1 /* SPDX-License-Identifier: GPL-2.0+ */ 2 /* 3 * (C) Copyright 2000-2002 4 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 5 */ 6 7 #ifndef _ASM_IO_H 8 #define _ASM_IO_H 9 10 #include <linux/compiler.h> 11 12 /* 13 * This file contains the definitions for the x86 IO instructions 14 * inb/inw/inl/outb/outw/outl and the "string versions" of the same 15 * (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing" 16 * versions of the single-IO instructions (inb_p/inw_p/..). 17 * 18 * This file is not meant to be obfuscating: it's just complicated 19 * to (a) handle it all in a way that makes gcc able to optimize it 20 * as well as possible and (b) trying to avoid writing the same thing 21 * over and over again with slight variations and possibly making a 22 * mistake somewhere. 23 */ 24 25 /* 26 * Thanks to James van Artsdalen for a better timing-fix than 27 * the two short jumps: using outb's to a nonexistent port seems 28 * to guarantee better timings even on fast machines. 29 * 30 * On the other hand, I'd like to be sure of a non-existent port: 31 * I feel a bit unsafe about using 0x80 (should be safe, though) 32 * 33 * Linus 34 */ 35 36 /* 37 * Bit simplified and optimized by Jan Hubicka 38 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999. 39 * 40 * isa_memset_io, isa_memcpy_fromio, isa_memcpy_toio added, 41 * isa_read[wl] and isa_write[wl] fixed 42 * - Arnaldo Carvalho de Melo <acme@conectiva.com.br> 43 */ 44 45 #define IO_SPACE_LIMIT 0xffff 46 47 #include <asm/types.h> 48 49 50 #ifdef __KERNEL__ 51 52 53 /* 54 * readX/writeX() are used to access memory mapped devices. On some 55 * architectures the memory mapped IO stuff needs to be accessed 56 * differently. On the x86 architecture, we just read/write the 57 * memory location directly. 58 */ 59 60 #define readb(addr) (*(volatile unsigned char *) (addr)) 61 #define readw(addr) (*(volatile unsigned short *) (addr)) 62 #define readl(addr) (*(volatile unsigned int *) (addr)) 63 #define readq(addr) (*(volatile unsigned long long *) (addr)) 64 #define __raw_readb readb 65 #define __raw_readw readw 66 #define __raw_readl readl 67 #define __raw_readq readq 68 69 #define writeb(b,addr) (*(volatile unsigned char *) (addr) = (b)) 70 #define writew(b,addr) (*(volatile unsigned short *) (addr) = (b)) 71 #define writel(b,addr) (*(volatile unsigned int *) (addr) = (b)) 72 #define writeq(b,addr) (*(volatile unsigned long long *) (addr) = (b)) 73 #define __raw_writeb writeb 74 #define __raw_writew writew 75 #define __raw_writel writel 76 #define __raw_writeq writeq 77 78 #define memset_io(a,b,c) memset((a),(b),(c)) 79 #define memcpy_fromio(a,b,c) memcpy((a),(b),(c)) 80 #define memcpy_toio(a,b,c) memcpy((a),(b),(c)) 81 82 #define out_arch(type, endian, a, v) __raw_write##type(cpu_to_##endian(v), a) 83 #define in_arch(type, endian, a) endian##_to_cpu(__raw_read##type(a)) 84 85 #define out_le64(a, v) out_arch(q, le64, a, v) 86 #define out_le32(a, v) out_arch(l, le32, a, v) 87 #define out_le16(a, v) out_arch(w, le16, a, v) 88 89 #define in_le64(a) in_arch(q, le64, a) 90 #define in_le32(a) in_arch(l, le32, a) 91 #define in_le16(a) in_arch(w, le16, a) 92 93 #define out_be32(a, v) out_arch(l, be32, a, v) 94 #define out_be16(a, v) out_arch(w, be16, a, v) 95 96 #define in_be32(a) in_arch(l, be32, a) 97 #define in_be16(a) in_arch(w, be16, a) 98 99 #define out_8(a, v) __raw_writeb(v, a) 100 #define in_8(a) __raw_readb(a) 101 102 #define clrbits(type, addr, clear) \ 103 out_##type((addr), in_##type(addr) & ~(clear)) 104 105 #define setbits(type, addr, set) \ 106 out_##type((addr), in_##type(addr) | (set)) 107 108 #define clrsetbits(type, addr, clear, set) \ 109 out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) 110 111 #define clrbits_be32(addr, clear) clrbits(be32, addr, clear) 112 #define setbits_be32(addr, set) setbits(be32, addr, set) 113 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) 114 115 #define clrbits_le32(addr, clear) clrbits(le32, addr, clear) 116 #define setbits_le32(addr, set) setbits(le32, addr, set) 117 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) 118 119 #define clrbits_be16(addr, clear) clrbits(be16, addr, clear) 120 #define setbits_be16(addr, set) setbits(be16, addr, set) 121 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) 122 123 #define clrbits_le16(addr, clear) clrbits(le16, addr, clear) 124 #define setbits_le16(addr, set) setbits(le16, addr, set) 125 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) 126 127 #define clrbits_8(addr, clear) clrbits(8, addr, clear) 128 #define setbits_8(addr, set) setbits(8, addr, set) 129 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) 130 131 #endif /* __KERNEL__ */ 132 133 #ifdef SLOW_IO_BY_JUMPING 134 #define __SLOW_DOWN_IO "\njmp 1f\n1:\tjmp 1f\n1:" 135 #else 136 #define __SLOW_DOWN_IO "\noutb %%al,$0xed" 137 #endif 138 139 #ifdef REALLY_SLOW_IO 140 #define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO __SLOW_DOWN_IO 141 #else 142 #define __FULL_SLOW_DOWN_IO __SLOW_DOWN_IO 143 #endif 144 145 146 /* 147 * Talk about misusing macros.. 148 */ 149 #define __OUT1(s,x) \ 150 static inline void _out##s(unsigned x value, unsigned short port) { 151 152 #define __OUT2(s,s1,s2) \ 153 __asm__ __volatile__ ("out" #s " %" s1 "0,%" s2 "1" 154 155 156 #define __OUT(s,s1,x) \ 157 __OUT1(s,x) __OUT2(s,s1,"w") : : "a" (value), "Nd" (port)); } \ 158 __OUT1(s##_p,x) __OUT2(s,s1,"w") __FULL_SLOW_DOWN_IO : : "a" (value), "Nd" (port));} 159 160 #define __IN1(s) \ 161 static inline RETURN_TYPE _in##s(unsigned short port) { RETURN_TYPE _v; 162 163 #define __IN2(s,s1,s2) \ 164 __asm__ __volatile__ ("in" #s " %" s2 "1,%" s1 "0" 165 166 #define __IN(s,s1,i...) \ 167 __IN1(s) __IN2(s,s1,"w") : "=a" (_v) : "Nd" (port) ,##i ); return _v; } \ 168 __IN1(s##_p) __IN2(s,s1,"w") __FULL_SLOW_DOWN_IO : "=a" (_v) : "Nd" (port) ,##i ); return _v; } 169 170 #define __INS(s) \ 171 static inline void ins##s(unsigned short port, void * addr, unsigned long count) \ 172 { __asm__ __volatile__ ("rep ; ins" #s \ 173 : "=D" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); } 174 175 #define __OUTS(s) \ 176 static inline void outs##s(unsigned short port, const void * addr, unsigned long count) \ 177 { __asm__ __volatile__ ("rep ; outs" #s \ 178 : "=S" (addr), "=c" (count) : "d" (port),"0" (addr),"1" (count)); } 179 180 #define RETURN_TYPE unsigned char 181 __IN(b,"") 182 #undef RETURN_TYPE 183 #define RETURN_TYPE unsigned short 184 __IN(w,"") 185 #undef RETURN_TYPE 186 #define RETURN_TYPE unsigned int 187 __IN(l,"") 188 #undef RETURN_TYPE 189 190 #define inb(port) _inb((uintptr_t)(port)) 191 #define inw(port) _inw((uintptr_t)(port)) 192 #define inl(port) _inl((uintptr_t)(port)) 193 194 __OUT(b,"b",char) 195 __OUT(w,"w",short) 196 __OUT(l,,int) 197 198 #define outb(val, port) _outb(val, (uintptr_t)(port)) 199 #define outw(val, port) _outw(val, (uintptr_t)(port)) 200 #define outl(val, port) _outl(val, (uintptr_t)(port)) 201 202 __INS(b) 203 __INS(w) 204 __INS(l) 205 206 __OUTS(b) 207 __OUTS(w) 208 __OUTS(l) 209 210 /* IO space accessors */ 211 #define clrio(type, addr, clear) \ 212 out##type(in##type(addr) & ~(clear), (addr)) 213 214 #define setio(type, addr, set) \ 215 out##type(in##type(addr) | (set), (addr)) 216 217 #define clrsetio(type, addr, clear, set) \ 218 out##type((in##type(addr) & ~(clear)) | (set), (addr)) 219 220 #define clrio_32(addr, clear) clrio(l, addr, clear) 221 #define clrio_16(addr, clear) clrio(w, addr, clear) 222 #define clrio_8(addr, clear) clrio(b, addr, clear) 223 224 #define setio_32(addr, set) setio(l, addr, set) 225 #define setio_16(addr, set) setio(w, addr, set) 226 #define setio_8(addr, set) setio(b, addr, set) 227 228 #define clrsetio_32(addr, clear, set) clrsetio(l, addr, clear, set) 229 #define clrsetio_16(addr, clear, set) clrsetio(w, addr, clear, set) 230 #define clrsetio_8(addr, clear, set) clrsetio(b, addr, clear, set) 231 232 static inline void sync(void) 233 { 234 } 235 236 /* 237 * TODO: The kernel offers some more advanced versions of barriers, it might 238 * have some advantages to use them instead of the simple one here. 239 */ 240 #define dmb() __asm__ __volatile__ ("" : : : "memory") 241 #define __iormb() dmb() 242 #define __iowmb() dmb() 243 244 /* 245 * Read/write from/to an (offsettable) iomem cookie. It might be a PIO 246 * access or a MMIO access, these functions don't care. The info is 247 * encoded in the hardware mapping set up by the mapping functions 248 * (or the cookie itself, depending on implementation and hw). 249 * 250 * The generic routines don't assume any hardware mappings, and just 251 * encode the PIO/MMIO as part of the cookie. They coldly assume that 252 * the MMIO IO mappings are not in the low address range. 253 * 254 * Architectures for which this is not true can't use this generic 255 * implementation and should do their own copy. 256 */ 257 258 /* 259 * We assume that all the low physical PIO addresses (0-0xffff) always 260 * PIO. That means we can do some sanity checks on the low bits, and 261 * don't need to just take things for granted. 262 */ 263 #define PIO_RESERVED 0x10000UL 264 265 /* 266 * Ugly macros are a way of life. 267 */ 268 #define IO_COND(addr, is_pio, is_mmio) do { \ 269 unsigned long port = (unsigned long __force)addr; \ 270 if (port >= PIO_RESERVED) { \ 271 is_mmio; \ 272 } else { \ 273 is_pio; \ 274 } \ 275 } while (0) 276 277 static inline u8 ioread8(const volatile void __iomem *addr) 278 { 279 IO_COND(addr, return inb(port), return readb(addr)); 280 return 0xff; 281 } 282 283 static inline u16 ioread16(const volatile void __iomem *addr) 284 { 285 IO_COND(addr, return inw(port), return readw(addr)); 286 return 0xffff; 287 } 288 289 static inline u32 ioread32(const volatile void __iomem *addr) 290 { 291 IO_COND(addr, return inl(port), return readl(addr)); 292 return 0xffffffff; 293 } 294 295 static inline void iowrite8(u8 value, volatile void __iomem *addr) 296 { 297 IO_COND(addr, outb(value, port), writeb(value, addr)); 298 } 299 300 static inline void iowrite16(u16 value, volatile void __iomem *addr) 301 { 302 IO_COND(addr, outw(value, port), writew(value, addr)); 303 } 304 305 static inline void iowrite32(u32 value, volatile void __iomem *addr) 306 { 307 IO_COND(addr, outl(value, port), writel(value, addr)); 308 } 309 310 #include <asm-generic/io.h> 311 312 #endif /* _ASM_IO_H */ 313