xref: /openbmc/u-boot/arch/x86/cpu/mp_init.c (revision daa483de)
1 /*
2  * Copyright (C) 2015 Google, Inc
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Based on code from the coreboot file of the same name
7  */
8 
9 #include <common.h>
10 #include <cpu.h>
11 #include <dm.h>
12 #include <errno.h>
13 #include <malloc.h>
14 #include <qfw.h>
15 #include <asm/atomic.h>
16 #include <asm/cpu.h>
17 #include <asm/interrupt.h>
18 #include <asm/lapic.h>
19 #include <asm/microcode.h>
20 #include <asm/mp.h>
21 #include <asm/msr.h>
22 #include <asm/mtrr.h>
23 #include <asm/processor.h>
24 #include <asm/sipi.h>
25 #include <dm/device-internal.h>
26 #include <dm/uclass-internal.h>
27 #include <dm/lists.h>
28 #include <dm/root.h>
29 #include <linux/linkage.h>
30 
31 DECLARE_GLOBAL_DATA_PTR;
32 
33 /* Total CPUs include BSP */
34 static int num_cpus;
35 
36 /* This also needs to match the sipi.S assembly code for saved MSR encoding */
37 struct saved_msr {
38 	uint32_t index;
39 	uint32_t lo;
40 	uint32_t hi;
41 } __packed;
42 
43 
44 struct mp_flight_plan {
45 	int num_records;
46 	struct mp_flight_record *records;
47 };
48 
49 static struct mp_flight_plan mp_info;
50 
51 struct cpu_map {
52 	struct udevice *dev;
53 	int apic_id;
54 	int err_code;
55 };
56 
57 static inline void barrier_wait(atomic_t *b)
58 {
59 	while (atomic_read(b) == 0)
60 		asm("pause");
61 	mfence();
62 }
63 
64 static inline void release_barrier(atomic_t *b)
65 {
66 	mfence();
67 	atomic_set(b, 1);
68 }
69 
70 static inline void stop_this_cpu(void)
71 {
72 	/* Called by an AP when it is ready to halt and wait for a new task */
73 	for (;;)
74 		cpu_hlt();
75 }
76 
77 /* Returns 1 if timeout waiting for APs. 0 if target APs found */
78 static int wait_for_aps(atomic_t *val, int target, int total_delay,
79 			int delay_step)
80 {
81 	int timeout = 0;
82 	int delayed = 0;
83 
84 	while (atomic_read(val) != target) {
85 		udelay(delay_step);
86 		delayed += delay_step;
87 		if (delayed >= total_delay) {
88 			timeout = 1;
89 			break;
90 		}
91 	}
92 
93 	return timeout;
94 }
95 
96 static void ap_do_flight_plan(struct udevice *cpu)
97 {
98 	int i;
99 
100 	for (i = 0; i < mp_info.num_records; i++) {
101 		struct mp_flight_record *rec = &mp_info.records[i];
102 
103 		atomic_inc(&rec->cpus_entered);
104 		barrier_wait(&rec->barrier);
105 
106 		if (rec->ap_call != NULL)
107 			rec->ap_call(cpu, rec->ap_arg);
108 	}
109 }
110 
111 static int find_cpu_by_apic_id(int apic_id, struct udevice **devp)
112 {
113 	struct udevice *dev;
114 
115 	*devp = NULL;
116 	for (uclass_find_first_device(UCLASS_CPU, &dev);
117 	     dev;
118 	     uclass_find_next_device(&dev)) {
119 		struct cpu_platdata *plat = dev_get_parent_platdata(dev);
120 
121 		if (plat->cpu_id == apic_id) {
122 			*devp = dev;
123 			return 0;
124 		}
125 	}
126 
127 	return -ENOENT;
128 }
129 
130 /*
131  * By the time APs call ap_init() caching has been setup, and microcode has
132  * been loaded
133  */
134 static void ap_init(unsigned int cpu_index)
135 {
136 	struct udevice *dev;
137 	int apic_id;
138 	int ret;
139 
140 	/* Ensure the local apic is enabled */
141 	enable_lapic();
142 
143 	apic_id = lapicid();
144 	ret = find_cpu_by_apic_id(apic_id, &dev);
145 	if (ret) {
146 		debug("Unknown CPU apic_id %x\n", apic_id);
147 		goto done;
148 	}
149 
150 	debug("AP: slot %d apic_id %x, dev %s\n", cpu_index, apic_id,
151 	      dev ? dev->name : "(apic_id not found)");
152 
153 	/* Walk the flight plan */
154 	ap_do_flight_plan(dev);
155 
156 	/* Park the AP */
157 	debug("parking\n");
158 done:
159 	stop_this_cpu();
160 }
161 
162 static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = {
163 	MTRR_FIX_64K_00000_MSR, MTRR_FIX_16K_80000_MSR, MTRR_FIX_16K_A0000_MSR,
164 	MTRR_FIX_4K_C0000_MSR, MTRR_FIX_4K_C8000_MSR, MTRR_FIX_4K_D0000_MSR,
165 	MTRR_FIX_4K_D8000_MSR, MTRR_FIX_4K_E0000_MSR, MTRR_FIX_4K_E8000_MSR,
166 	MTRR_FIX_4K_F0000_MSR, MTRR_FIX_4K_F8000_MSR,
167 };
168 
169 static inline struct saved_msr *save_msr(int index, struct saved_msr *entry)
170 {
171 	msr_t msr;
172 
173 	msr = msr_read(index);
174 	entry->index = index;
175 	entry->lo = msr.lo;
176 	entry->hi = msr.hi;
177 
178 	/* Return the next entry */
179 	entry++;
180 	return entry;
181 }
182 
183 static int save_bsp_msrs(char *start, int size)
184 {
185 	int msr_count;
186 	int num_var_mtrrs;
187 	struct saved_msr *msr_entry;
188 	int i;
189 	msr_t msr;
190 
191 	/* Determine number of MTRRs need to be saved */
192 	msr = msr_read(MTRR_CAP_MSR);
193 	num_var_mtrrs = msr.lo & 0xff;
194 
195 	/* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE */
196 	msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1;
197 
198 	if ((msr_count * sizeof(struct saved_msr)) > size) {
199 		printf("Cannot mirror all %d msrs\n", msr_count);
200 		return -ENOSPC;
201 	}
202 
203 	msr_entry = (void *)start;
204 	for (i = 0; i < NUM_FIXED_MTRRS; i++)
205 		msr_entry = save_msr(fixed_mtrrs[i], msr_entry);
206 
207 	for (i = 0; i < num_var_mtrrs; i++) {
208 		msr_entry = save_msr(MTRR_PHYS_BASE_MSR(i), msr_entry);
209 		msr_entry = save_msr(MTRR_PHYS_MASK_MSR(i), msr_entry);
210 	}
211 
212 	msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry);
213 
214 	return msr_count;
215 }
216 
217 static int load_sipi_vector(atomic_t **ap_countp, int num_cpus)
218 {
219 	struct sipi_params_16bit *params16;
220 	struct sipi_params *params;
221 	static char msr_save[512];
222 	char *stack;
223 	ulong addr;
224 	int code_len;
225 	int size;
226 	int ret;
227 
228 	/* Copy in the code */
229 	code_len = ap_start16_code_end - ap_start16;
230 	debug("Copying SIPI code to %x: %d bytes\n", AP_DEFAULT_BASE,
231 	      code_len);
232 	memcpy((void *)AP_DEFAULT_BASE, ap_start16, code_len);
233 
234 	addr = AP_DEFAULT_BASE + (ulong)sipi_params_16bit - (ulong)ap_start16;
235 	params16 = (struct sipi_params_16bit *)addr;
236 	params16->ap_start = (uint32_t)ap_start;
237 	params16->gdt = (uint32_t)gd->arch.gdt;
238 	params16->gdt_limit = X86_GDT_SIZE - 1;
239 	debug("gdt = %x, gdt_limit = %x\n", params16->gdt, params16->gdt_limit);
240 
241 	params = (struct sipi_params *)sipi_params;
242 	debug("SIPI 32-bit params at %p\n", params);
243 	params->idt_ptr = (uint32_t)x86_get_idt();
244 
245 	params->stack_size = CONFIG_AP_STACK_SIZE;
246 	size = params->stack_size * num_cpus;
247 	stack = memalign(4096, size);
248 	if (!stack)
249 		return -ENOMEM;
250 	params->stack_top = (u32)(stack + size);
251 #if !defined(CONFIG_QEMU) && !defined(CONFIG_HAVE_FSP) && \
252 	!defined(CONFIG_INTEL_MID)
253 	params->microcode_ptr = ucode_base;
254 	debug("Microcode at %x\n", params->microcode_ptr);
255 #endif
256 	params->msr_table_ptr = (u32)msr_save;
257 	ret = save_bsp_msrs(msr_save, sizeof(msr_save));
258 	if (ret < 0)
259 		return ret;
260 	params->msr_count = ret;
261 
262 	params->c_handler = (uint32_t)&ap_init;
263 
264 	*ap_countp = &params->ap_count;
265 	atomic_set(*ap_countp, 0);
266 	debug("SIPI vector is ready\n");
267 
268 	return 0;
269 }
270 
271 static int check_cpu_devices(int expected_cpus)
272 {
273 	int i;
274 
275 	for (i = 0; i < expected_cpus; i++) {
276 		struct udevice *dev;
277 		int ret;
278 
279 		ret = uclass_find_device(UCLASS_CPU, i, &dev);
280 		if (ret) {
281 			debug("Cannot find CPU %d in device tree\n", i);
282 			return ret;
283 		}
284 	}
285 
286 	return 0;
287 }
288 
289 /* Returns 1 for timeout. 0 on success */
290 static int apic_wait_timeout(int total_delay, const char *msg)
291 {
292 	int total = 0;
293 
294 	if (!(lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY))
295 		return 0;
296 
297 	debug("Waiting for %s...", msg);
298 	while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) {
299 		udelay(50);
300 		total += 50;
301 		if (total >= total_delay) {
302 			debug("timed out: aborting\n");
303 			return -ETIMEDOUT;
304 		}
305 	}
306 	debug("done\n");
307 
308 	return 0;
309 }
310 
311 static int start_aps(int ap_count, atomic_t *num_aps)
312 {
313 	int sipi_vector;
314 	/* Max location is 4KiB below 1MiB */
315 	const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;
316 
317 	if (ap_count == 0)
318 		return 0;
319 
320 	/* The vector is sent as a 4k aligned address in one byte */
321 	sipi_vector = AP_DEFAULT_BASE >> 12;
322 
323 	if (sipi_vector > max_vector_loc) {
324 		printf("SIPI vector too large! 0x%08x\n",
325 		       sipi_vector);
326 		return -1;
327 	}
328 
329 	debug("Attempting to start %d APs\n", ap_count);
330 
331 	if (apic_wait_timeout(1000, "ICR not to be busy"))
332 		return -ETIMEDOUT;
333 
334 	/* Send INIT IPI to all but self */
335 	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
336 	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
337 		    LAPIC_DM_INIT);
338 	debug("Waiting for 10ms after sending INIT\n");
339 	mdelay(10);
340 
341 	/* Send 1st SIPI */
342 	if (apic_wait_timeout(1000, "ICR not to be busy"))
343 		return -ETIMEDOUT;
344 
345 	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
346 	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
347 		    LAPIC_DM_STARTUP | sipi_vector);
348 	if (apic_wait_timeout(10000, "first SIPI to complete"))
349 		return -ETIMEDOUT;
350 
351 	/* Wait for CPUs to check in up to 200 us */
352 	wait_for_aps(num_aps, ap_count, 200, 15);
353 
354 	/* Send 2nd SIPI */
355 	if (apic_wait_timeout(1000, "ICR not to be busy"))
356 		return -ETIMEDOUT;
357 
358 	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
359 	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
360 		    LAPIC_DM_STARTUP | sipi_vector);
361 	if (apic_wait_timeout(10000, "second SIPI to complete"))
362 		return -ETIMEDOUT;
363 
364 	/* Wait for CPUs to check in */
365 	if (wait_for_aps(num_aps, ap_count, 10000, 50)) {
366 		debug("Not all APs checked in: %d/%d\n",
367 		      atomic_read(num_aps), ap_count);
368 		return -1;
369 	}
370 
371 	return 0;
372 }
373 
374 static int bsp_do_flight_plan(struct udevice *cpu, struct mp_params *mp_params)
375 {
376 	int i;
377 	int ret = 0;
378 	const int timeout_us = 100000;
379 	const int step_us = 100;
380 	int num_aps = num_cpus - 1;
381 
382 	for (i = 0; i < mp_params->num_records; i++) {
383 		struct mp_flight_record *rec = &mp_params->flight_plan[i];
384 
385 		/* Wait for APs if the record is not released */
386 		if (atomic_read(&rec->barrier) == 0) {
387 			/* Wait for the APs to check in */
388 			if (wait_for_aps(&rec->cpus_entered, num_aps,
389 					 timeout_us, step_us)) {
390 				debug("MP record %d timeout\n", i);
391 				ret = -1;
392 			}
393 		}
394 
395 		if (rec->bsp_call != NULL)
396 			rec->bsp_call(cpu, rec->bsp_arg);
397 
398 		release_barrier(&rec->barrier);
399 	}
400 	return ret;
401 }
402 
403 static int init_bsp(struct udevice **devp)
404 {
405 	char processor_name[CPU_MAX_NAME_LEN];
406 	int apic_id;
407 	int ret;
408 
409 	cpu_get_name(processor_name);
410 	debug("CPU: %s\n", processor_name);
411 
412 	apic_id = lapicid();
413 	ret = find_cpu_by_apic_id(apic_id, devp);
414 	if (ret) {
415 		printf("Cannot find boot CPU, APIC ID %d\n", apic_id);
416 		return ret;
417 	}
418 
419 	return 0;
420 }
421 
422 #ifdef CONFIG_QFW
423 static int qemu_cpu_fixup(void)
424 {
425 	int ret;
426 	int cpu_num;
427 	int cpu_online;
428 	struct udevice *dev, *pdev;
429 	struct cpu_platdata *plat;
430 	char *cpu;
431 
432 	/* first we need to find '/cpus' */
433 	for (device_find_first_child(dm_root(), &pdev);
434 	     pdev;
435 	     device_find_next_child(&pdev)) {
436 		if (!strcmp(pdev->name, "cpus"))
437 			break;
438 	}
439 	if (!pdev) {
440 		printf("unable to find cpus device\n");
441 		return -ENODEV;
442 	}
443 
444 	/* calculate cpus that are already bound */
445 	cpu_num = 0;
446 	for (uclass_find_first_device(UCLASS_CPU, &dev);
447 	     dev;
448 	     uclass_find_next_device(&dev)) {
449 		cpu_num++;
450 	}
451 
452 	/* get actual cpu number */
453 	cpu_online = qemu_fwcfg_online_cpus();
454 	if (cpu_online < 0) {
455 		printf("unable to get online cpu number: %d\n", cpu_online);
456 		return cpu_online;
457 	}
458 
459 	/* bind addtional cpus */
460 	dev = NULL;
461 	for (; cpu_num < cpu_online; cpu_num++) {
462 		/*
463 		 * allocate device name here as device_bind_driver() does
464 		 * not copy device name, 8 bytes are enough for
465 		 * sizeof("cpu@") + 3 digits cpu number + '\0'
466 		 */
467 		cpu = malloc(8);
468 		if (!cpu) {
469 			printf("unable to allocate device name\n");
470 			return -ENOMEM;
471 		}
472 		sprintf(cpu, "cpu@%d", cpu_num);
473 		ret = device_bind_driver(pdev, "cpu_qemu", cpu, &dev);
474 		if (ret) {
475 			printf("binding cpu@%d failed: %d\n", cpu_num, ret);
476 			return ret;
477 		}
478 		plat = dev_get_parent_platdata(dev);
479 		plat->cpu_id = cpu_num;
480 	}
481 	return 0;
482 }
483 #endif
484 
485 int mp_init(struct mp_params *p)
486 {
487 	int num_aps;
488 	atomic_t *ap_count;
489 	struct udevice *cpu;
490 	int ret;
491 
492 	/* This will cause the CPUs devices to be bound */
493 	struct uclass *uc;
494 	ret = uclass_get(UCLASS_CPU, &uc);
495 	if (ret)
496 		return ret;
497 
498 #ifdef CONFIG_QFW
499 	ret = qemu_cpu_fixup();
500 	if (ret)
501 		return ret;
502 #endif
503 
504 	ret = init_bsp(&cpu);
505 	if (ret) {
506 		debug("Cannot init boot CPU: err=%d\n", ret);
507 		return ret;
508 	}
509 
510 	if (p == NULL || p->flight_plan == NULL || p->num_records < 1) {
511 		printf("Invalid MP parameters\n");
512 		return -1;
513 	}
514 
515 	num_cpus = cpu_get_count(cpu);
516 	if (num_cpus < 0) {
517 		debug("Cannot get number of CPUs: err=%d\n", num_cpus);
518 		return num_cpus;
519 	}
520 
521 	if (num_cpus < 2)
522 		debug("Warning: Only 1 CPU is detected\n");
523 
524 	ret = check_cpu_devices(num_cpus);
525 	if (ret)
526 		debug("Warning: Device tree does not describe all CPUs. Extra ones will not be started correctly\n");
527 
528 	/* Copy needed parameters so that APs have a reference to the plan */
529 	mp_info.num_records = p->num_records;
530 	mp_info.records = p->flight_plan;
531 
532 	/* Load the SIPI vector */
533 	ret = load_sipi_vector(&ap_count, num_cpus);
534 	if (ap_count == NULL)
535 		return -1;
536 
537 	/*
538 	 * Make sure SIPI data hits RAM so the APs that come up will see
539 	 * the startup code even if the caches are disabled
540 	 */
541 	wbinvd();
542 
543 	/* Start the APs providing number of APs and the cpus_entered field */
544 	num_aps = num_cpus - 1;
545 	ret = start_aps(num_aps, ap_count);
546 	if (ret) {
547 		mdelay(1000);
548 		debug("%d/%d eventually checked in?\n", atomic_read(ap_count),
549 		      num_aps);
550 		return ret;
551 	}
552 
553 	/* Walk the flight plan for the BSP */
554 	ret = bsp_do_flight_plan(cpu, p);
555 	if (ret) {
556 		debug("CPU init failed: err=%d\n", ret);
557 		return ret;
558 	}
559 
560 	return 0;
561 }
562 
563 int mp_init_cpu(struct udevice *cpu, void *unused)
564 {
565 	struct cpu_platdata *plat = dev_get_parent_platdata(cpu);
566 
567 	/*
568 	 * Multiple APs are brought up simultaneously and they may get the same
569 	 * seq num in the uclass_resolve_seq() during device_probe(). To avoid
570 	 * this, set req_seq to the reg number in the device tree in advance.
571 	 */
572 	cpu->req_seq = fdtdec_get_int(gd->fdt_blob, dev_of_offset(cpu), "reg",
573 				      -1);
574 	plat->ucode_version = microcode_read_rev();
575 	plat->device_id = gd->arch.x86_device;
576 
577 	return device_probe(cpu);
578 }
579