xref: /openbmc/u-boot/arch/x86/cpu/mp_init.c (revision dffceb4b)
1 /*
2  * Copyright (C) 2015 Google, Inc
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Based on code from the coreboot file of the same name
7  */
8 
9 #include <common.h>
10 #include <cpu.h>
11 #include <dm.h>
12 #include <errno.h>
13 #include <malloc.h>
14 #include <asm/atomic.h>
15 #include <asm/cpu.h>
16 #include <asm/interrupt.h>
17 #include <asm/lapic.h>
18 #include <asm/mp.h>
19 #include <asm/msr.h>
20 #include <asm/mtrr.h>
21 #include <asm/processor.h>
22 #include <asm/sipi.h>
23 #include <asm/fw_cfg.h>
24 #include <dm/device-internal.h>
25 #include <dm/uclass-internal.h>
26 #include <dm/lists.h>
27 #include <dm/root.h>
28 #include <linux/linkage.h>
29 
30 DECLARE_GLOBAL_DATA_PTR;
31 
32 /* Total CPUs include BSP */
33 static int num_cpus;
34 
35 /* This also needs to match the sipi.S assembly code for saved MSR encoding */
36 struct saved_msr {
37 	uint32_t index;
38 	uint32_t lo;
39 	uint32_t hi;
40 } __packed;
41 
42 
43 struct mp_flight_plan {
44 	int num_records;
45 	struct mp_flight_record *records;
46 };
47 
48 static struct mp_flight_plan mp_info;
49 
50 struct cpu_map {
51 	struct udevice *dev;
52 	int apic_id;
53 	int err_code;
54 };
55 
56 static inline void barrier_wait(atomic_t *b)
57 {
58 	while (atomic_read(b) == 0)
59 		asm("pause");
60 	mfence();
61 }
62 
63 static inline void release_barrier(atomic_t *b)
64 {
65 	mfence();
66 	atomic_set(b, 1);
67 }
68 
69 static inline void stop_this_cpu(void)
70 {
71 	/* Called by an AP when it is ready to halt and wait for a new task */
72 	for (;;)
73 		cpu_hlt();
74 }
75 
76 /* Returns 1 if timeout waiting for APs. 0 if target APs found */
77 static int wait_for_aps(atomic_t *val, int target, int total_delay,
78 			int delay_step)
79 {
80 	int timeout = 0;
81 	int delayed = 0;
82 
83 	while (atomic_read(val) != target) {
84 		udelay(delay_step);
85 		delayed += delay_step;
86 		if (delayed >= total_delay) {
87 			timeout = 1;
88 			break;
89 		}
90 	}
91 
92 	return timeout;
93 }
94 
95 static void ap_do_flight_plan(struct udevice *cpu)
96 {
97 	int i;
98 
99 	for (i = 0; i < mp_info.num_records; i++) {
100 		struct mp_flight_record *rec = &mp_info.records[i];
101 
102 		atomic_inc(&rec->cpus_entered);
103 		barrier_wait(&rec->barrier);
104 
105 		if (rec->ap_call != NULL)
106 			rec->ap_call(cpu, rec->ap_arg);
107 	}
108 }
109 
110 static int find_cpu_by_apic_id(int apic_id, struct udevice **devp)
111 {
112 	struct udevice *dev;
113 
114 	*devp = NULL;
115 	for (uclass_find_first_device(UCLASS_CPU, &dev);
116 	     dev;
117 	     uclass_find_next_device(&dev)) {
118 		struct cpu_platdata *plat = dev_get_parent_platdata(dev);
119 
120 		if (plat->cpu_id == apic_id) {
121 			*devp = dev;
122 			return 0;
123 		}
124 	}
125 
126 	return -ENOENT;
127 }
128 
129 /*
130  * By the time APs call ap_init() caching has been setup, and microcode has
131  * been loaded
132  */
133 static void ap_init(unsigned int cpu_index)
134 {
135 	struct udevice *dev;
136 	int apic_id;
137 	int ret;
138 
139 	/* Ensure the local apic is enabled */
140 	enable_lapic();
141 
142 	apic_id = lapicid();
143 	ret = find_cpu_by_apic_id(apic_id, &dev);
144 	if (ret) {
145 		debug("Unknown CPU apic_id %x\n", apic_id);
146 		goto done;
147 	}
148 
149 	debug("AP: slot %d apic_id %x, dev %s\n", cpu_index, apic_id,
150 	      dev ? dev->name : "(apic_id not found)");
151 
152 	/* Walk the flight plan */
153 	ap_do_flight_plan(dev);
154 
155 	/* Park the AP */
156 	debug("parking\n");
157 done:
158 	stop_this_cpu();
159 }
160 
161 static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = {
162 	MTRR_FIX_64K_00000_MSR, MTRR_FIX_16K_80000_MSR, MTRR_FIX_16K_A0000_MSR,
163 	MTRR_FIX_4K_C0000_MSR, MTRR_FIX_4K_C8000_MSR, MTRR_FIX_4K_D0000_MSR,
164 	MTRR_FIX_4K_D8000_MSR, MTRR_FIX_4K_E0000_MSR, MTRR_FIX_4K_E8000_MSR,
165 	MTRR_FIX_4K_F0000_MSR, MTRR_FIX_4K_F8000_MSR,
166 };
167 
168 static inline struct saved_msr *save_msr(int index, struct saved_msr *entry)
169 {
170 	msr_t msr;
171 
172 	msr = msr_read(index);
173 	entry->index = index;
174 	entry->lo = msr.lo;
175 	entry->hi = msr.hi;
176 
177 	/* Return the next entry */
178 	entry++;
179 	return entry;
180 }
181 
182 static int save_bsp_msrs(char *start, int size)
183 {
184 	int msr_count;
185 	int num_var_mtrrs;
186 	struct saved_msr *msr_entry;
187 	int i;
188 	msr_t msr;
189 
190 	/* Determine number of MTRRs need to be saved */
191 	msr = msr_read(MTRR_CAP_MSR);
192 	num_var_mtrrs = msr.lo & 0xff;
193 
194 	/* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE */
195 	msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1;
196 
197 	if ((msr_count * sizeof(struct saved_msr)) > size) {
198 		printf("Cannot mirror all %d msrs.\n", msr_count);
199 		return -ENOSPC;
200 	}
201 
202 	msr_entry = (void *)start;
203 	for (i = 0; i < NUM_FIXED_MTRRS; i++)
204 		msr_entry = save_msr(fixed_mtrrs[i], msr_entry);
205 
206 	for (i = 0; i < num_var_mtrrs; i++) {
207 		msr_entry = save_msr(MTRR_PHYS_BASE_MSR(i), msr_entry);
208 		msr_entry = save_msr(MTRR_PHYS_MASK_MSR(i), msr_entry);
209 	}
210 
211 	msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry);
212 
213 	return msr_count;
214 }
215 
216 static int load_sipi_vector(atomic_t **ap_countp, int num_cpus)
217 {
218 	struct sipi_params_16bit *params16;
219 	struct sipi_params *params;
220 	static char msr_save[512];
221 	char *stack;
222 	ulong addr;
223 	int code_len;
224 	int size;
225 	int ret;
226 
227 	/* Copy in the code */
228 	code_len = ap_start16_code_end - ap_start16;
229 	debug("Copying SIPI code to %x: %d bytes\n", AP_DEFAULT_BASE,
230 	      code_len);
231 	memcpy((void *)AP_DEFAULT_BASE, ap_start16, code_len);
232 
233 	addr = AP_DEFAULT_BASE + (ulong)sipi_params_16bit - (ulong)ap_start16;
234 	params16 = (struct sipi_params_16bit *)addr;
235 	params16->ap_start = (uint32_t)ap_start;
236 	params16->gdt = (uint32_t)gd->arch.gdt;
237 	params16->gdt_limit = X86_GDT_SIZE - 1;
238 	debug("gdt = %x, gdt_limit = %x\n", params16->gdt, params16->gdt_limit);
239 
240 	params = (struct sipi_params *)sipi_params;
241 	debug("SIPI 32-bit params at %p\n", params);
242 	params->idt_ptr = (uint32_t)x86_get_idt();
243 
244 	params->stack_size = CONFIG_AP_STACK_SIZE;
245 	size = params->stack_size * num_cpus;
246 	stack = memalign(size, 4096);
247 	if (!stack)
248 		return -ENOMEM;
249 	params->stack_top = (u32)(stack + size);
250 
251 	params->microcode_ptr = 0;
252 	params->msr_table_ptr = (u32)msr_save;
253 	ret = save_bsp_msrs(msr_save, sizeof(msr_save));
254 	if (ret < 0)
255 		return ret;
256 	params->msr_count = ret;
257 
258 	params->c_handler = (uint32_t)&ap_init;
259 
260 	*ap_countp = &params->ap_count;
261 	atomic_set(*ap_countp, 0);
262 	debug("SIPI vector is ready\n");
263 
264 	return 0;
265 }
266 
267 static int check_cpu_devices(int expected_cpus)
268 {
269 	int i;
270 
271 	for (i = 0; i < expected_cpus; i++) {
272 		struct udevice *dev;
273 		int ret;
274 
275 		ret = uclass_find_device(UCLASS_CPU, i, &dev);
276 		if (ret) {
277 			debug("Cannot find CPU %d in device tree\n", i);
278 			return ret;
279 		}
280 	}
281 
282 	return 0;
283 }
284 
285 /* Returns 1 for timeout. 0 on success */
286 static int apic_wait_timeout(int total_delay, int delay_step)
287 {
288 	int total = 0;
289 	int timeout = 0;
290 
291 	while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) {
292 		udelay(delay_step);
293 		total += delay_step;
294 		if (total >= total_delay) {
295 			timeout = 1;
296 			break;
297 		}
298 	}
299 
300 	return timeout;
301 }
302 
303 static int start_aps(int ap_count, atomic_t *num_aps)
304 {
305 	int sipi_vector;
306 	/* Max location is 4KiB below 1MiB */
307 	const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;
308 
309 	if (ap_count == 0)
310 		return 0;
311 
312 	/* The vector is sent as a 4k aligned address in one byte */
313 	sipi_vector = AP_DEFAULT_BASE >> 12;
314 
315 	if (sipi_vector > max_vector_loc) {
316 		printf("SIPI vector too large! 0x%08x\n",
317 		       sipi_vector);
318 		return -1;
319 	}
320 
321 	debug("Attempting to start %d APs\n", ap_count);
322 
323 	if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
324 		debug("Waiting for ICR not to be busy...");
325 		if (apic_wait_timeout(1000, 50)) {
326 			debug("timed out. Aborting.\n");
327 			return -1;
328 		} else {
329 			debug("done.\n");
330 		}
331 	}
332 
333 	/* Send INIT IPI to all but self */
334 	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
335 	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
336 		    LAPIC_DM_INIT);
337 	debug("Waiting for 10ms after sending INIT.\n");
338 	mdelay(10);
339 
340 	/* Send 1st SIPI */
341 	if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
342 		debug("Waiting for ICR not to be busy...");
343 		if (apic_wait_timeout(1000, 50)) {
344 			debug("timed out. Aborting.\n");
345 			return -1;
346 		} else {
347 			debug("done.\n");
348 		}
349 	}
350 
351 	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
352 	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
353 		    LAPIC_DM_STARTUP | sipi_vector);
354 	debug("Waiting for 1st SIPI to complete...");
355 	if (apic_wait_timeout(10000, 50)) {
356 		debug("timed out.\n");
357 		return -1;
358 	} else {
359 		debug("done.\n");
360 	}
361 
362 	/* Wait for CPUs to check in up to 200 us */
363 	wait_for_aps(num_aps, ap_count, 200, 15);
364 
365 	/* Send 2nd SIPI */
366 	if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
367 		debug("Waiting for ICR not to be busy...");
368 		if (apic_wait_timeout(1000, 50)) {
369 			debug("timed out. Aborting.\n");
370 			return -1;
371 		} else {
372 			debug("done.\n");
373 		}
374 	}
375 
376 	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
377 	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
378 		    LAPIC_DM_STARTUP | sipi_vector);
379 	debug("Waiting for 2nd SIPI to complete...");
380 	if (apic_wait_timeout(10000, 50)) {
381 		debug("timed out.\n");
382 		return -1;
383 	} else {
384 		debug("done.\n");
385 	}
386 
387 	/* Wait for CPUs to check in */
388 	if (wait_for_aps(num_aps, ap_count, 10000, 50)) {
389 		debug("Not all APs checked in: %d/%d.\n",
390 		      atomic_read(num_aps), ap_count);
391 		return -1;
392 	}
393 
394 	return 0;
395 }
396 
397 static int bsp_do_flight_plan(struct udevice *cpu, struct mp_params *mp_params)
398 {
399 	int i;
400 	int ret = 0;
401 	const int timeout_us = 100000;
402 	const int step_us = 100;
403 	int num_aps = num_cpus - 1;
404 
405 	for (i = 0; i < mp_params->num_records; i++) {
406 		struct mp_flight_record *rec = &mp_params->flight_plan[i];
407 
408 		/* Wait for APs if the record is not released */
409 		if (atomic_read(&rec->barrier) == 0) {
410 			/* Wait for the APs to check in */
411 			if (wait_for_aps(&rec->cpus_entered, num_aps,
412 					 timeout_us, step_us)) {
413 				debug("MP record %d timeout.\n", i);
414 				ret = -1;
415 			}
416 		}
417 
418 		if (rec->bsp_call != NULL)
419 			rec->bsp_call(cpu, rec->bsp_arg);
420 
421 		release_barrier(&rec->barrier);
422 	}
423 	return ret;
424 }
425 
426 static int init_bsp(struct udevice **devp)
427 {
428 	char processor_name[CPU_MAX_NAME_LEN];
429 	int apic_id;
430 	int ret;
431 
432 	cpu_get_name(processor_name);
433 	debug("CPU: %s.\n", processor_name);
434 
435 	lapic_setup();
436 
437 	apic_id = lapicid();
438 	ret = find_cpu_by_apic_id(apic_id, devp);
439 	if (ret) {
440 		printf("Cannot find boot CPU, APIC ID %d\n", apic_id);
441 		return ret;
442 	}
443 
444 	return 0;
445 }
446 
447 #ifdef CONFIG_QEMU
448 static int qemu_cpu_fixup(void)
449 {
450 	int ret;
451 	int cpu_num;
452 	int cpu_online;
453 	struct udevice *dev, *pdev;
454 	struct cpu_platdata *plat;
455 	char *cpu;
456 
457 	/* first we need to find '/cpus' */
458 	for (device_find_first_child(dm_root(), &pdev);
459 	     pdev;
460 	     device_find_next_child(&pdev)) {
461 		if (!strcmp(pdev->name, "cpus"))
462 			break;
463 	}
464 	if (!pdev) {
465 		printf("unable to find cpus device\n");
466 		return -ENODEV;
467 	}
468 
469 	/* calculate cpus that are already bound */
470 	cpu_num = 0;
471 	for (uclass_find_first_device(UCLASS_CPU, &dev);
472 	     dev;
473 	     uclass_find_next_device(&dev)) {
474 		cpu_num++;
475 	}
476 
477 	/* get actual cpu number */
478 	cpu_online = qemu_fwcfg_online_cpus();
479 	if (cpu_online < 0) {
480 		printf("unable to get online cpu number: %d\n", cpu_online);
481 		return cpu_online;
482 	}
483 
484 	/* bind addtional cpus */
485 	dev = NULL;
486 	for (; cpu_num < cpu_online; cpu_num++) {
487 		/*
488 		 * allocate device name here as device_bind_driver() does
489 		 * not copy device name, 8 bytes are enough for
490 		 * sizeof("cpu@") + 3 digits cpu number + '\0'
491 		 */
492 		cpu = malloc(8);
493 		if (!cpu) {
494 			printf("unable to allocate device name\n");
495 			return -ENOMEM;
496 		}
497 		sprintf(cpu, "cpu@%d", cpu_num);
498 		ret = device_bind_driver(pdev, "cpu_qemu", cpu, &dev);
499 		if (ret) {
500 			printf("binding cpu@%d failed: %d\n", cpu_num, ret);
501 			return ret;
502 		}
503 		plat = dev_get_parent_platdata(dev);
504 		plat->cpu_id = cpu_num;
505 	}
506 	return 0;
507 }
508 #endif
509 
510 int mp_init(struct mp_params *p)
511 {
512 	int num_aps;
513 	atomic_t *ap_count;
514 	struct udevice *cpu;
515 	int ret;
516 
517 	/* This will cause the CPUs devices to be bound */
518 	struct uclass *uc;
519 	ret = uclass_get(UCLASS_CPU, &uc);
520 	if (ret)
521 		return ret;
522 
523 #ifdef CONFIG_QEMU
524 	ret = qemu_cpu_fixup();
525 	if (ret)
526 		return ret;
527 #endif
528 
529 	ret = init_bsp(&cpu);
530 	if (ret) {
531 		debug("Cannot init boot CPU: err=%d\n", ret);
532 		return ret;
533 	}
534 
535 	if (p == NULL || p->flight_plan == NULL || p->num_records < 1) {
536 		printf("Invalid MP parameters\n");
537 		return -1;
538 	}
539 
540 	num_cpus = cpu_get_count(cpu);
541 	if (num_cpus < 0) {
542 		debug("Cannot get number of CPUs: err=%d\n", num_cpus);
543 		return num_cpus;
544 	}
545 
546 	if (num_cpus < 2)
547 		debug("Warning: Only 1 CPU is detected\n");
548 
549 	ret = check_cpu_devices(num_cpus);
550 	if (ret)
551 		debug("Warning: Device tree does not describe all CPUs. Extra ones will not be started correctly\n");
552 
553 	/* Copy needed parameters so that APs have a reference to the plan */
554 	mp_info.num_records = p->num_records;
555 	mp_info.records = p->flight_plan;
556 
557 	/* Load the SIPI vector */
558 	ret = load_sipi_vector(&ap_count, num_cpus);
559 	if (ap_count == NULL)
560 		return -1;
561 
562 	/*
563 	 * Make sure SIPI data hits RAM so the APs that come up will see
564 	 * the startup code even if the caches are disabled
565 	 */
566 	wbinvd();
567 
568 	/* Start the APs providing number of APs and the cpus_entered field */
569 	num_aps = num_cpus - 1;
570 	ret = start_aps(num_aps, ap_count);
571 	if (ret) {
572 		mdelay(1000);
573 		debug("%d/%d eventually checked in?\n", atomic_read(ap_count),
574 		      num_aps);
575 		return ret;
576 	}
577 
578 	/* Walk the flight plan for the BSP */
579 	ret = bsp_do_flight_plan(cpu, p);
580 	if (ret) {
581 		debug("CPU init failed: err=%d\n", ret);
582 		return ret;
583 	}
584 
585 	return 0;
586 }
587 
588 int mp_init_cpu(struct udevice *cpu, void *unused)
589 {
590 	/*
591 	 * Multiple APs are brought up simultaneously and they may get the same
592 	 * seq num in the uclass_resolve_seq() during device_probe(). To avoid
593 	 * this, set req_seq to the reg number in the device tree in advance.
594 	 */
595 	cpu->req_seq = fdtdec_get_int(gd->fdt_blob, cpu->of_offset, "reg", -1);
596 
597 	return device_probe(cpu);
598 }
599