xref: /openbmc/u-boot/arch/x86/cpu/quark/hte.c (revision 53ab4af34e4e4242809114580320d2faa150b336)
1 /*
2  * Copyright (C) 2013, Intel Corporation
3  * Copyright (C) 2015, Bin Meng <bmeng.cn@gmail.com>
4  *
5  * Ported from Intel released Quark UEFI BIOS
6  * QuarkSocPkg/QuarkNorthCluster/MemoryInit/Pei
7  *
8  * SPDX-License-Identifier:	Intel
9  */
10 
11 #include <common.h>
12 #include <asm/arch/mrc.h>
13 #include <asm/arch/msg_port.h>
14 #include "mrc_util.h"
15 #include "hte.h"
16 
17 /**
18  * Enable HTE to detect all possible errors for the given training parameters
19  * (per-bit or full byte lane).
20  */
21 static void hte_enable_all_errors(void)
22 {
23 	msg_port_write(HTE, 0x000200a2, 0xffffffff);
24 	msg_port_write(HTE, 0x000200a3, 0x000000ff);
25 	msg_port_write(HTE, 0x000200a4, 0x00000000);
26 }
27 
28 /**
29  * Go and read the HTE register in order to find any error
30  *
31  * @return: The errors detected in the HTE status register
32  */
33 static u32 hte_check_errors(void)
34 {
35 	return msg_port_read(HTE, 0x000200a7);
36 }
37 
38 /**
39  * Wait until HTE finishes
40  */
41 static void hte_wait_for_complete(void)
42 {
43 	u32 tmp;
44 
45 	ENTERFN();
46 
47 	do {} while ((msg_port_read(HTE, 0x00020012) & (1 << 30)) != 0);
48 
49 	tmp = msg_port_read(HTE, 0x00020011);
50 	tmp |= (1 << 9);
51 	tmp &= ~((1 << 12) | (1 << 13));
52 	msg_port_write(HTE, 0x00020011, tmp);
53 
54 	LEAVEFN();
55 }
56 
57 /**
58  * Clear registers related with errors in the HTE
59  */
60 static void hte_clear_error_regs(void)
61 {
62 	u32 tmp;
63 
64 	/*
65 	 * Clear all HTE errors and enable error checking
66 	 * for burst and chunk.
67 	 */
68 	tmp = msg_port_read(HTE, 0x000200a1);
69 	tmp |= (1 << 8);
70 	msg_port_write(HTE, 0x000200a1, tmp);
71 }
72 
73 /**
74  * Execute a basic single-cache-line memory write/read/verify test using simple
75  * constant pattern, different for READ_TRAIN and WRITE_TRAIN modes.
76  *
77  * See hte_basic_write_read() which is the external visible wrapper.
78  *
79  * @mrc_params: host structure for all MRC global data
80  * @addr: memory adress being tested (must hit specific channel/rank)
81  * @first_run: if set then the HTE registers are configured, otherwise it is
82  *             assumed configuration is done and we just re-run the test
83  * @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern)
84  *
85  * @return: byte lane failure on each bit (for Quark only bit0 and bit1)
86  */
87 static u16 hte_basic_data_cmp(struct mrc_params *mrc_params, u32 addr,
88 			      u8 first_run, u8 mode)
89 {
90 	u32 pattern;
91 	u32 offset;
92 
93 	if (first_run) {
94 		msg_port_write(HTE, 0x00020020, 0x01b10021);
95 		msg_port_write(HTE, 0x00020021, 0x06000000);
96 		msg_port_write(HTE, 0x00020022, addr >> 6);
97 		msg_port_write(HTE, 0x00020062, 0x00800015);
98 		msg_port_write(HTE, 0x00020063, 0xaaaaaaaa);
99 		msg_port_write(HTE, 0x00020064, 0xcccccccc);
100 		msg_port_write(HTE, 0x00020065, 0xf0f0f0f0);
101 		msg_port_write(HTE, 0x00020061, 0x00030008);
102 
103 		if (mode == WRITE_TRAIN)
104 			pattern = 0xc33c0000;
105 		else /* READ_TRAIN */
106 			pattern = 0xaa5555aa;
107 
108 		for (offset = 0x80; offset <= 0x8f; offset++)
109 			msg_port_write(HTE, offset, pattern);
110 	}
111 
112 	msg_port_write(HTE, 0x000200a1, 0xffff1000);
113 	msg_port_write(HTE, 0x00020011, 0x00011000);
114 	msg_port_write(HTE, 0x00020011, 0x00011100);
115 
116 	hte_wait_for_complete();
117 
118 	/*
119 	 * Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for
120 	 * any bytelane errors.
121 	 */
122 	return (hte_check_errors() >> 8) & 0xff;
123 }
124 
125 /**
126  * Examine a single-cache-line memory with write/read/verify test using multiple
127  * data patterns (victim-aggressor algorithm).
128  *
129  * See hte_write_stress_bit_lanes() which is the external visible wrapper.
130  *
131  * @mrc_params: host structure for all MRC global data
132  * @addr: memory adress being tested (must hit specific channel/rank)
133  * @loop_cnt: number of test iterations
134  * @seed_victim: victim data pattern seed
135  * @seed_aggressor: aggressor data pattern seed
136  * @victim_bit: should be 0 as auto-rotate feature is in use
137  * @first_run: if set then the HTE registers are configured, otherwise it is
138  *             assumed configuration is done and we just re-run the test
139  *
140  * @return: byte lane failure on each bit (for Quark only bit0 and bit1)
141  */
142 static u16 hte_rw_data_cmp(struct mrc_params *mrc_params, u32 addr,
143 			   u8 loop_cnt, u32 seed_victim, u32 seed_aggressor,
144 			   u8 victim_bit, u8 first_run)
145 {
146 	u32 offset;
147 	u32 tmp;
148 
149 	if (first_run) {
150 		msg_port_write(HTE, 0x00020020, 0x00910024);
151 		msg_port_write(HTE, 0x00020023, 0x00810024);
152 		msg_port_write(HTE, 0x00020021, 0x06070000);
153 		msg_port_write(HTE, 0x00020024, 0x06070000);
154 		msg_port_write(HTE, 0x00020022, addr >> 6);
155 		msg_port_write(HTE, 0x00020025, addr >> 6);
156 		msg_port_write(HTE, 0x00020062, 0x0000002a);
157 		msg_port_write(HTE, 0x00020063, seed_victim);
158 		msg_port_write(HTE, 0x00020064, seed_aggressor);
159 		msg_port_write(HTE, 0x00020065, seed_victim);
160 
161 		/*
162 		 * Write the pattern buffers to select the victim bit
163 		 *
164 		 * Start with bit0
165 		 */
166 		for (offset = 0x80; offset <= 0x8f; offset++) {
167 			if ((offset % 8) == victim_bit)
168 				msg_port_write(HTE, offset, 0x55555555);
169 			else
170 				msg_port_write(HTE, offset, 0xcccccccc);
171 		}
172 
173 		msg_port_write(HTE, 0x00020061, 0x00000000);
174 		msg_port_write(HTE, 0x00020066, 0x03440000);
175 		msg_port_write(HTE, 0x000200a1, 0xffff1000);
176 	}
177 
178 	tmp = 0x10001000 | (loop_cnt << 16);
179 	msg_port_write(HTE, 0x00020011, tmp);
180 	msg_port_write(HTE, 0x00020011, tmp | (1 << 8));
181 
182 	hte_wait_for_complete();
183 
184 	/*
185 	 * Return bits 15:8 of HTE_CH0_ERR_XSTAT to check for
186 	 * any bytelane errors.
187 	 */
188 	return (hte_check_errors() >> 8) & 0xff;
189 }
190 
191 /**
192  * Use HW HTE engine to initialize or test all memory attached to a given DUNIT.
193  * If flag is MRC_MEM_INIT, this routine writes 0s to all memory locations to
194  * initialize ECC. If flag is MRC_MEM_TEST, this routine will send an 5AA55AA5
195  * pattern to all memory locations on the RankMask and then read it back.
196  * Then it sends an A55AA55A pattern to all memory locations on the RankMask
197  * and reads it back.
198  *
199  * @mrc_params: host structure for all MRC global data
200  * @flag: MRC_MEM_INIT or MRC_MEM_TEST
201  *
202  * @return: errors register showing HTE failures. Also prints out which rank
203  *          failed the HTE test if failure occurs. For rank detection to work,
204  *          the address map must be left in its default state. If MRC changes
205  *          the address map, this function must be modified to change it back
206  *          to default at the beginning, then restore it at the end.
207  */
208 u32 hte_mem_init(struct mrc_params *mrc_params, u8 flag)
209 {
210 	u32 offset;
211 	int test_num;
212 	int i;
213 
214 	/*
215 	 * Clear out the error registers at the start of each memory
216 	 * init or memory test run.
217 	 */
218 	hte_clear_error_regs();
219 
220 	msg_port_write(HTE, 0x00020062, 0x00000015);
221 
222 	for (offset = 0x80; offset <= 0x8f; offset++)
223 		msg_port_write(HTE, offset, ((offset & 1) ? 0xa55a : 0x5aa5));
224 
225 	msg_port_write(HTE, 0x00020021, 0x00000000);
226 	msg_port_write(HTE, 0x00020022, (mrc_params->mem_size >> 6) - 1);
227 	msg_port_write(HTE, 0x00020063, 0xaaaaaaaa);
228 	msg_port_write(HTE, 0x00020064, 0xcccccccc);
229 	msg_port_write(HTE, 0x00020065, 0xf0f0f0f0);
230 	msg_port_write(HTE, 0x00020066, 0x03000000);
231 
232 	switch (flag) {
233 	case MRC_MEM_INIT:
234 		/*
235 		 * Only 1 write pass through memory is needed
236 		 * to initialize ECC
237 		 */
238 		test_num = 1;
239 		break;
240 	case MRC_MEM_TEST:
241 		/* Write/read then write/read with inverted pattern */
242 		test_num = 4;
243 		break;
244 	default:
245 		DPF(D_INFO, "Unknown parameter for flag: %d\n", flag);
246 		return 0xffffffff;
247 	}
248 
249 	DPF(D_INFO, "hte_mem_init");
250 
251 	for (i = 0; i < test_num; i++) {
252 		DPF(D_INFO, ".");
253 
254 		if (i == 0) {
255 			msg_port_write(HTE, 0x00020061, 0x00000000);
256 			msg_port_write(HTE, 0x00020020, 0x00110010);
257 		} else if (i == 1) {
258 			msg_port_write(HTE, 0x00020061, 0x00000000);
259 			msg_port_write(HTE, 0x00020020, 0x00010010);
260 		} else if (i == 2) {
261 			msg_port_write(HTE, 0x00020061, 0x00010100);
262 			msg_port_write(HTE, 0x00020020, 0x00110010);
263 		} else {
264 			msg_port_write(HTE, 0x00020061, 0x00010100);
265 			msg_port_write(HTE, 0x00020020, 0x00010010);
266 		}
267 
268 		msg_port_write(HTE, 0x00020011, 0x00111000);
269 		msg_port_write(HTE, 0x00020011, 0x00111100);
270 
271 		hte_wait_for_complete();
272 
273 		/* If this is a READ pass, check for errors at the end */
274 		if ((i % 2) == 1) {
275 			/* Return immediately if error */
276 			if (hte_check_errors())
277 				break;
278 		}
279 	}
280 
281 	DPF(D_INFO, "done\n");
282 
283 	return hte_check_errors();
284 }
285 
286 /**
287  * Execute a basic single-cache-line memory write/read/verify test using simple
288  * constant pattern, different for READ_TRAIN and WRITE_TRAIN modes.
289  *
290  * @mrc_params: host structure for all MRC global data
291  * @addr: memory adress being tested (must hit specific channel/rank)
292  * @first_run: if set then the HTE registers are configured, otherwise it is
293  *             assumed configuration is done and we just re-run the test
294  * @mode: READ_TRAIN or WRITE_TRAIN (the difference is in the pattern)
295  *
296  * @return: byte lane failure on each bit (for Quark only bit0 and bit1)
297  */
298 u16 hte_basic_write_read(struct mrc_params *mrc_params, u32 addr,
299 			 u8 first_run, u8 mode)
300 {
301 	u16 errors;
302 
303 	ENTERFN();
304 
305 	/* Enable all error reporting in preparation for HTE test */
306 	hte_enable_all_errors();
307 	hte_clear_error_regs();
308 
309 	errors = hte_basic_data_cmp(mrc_params, addr, first_run, mode);
310 
311 	LEAVEFN();
312 
313 	return errors;
314 }
315 
316 /**
317  * Examine a single-cache-line memory with write/read/verify test using multiple
318  * data patterns (victim-aggressor algorithm).
319  *
320  * @mrc_params: host structure for all MRC global data
321  * @addr: memory adress being tested (must hit specific channel/rank)
322  * @first_run: if set then the HTE registers are configured, otherwise it is
323  *             assumed configuration is done and we just re-run the test
324  *
325  * @return: byte lane failure on each bit (for Quark only bit0 and bit1)
326  */
327 u16 hte_write_stress_bit_lanes(struct mrc_params *mrc_params,
328 			       u32 addr, u8 first_run)
329 {
330 	u16 errors;
331 	u8 victim_bit = 0;
332 
333 	ENTERFN();
334 
335 	/* Enable all error reporting in preparation for HTE test */
336 	hte_enable_all_errors();
337 	hte_clear_error_regs();
338 
339 	/*
340 	 * Loop through each bit in the bytelane.
341 	 *
342 	 * Each pass creates a victim bit while keeping all other bits the same
343 	 * as aggressors. AVN HTE adds an auto-rotate feature which allows us
344 	 * to program the entire victim/aggressor sequence in 1 step.
345 	 *
346 	 * The victim bit rotates on each pass so no need to have software
347 	 * implement a victim bit loop like on VLV.
348 	 */
349 	errors = hte_rw_data_cmp(mrc_params, addr, HTE_LOOP_CNT,
350 				 HTE_LFSR_VICTIM_SEED, HTE_LFSR_AGRESSOR_SEED,
351 				 victim_bit, first_run);
352 
353 	LEAVEFN();
354 
355 	return errors;
356 }
357 
358 /**
359  * Execute a basic single-cache-line memory write or read.
360  * This is just for receive enable / fine write-levelling purpose.
361  *
362  * @addr: memory adress being tested (must hit specific channel/rank)
363  * @first_run: if set then the HTE registers are configured, otherwise it is
364  *             assumed configuration is done and we just re-run the test
365  * @is_write: when non-zero memory write operation executed, otherwise read
366  */
367 void hte_mem_op(u32 addr, u8 first_run, u8 is_write)
368 {
369 	u32 offset;
370 	u32 tmp;
371 
372 	hte_enable_all_errors();
373 	hte_clear_error_regs();
374 
375 	if (first_run) {
376 		tmp = is_write ? 0x01110021 : 0x01010021;
377 		msg_port_write(HTE, 0x00020020, tmp);
378 
379 		msg_port_write(HTE, 0x00020021, 0x06000000);
380 		msg_port_write(HTE, 0x00020022, addr >> 6);
381 		msg_port_write(HTE, 0x00020062, 0x00800015);
382 		msg_port_write(HTE, 0x00020063, 0xaaaaaaaa);
383 		msg_port_write(HTE, 0x00020064, 0xcccccccc);
384 		msg_port_write(HTE, 0x00020065, 0xf0f0f0f0);
385 		msg_port_write(HTE, 0x00020061, 0x00030008);
386 
387 		for (offset = 0x80; offset <= 0x8f; offset++)
388 			msg_port_write(HTE, offset, 0xc33c0000);
389 	}
390 
391 	msg_port_write(HTE, 0x000200a1, 0xffff1000);
392 	msg_port_write(HTE, 0x00020011, 0x00011000);
393 	msg_port_write(HTE, 0x00020011, 0x00011100);
394 
395 	hte_wait_for_complete();
396 }
397