xref: /openbmc/u-boot/arch/x86/cpu/ivybridge/sdram.c (revision d2eaec60)
1 /*
2  * Copyright (c) 2011 The Chromium OS Authors.
3  * (C) Copyright 2010,2011
4  * Graeme Russ, <graeme.russ@gmail.com>
5  *
6  * Portions from Coreboot mainboard/google/link/romstage.c
7  * Copyright (C) 2007-2010 coresystems GmbH
8  * Copyright (C) 2011 Google Inc.
9  *
10  * SPDX-License-Identifier:	GPL-2.0
11  */
12 
13 #include <common.h>
14 #include <errno.h>
15 #include <fdtdec.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <rtc.h>
19 #include <spi.h>
20 #include <spi_flash.h>
21 #include <asm/processor.h>
22 #include <asm/gpio.h>
23 #include <asm/global_data.h>
24 #include <asm/mtrr.h>
25 #include <asm/pci.h>
26 #include <asm/arch/me.h>
27 #include <asm/arch/mrccache.h>
28 #include <asm/arch/pei_data.h>
29 #include <asm/arch/pch.h>
30 #include <asm/post.h>
31 #include <asm/arch/sandybridge.h>
32 
33 DECLARE_GLOBAL_DATA_PTR;
34 
35 #define CMOS_OFFSET_MRC_SEED		152
36 #define CMOS_OFFSET_MRC_SEED_S3		156
37 #define CMOS_OFFSET_MRC_SEED_CHK	160
38 
39 /*
40  * This function looks for the highest region of memory lower than 4GB which
41  * has enough space for U-Boot where U-Boot is aligned on a page boundary.
42  * It overrides the default implementation found elsewhere which simply
43  * picks the end of ram, wherever that may be. The location of the stack,
44  * the relocation address, and how far U-Boot is moved by relocation are
45  * set in the global data structure.
46  */
47 ulong board_get_usable_ram_top(ulong total_size)
48 {
49 	struct memory_info *info = &gd->arch.meminfo;
50 	uintptr_t dest_addr = 0;
51 	struct memory_area *largest = NULL;
52 	int i;
53 
54 	/* Find largest area of memory below 4GB */
55 
56 	for (i = 0; i < info->num_areas; i++) {
57 		struct memory_area *area = &info->area[i];
58 
59 		if (area->start >= 1ULL << 32)
60 			continue;
61 		if (!largest || area->size > largest->size)
62 			largest = area;
63 	}
64 
65 	/* If no suitable area was found, return an error. */
66 	assert(largest);
67 	if (!largest || largest->size < (2 << 20))
68 		panic("No available memory found for relocation");
69 
70 	dest_addr = largest->start + largest->size;
71 
72 	return (ulong)dest_addr;
73 }
74 
75 void dram_init_banksize(void)
76 {
77 	struct memory_info *info = &gd->arch.meminfo;
78 	int num_banks;
79 	int i;
80 
81 	for (i = 0, num_banks = 0; i < info->num_areas; i++) {
82 		struct memory_area *area = &info->area[i];
83 
84 		if (area->start >= 1ULL << 32)
85 			continue;
86 		gd->bd->bi_dram[num_banks].start = area->start;
87 		gd->bd->bi_dram[num_banks].size = area->size;
88 		num_banks++;
89 	}
90 }
91 
92 static int get_mrc_entry(struct spi_flash **sfp, struct fmap_entry *entry)
93 {
94 	const void *blob = gd->fdt_blob;
95 	int node, spi_node, mrc_node;
96 	int upto;
97 
98 	/* Find the flash chip within the SPI controller node */
99 	upto = 0;
100 	spi_node = fdtdec_next_alias(blob, "spi", COMPAT_INTEL_ICH_SPI, &upto);
101 	if (spi_node < 0)
102 		return -ENOENT;
103 	node = fdt_first_subnode(blob, spi_node);
104 	if (node < 0)
105 		return -ECHILD;
106 
107 	/* Find the place where we put the MRC cache */
108 	mrc_node = fdt_subnode_offset(blob, node, "rw-mrc-cache");
109 	if (mrc_node < 0)
110 		return -EPERM;
111 
112 	if (fdtdec_read_fmap_entry(blob, mrc_node, "rm-mrc-cache", entry))
113 		return -EINVAL;
114 
115 	if (sfp) {
116 		*sfp = spi_flash_probe_fdt(blob, node, spi_node);
117 		if (!*sfp)
118 			return -EBADF;
119 	}
120 
121 	return 0;
122 }
123 
124 static int read_seed_from_cmos(struct pei_data *pei_data)
125 {
126 	u16 c1, c2, checksum, seed_checksum;
127 
128 	/*
129 	 * Read scrambler seeds from CMOS RAM. We don't want to store them in
130 	 * SPI flash since they change on every boot and that would wear down
131 	 * the flash too much. So we store these in CMOS and the large MRC
132 	 * data in SPI flash.
133 	 */
134 	pei_data->scrambler_seed = rtc_read32(CMOS_OFFSET_MRC_SEED);
135 	debug("Read scrambler seed    0x%08x from CMOS 0x%02x\n",
136 	      pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED);
137 
138 	pei_data->scrambler_seed_s3 = rtc_read32(CMOS_OFFSET_MRC_SEED_S3);
139 	debug("Read S3 scrambler seed 0x%08x from CMOS 0x%02x\n",
140 	      pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3);
141 
142 	/* Compute seed checksum and compare */
143 	c1 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed,
144 				 sizeof(u32));
145 	c2 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed_s3,
146 				 sizeof(u32));
147 	checksum = add_ip_checksums(sizeof(u32), c1, c2);
148 
149 	seed_checksum = rtc_read8(CMOS_OFFSET_MRC_SEED_CHK);
150 	seed_checksum |= rtc_read8(CMOS_OFFSET_MRC_SEED_CHK + 1) << 8;
151 
152 	if (checksum != seed_checksum) {
153 		debug("%s: invalid seed checksum\n", __func__);
154 		pei_data->scrambler_seed = 0;
155 		pei_data->scrambler_seed_s3 = 0;
156 		return -EINVAL;
157 	}
158 
159 	return 0;
160 }
161 
162 static int prepare_mrc_cache(struct pei_data *pei_data)
163 {
164 	struct mrc_data_container *mrc_cache;
165 	struct fmap_entry entry;
166 	int ret;
167 
168 	ret = read_seed_from_cmos(pei_data);
169 	if (ret)
170 		return ret;
171 	ret = get_mrc_entry(NULL, &entry);
172 	if (ret)
173 		return ret;
174 	mrc_cache = mrccache_find_current(&entry);
175 	if (!mrc_cache)
176 		return -ENOENT;
177 
178 	/*
179 	 * TODO(sjg@chromium.org): Skip this for now as it causes boot
180 	 * problems
181 	 */
182 	if (0) {
183 		pei_data->mrc_input = mrc_cache->data;
184 		pei_data->mrc_input_len = mrc_cache->data_size;
185 	}
186 	debug("%s: at %p, size %x checksum %04x\n", __func__,
187 	      pei_data->mrc_input, pei_data->mrc_input_len,
188 	      mrc_cache->checksum);
189 
190 	return 0;
191 }
192 
193 static int build_mrc_data(struct mrc_data_container **datap)
194 {
195 	struct mrc_data_container *data;
196 	int orig_len;
197 	int output_len;
198 
199 	orig_len = gd->arch.mrc_output_len;
200 	output_len = ALIGN(orig_len, 16);
201 	data = malloc(output_len + sizeof(*data));
202 	if (!data)
203 		return -ENOMEM;
204 	data->signature = MRC_DATA_SIGNATURE;
205 	data->data_size = output_len;
206 	data->reserved = 0;
207 	memcpy(data->data, gd->arch.mrc_output, orig_len);
208 
209 	/* Zero the unused space in aligned buffer. */
210 	if (output_len > orig_len)
211 		memset(data->data + orig_len, 0, output_len - orig_len);
212 
213 	data->checksum = compute_ip_checksum(data->data, output_len);
214 	*datap = data;
215 
216 	return 0;
217 }
218 
219 static int write_seeds_to_cmos(struct pei_data *pei_data)
220 {
221 	u16 c1, c2, checksum;
222 
223 	/* Save the MRC seed values to CMOS */
224 	rtc_write32(CMOS_OFFSET_MRC_SEED, pei_data->scrambler_seed);
225 	debug("Save scrambler seed    0x%08x to CMOS 0x%02x\n",
226 	      pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED);
227 
228 	rtc_write32(CMOS_OFFSET_MRC_SEED_S3, pei_data->scrambler_seed_s3);
229 	debug("Save s3 scrambler seed 0x%08x to CMOS 0x%02x\n",
230 	      pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3);
231 
232 	/* Save a simple checksum of the seed values */
233 	c1 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed,
234 				 sizeof(u32));
235 	c2 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed_s3,
236 				 sizeof(u32));
237 	checksum = add_ip_checksums(sizeof(u32), c1, c2);
238 
239 	rtc_write8(CMOS_OFFSET_MRC_SEED_CHK, checksum & 0xff);
240 	rtc_write8(CMOS_OFFSET_MRC_SEED_CHK + 1, (checksum >> 8) & 0xff);
241 
242 	return 0;
243 }
244 
245 static int sdram_save_mrc_data(void)
246 {
247 	struct mrc_data_container *data;
248 	struct fmap_entry entry;
249 	struct spi_flash *sf;
250 	int ret;
251 
252 	if (!gd->arch.mrc_output_len)
253 		return 0;
254 	debug("Saving %d bytes of MRC output data to SPI flash\n",
255 	      gd->arch.mrc_output_len);
256 
257 	ret = get_mrc_entry(&sf, &entry);
258 	if (ret)
259 		goto err_entry;
260 	ret = build_mrc_data(&data);
261 	if (ret)
262 		goto err_data;
263 	ret = mrccache_update(sf, &entry, data);
264 	if (!ret)
265 		debug("Saved MRC data with checksum %04x\n", data->checksum);
266 
267 	free(data);
268 err_data:
269 	spi_flash_free(sf);
270 err_entry:
271 	if (ret)
272 		debug("%s: Failed: %d\n", __func__, ret);
273 	return ret;
274 }
275 
276 /* Use this hook to save our SDRAM parameters */
277 int misc_init_r(void)
278 {
279 	int ret;
280 
281 	ret = sdram_save_mrc_data();
282 	if (ret)
283 		printf("Unable to save MRC data: %d\n", ret);
284 
285 	return 0;
286 }
287 
288 static const char *const ecc_decoder[] = {
289 	"inactive",
290 	"active on IO",
291 	"disabled on IO",
292 	"active"
293 };
294 
295 /*
296  * Dump in the log memory controller configuration as read from the memory
297  * controller registers.
298  */
299 static void report_memory_config(void)
300 {
301 	u32 addr_decoder_common, addr_decode_ch[2];
302 	int i;
303 
304 	addr_decoder_common = readl(MCHBAR_REG(0x5000));
305 	addr_decode_ch[0] = readl(MCHBAR_REG(0x5004));
306 	addr_decode_ch[1] = readl(MCHBAR_REG(0x5008));
307 
308 	debug("memcfg DDR3 clock %d MHz\n",
309 	      (readl(MCHBAR_REG(0x5e04)) * 13333 * 2 + 50) / 100);
310 	debug("memcfg channel assignment: A: %d, B % d, C % d\n",
311 	      addr_decoder_common & 3,
312 	      (addr_decoder_common >> 2) & 3,
313 	      (addr_decoder_common >> 4) & 3);
314 
315 	for (i = 0; i < ARRAY_SIZE(addr_decode_ch); i++) {
316 		u32 ch_conf = addr_decode_ch[i];
317 		debug("memcfg channel[%d] config (%8.8x):\n", i, ch_conf);
318 		debug("   ECC %s\n", ecc_decoder[(ch_conf >> 24) & 3]);
319 		debug("   enhanced interleave mode %s\n",
320 		      ((ch_conf >> 22) & 1) ? "on" : "off");
321 		debug("   rank interleave %s\n",
322 		      ((ch_conf >> 21) & 1) ? "on" : "off");
323 		debug("   DIMMA %d MB width x%d %s rank%s\n",
324 		      ((ch_conf >> 0) & 0xff) * 256,
325 		      ((ch_conf >> 19) & 1) ? 16 : 8,
326 		      ((ch_conf >> 17) & 1) ? "dual" : "single",
327 		      ((ch_conf >> 16) & 1) ? "" : ", selected");
328 		debug("   DIMMB %d MB width x%d %s rank%s\n",
329 		      ((ch_conf >> 8) & 0xff) * 256,
330 		      ((ch_conf >> 20) & 1) ? 16 : 8,
331 		      ((ch_conf >> 18) & 1) ? "dual" : "single",
332 		      ((ch_conf >> 16) & 1) ? ", selected" : "");
333 	}
334 }
335 
336 static void post_system_agent_init(struct pei_data *pei_data)
337 {
338 	/* If PCIe init is skipped, set the PEG clock gating */
339 	if (!pei_data->pcie_init)
340 		setbits_le32(MCHBAR_REG(0x7010), 1);
341 }
342 
343 static asmlinkage void console_tx_byte(unsigned char byte)
344 {
345 #ifdef DEBUG
346 	putc(byte);
347 #endif
348 }
349 
350 static int recovery_mode_enabled(void)
351 {
352 	return false;
353 }
354 
355 /**
356  * Find the PEI executable in the ROM and execute it.
357  *
358  * @param pei_data: configuration data for UEFI PEI reference code
359  */
360 int sdram_initialise(struct pei_data *pei_data)
361 {
362 	unsigned version;
363 	const char *data;
364 	uint16_t done;
365 	int ret;
366 
367 	report_platform_info();
368 
369 	/* Wait for ME to be ready */
370 	ret = intel_early_me_init();
371 	if (ret)
372 		return ret;
373 	ret = intel_early_me_uma_size();
374 	if (ret < 0)
375 		return ret;
376 
377 	debug("Starting UEFI PEI System Agent\n");
378 
379 	/*
380 	 * Do not pass MRC data in for recovery mode boot,
381 	 * Always pass it in for S3 resume.
382 	 */
383 	if (!recovery_mode_enabled() ||
384 	    pei_data->boot_mode == PEI_BOOT_RESUME) {
385 		ret = prepare_mrc_cache(pei_data);
386 		if (ret)
387 			debug("prepare_mrc_cache failed: %d\n", ret);
388 	}
389 
390 	/* If MRC data is not found we cannot continue S3 resume. */
391 	if (pei_data->boot_mode == PEI_BOOT_RESUME && !pei_data->mrc_input) {
392 		debug("Giving up in sdram_initialize: No MRC data\n");
393 		outb(0x6, PORT_RESET);
394 		cpu_hlt();
395 	}
396 
397 	/* Pass console handler in pei_data */
398 	pei_data->tx_byte = console_tx_byte;
399 
400 	debug("PEI data at %p, size %x:\n", pei_data, sizeof(*pei_data));
401 
402 	data = (char *)CONFIG_X86_MRC_ADDR;
403 	if (data) {
404 		int rv;
405 		int (*func)(struct pei_data *);
406 
407 		debug("Calling MRC at %p\n", data);
408 		post_code(POST_PRE_MRC);
409 		func = (int (*)(struct pei_data *))data;
410 		rv = func(pei_data);
411 		post_code(POST_MRC);
412 		if (rv) {
413 			switch (rv) {
414 			case -1:
415 				printf("PEI version mismatch.\n");
416 				break;
417 			case -2:
418 				printf("Invalid memory frequency.\n");
419 				break;
420 			default:
421 				printf("MRC returned %x.\n", rv);
422 			}
423 			printf("Nonzero MRC return value.\n");
424 			return -EFAULT;
425 		}
426 	} else {
427 		printf("UEFI PEI System Agent not found.\n");
428 		return -ENOSYS;
429 	}
430 
431 #if CONFIG_USBDEBUG
432 	/* mrc.bin reconfigures USB, so reinit it to have debug */
433 	early_usbdebug_init();
434 #endif
435 
436 	version = readl(MCHBAR_REG(0x5034));
437 	debug("System Agent Version %d.%d.%d Build %d\n",
438 	      version >> 24 , (version >> 16) & 0xff,
439 	      (version >> 8) & 0xff, version & 0xff);
440 	debug("MCR output data length %#x at %p\n", pei_data->mrc_output_len,
441 	      pei_data->mrc_output);
442 
443 	/*
444 	 * Send ME init done for SandyBridge here.  This is done inside the
445 	 * SystemAgent binary on IvyBridge
446 	 */
447 	done = x86_pci_read_config32(PCH_DEV, PCI_DEVICE_ID);
448 	done &= BASE_REV_MASK;
449 	if (BASE_REV_SNB == done)
450 		intel_early_me_init_done(ME_INIT_STATUS_SUCCESS);
451 	else
452 		intel_early_me_status();
453 
454 	post_system_agent_init(pei_data);
455 	report_memory_config();
456 
457 	/* S3 resume: don't save scrambler seed or MRC data */
458 	if (pei_data->boot_mode != PEI_BOOT_RESUME) {
459 		/*
460 		 * This will be copied to SDRAM in reserve_arch(), then written
461 		 * to SPI flash in sdram_save_mrc_data()
462 		 */
463 		gd->arch.mrc_output = (char *)pei_data->mrc_output;
464 		gd->arch.mrc_output_len = pei_data->mrc_output_len;
465 		ret = write_seeds_to_cmos(pei_data);
466 		if (ret)
467 			debug("Failed to write seeds to CMOS: %d\n", ret);
468 	}
469 
470 	return 0;
471 }
472 
473 int reserve_arch(void)
474 {
475 	u16 checksum;
476 
477 	checksum = compute_ip_checksum(gd->arch.mrc_output,
478 				       gd->arch.mrc_output_len);
479 	debug("Saving %d bytes for MRC output data, checksum %04x\n",
480 	      gd->arch.mrc_output_len, checksum);
481 	gd->start_addr_sp -= gd->arch.mrc_output_len;
482 	memcpy((void *)gd->start_addr_sp, gd->arch.mrc_output,
483 	       gd->arch.mrc_output_len);
484 	gd->arch.mrc_output = (char *)gd->start_addr_sp;
485 	gd->start_addr_sp &= ~0xf;
486 
487 	return 0;
488 }
489 
490 static int copy_spd(struct pei_data *peid)
491 {
492 	const int gpio_vector[] = {41, 42, 43, 10, -1};
493 	int spd_index;
494 	const void *blob = gd->fdt_blob;
495 	int node, spd_node;
496 	int ret, i;
497 
498 	for (i = 0; ; i++) {
499 		if (gpio_vector[i] == -1)
500 			break;
501 		ret = gpio_requestf(gpio_vector[i], "spd_id%d", i);
502 		if (ret) {
503 			debug("%s: Could not request gpio %d\n", __func__,
504 			      gpio_vector[i]);
505 			return ret;
506 		}
507 	}
508 	spd_index = gpio_get_values_as_int(gpio_vector);
509 	debug("spd index %d\n", spd_index);
510 	node = fdtdec_next_compatible(blob, 0, COMPAT_MEMORY_SPD);
511 	if (node < 0) {
512 		printf("SPD data not found.\n");
513 		return -ENOENT;
514 	}
515 
516 	for (spd_node = fdt_first_subnode(blob, node);
517 	     spd_node > 0;
518 	     spd_node = fdt_next_subnode(blob, spd_node)) {
519 		const char *data;
520 		int len;
521 
522 		if (fdtdec_get_int(blob, spd_node, "reg", -1) != spd_index)
523 			continue;
524 		data = fdt_getprop(blob, spd_node, "data", &len);
525 		if (len < sizeof(peid->spd_data[0])) {
526 			printf("Missing SPD data\n");
527 			return -EINVAL;
528 		}
529 
530 		debug("Using SDRAM SPD data for '%s'\n",
531 		      fdt_get_name(blob, spd_node, NULL));
532 		memcpy(peid->spd_data[0], data, sizeof(peid->spd_data[0]));
533 		break;
534 	}
535 
536 	if (spd_node < 0) {
537 		printf("No SPD data found for index %d\n", spd_index);
538 		return -ENOENT;
539 	}
540 
541 	return 0;
542 }
543 
544 /**
545  * add_memory_area() - Add a new usable memory area to our list
546  *
547  * Note: @start and @end must not span the first 4GB boundary
548  *
549  * @info:	Place to store memory info
550  * @start:	Start of this memory area
551  * @end:	End of this memory area + 1
552  */
553 static int add_memory_area(struct memory_info *info,
554 			   uint64_t start, uint64_t end)
555 {
556 	struct memory_area *ptr;
557 
558 	if (info->num_areas == CONFIG_NR_DRAM_BANKS)
559 		return -ENOSPC;
560 
561 	ptr = &info->area[info->num_areas];
562 	ptr->start = start;
563 	ptr->size = end - start;
564 	info->total_memory += ptr->size;
565 	if (ptr->start < (1ULL << 32))
566 		info->total_32bit_memory += ptr->size;
567 	debug("%d: memory %llx size %llx, total now %llx / %llx\n",
568 	      info->num_areas, ptr->start, ptr->size,
569 	      info->total_32bit_memory, info->total_memory);
570 	info->num_areas++;
571 
572 	return 0;
573 }
574 
575 /**
576  * sdram_find() - Find available memory
577  *
578  * This is a bit complicated since on x86 there are system memory holes all
579  * over the place. We create a list of available memory blocks
580  */
581 static int sdram_find(pci_dev_t dev)
582 {
583 	struct memory_info *info = &gd->arch.meminfo;
584 	uint32_t tseg_base, uma_size, tolud;
585 	uint64_t tom, me_base, touud;
586 	uint64_t uma_memory_base = 0;
587 	uint64_t uma_memory_size;
588 	unsigned long long tomk;
589 	uint16_t ggc;
590 
591 	/* Total Memory 2GB example:
592 	 *
593 	 *  00000000  0000MB-1992MB  1992MB  RAM     (writeback)
594 	 *  7c800000  1992MB-2000MB     8MB  TSEG    (SMRR)
595 	 *  7d000000  2000MB-2002MB     2MB  GFX GTT (uncached)
596 	 *  7d200000  2002MB-2034MB    32MB  GFX UMA (uncached)
597 	 *  7f200000   2034MB TOLUD
598 	 *  7f800000   2040MB MEBASE
599 	 *  7f800000  2040MB-2048MB     8MB  ME UMA  (uncached)
600 	 *  80000000   2048MB TOM
601 	 * 100000000  4096MB-4102MB     6MB  RAM     (writeback)
602 	 *
603 	 * Total Memory 4GB example:
604 	 *
605 	 *  00000000  0000MB-2768MB  2768MB  RAM     (writeback)
606 	 *  ad000000  2768MB-2776MB     8MB  TSEG    (SMRR)
607 	 *  ad800000  2776MB-2778MB     2MB  GFX GTT (uncached)
608 	 *  ada00000  2778MB-2810MB    32MB  GFX UMA (uncached)
609 	 *  afa00000   2810MB TOLUD
610 	 *  ff800000   4088MB MEBASE
611 	 *  ff800000  4088MB-4096MB     8MB  ME UMA  (uncached)
612 	 * 100000000   4096MB TOM
613 	 * 100000000  4096MB-5374MB  1278MB  RAM     (writeback)
614 	 * 14fe00000   5368MB TOUUD
615 	 */
616 
617 	/* Top of Upper Usable DRAM, including remap */
618 	touud = x86_pci_read_config32(dev, TOUUD+4);
619 	touud <<= 32;
620 	touud |= x86_pci_read_config32(dev, TOUUD);
621 
622 	/* Top of Lower Usable DRAM */
623 	tolud = x86_pci_read_config32(dev, TOLUD);
624 
625 	/* Top of Memory - does not account for any UMA */
626 	tom = x86_pci_read_config32(dev, 0xa4);
627 	tom <<= 32;
628 	tom |= x86_pci_read_config32(dev, 0xa0);
629 
630 	debug("TOUUD %llx TOLUD %08x TOM %llx\n", touud, tolud, tom);
631 
632 	/* ME UMA needs excluding if total memory <4GB */
633 	me_base = x86_pci_read_config32(dev, 0x74);
634 	me_base <<= 32;
635 	me_base |= x86_pci_read_config32(dev, 0x70);
636 
637 	debug("MEBASE %llx\n", me_base);
638 
639 	/* TODO: Get rid of all this shifting by 10 bits */
640 	tomk = tolud >> 10;
641 	if (me_base == tolud) {
642 		/* ME is from MEBASE-TOM */
643 		uma_size = (tom - me_base) >> 10;
644 		/* Increment TOLUD to account for ME as RAM */
645 		tolud += uma_size << 10;
646 		/* UMA starts at old TOLUD */
647 		uma_memory_base = tomk * 1024ULL;
648 		uma_memory_size = uma_size * 1024ULL;
649 		debug("ME UMA base %llx size %uM\n", me_base, uma_size >> 10);
650 	}
651 
652 	/* Graphics memory comes next */
653 	ggc = x86_pci_read_config16(dev, GGC);
654 	if (!(ggc & 2)) {
655 		debug("IGD decoded, subtracting ");
656 
657 		/* Graphics memory */
658 		uma_size = ((ggc >> 3) & 0x1f) * 32 * 1024ULL;
659 		debug("%uM UMA", uma_size >> 10);
660 		tomk -= uma_size;
661 		uma_memory_base = tomk * 1024ULL;
662 		uma_memory_size += uma_size * 1024ULL;
663 
664 		/* GTT Graphics Stolen Memory Size (GGMS) */
665 		uma_size = ((ggc >> 8) & 0x3) * 1024ULL;
666 		tomk -= uma_size;
667 		uma_memory_base = tomk * 1024ULL;
668 		uma_memory_size += uma_size * 1024ULL;
669 		debug(" and %uM GTT\n", uma_size >> 10);
670 	}
671 
672 	/* Calculate TSEG size from its base which must be below GTT */
673 	tseg_base = x86_pci_read_config32(dev, 0xb8);
674 	uma_size = (uma_memory_base - tseg_base) >> 10;
675 	tomk -= uma_size;
676 	uma_memory_base = tomk * 1024ULL;
677 	uma_memory_size += uma_size * 1024ULL;
678 	debug("TSEG base 0x%08x size %uM\n", tseg_base, uma_size >> 10);
679 
680 	debug("Available memory below 4GB: %lluM\n", tomk >> 10);
681 
682 	/* Report the memory regions */
683 	add_memory_area(info, 1 << 20, 2 << 28);
684 	add_memory_area(info, (2 << 28) + (2 << 20), 4 << 28);
685 	add_memory_area(info, (4 << 28) + (2 << 20), tseg_base);
686 	add_memory_area(info, 1ULL << 32, touud);
687 
688 	/* Add MTRRs for memory */
689 	mtrr_add_request(MTRR_TYPE_WRBACK, 0, 2ULL << 30);
690 	mtrr_add_request(MTRR_TYPE_WRBACK, 2ULL << 30, 512 << 20);
691 	mtrr_add_request(MTRR_TYPE_WRBACK, 0xaULL << 28, 256 << 20);
692 	mtrr_add_request(MTRR_TYPE_UNCACHEABLE, tseg_base, 16 << 20);
693 	mtrr_add_request(MTRR_TYPE_UNCACHEABLE, tseg_base + (16 << 20),
694 			 32 << 20);
695 
696 	/*
697 	 * If >= 4GB installed then memory from TOLUD to 4GB
698 	 * is remapped above TOM, TOUUD will account for both
699 	 */
700 	if (touud > (1ULL << 32ULL)) {
701 		debug("Available memory above 4GB: %lluM\n",
702 		      (touud >> 20) - 4096);
703 	}
704 
705 	return 0;
706 }
707 
708 static void rcba_config(void)
709 {
710 	/*
711 	 *             GFX    INTA -> PIRQA (MSI)
712 	 * D28IP_P3IP  WLAN   INTA -> PIRQB
713 	 * D29IP_E1P   EHCI1  INTA -> PIRQD
714 	 * D26IP_E2P   EHCI2  INTA -> PIRQF
715 	 * D31IP_SIP   SATA   INTA -> PIRQF (MSI)
716 	 * D31IP_SMIP  SMBUS  INTB -> PIRQH
717 	 * D31IP_TTIP  THRT   INTC -> PIRQA
718 	 * D27IP_ZIP   HDA    INTA -> PIRQA (MSI)
719 	 *
720 	 * TRACKPAD                -> PIRQE (Edge Triggered)
721 	 * TOUCHSCREEN             -> PIRQG (Edge Triggered)
722 	 */
723 
724 	/* Device interrupt pin register (board specific) */
725 	writel((INTC << D31IP_TTIP) | (NOINT << D31IP_SIP2) |
726 	       (INTB << D31IP_SMIP) | (INTA << D31IP_SIP), RCB_REG(D31IP));
727 	writel(NOINT << D30IP_PIP, RCB_REG(D30IP));
728 	writel(INTA << D29IP_E1P, RCB_REG(D29IP));
729 	writel(INTA << D28IP_P3IP, RCB_REG(D28IP));
730 	writel(INTA << D27IP_ZIP, RCB_REG(D27IP));
731 	writel(INTA << D26IP_E2P, RCB_REG(D26IP));
732 	writel(NOINT << D25IP_LIP, RCB_REG(D25IP));
733 	writel(NOINT << D22IP_MEI1IP, RCB_REG(D22IP));
734 
735 	/* Device interrupt route registers */
736 	writel(DIR_ROUTE(PIRQB, PIRQH, PIRQA, PIRQC), RCB_REG(D31IR));
737 	writel(DIR_ROUTE(PIRQD, PIRQE, PIRQF, PIRQG), RCB_REG(D29IR));
738 	writel(DIR_ROUTE(PIRQB, PIRQC, PIRQD, PIRQE), RCB_REG(D28IR));
739 	writel(DIR_ROUTE(PIRQA, PIRQH, PIRQA, PIRQB), RCB_REG(D27IR));
740 	writel(DIR_ROUTE(PIRQF, PIRQE, PIRQG, PIRQH), RCB_REG(D26IR));
741 	writel(DIR_ROUTE(PIRQA, PIRQB, PIRQC, PIRQD), RCB_REG(D25IR));
742 	writel(DIR_ROUTE(PIRQA, PIRQB, PIRQC, PIRQD), RCB_REG(D22IR));
743 
744 	/* Enable IOAPIC (generic) */
745 	writew(0x0100, RCB_REG(OIC));
746 	/* PCH BWG says to read back the IOAPIC enable register */
747 	(void)readw(RCB_REG(OIC));
748 
749 	/* Disable unused devices (board specific) */
750 	setbits_le32(RCB_REG(FD), PCH_DISABLE_ALWAYS);
751 }
752 
753 int dram_init(void)
754 {
755 	struct pei_data pei_data __aligned(8) = {
756 		.pei_version = PEI_VERSION,
757 		.mchbar = DEFAULT_MCHBAR,
758 		.dmibar = DEFAULT_DMIBAR,
759 		.epbar = DEFAULT_EPBAR,
760 		.pciexbar = CONFIG_PCIE_ECAM_BASE,
761 		.smbusbar = SMBUS_IO_BASE,
762 		.wdbbar = 0x4000000,
763 		.wdbsize = 0x1000,
764 		.hpet_address = CONFIG_HPET_ADDRESS,
765 		.rcba = DEFAULT_RCBABASE,
766 		.pmbase = DEFAULT_PMBASE,
767 		.gpiobase = DEFAULT_GPIOBASE,
768 		.thermalbase = 0xfed08000,
769 		.system_type = 0, /* 0 Mobile, 1 Desktop/Server */
770 		.tseg_size = CONFIG_SMM_TSEG_SIZE,
771 		.ts_addresses = { 0x00, 0x00, 0x00, 0x00 },
772 		.ec_present = 1,
773 		.ddr3lv_support = 1,
774 		/*
775 		 * 0 = leave channel enabled
776 		 * 1 = disable dimm 0 on channel
777 		 * 2 = disable dimm 1 on channel
778 		 * 3 = disable dimm 0+1 on channel
779 		 */
780 		.dimm_channel0_disabled = 2,
781 		.dimm_channel1_disabled = 2,
782 		.max_ddr3_freq = 1600,
783 		.usb_port_config = {
784 			/*
785 			 * Empty and onboard Ports 0-7, set to un-used pin
786 			 * OC3
787 			 */
788 			{ 0, 3, 0x0000 }, /* P0= Empty */
789 			{ 1, 0, 0x0040 }, /* P1= Left USB 1  (OC0) */
790 			{ 1, 1, 0x0040 }, /* P2= Left USB 2  (OC1) */
791 			{ 1, 3, 0x0040 }, /* P3= SDCARD      (no OC) */
792 			{ 0, 3, 0x0000 }, /* P4= Empty */
793 			{ 1, 3, 0x0040 }, /* P5= WWAN        (no OC) */
794 			{ 0, 3, 0x0000 }, /* P6= Empty */
795 			{ 0, 3, 0x0000 }, /* P7= Empty */
796 			/*
797 			 * Empty and onboard Ports 8-13, set to un-used pin
798 			 * OC4
799 			 */
800 			{ 1, 4, 0x0040 }, /* P8= Camera      (no OC) */
801 			{ 1, 4, 0x0040 }, /* P9= Bluetooth   (no OC) */
802 			{ 0, 4, 0x0000 }, /* P10= Empty */
803 			{ 0, 4, 0x0000 }, /* P11= Empty */
804 			{ 0, 4, 0x0000 }, /* P12= Empty */
805 			{ 0, 4, 0x0000 }, /* P13= Empty */
806 		},
807 	};
808 	pci_dev_t dev = PCI_BDF(0, 0, 0);
809 	int ret;
810 
811 	debug("Boot mode %d\n", gd->arch.pei_boot_mode);
812 	debug("mcr_input %p\n", pei_data.mrc_input);
813 	pei_data.boot_mode = gd->arch.pei_boot_mode;
814 	ret = copy_spd(&pei_data);
815 	if (!ret)
816 		ret = sdram_initialise(&pei_data);
817 	if (ret)
818 		return ret;
819 
820 	rcba_config();
821 	quick_ram_check();
822 
823 	writew(0xCAFE, MCHBAR_REG(SSKPD));
824 
825 	post_code(POST_DRAM);
826 
827 	ret = sdram_find(dev);
828 	if (ret)
829 		return ret;
830 
831 	gd->ram_size = gd->arch.meminfo.total_32bit_memory;
832 
833 	return 0;
834 }
835