xref: /openbmc/u-boot/arch/x86/cpu/ivybridge/sdram.c (revision 0c331ebc)
1 /*
2  * Copyright (c) 2011 The Chromium OS Authors.
3  * (C) Copyright 2010,2011
4  * Graeme Russ, <graeme.russ@gmail.com>
5  *
6  * Portions from Coreboot mainboard/google/link/romstage.c
7  * Copyright (C) 2007-2010 coresystems GmbH
8  * Copyright (C) 2011 Google Inc.
9  *
10  * SPDX-License-Identifier:	GPL-2.0
11  */
12 
13 #include <common.h>
14 #include <errno.h>
15 #include <fdtdec.h>
16 #include <malloc.h>
17 #include <asm/processor.h>
18 #include <asm/gpio.h>
19 #include <asm/global_data.h>
20 #include <asm/pci.h>
21 #include <asm/arch/me.h>
22 #include <asm/arch/pei_data.h>
23 #include <asm/arch/pch.h>
24 #include <asm/post.h>
25 #include <asm/arch/sandybridge.h>
26 
27 DECLARE_GLOBAL_DATA_PTR;
28 
29 /*
30  * This function looks for the highest region of memory lower than 4GB which
31  * has enough space for U-Boot where U-Boot is aligned on a page boundary.
32  * It overrides the default implementation found elsewhere which simply
33  * picks the end of ram, wherever that may be. The location of the stack,
34  * the relocation address, and how far U-Boot is moved by relocation are
35  * set in the global data structure.
36  */
37 ulong board_get_usable_ram_top(ulong total_size)
38 {
39 	struct memory_info *info = &gd->arch.meminfo;
40 	uintptr_t dest_addr = 0;
41 	struct memory_area *largest = NULL;
42 	int i;
43 
44 	/* Find largest area of memory below 4GB */
45 
46 	for (i = 0; i < info->num_areas; i++) {
47 		struct memory_area *area = &info->area[i];
48 
49 		if (area->start >= 1ULL << 32)
50 			continue;
51 		if (!largest || area->size > largest->size)
52 			largest = area;
53 	}
54 
55 	/* If no suitable area was found, return an error. */
56 	assert(largest);
57 	if (!largest || largest->size < (2 << 20))
58 		panic("No available memory found for relocation");
59 
60 	dest_addr = largest->start + largest->size;
61 
62 	return (ulong)dest_addr;
63 }
64 
65 void dram_init_banksize(void)
66 {
67 	struct memory_info *info = &gd->arch.meminfo;
68 	int num_banks;
69 	int i;
70 
71 	for (i = 0, num_banks = 0; i < info->num_areas; i++) {
72 		struct memory_area *area = &info->area[i];
73 
74 		if (area->start >= 1ULL << 32)
75 			continue;
76 		gd->bd->bi_dram[num_banks].start = area->start;
77 		gd->bd->bi_dram[num_banks].size = area->size;
78 		num_banks++;
79 	}
80 }
81 
82 static const char *const ecc_decoder[] = {
83 	"inactive",
84 	"active on IO",
85 	"disabled on IO",
86 	"active"
87 };
88 
89 /*
90  * Dump in the log memory controller configuration as read from the memory
91  * controller registers.
92  */
93 static void report_memory_config(void)
94 {
95 	u32 addr_decoder_common, addr_decode_ch[2];
96 	int i;
97 
98 	addr_decoder_common = readl(MCHBAR_REG(0x5000));
99 	addr_decode_ch[0] = readl(MCHBAR_REG(0x5004));
100 	addr_decode_ch[1] = readl(MCHBAR_REG(0x5008));
101 
102 	debug("memcfg DDR3 clock %d MHz\n",
103 	      (readl(MCHBAR_REG(0x5e04)) * 13333 * 2 + 50) / 100);
104 	debug("memcfg channel assignment: A: %d, B % d, C % d\n",
105 	      addr_decoder_common & 3,
106 	      (addr_decoder_common >> 2) & 3,
107 	      (addr_decoder_common >> 4) & 3);
108 
109 	for (i = 0; i < ARRAY_SIZE(addr_decode_ch); i++) {
110 		u32 ch_conf = addr_decode_ch[i];
111 		debug("memcfg channel[%d] config (%8.8x):\n", i, ch_conf);
112 		debug("   ECC %s\n", ecc_decoder[(ch_conf >> 24) & 3]);
113 		debug("   enhanced interleave mode %s\n",
114 		      ((ch_conf >> 22) & 1) ? "on" : "off");
115 		debug("   rank interleave %s\n",
116 		      ((ch_conf >> 21) & 1) ? "on" : "off");
117 		debug("   DIMMA %d MB width x%d %s rank%s\n",
118 		      ((ch_conf >> 0) & 0xff) * 256,
119 		      ((ch_conf >> 19) & 1) ? 16 : 8,
120 		      ((ch_conf >> 17) & 1) ? "dual" : "single",
121 		      ((ch_conf >> 16) & 1) ? "" : ", selected");
122 		debug("   DIMMB %d MB width x%d %s rank%s\n",
123 		      ((ch_conf >> 8) & 0xff) * 256,
124 		      ((ch_conf >> 20) & 1) ? 16 : 8,
125 		      ((ch_conf >> 18) & 1) ? "dual" : "single",
126 		      ((ch_conf >> 16) & 1) ? ", selected" : "");
127 	}
128 }
129 
130 static void post_system_agent_init(struct pei_data *pei_data)
131 {
132 	/* If PCIe init is skipped, set the PEG clock gating */
133 	if (!pei_data->pcie_init)
134 		setbits_le32(MCHBAR_REG(0x7010), 1);
135 }
136 
137 static asmlinkage void console_tx_byte(unsigned char byte)
138 {
139 #ifdef DEBUG
140 	putc(byte);
141 #endif
142 }
143 
144 /**
145  * Find the PEI executable in the ROM and execute it.
146  *
147  * @param pei_data: configuration data for UEFI PEI reference code
148  */
149 int sdram_initialise(struct pei_data *pei_data)
150 {
151 	unsigned version;
152 	const char *data;
153 	uint16_t done;
154 	int ret;
155 
156 	report_platform_info();
157 
158 	/* Wait for ME to be ready */
159 	ret = intel_early_me_init();
160 	if (ret)
161 		return ret;
162 	ret = intel_early_me_uma_size();
163 	if (ret < 0)
164 		return ret;
165 
166 	debug("Starting UEFI PEI System Agent\n");
167 
168 	/* If MRC data is not found we cannot continue S3 resume. */
169 	if (pei_data->boot_mode == PEI_BOOT_RESUME && !pei_data->mrc_input) {
170 		debug("Giving up in sdram_initialize: No MRC data\n");
171 		outb(0x6, PORT_RESET);
172 		cpu_hlt();
173 	}
174 
175 	/* Pass console handler in pei_data */
176 	pei_data->tx_byte = console_tx_byte;
177 
178 	debug("PEI data at %p, size %x:\n", pei_data, sizeof(*pei_data));
179 
180 	data = (char *)CONFIG_X86_MRC_START;
181 	if (data) {
182 		int rv;
183 		int (*func)(struct pei_data *);
184 
185 		debug("Calling MRC at %p\n", data);
186 		post_code(POST_PRE_MRC);
187 		func = (int (*)(struct pei_data *))data;
188 		rv = func(pei_data);
189 		post_code(POST_MRC);
190 		if (rv) {
191 			switch (rv) {
192 			case -1:
193 				printf("PEI version mismatch.\n");
194 				break;
195 			case -2:
196 				printf("Invalid memory frequency.\n");
197 				break;
198 			default:
199 				printf("MRC returned %x.\n", rv);
200 			}
201 			printf("Nonzero MRC return value.\n");
202 			return -EFAULT;
203 		}
204 	} else {
205 		printf("UEFI PEI System Agent not found.\n");
206 		return -ENOSYS;
207 	}
208 
209 #if CONFIG_USBDEBUG
210 	/* mrc.bin reconfigures USB, so reinit it to have debug */
211 	early_usbdebug_init();
212 #endif
213 
214 	version = readl(MCHBAR_REG(0x5034));
215 	debug("System Agent Version %d.%d.%d Build %d\n",
216 	      version >> 24 , (version >> 16) & 0xff,
217 	      (version >> 8) & 0xff, version & 0xff);
218 
219 	/*
220 	 * Send ME init done for SandyBridge here.  This is done inside the
221 	 * SystemAgent binary on IvyBridge
222 	 */
223 	done = pci_read_config32(PCH_DEV, PCI_DEVICE_ID);
224 	done &= BASE_REV_MASK;
225 	if (BASE_REV_SNB == done)
226 		intel_early_me_init_done(ME_INIT_STATUS_SUCCESS);
227 	else
228 		intel_early_me_status();
229 
230 	post_system_agent_init(pei_data);
231 	report_memory_config();
232 
233 	return 0;
234 }
235 
236 static int copy_spd(struct pei_data *peid)
237 {
238 	const int gpio_vector[] = {41, 42, 43, 10, -1};
239 	int spd_index;
240 	const void *blob = gd->fdt_blob;
241 	int node, spd_node;
242 	int ret, i;
243 
244 	for (i = 0; ; i++) {
245 		if (gpio_vector[i] == -1)
246 			break;
247 		ret = gpio_requestf(gpio_vector[i], "spd_id%d", i);
248 		if (ret) {
249 			debug("%s: Could not request gpio %d\n", __func__,
250 			      gpio_vector[i]);
251 			return ret;
252 		}
253 	}
254 	spd_index = gpio_get_values_as_int(gpio_vector);
255 	debug("spd index %d\n", spd_index);
256 	node = fdtdec_next_compatible(blob, 0, COMPAT_MEMORY_SPD);
257 	if (node < 0) {
258 		printf("SPD data not found.\n");
259 		return -ENOENT;
260 	}
261 
262 	for (spd_node = fdt_first_subnode(blob, node);
263 	     spd_node > 0;
264 	     spd_node = fdt_next_subnode(blob, spd_node)) {
265 		const char *data;
266 		int len;
267 
268 		if (fdtdec_get_int(blob, spd_node, "reg", -1) != spd_index)
269 			continue;
270 		data = fdt_getprop(blob, spd_node, "data", &len);
271 		if (len < sizeof(peid->spd_data[0])) {
272 			printf("Missing SPD data\n");
273 			return -EINVAL;
274 		}
275 
276 		debug("Using SDRAM SPD data for '%s'\n",
277 		      fdt_get_name(blob, spd_node, NULL));
278 		memcpy(peid->spd_data[0], data, sizeof(peid->spd_data[0]));
279 		break;
280 	}
281 
282 	if (spd_node < 0) {
283 		printf("No SPD data found for index %d\n", spd_index);
284 		return -ENOENT;
285 	}
286 
287 	return 0;
288 }
289 
290 /**
291  * add_memory_area() - Add a new usable memory area to our list
292  *
293  * Note: @start and @end must not span the first 4GB boundary
294  *
295  * @info:	Place to store memory info
296  * @start:	Start of this memory area
297  * @end:	End of this memory area + 1
298  */
299 static int add_memory_area(struct memory_info *info,
300 			   uint64_t start, uint64_t end)
301 {
302 	struct memory_area *ptr;
303 
304 	if (info->num_areas == CONFIG_NR_DRAM_BANKS)
305 		return -ENOSPC;
306 
307 	ptr = &info->area[info->num_areas];
308 	ptr->start = start;
309 	ptr->size = end - start;
310 	info->total_memory += ptr->size;
311 	if (ptr->start < (1ULL << 32))
312 		info->total_32bit_memory += ptr->size;
313 	debug("%d: memory %llx size %llx, total now %llx / %llx\n",
314 	      info->num_areas, ptr->start, ptr->size,
315 	      info->total_32bit_memory, info->total_memory);
316 	info->num_areas++;
317 
318 	return 0;
319 }
320 
321 /**
322  * sdram_find() - Find available memory
323  *
324  * This is a bit complicated since on x86 there are system memory holes all
325  * over the place. We create a list of available memory blocks
326  */
327 static int sdram_find(pci_dev_t dev)
328 {
329 	struct memory_info *info = &gd->arch.meminfo;
330 	uint32_t tseg_base, uma_size, tolud;
331 	uint64_t tom, me_base, touud;
332 	uint64_t uma_memory_base = 0;
333 	uint64_t uma_memory_size;
334 	unsigned long long tomk;
335 	uint16_t ggc;
336 
337 	/* Total Memory 2GB example:
338 	 *
339 	 *  00000000  0000MB-1992MB  1992MB  RAM     (writeback)
340 	 *  7c800000  1992MB-2000MB     8MB  TSEG    (SMRR)
341 	 *  7d000000  2000MB-2002MB     2MB  GFX GTT (uncached)
342 	 *  7d200000  2002MB-2034MB    32MB  GFX UMA (uncached)
343 	 *  7f200000   2034MB TOLUD
344 	 *  7f800000   2040MB MEBASE
345 	 *  7f800000  2040MB-2048MB     8MB  ME UMA  (uncached)
346 	 *  80000000   2048MB TOM
347 	 * 100000000  4096MB-4102MB     6MB  RAM     (writeback)
348 	 *
349 	 * Total Memory 4GB example:
350 	 *
351 	 *  00000000  0000MB-2768MB  2768MB  RAM     (writeback)
352 	 *  ad000000  2768MB-2776MB     8MB  TSEG    (SMRR)
353 	 *  ad800000  2776MB-2778MB     2MB  GFX GTT (uncached)
354 	 *  ada00000  2778MB-2810MB    32MB  GFX UMA (uncached)
355 	 *  afa00000   2810MB TOLUD
356 	 *  ff800000   4088MB MEBASE
357 	 *  ff800000  4088MB-4096MB     8MB  ME UMA  (uncached)
358 	 * 100000000   4096MB TOM
359 	 * 100000000  4096MB-5374MB  1278MB  RAM     (writeback)
360 	 * 14fe00000   5368MB TOUUD
361 	 */
362 
363 	/* Top of Upper Usable DRAM, including remap */
364 	touud = pci_read_config32(dev, TOUUD+4);
365 	touud <<= 32;
366 	touud |= pci_read_config32(dev, TOUUD);
367 
368 	/* Top of Lower Usable DRAM */
369 	tolud = pci_read_config32(dev, TOLUD);
370 
371 	/* Top of Memory - does not account for any UMA */
372 	tom = pci_read_config32(dev, 0xa4);
373 	tom <<= 32;
374 	tom |= pci_read_config32(dev, 0xa0);
375 
376 	debug("TOUUD %llx TOLUD %08x TOM %llx\n", touud, tolud, tom);
377 
378 	/* ME UMA needs excluding if total memory <4GB */
379 	me_base = pci_read_config32(dev, 0x74);
380 	me_base <<= 32;
381 	me_base |= pci_read_config32(dev, 0x70);
382 
383 	debug("MEBASE %llx\n", me_base);
384 
385 	/* TODO: Get rid of all this shifting by 10 bits */
386 	tomk = tolud >> 10;
387 	if (me_base == tolud) {
388 		/* ME is from MEBASE-TOM */
389 		uma_size = (tom - me_base) >> 10;
390 		/* Increment TOLUD to account for ME as RAM */
391 		tolud += uma_size << 10;
392 		/* UMA starts at old TOLUD */
393 		uma_memory_base = tomk * 1024ULL;
394 		uma_memory_size = uma_size * 1024ULL;
395 		debug("ME UMA base %llx size %uM\n", me_base, uma_size >> 10);
396 	}
397 
398 	/* Graphics memory comes next */
399 	ggc = pci_read_config16(dev, GGC);
400 	if (!(ggc & 2)) {
401 		debug("IGD decoded, subtracting ");
402 
403 		/* Graphics memory */
404 		uma_size = ((ggc >> 3) & 0x1f) * 32 * 1024ULL;
405 		debug("%uM UMA", uma_size >> 10);
406 		tomk -= uma_size;
407 		uma_memory_base = tomk * 1024ULL;
408 		uma_memory_size += uma_size * 1024ULL;
409 
410 		/* GTT Graphics Stolen Memory Size (GGMS) */
411 		uma_size = ((ggc >> 8) & 0x3) * 1024ULL;
412 		tomk -= uma_size;
413 		uma_memory_base = tomk * 1024ULL;
414 		uma_memory_size += uma_size * 1024ULL;
415 		debug(" and %uM GTT\n", uma_size >> 10);
416 	}
417 
418 	/* Calculate TSEG size from its base which must be below GTT */
419 	tseg_base = pci_read_config32(dev, 0xb8);
420 	uma_size = (uma_memory_base - tseg_base) >> 10;
421 	tomk -= uma_size;
422 	uma_memory_base = tomk * 1024ULL;
423 	uma_memory_size += uma_size * 1024ULL;
424 	debug("TSEG base 0x%08x size %uM\n", tseg_base, uma_size >> 10);
425 
426 	debug("Available memory below 4GB: %lluM\n", tomk >> 10);
427 
428 	/* Report the memory regions */
429 	add_memory_area(info, 1 << 20, 2 << 28);
430 	add_memory_area(info, (2 << 28) + (2 << 20), 4 << 28);
431 	add_memory_area(info, (4 << 28) + (2 << 20), tseg_base);
432 	add_memory_area(info, 1ULL << 32, touud);
433 	/*
434 	 * If >= 4GB installed then memory from TOLUD to 4GB
435 	 * is remapped above TOM, TOUUD will account for both
436 	 */
437 	if (touud > (1ULL << 32ULL)) {
438 		debug("Available memory above 4GB: %lluM\n",
439 		      (touud >> 20) - 4096);
440 	}
441 
442 	return 0;
443 }
444 
445 static void rcba_config(void)
446 {
447 	/*
448 	 *             GFX    INTA -> PIRQA (MSI)
449 	 * D28IP_P3IP  WLAN   INTA -> PIRQB
450 	 * D29IP_E1P   EHCI1  INTA -> PIRQD
451 	 * D26IP_E2P   EHCI2  INTA -> PIRQF
452 	 * D31IP_SIP   SATA   INTA -> PIRQF (MSI)
453 	 * D31IP_SMIP  SMBUS  INTB -> PIRQH
454 	 * D31IP_TTIP  THRT   INTC -> PIRQA
455 	 * D27IP_ZIP   HDA    INTA -> PIRQA (MSI)
456 	 *
457 	 * TRACKPAD                -> PIRQE (Edge Triggered)
458 	 * TOUCHSCREEN             -> PIRQG (Edge Triggered)
459 	 */
460 
461 	/* Device interrupt pin register (board specific) */
462 	writel((INTC << D31IP_TTIP) | (NOINT << D31IP_SIP2) |
463 	       (INTB << D31IP_SMIP) | (INTA << D31IP_SIP), RCB_REG(D31IP));
464 	writel(NOINT << D30IP_PIP, RCB_REG(D30IP));
465 	writel(INTA << D29IP_E1P, RCB_REG(D29IP));
466 	writel(INTA << D28IP_P3IP, RCB_REG(D28IP));
467 	writel(INTA << D27IP_ZIP, RCB_REG(D27IP));
468 	writel(INTA << D26IP_E2P, RCB_REG(D26IP));
469 	writel(NOINT << D25IP_LIP, RCB_REG(D25IP));
470 	writel(NOINT << D22IP_MEI1IP, RCB_REG(D22IP));
471 
472 	/* Device interrupt route registers */
473 	writel(DIR_ROUTE(PIRQB, PIRQH, PIRQA, PIRQC), RCB_REG(D31IR));
474 	writel(DIR_ROUTE(PIRQD, PIRQE, PIRQF, PIRQG), RCB_REG(D29IR));
475 	writel(DIR_ROUTE(PIRQB, PIRQC, PIRQD, PIRQE), RCB_REG(D28IR));
476 	writel(DIR_ROUTE(PIRQA, PIRQH, PIRQA, PIRQB), RCB_REG(D27IR));
477 	writel(DIR_ROUTE(PIRQF, PIRQE, PIRQG, PIRQH), RCB_REG(D26IR));
478 	writel(DIR_ROUTE(PIRQA, PIRQB, PIRQC, PIRQD), RCB_REG(D25IR));
479 	writel(DIR_ROUTE(PIRQA, PIRQB, PIRQC, PIRQD), RCB_REG(D22IR));
480 
481 	/* Enable IOAPIC (generic) */
482 	writew(0x0100, RCB_REG(OIC));
483 	/* PCH BWG says to read back the IOAPIC enable register */
484 	(void)readw(RCB_REG(OIC));
485 
486 	/* Disable unused devices (board specific) */
487 	setbits_le32(RCB_REG(FD), PCH_DISABLE_ALWAYS);
488 }
489 
490 int dram_init(void)
491 {
492 	struct pei_data pei_data __aligned(8) = {
493 		.pei_version = PEI_VERSION,
494 		.mchbar = DEFAULT_MCHBAR,
495 		.dmibar = DEFAULT_DMIBAR,
496 		.epbar = DEFAULT_EPBAR,
497 		.pciexbar = CONFIG_MMCONF_BASE_ADDRESS,
498 		.smbusbar = SMBUS_IO_BASE,
499 		.wdbbar = 0x4000000,
500 		.wdbsize = 0x1000,
501 		.hpet_address = CONFIG_HPET_ADDRESS,
502 		.rcba = DEFAULT_RCBABASE,
503 		.pmbase = DEFAULT_PMBASE,
504 		.gpiobase = DEFAULT_GPIOBASE,
505 		.thermalbase = 0xfed08000,
506 		.system_type = 0, /* 0 Mobile, 1 Desktop/Server */
507 		.tseg_size = CONFIG_SMM_TSEG_SIZE,
508 		.ts_addresses = { 0x00, 0x00, 0x00, 0x00 },
509 		.ec_present = 1,
510 		.ddr3lv_support = 1,
511 		/*
512 		 * 0 = leave channel enabled
513 		 * 1 = disable dimm 0 on channel
514 		 * 2 = disable dimm 1 on channel
515 		 * 3 = disable dimm 0+1 on channel
516 		 */
517 		.dimm_channel0_disabled = 2,
518 		.dimm_channel1_disabled = 2,
519 		.max_ddr3_freq = 1600,
520 		.usb_port_config = {
521 			/*
522 			 * Empty and onboard Ports 0-7, set to un-used pin
523 			 * OC3
524 			 */
525 			{ 0, 3, 0x0000 }, /* P0= Empty */
526 			{ 1, 0, 0x0040 }, /* P1= Left USB 1  (OC0) */
527 			{ 1, 1, 0x0040 }, /* P2= Left USB 2  (OC1) */
528 			{ 1, 3, 0x0040 }, /* P3= SDCARD      (no OC) */
529 			{ 0, 3, 0x0000 }, /* P4= Empty */
530 			{ 1, 3, 0x0040 }, /* P5= WWAN        (no OC) */
531 			{ 0, 3, 0x0000 }, /* P6= Empty */
532 			{ 0, 3, 0x0000 }, /* P7= Empty */
533 			/*
534 			 * Empty and onboard Ports 8-13, set to un-used pin
535 			 * OC4
536 			 */
537 			{ 1, 4, 0x0040 }, /* P8= Camera      (no OC) */
538 			{ 1, 4, 0x0040 }, /* P9= Bluetooth   (no OC) */
539 			{ 0, 4, 0x0000 }, /* P10= Empty */
540 			{ 0, 4, 0x0000 }, /* P11= Empty */
541 			{ 0, 4, 0x0000 }, /* P12= Empty */
542 			{ 0, 4, 0x0000 }, /* P13= Empty */
543 		},
544 	};
545 	pci_dev_t dev = PCI_BDF(0, 0, 0);
546 	int ret;
547 
548 	debug("Boot mode %d\n", gd->arch.pei_boot_mode);
549 	debug("mcr_input %p\n", pei_data.mrc_input);
550 	pei_data.boot_mode = gd->arch.pei_boot_mode;
551 	ret = copy_spd(&pei_data);
552 	if (!ret)
553 		ret = sdram_initialise(&pei_data);
554 	if (ret)
555 		return ret;
556 
557 	rcba_config();
558 	quick_ram_check();
559 
560 	writew(0xCAFE, MCHBAR_REG(SSKPD));
561 
562 	post_code(POST_DRAM);
563 
564 	ret = sdram_find(dev);
565 	if (ret)
566 		return ret;
567 
568 	gd->ram_size = gd->arch.meminfo.total_32bit_memory;
569 
570 	return 0;
571 }
572