xref: /openbmc/u-boot/arch/x86/cpu/mp_init.c (revision 83bf0057)
1 /*
2  * Copyright (C) 2015 Google, Inc
3  *
4  * SPDX-License-Identifier:	GPL-2.0+
5  *
6  * Based on code from the coreboot file of the same name
7  */
8 
9 #include <common.h>
10 #include <cpu.h>
11 #include <dm.h>
12 #include <errno.h>
13 #include <malloc.h>
14 #include <asm/atomic.h>
15 #include <asm/cpu.h>
16 #include <asm/interrupt.h>
17 #include <asm/lapic.h>
18 #include <asm/mp.h>
19 #include <asm/msr.h>
20 #include <asm/mtrr.h>
21 #include <asm/processor.h>
22 #include <asm/sipi.h>
23 #include <dm/device-internal.h>
24 #include <dm/uclass-internal.h>
25 #include <linux/linkage.h>
26 
27 DECLARE_GLOBAL_DATA_PTR;
28 
29 /* Total CPUs include BSP */
30 static int num_cpus;
31 
32 /* This also needs to match the sipi.S assembly code for saved MSR encoding */
33 struct saved_msr {
34 	uint32_t index;
35 	uint32_t lo;
36 	uint32_t hi;
37 } __packed;
38 
39 
40 struct mp_flight_plan {
41 	int num_records;
42 	struct mp_flight_record *records;
43 };
44 
45 static struct mp_flight_plan mp_info;
46 
47 struct cpu_map {
48 	struct udevice *dev;
49 	int apic_id;
50 	int err_code;
51 };
52 
53 static inline void barrier_wait(atomic_t *b)
54 {
55 	while (atomic_read(b) == 0)
56 		asm("pause");
57 	mfence();
58 }
59 
60 static inline void release_barrier(atomic_t *b)
61 {
62 	mfence();
63 	atomic_set(b, 1);
64 }
65 
66 static inline void stop_this_cpu(void)
67 {
68 	/* Called by an AP when it is ready to halt and wait for a new task */
69 	for (;;)
70 		cpu_hlt();
71 }
72 
73 /* Returns 1 if timeout waiting for APs. 0 if target APs found */
74 static int wait_for_aps(atomic_t *val, int target, int total_delay,
75 			int delay_step)
76 {
77 	int timeout = 0;
78 	int delayed = 0;
79 
80 	while (atomic_read(val) != target) {
81 		udelay(delay_step);
82 		delayed += delay_step;
83 		if (delayed >= total_delay) {
84 			timeout = 1;
85 			break;
86 		}
87 	}
88 
89 	return timeout;
90 }
91 
92 static void ap_do_flight_plan(struct udevice *cpu)
93 {
94 	int i;
95 
96 	for (i = 0; i < mp_info.num_records; i++) {
97 		struct mp_flight_record *rec = &mp_info.records[i];
98 
99 		atomic_inc(&rec->cpus_entered);
100 		barrier_wait(&rec->barrier);
101 
102 		if (rec->ap_call != NULL)
103 			rec->ap_call(cpu, rec->ap_arg);
104 	}
105 }
106 
107 static int find_cpu_by_apid_id(int apic_id, struct udevice **devp)
108 {
109 	struct udevice *dev;
110 
111 	*devp = NULL;
112 	for (uclass_find_first_device(UCLASS_CPU, &dev);
113 	     dev;
114 	     uclass_find_next_device(&dev)) {
115 		struct cpu_platdata *plat = dev_get_parent_platdata(dev);
116 
117 		if (plat->cpu_id == apic_id) {
118 			*devp = dev;
119 			return 0;
120 		}
121 	}
122 
123 	return -ENOENT;
124 }
125 
126 /*
127  * By the time APs call ap_init() caching has been setup, and microcode has
128  * been loaded
129  */
130 static void ap_init(unsigned int cpu_index)
131 {
132 	struct udevice *dev;
133 	int apic_id;
134 	int ret;
135 
136 	/* Ensure the local apic is enabled */
137 	enable_lapic();
138 
139 	apic_id = lapicid();
140 	ret = find_cpu_by_apid_id(apic_id, &dev);
141 	if (ret) {
142 		debug("Unknown CPU apic_id %x\n", apic_id);
143 		goto done;
144 	}
145 
146 	debug("AP: slot %d apic_id %x, dev %s\n", cpu_index, apic_id,
147 	      dev ? dev->name : "(apic_id not found)");
148 
149 	/* Walk the flight plan */
150 	ap_do_flight_plan(dev);
151 
152 	/* Park the AP */
153 	debug("parking\n");
154 done:
155 	stop_this_cpu();
156 }
157 
158 static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = {
159 	MTRR_FIX_64K_00000_MSR, MTRR_FIX_16K_80000_MSR, MTRR_FIX_16K_A0000_MSR,
160 	MTRR_FIX_4K_C0000_MSR, MTRR_FIX_4K_C8000_MSR, MTRR_FIX_4K_D0000_MSR,
161 	MTRR_FIX_4K_D8000_MSR, MTRR_FIX_4K_E0000_MSR, MTRR_FIX_4K_E8000_MSR,
162 	MTRR_FIX_4K_F0000_MSR, MTRR_FIX_4K_F8000_MSR,
163 };
164 
165 static inline struct saved_msr *save_msr(int index, struct saved_msr *entry)
166 {
167 	msr_t msr;
168 
169 	msr = msr_read(index);
170 	entry->index = index;
171 	entry->lo = msr.lo;
172 	entry->hi = msr.hi;
173 
174 	/* Return the next entry */
175 	entry++;
176 	return entry;
177 }
178 
179 static int save_bsp_msrs(char *start, int size)
180 {
181 	int msr_count;
182 	int num_var_mtrrs;
183 	struct saved_msr *msr_entry;
184 	int i;
185 	msr_t msr;
186 
187 	/* Determine number of MTRRs need to be saved */
188 	msr = msr_read(MTRR_CAP_MSR);
189 	num_var_mtrrs = msr.lo & 0xff;
190 
191 	/* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE */
192 	msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1;
193 
194 	if ((msr_count * sizeof(struct saved_msr)) > size) {
195 		printf("Cannot mirror all %d msrs.\n", msr_count);
196 		return -ENOSPC;
197 	}
198 
199 	msr_entry = (void *)start;
200 	for (i = 0; i < NUM_FIXED_MTRRS; i++)
201 		msr_entry = save_msr(fixed_mtrrs[i], msr_entry);
202 
203 	for (i = 0; i < num_var_mtrrs; i++) {
204 		msr_entry = save_msr(MTRR_PHYS_BASE_MSR(i), msr_entry);
205 		msr_entry = save_msr(MTRR_PHYS_MASK_MSR(i), msr_entry);
206 	}
207 
208 	msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry);
209 
210 	return msr_count;
211 }
212 
213 static int load_sipi_vector(atomic_t **ap_countp)
214 {
215 	struct sipi_params_16bit *params16;
216 	struct sipi_params *params;
217 	static char msr_save[512];
218 	char *stack;
219 	ulong addr;
220 	int code_len;
221 	int size;
222 	int ret;
223 
224 	/* Copy in the code */
225 	code_len = ap_start16_code_end - ap_start16;
226 	debug("Copying SIPI code to %x: %d bytes\n", AP_DEFAULT_BASE,
227 	      code_len);
228 	memcpy((void *)AP_DEFAULT_BASE, ap_start16, code_len);
229 
230 	addr = AP_DEFAULT_BASE + (ulong)sipi_params_16bit - (ulong)ap_start16;
231 	params16 = (struct sipi_params_16bit *)addr;
232 	params16->ap_start = (uint32_t)ap_start;
233 	params16->gdt = (uint32_t)gd->arch.gdt;
234 	params16->gdt_limit = X86_GDT_SIZE - 1;
235 	debug("gdt = %x, gdt_limit = %x\n", params16->gdt, params16->gdt_limit);
236 
237 	params = (struct sipi_params *)sipi_params;
238 	debug("SIPI 32-bit params at %p\n", params);
239 	params->idt_ptr = (uint32_t)x86_get_idt();
240 
241 	params->stack_size = CONFIG_AP_STACK_SIZE;
242 	size = params->stack_size * CONFIG_MAX_CPUS;
243 	stack = memalign(size, 4096);
244 	if (!stack)
245 		return -ENOMEM;
246 	params->stack_top = (u32)(stack + size);
247 
248 	params->microcode_ptr = 0;
249 	params->msr_table_ptr = (u32)msr_save;
250 	ret = save_bsp_msrs(msr_save, sizeof(msr_save));
251 	if (ret < 0)
252 		return ret;
253 	params->msr_count = ret;
254 
255 	params->c_handler = (uint32_t)&ap_init;
256 
257 	*ap_countp = &params->ap_count;
258 	atomic_set(*ap_countp, 0);
259 	debug("SIPI vector is ready\n");
260 
261 	return 0;
262 }
263 
264 static int check_cpu_devices(int expected_cpus)
265 {
266 	int i;
267 
268 	for (i = 0; i < expected_cpus; i++) {
269 		struct udevice *dev;
270 		int ret;
271 
272 		ret = uclass_find_device(UCLASS_CPU, i, &dev);
273 		if (ret) {
274 			debug("Cannot find CPU %d in device tree\n", i);
275 			return ret;
276 		}
277 	}
278 
279 	return 0;
280 }
281 
282 /* Returns 1 for timeout. 0 on success */
283 static int apic_wait_timeout(int total_delay, int delay_step)
284 {
285 	int total = 0;
286 	int timeout = 0;
287 
288 	while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) {
289 		udelay(delay_step);
290 		total += delay_step;
291 		if (total >= total_delay) {
292 			timeout = 1;
293 			break;
294 		}
295 	}
296 
297 	return timeout;
298 }
299 
300 static int start_aps(int ap_count, atomic_t *num_aps)
301 {
302 	int sipi_vector;
303 	/* Max location is 4KiB below 1MiB */
304 	const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12;
305 
306 	if (ap_count == 0)
307 		return 0;
308 
309 	/* The vector is sent as a 4k aligned address in one byte */
310 	sipi_vector = AP_DEFAULT_BASE >> 12;
311 
312 	if (sipi_vector > max_vector_loc) {
313 		printf("SIPI vector too large! 0x%08x\n",
314 		       sipi_vector);
315 		return -1;
316 	}
317 
318 	debug("Attempting to start %d APs\n", ap_count);
319 
320 	if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
321 		debug("Waiting for ICR not to be busy...");
322 		if (apic_wait_timeout(1000, 50)) {
323 			debug("timed out. Aborting.\n");
324 			return -1;
325 		} else {
326 			debug("done.\n");
327 		}
328 	}
329 
330 	/* Send INIT IPI to all but self */
331 	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
332 	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
333 		    LAPIC_DM_INIT);
334 	debug("Waiting for 10ms after sending INIT.\n");
335 	mdelay(10);
336 
337 	/* Send 1st SIPI */
338 	if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
339 		debug("Waiting for ICR not to be busy...");
340 		if (apic_wait_timeout(1000, 50)) {
341 			debug("timed out. Aborting.\n");
342 			return -1;
343 		} else {
344 			debug("done.\n");
345 		}
346 	}
347 
348 	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
349 	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
350 		    LAPIC_DM_STARTUP | sipi_vector);
351 	debug("Waiting for 1st SIPI to complete...");
352 	if (apic_wait_timeout(10000, 50)) {
353 		debug("timed out.\n");
354 		return -1;
355 	} else {
356 		debug("done.\n");
357 	}
358 
359 	/* Wait for CPUs to check in up to 200 us */
360 	wait_for_aps(num_aps, ap_count, 200, 15);
361 
362 	/* Send 2nd SIPI */
363 	if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) {
364 		debug("Waiting for ICR not to be busy...");
365 		if (apic_wait_timeout(1000, 50)) {
366 			debug("timed out. Aborting.\n");
367 			return -1;
368 		} else {
369 			debug("done.\n");
370 		}
371 	}
372 
373 	lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0));
374 	lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT |
375 		    LAPIC_DM_STARTUP | sipi_vector);
376 	debug("Waiting for 2nd SIPI to complete...");
377 	if (apic_wait_timeout(10000, 50)) {
378 		debug("timed out.\n");
379 		return -1;
380 	} else {
381 		debug("done.\n");
382 	}
383 
384 	/* Wait for CPUs to check in */
385 	if (wait_for_aps(num_aps, ap_count, 10000, 50)) {
386 		debug("Not all APs checked in: %d/%d.\n",
387 		      atomic_read(num_aps), ap_count);
388 		return -1;
389 	}
390 
391 	return 0;
392 }
393 
394 static int bsp_do_flight_plan(struct udevice *cpu, struct mp_params *mp_params)
395 {
396 	int i;
397 	int ret = 0;
398 	const int timeout_us = 100000;
399 	const int step_us = 100;
400 	int num_aps = num_cpus - 1;
401 
402 	for (i = 0; i < mp_params->num_records; i++) {
403 		struct mp_flight_record *rec = &mp_params->flight_plan[i];
404 
405 		/* Wait for APs if the record is not released */
406 		if (atomic_read(&rec->barrier) == 0) {
407 			/* Wait for the APs to check in */
408 			if (wait_for_aps(&rec->cpus_entered, num_aps,
409 					 timeout_us, step_us)) {
410 				debug("MP record %d timeout.\n", i);
411 				ret = -1;
412 			}
413 		}
414 
415 		if (rec->bsp_call != NULL)
416 			rec->bsp_call(cpu, rec->bsp_arg);
417 
418 		release_barrier(&rec->barrier);
419 	}
420 	return ret;
421 }
422 
423 static int init_bsp(struct udevice **devp)
424 {
425 	char processor_name[CPU_MAX_NAME_LEN];
426 	int apic_id;
427 	int ret;
428 
429 	cpu_get_name(processor_name);
430 	debug("CPU: %s.\n", processor_name);
431 
432 	lapic_setup();
433 
434 	apic_id = lapicid();
435 	ret = find_cpu_by_apid_id(apic_id, devp);
436 	if (ret) {
437 		printf("Cannot find boot CPU, APIC ID %d\n", apic_id);
438 		return ret;
439 	}
440 
441 	return 0;
442 }
443 
444 int mp_init(struct mp_params *p)
445 {
446 	int num_aps;
447 	atomic_t *ap_count;
448 	struct udevice *cpu;
449 	int ret;
450 
451 	/* This will cause the CPUs devices to be bound */
452 	struct uclass *uc;
453 	ret = uclass_get(UCLASS_CPU, &uc);
454 	if (ret)
455 		return ret;
456 
457 	ret = init_bsp(&cpu);
458 	if (ret) {
459 		debug("Cannot init boot CPU: err=%d\n", ret);
460 		return ret;
461 	}
462 
463 	if (p == NULL || p->flight_plan == NULL || p->num_records < 1) {
464 		printf("Invalid MP parameters\n");
465 		return -1;
466 	}
467 
468 	num_cpus = cpu_get_count(cpu);
469 	if (num_cpus < 0) {
470 		debug("Cannot get number of CPUs: err=%d\n", num_cpus);
471 		return num_cpus;
472 	}
473 
474 	if (num_cpus < 2)
475 		debug("Warning: Only 1 CPU is detected\n");
476 
477 	ret = check_cpu_devices(num_cpus);
478 	if (ret)
479 		debug("Warning: Device tree does not describe all CPUs. Extra ones will not be started correctly\n");
480 
481 	/* Copy needed parameters so that APs have a reference to the plan */
482 	mp_info.num_records = p->num_records;
483 	mp_info.records = p->flight_plan;
484 
485 	/* Load the SIPI vector */
486 	ret = load_sipi_vector(&ap_count);
487 	if (ap_count == NULL)
488 		return -1;
489 
490 	/*
491 	 * Make sure SIPI data hits RAM so the APs that come up will see
492 	 * the startup code even if the caches are disabled
493 	 */
494 	wbinvd();
495 
496 	/* Start the APs providing number of APs and the cpus_entered field */
497 	num_aps = num_cpus - 1;
498 	ret = start_aps(num_aps, ap_count);
499 	if (ret) {
500 		mdelay(1000);
501 		debug("%d/%d eventually checked in?\n", atomic_read(ap_count),
502 		      num_aps);
503 		return ret;
504 	}
505 
506 	/* Walk the flight plan for the BSP */
507 	ret = bsp_do_flight_plan(cpu, p);
508 	if (ret) {
509 		debug("CPU init failed: err=%d\n", ret);
510 		return ret;
511 	}
512 
513 	return 0;
514 }
515 
516 int mp_init_cpu(struct udevice *cpu, void *unused)
517 {
518 	/*
519 	 * Multiple APs are brought up simultaneously and they may get the same
520 	 * seq num in the uclass_resolve_seq() during device_probe(). To avoid
521 	 * this, set req_seq to the reg number in the device tree in advance.
522 	 */
523 	cpu->req_seq = fdtdec_get_int(gd->fdt_blob, cpu->of_offset, "reg", -1);
524 
525 	return device_probe(cpu);
526 }
527