; 449 break; 450 case 7: 451 mdio_mux[i].val = BRDCFG1_EMI1_SEL_SLOT7 | 452 BRDCFG1_EMI1_EN; 453 break; 454 }; 455 456 hydra_mdio_set_mux("HYDRA_SGMII_MDIO", 457 mdio_mux[i].mask, mdio_mux[i].val); 458 fm_info_set_mdio(i, 459 miiphy_get_dev_by_name("HYDRA_SGMII_MDIO")); 460 break; 461 case PHY_INTERFACE_MODE_RGMII: 462 /* 463 * If DTSEC4 is RGMII, then it's routed via via EC1 to 464 * the first on-board RGMII port. If DTSEC5 is RGMII, 465 * then it's routed via via EC2 to the second on-board 466 * RGMII port. The other DTSECs cannot be routed to 467 * RGMII. 468 */ 469 fm_info_set_phy_address(i, i == FM1_DTSEC4 ? 0 : 1); 470 mdio_mux[i].mask = BRDCFG1_EMI1_SEL_MASK; 471 mdio_mux[i].val = BRDCFG1_EMI1_SEL_RGMII | 472 BRDCFG1_EMI1_EN; 473 hydra_mdio_set_mux("HYDRA_RGMII_MDIO", 474 mdio_mux[i].mask, mdio_mux[i].val); 475 fm_info_set_mdio(i, 476 miiphy_get_dev_by_name("HYDRA_RGMII_MDIO")); 477 break; 478 case PHY_INTERFACE_MODE_NONE: 479 fm_info_set_phy_address(i, 0); 480 break; 481 default: 482 printf("Fman1: DTSEC%u set to unknown interface %i\n", 483 idx + 1, fm_info_get_enet_if(i)); 484 fm_info_set_phy_address(i, 0); 485 break; 486 } 487 } 488 489 /* 490 * For 10G, we only support one XAUI card per Fman. If present, then we 491 * force its routing and never touch those bits again, which removes the 492 * need for Linux to do any muxing. This works because of the way 493 * BRDCFG1 is defined, but it's a bit hackish. 494 * 495 * The PHY address for the XAUI card depends on which slot it's in. The 496 * macros we use imply that the PHY address is based on which FM, but 497 * that's not true. On the P4080DS, FM1 could only use XAUI in slot 5, 498 * and FM2 could only use a XAUI in slot 4. On the Hydra board, we 499 * check the actual slot and just use the macros as-is, even though 500 * the P3041 and P5020 only have one Fman. 501 */ 502 lane = serdes_get_first_lane(XAUI_FM1); 503 if (lane >= 0) { 504 slot = lane_to_slot[lane]; 505 if (slot == 1) { 506 /* XAUI card is in slot 1 */ 507 clrsetbits_8(&pixis->brdcfg1, BRDCFG1_EMI2_SEL_MASK, 508 BRDCFG1_EMI2_SEL_SLOT1); 509 fm_info_set_phy_address(FM1_10GEC1, 510 CONFIG_SYS_FM1_10GEC1_PHY_ADDR); 511 } else { 512 /* XAUI card is in slot 2 */ 513 clrsetbits_8(&pixis->brdcfg1, BRDCFG1_EMI2_SEL_MASK, 514 BRDCFG1_EMI2_SEL_SLOT2); 515 fm_info_set_phy_address(FM1_10GEC1, 516 CONFIG_SYS_FM2_10GEC1_PHY_ADDR); 517 } 518 } 519 520 fm_info_set_mdio(FM1_10GEC1, 521 miiphy_get_dev_by_name(DEFAULT_FM_TGEC_MDIO_NAME)); 522 523 cpu_eth_init(bis); 524 #endif 525 526 return pci_eth_init(bis); 527 } 528