xref: /openbmc/u-boot/arch/x86/cpu/ivybridge/sdram.c (revision 05b98ec3)
1 /*
2  * Copyright (c) 2011 The Chromium OS Authors.
3  * (C) Copyright 2010,2011
4  * Graeme Russ, <graeme.russ@gmail.com>
5  *
6  * Portions from Coreboot mainboard/google/link/romstage.c
7  * Copyright (C) 2007-2010 coresystems GmbH
8  * Copyright (C) 2011 Google Inc.
9  *
10  * SPDX-License-Identifier:	GPL-2.0
11  */
12 
13 #include <common.h>
14 #include <errno.h>
15 #include <fdtdec.h>
16 #include <malloc.h>
17 #include <net.h>
18 #include <rtc.h>
19 #include <spi.h>
20 #include <spi_flash.h>
21 #include <asm/processor.h>
22 #include <asm/gpio.h>
23 #include <asm/global_data.h>
24 #include <asm/mtrr.h>
25 #include <asm/pci.h>
26 #include <asm/arch/me.h>
27 #include <asm/arch/mrccache.h>
28 #include <asm/arch/pei_data.h>
29 #include <asm/arch/pch.h>
30 #include <asm/post.h>
31 #include <asm/arch/sandybridge.h>
32 
33 DECLARE_GLOBAL_DATA_PTR;
34 
35 #define CMOS_OFFSET_MRC_SEED		152
36 #define CMOS_OFFSET_MRC_SEED_S3		156
37 #define CMOS_OFFSET_MRC_SEED_CHK	160
38 
39 /*
40  * This function looks for the highest region of memory lower than 4GB which
41  * has enough space for U-Boot where U-Boot is aligned on a page boundary.
42  * It overrides the default implementation found elsewhere which simply
43  * picks the end of ram, wherever that may be. The location of the stack,
44  * the relocation address, and how far U-Boot is moved by relocation are
45  * set in the global data structure.
46  */
47 ulong board_get_usable_ram_top(ulong total_size)
48 {
49 	struct memory_info *info = &gd->arch.meminfo;
50 	uintptr_t dest_addr = 0;
51 	struct memory_area *largest = NULL;
52 	int i;
53 
54 	/* Find largest area of memory below 4GB */
55 
56 	for (i = 0; i < info->num_areas; i++) {
57 		struct memory_area *area = &info->area[i];
58 
59 		if (area->start >= 1ULL << 32)
60 			continue;
61 		if (!largest || area->size > largest->size)
62 			largest = area;
63 	}
64 
65 	/* If no suitable area was found, return an error. */
66 	assert(largest);
67 	if (!largest || largest->size < (2 << 20))
68 		panic("No available memory found for relocation");
69 
70 	dest_addr = largest->start + largest->size;
71 
72 	return (ulong)dest_addr;
73 }
74 
75 void dram_init_banksize(void)
76 {
77 	struct memory_info *info = &gd->arch.meminfo;
78 	int num_banks;
79 	int i;
80 
81 	for (i = 0, num_banks = 0; i < info->num_areas; i++) {
82 		struct memory_area *area = &info->area[i];
83 
84 		if (area->start >= 1ULL << 32)
85 			continue;
86 		gd->bd->bi_dram[num_banks].start = area->start;
87 		gd->bd->bi_dram[num_banks].size = area->size;
88 		num_banks++;
89 	}
90 }
91 
92 static int get_mrc_entry(struct udevice **devp, struct fmap_entry *entry)
93 {
94 	const void *blob = gd->fdt_blob;
95 	int node, spi_node, mrc_node;
96 	int upto;
97 	int ret;
98 
99 	/* Find the flash chip within the SPI controller node */
100 	upto = 0;
101 	spi_node = fdtdec_next_alias(blob, "spi", COMPAT_INTEL_ICH_SPI, &upto);
102 	if (spi_node < 0)
103 		return -ENOENT;
104 	node = fdt_first_subnode(blob, spi_node);
105 	if (node < 0)
106 		return -ECHILD;
107 
108 	/* Find the place where we put the MRC cache */
109 	mrc_node = fdt_subnode_offset(blob, node, "rw-mrc-cache");
110 	if (mrc_node < 0)
111 		return -EPERM;
112 
113 	if (fdtdec_read_fmap_entry(blob, mrc_node, "rm-mrc-cache", entry))
114 		return -EINVAL;
115 
116 	if (devp) {
117 		debug("getting sf\n");
118 		ret = uclass_get_device_by_of_offset(UCLASS_SPI_FLASH, node,
119 						     devp);
120 		debug("ret = %d\n", ret);
121 		if (ret)
122 			return ret;
123 	}
124 
125 	return 0;
126 }
127 
128 static int read_seed_from_cmos(struct pei_data *pei_data)
129 {
130 	u16 c1, c2, checksum, seed_checksum;
131 
132 	/*
133 	 * Read scrambler seeds from CMOS RAM. We don't want to store them in
134 	 * SPI flash since they change on every boot and that would wear down
135 	 * the flash too much. So we store these in CMOS and the large MRC
136 	 * data in SPI flash.
137 	 */
138 	pei_data->scrambler_seed = rtc_read32(CMOS_OFFSET_MRC_SEED);
139 	debug("Read scrambler seed    0x%08x from CMOS 0x%02x\n",
140 	      pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED);
141 
142 	pei_data->scrambler_seed_s3 = rtc_read32(CMOS_OFFSET_MRC_SEED_S3);
143 	debug("Read S3 scrambler seed 0x%08x from CMOS 0x%02x\n",
144 	      pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3);
145 
146 	/* Compute seed checksum and compare */
147 	c1 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed,
148 				 sizeof(u32));
149 	c2 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed_s3,
150 				 sizeof(u32));
151 	checksum = add_ip_checksums(sizeof(u32), c1, c2);
152 
153 	seed_checksum = rtc_read8(CMOS_OFFSET_MRC_SEED_CHK);
154 	seed_checksum |= rtc_read8(CMOS_OFFSET_MRC_SEED_CHK + 1) << 8;
155 
156 	if (checksum != seed_checksum) {
157 		debug("%s: invalid seed checksum\n", __func__);
158 		pei_data->scrambler_seed = 0;
159 		pei_data->scrambler_seed_s3 = 0;
160 		return -EINVAL;
161 	}
162 
163 	return 0;
164 }
165 
166 static int prepare_mrc_cache(struct pei_data *pei_data)
167 {
168 	struct mrc_data_container *mrc_cache;
169 	struct fmap_entry entry;
170 	int ret;
171 
172 	ret = read_seed_from_cmos(pei_data);
173 	if (ret)
174 		return ret;
175 	ret = get_mrc_entry(NULL, &entry);
176 	if (ret)
177 		return ret;
178 	mrc_cache = mrccache_find_current(&entry);
179 	if (!mrc_cache)
180 		return -ENOENT;
181 
182 	/*
183 	 * TODO(sjg@chromium.org): Skip this for now as it causes boot
184 	 * problems
185 	 */
186 	if (0) {
187 		pei_data->mrc_input = mrc_cache->data;
188 		pei_data->mrc_input_len = mrc_cache->data_size;
189 	}
190 	debug("%s: at %p, size %x checksum %04x\n", __func__,
191 	      pei_data->mrc_input, pei_data->mrc_input_len,
192 	      mrc_cache->checksum);
193 
194 	return 0;
195 }
196 
197 static int build_mrc_data(struct mrc_data_container **datap)
198 {
199 	struct mrc_data_container *data;
200 	int orig_len;
201 	int output_len;
202 
203 	orig_len = gd->arch.mrc_output_len;
204 	output_len = ALIGN(orig_len, 16);
205 	data = malloc(output_len + sizeof(*data));
206 	if (!data)
207 		return -ENOMEM;
208 	data->signature = MRC_DATA_SIGNATURE;
209 	data->data_size = output_len;
210 	data->reserved = 0;
211 	memcpy(data->data, gd->arch.mrc_output, orig_len);
212 
213 	/* Zero the unused space in aligned buffer. */
214 	if (output_len > orig_len)
215 		memset(data->data + orig_len, 0, output_len - orig_len);
216 
217 	data->checksum = compute_ip_checksum(data->data, output_len);
218 	*datap = data;
219 
220 	return 0;
221 }
222 
223 static int write_seeds_to_cmos(struct pei_data *pei_data)
224 {
225 	u16 c1, c2, checksum;
226 
227 	/* Save the MRC seed values to CMOS */
228 	rtc_write32(CMOS_OFFSET_MRC_SEED, pei_data->scrambler_seed);
229 	debug("Save scrambler seed    0x%08x to CMOS 0x%02x\n",
230 	      pei_data->scrambler_seed, CMOS_OFFSET_MRC_SEED);
231 
232 	rtc_write32(CMOS_OFFSET_MRC_SEED_S3, pei_data->scrambler_seed_s3);
233 	debug("Save s3 scrambler seed 0x%08x to CMOS 0x%02x\n",
234 	      pei_data->scrambler_seed_s3, CMOS_OFFSET_MRC_SEED_S3);
235 
236 	/* Save a simple checksum of the seed values */
237 	c1 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed,
238 				 sizeof(u32));
239 	c2 = compute_ip_checksum((u8 *)&pei_data->scrambler_seed_s3,
240 				 sizeof(u32));
241 	checksum = add_ip_checksums(sizeof(u32), c1, c2);
242 
243 	rtc_write8(CMOS_OFFSET_MRC_SEED_CHK, checksum & 0xff);
244 	rtc_write8(CMOS_OFFSET_MRC_SEED_CHK + 1, (checksum >> 8) & 0xff);
245 
246 	return 0;
247 }
248 
249 static int sdram_save_mrc_data(void)
250 {
251 	struct mrc_data_container *data;
252 	struct fmap_entry entry;
253 	struct udevice *sf;
254 	int ret;
255 
256 	if (!gd->arch.mrc_output_len)
257 		return 0;
258 	debug("Saving %d bytes of MRC output data to SPI flash\n",
259 	      gd->arch.mrc_output_len);
260 
261 	ret = get_mrc_entry(&sf, &entry);
262 	if (ret)
263 		goto err_entry;
264 	ret = build_mrc_data(&data);
265 	if (ret)
266 		goto err_data;
267 	ret = mrccache_update(sf, &entry, data);
268 	if (!ret)
269 		debug("Saved MRC data with checksum %04x\n", data->checksum);
270 
271 	free(data);
272 err_data:
273 err_entry:
274 	if (ret)
275 		debug("%s: Failed: %d\n", __func__, ret);
276 	return ret;
277 }
278 
279 /* Use this hook to save our SDRAM parameters */
280 int misc_init_r(void)
281 {
282 	int ret;
283 
284 	ret = sdram_save_mrc_data();
285 	if (ret)
286 		printf("Unable to save MRC data: %d\n", ret);
287 
288 	return 0;
289 }
290 
291 static const char *const ecc_decoder[] = {
292 	"inactive",
293 	"active on IO",
294 	"disabled on IO",
295 	"active"
296 };
297 
298 /*
299  * Dump in the log memory controller configuration as read from the memory
300  * controller registers.
301  */
302 static void report_memory_config(void)
303 {
304 	u32 addr_decoder_common, addr_decode_ch[2];
305 	int i;
306 
307 	addr_decoder_common = readl(MCHBAR_REG(0x5000));
308 	addr_decode_ch[0] = readl(MCHBAR_REG(0x5004));
309 	addr_decode_ch[1] = readl(MCHBAR_REG(0x5008));
310 
311 	debug("memcfg DDR3 clock %d MHz\n",
312 	      (readl(MCHBAR_REG(0x5e04)) * 13333 * 2 + 50) / 100);
313 	debug("memcfg channel assignment: A: %d, B % d, C % d\n",
314 	      addr_decoder_common & 3,
315 	      (addr_decoder_common >> 2) & 3,
316 	      (addr_decoder_common >> 4) & 3);
317 
318 	for (i = 0; i < ARRAY_SIZE(addr_decode_ch); i++) {
319 		u32 ch_conf = addr_decode_ch[i];
320 		debug("memcfg channel[%d] config (%8.8x):\n", i, ch_conf);
321 		debug("   ECC %s\n", ecc_decoder[(ch_conf >> 24) & 3]);
322 		debug("   enhanced interleave mode %s\n",
323 		      ((ch_conf >> 22) & 1) ? "on" : "off");
324 		debug("   rank interleave %s\n",
325 		      ((ch_conf >> 21) & 1) ? "on" : "off");
326 		debug("   DIMMA %d MB width x%d %s rank%s\n",
327 		      ((ch_conf >> 0) & 0xff) * 256,
328 		      ((ch_conf >> 19) & 1) ? 16 : 8,
329 		      ((ch_conf >> 17) & 1) ? "dual" : "single",
330 		      ((ch_conf >> 16) & 1) ? "" : ", selected");
331 		debug("   DIMMB %d MB width x%d %s rank%s\n",
332 		      ((ch_conf >> 8) & 0xff) * 256,
333 		      ((ch_conf >> 20) & 1) ? 16 : 8,
334 		      ((ch_conf >> 18) & 1) ? "dual" : "single",
335 		      ((ch_conf >> 16) & 1) ? ", selected" : "");
336 	}
337 }
338 
339 static void post_system_agent_init(struct pei_data *pei_data)
340 {
341 	/* If PCIe init is skipped, set the PEG clock gating */
342 	if (!pei_data->pcie_init)
343 		setbits_le32(MCHBAR_REG(0x7010), 1);
344 }
345 
346 static asmlinkage void console_tx_byte(unsigned char byte)
347 {
348 #ifdef DEBUG
349 	putc(byte);
350 #endif
351 }
352 
353 static int recovery_mode_enabled(void)
354 {
355 	return false;
356 }
357 
358 /**
359  * Find the PEI executable in the ROM and execute it.
360  *
361  * @param pei_data: configuration data for UEFI PEI reference code
362  */
363 int sdram_initialise(struct pei_data *pei_data)
364 {
365 	unsigned version;
366 	const char *data;
367 	uint16_t done;
368 	int ret;
369 
370 	report_platform_info();
371 
372 	/* Wait for ME to be ready */
373 	ret = intel_early_me_init();
374 	if (ret)
375 		return ret;
376 	ret = intel_early_me_uma_size();
377 	if (ret < 0)
378 		return ret;
379 
380 	debug("Starting UEFI PEI System Agent\n");
381 
382 	/*
383 	 * Do not pass MRC data in for recovery mode boot,
384 	 * Always pass it in for S3 resume.
385 	 */
386 	if (!recovery_mode_enabled() ||
387 	    pei_data->boot_mode == PEI_BOOT_RESUME) {
388 		ret = prepare_mrc_cache(pei_data);
389 		if (ret)
390 			debug("prepare_mrc_cache failed: %d\n", ret);
391 	}
392 
393 	/* If MRC data is not found we cannot continue S3 resume. */
394 	if (pei_data->boot_mode == PEI_BOOT_RESUME && !pei_data->mrc_input) {
395 		debug("Giving up in sdram_initialize: No MRC data\n");
396 		reset_cpu(0);
397 	}
398 
399 	/* Pass console handler in pei_data */
400 	pei_data->tx_byte = console_tx_byte;
401 
402 	debug("PEI data at %p, size %x:\n", pei_data, sizeof(*pei_data));
403 
404 	data = (char *)CONFIG_X86_MRC_ADDR;
405 	if (data) {
406 		int rv;
407 		int (*func)(struct pei_data *);
408 
409 		debug("Calling MRC at %p\n", data);
410 		post_code(POST_PRE_MRC);
411 		func = (int (*)(struct pei_data *))data;
412 		rv = func(pei_data);
413 		post_code(POST_MRC);
414 		if (rv) {
415 			switch (rv) {
416 			case -1:
417 				printf("PEI version mismatch.\n");
418 				break;
419 			case -2:
420 				printf("Invalid memory frequency.\n");
421 				break;
422 			default:
423 				printf("MRC returned %x.\n", rv);
424 			}
425 			printf("Nonzero MRC return value.\n");
426 			return -EFAULT;
427 		}
428 	} else {
429 		printf("UEFI PEI System Agent not found.\n");
430 		return -ENOSYS;
431 	}
432 
433 #if CONFIG_USBDEBUG
434 	/* mrc.bin reconfigures USB, so reinit it to have debug */
435 	early_usbdebug_init();
436 #endif
437 
438 	version = readl(MCHBAR_REG(0x5034));
439 	debug("System Agent Version %d.%d.%d Build %d\n",
440 	      version >> 24 , (version >> 16) & 0xff,
441 	      (version >> 8) & 0xff, version & 0xff);
442 	debug("MCR output data length %#x at %p\n", pei_data->mrc_output_len,
443 	      pei_data->mrc_output);
444 
445 	/*
446 	 * Send ME init done for SandyBridge here.  This is done inside the
447 	 * SystemAgent binary on IvyBridge
448 	 */
449 	done = x86_pci_read_config32(PCH_DEV, PCI_DEVICE_ID);
450 	done &= BASE_REV_MASK;
451 	if (BASE_REV_SNB == done)
452 		intel_early_me_init_done(ME_INIT_STATUS_SUCCESS);
453 	else
454 		intel_early_me_status();
455 
456 	post_system_agent_init(pei_data);
457 	report_memory_config();
458 
459 	/* S3 resume: don't save scrambler seed or MRC data */
460 	if (pei_data->boot_mode != PEI_BOOT_RESUME) {
461 		/*
462 		 * This will be copied to SDRAM in reserve_arch(), then written
463 		 * to SPI flash in sdram_save_mrc_data()
464 		 */
465 		gd->arch.mrc_output = (char *)pei_data->mrc_output;
466 		gd->arch.mrc_output_len = pei_data->mrc_output_len;
467 		ret = write_seeds_to_cmos(pei_data);
468 		if (ret)
469 			debug("Failed to write seeds to CMOS: %d\n", ret);
470 	}
471 
472 	return 0;
473 }
474 
475 int reserve_arch(void)
476 {
477 	u16 checksum;
478 
479 	checksum = compute_ip_checksum(gd->arch.mrc_output,
480 				       gd->arch.mrc_output_len);
481 	debug("Saving %d bytes for MRC output data, checksum %04x\n",
482 	      gd->arch.mrc_output_len, checksum);
483 	gd->start_addr_sp -= gd->arch.mrc_output_len;
484 	memcpy((void *)gd->start_addr_sp, gd->arch.mrc_output,
485 	       gd->arch.mrc_output_len);
486 	gd->arch.mrc_output = (char *)gd->start_addr_sp;
487 	gd->start_addr_sp &= ~0xf;
488 
489 	return 0;
490 }
491 
492 static int copy_spd(struct pei_data *peid)
493 {
494 	const int gpio_vector[] = {41, 42, 43, 10, -1};
495 	int spd_index;
496 	const void *blob = gd->fdt_blob;
497 	int node, spd_node;
498 	int ret, i;
499 
500 	for (i = 0; ; i++) {
501 		if (gpio_vector[i] == -1)
502 			break;
503 		ret = gpio_requestf(gpio_vector[i], "spd_id%d", i);
504 		if (ret) {
505 			debug("%s: Could not request gpio %d\n", __func__,
506 			      gpio_vector[i]);
507 			return ret;
508 		}
509 	}
510 	spd_index = gpio_get_values_as_int(gpio_vector);
511 	debug("spd index %d\n", spd_index);
512 	node = fdtdec_next_compatible(blob, 0, COMPAT_MEMORY_SPD);
513 	if (node < 0) {
514 		printf("SPD data not found.\n");
515 		return -ENOENT;
516 	}
517 
518 	for (spd_node = fdt_first_subnode(blob, node);
519 	     spd_node > 0;
520 	     spd_node = fdt_next_subnode(blob, spd_node)) {
521 		const char *data;
522 		int len;
523 
524 		if (fdtdec_get_int(blob, spd_node, "reg", -1) != spd_index)
525 			continue;
526 		data = fdt_getprop(blob, spd_node, "data", &len);
527 		if (len < sizeof(peid->spd_data[0])) {
528 			printf("Missing SPD data\n");
529 			return -EINVAL;
530 		}
531 
532 		debug("Using SDRAM SPD data for '%s'\n",
533 		      fdt_get_name(blob, spd_node, NULL));
534 		memcpy(peid->spd_data[0], data, sizeof(peid->spd_data[0]));
535 		break;
536 	}
537 
538 	if (spd_node < 0) {
539 		printf("No SPD data found for index %d\n", spd_index);
540 		return -ENOENT;
541 	}
542 
543 	return 0;
544 }
545 
546 /**
547  * add_memory_area() - Add a new usable memory area to our list
548  *
549  * Note: @start and @end must not span the first 4GB boundary
550  *
551  * @info:	Place to store memory info
552  * @start:	Start of this memory area
553  * @end:	End of this memory area + 1
554  */
555 static int add_memory_area(struct memory_info *info,
556 			   uint64_t start, uint64_t end)
557 {
558 	struct memory_area *ptr;
559 
560 	if (info->num_areas == CONFIG_NR_DRAM_BANKS)
561 		return -ENOSPC;
562 
563 	ptr = &info->area[info->num_areas];
564 	ptr->start = start;
565 	ptr->size = end - start;
566 	info->total_memory += ptr->size;
567 	if (ptr->start < (1ULL << 32))
568 		info->total_32bit_memory += ptr->size;
569 	debug("%d: memory %llx size %llx, total now %llx / %llx\n",
570 	      info->num_areas, ptr->start, ptr->size,
571 	      info->total_32bit_memory, info->total_memory);
572 	info->num_areas++;
573 
574 	return 0;
575 }
576 
577 /**
578  * sdram_find() - Find available memory
579  *
580  * This is a bit complicated since on x86 there are system memory holes all
581  * over the place. We create a list of available memory blocks
582  */
583 static int sdram_find(pci_dev_t dev)
584 {
585 	struct memory_info *info = &gd->arch.meminfo;
586 	uint32_t tseg_base, uma_size, tolud;
587 	uint64_t tom, me_base, touud;
588 	uint64_t uma_memory_base = 0;
589 	uint64_t uma_memory_size;
590 	unsigned long long tomk;
591 	uint16_t ggc;
592 
593 	/* Total Memory 2GB example:
594 	 *
595 	 *  00000000  0000MB-1992MB  1992MB  RAM     (writeback)
596 	 *  7c800000  1992MB-2000MB     8MB  TSEG    (SMRR)
597 	 *  7d000000  2000MB-2002MB     2MB  GFX GTT (uncached)
598 	 *  7d200000  2002MB-2034MB    32MB  GFX UMA (uncached)
599 	 *  7f200000   2034MB TOLUD
600 	 *  7f800000   2040MB MEBASE
601 	 *  7f800000  2040MB-2048MB     8MB  ME UMA  (uncached)
602 	 *  80000000   2048MB TOM
603 	 * 100000000  4096MB-4102MB     6MB  RAM     (writeback)
604 	 *
605 	 * Total Memory 4GB example:
606 	 *
607 	 *  00000000  0000MB-2768MB  2768MB  RAM     (writeback)
608 	 *  ad000000  2768MB-2776MB     8MB  TSEG    (SMRR)
609 	 *  ad800000  2776MB-2778MB     2MB  GFX GTT (uncached)
610 	 *  ada00000  2778MB-2810MB    32MB  GFX UMA (uncached)
611 	 *  afa00000   2810MB TOLUD
612 	 *  ff800000   4088MB MEBASE
613 	 *  ff800000  4088MB-4096MB     8MB  ME UMA  (uncached)
614 	 * 100000000   4096MB TOM
615 	 * 100000000  4096MB-5374MB  1278MB  RAM     (writeback)
616 	 * 14fe00000   5368MB TOUUD
617 	 */
618 
619 	/* Top of Upper Usable DRAM, including remap */
620 	touud = x86_pci_read_config32(dev, TOUUD+4);
621 	touud <<= 32;
622 	touud |= x86_pci_read_config32(dev, TOUUD);
623 
624 	/* Top of Lower Usable DRAM */
625 	tolud = x86_pci_read_config32(dev, TOLUD);
626 
627 	/* Top of Memory - does not account for any UMA */
628 	tom = x86_pci_read_config32(dev, 0xa4);
629 	tom <<= 32;
630 	tom |= x86_pci_read_config32(dev, 0xa0);
631 
632 	debug("TOUUD %llx TOLUD %08x TOM %llx\n", touud, tolud, tom);
633 
634 	/* ME UMA needs excluding if total memory <4GB */
635 	me_base = x86_pci_read_config32(dev, 0x74);
636 	me_base <<= 32;
637 	me_base |= x86_pci_read_config32(dev, 0x70);
638 
639 	debug("MEBASE %llx\n", me_base);
640 
641 	/* TODO: Get rid of all this shifting by 10 bits */
642 	tomk = tolud >> 10;
643 	if (me_base == tolud) {
644 		/* ME is from MEBASE-TOM */
645 		uma_size = (tom - me_base) >> 10;
646 		/* Increment TOLUD to account for ME as RAM */
647 		tolud += uma_size << 10;
648 		/* UMA starts at old TOLUD */
649 		uma_memory_base = tomk * 1024ULL;
650 		uma_memory_size = uma_size * 1024ULL;
651 		debug("ME UMA base %llx size %uM\n", me_base, uma_size >> 10);
652 	}
653 
654 	/* Graphics memory comes next */
655 	ggc = x86_pci_read_config16(dev, GGC);
656 	if (!(ggc & 2)) {
657 		debug("IGD decoded, subtracting ");
658 
659 		/* Graphics memory */
660 		uma_size = ((ggc >> 3) & 0x1f) * 32 * 1024ULL;
661 		debug("%uM UMA", uma_size >> 10);
662 		tomk -= uma_size;
663 		uma_memory_base = tomk * 1024ULL;
664 		uma_memory_size += uma_size * 1024ULL;
665 
666 		/* GTT Graphics Stolen Memory Size (GGMS) */
667 		uma_size = ((ggc >> 8) & 0x3) * 1024ULL;
668 		tomk -= uma_size;
669 		uma_memory_base = tomk * 1024ULL;
670 		uma_memory_size += uma_size * 1024ULL;
671 		debug(" and %uM GTT\n", uma_size >> 10);
672 	}
673 
674 	/* Calculate TSEG size from its base which must be below GTT */
675 	tseg_base = x86_pci_read_config32(dev, 0xb8);
676 	uma_size = (uma_memory_base - tseg_base) >> 10;
677 	tomk -= uma_size;
678 	uma_memory_base = tomk * 1024ULL;
679 	uma_memory_size += uma_size * 1024ULL;
680 	debug("TSEG base 0x%08x size %uM\n", tseg_base, uma_size >> 10);
681 
682 	debug("Available memory below 4GB: %lluM\n", tomk >> 10);
683 
684 	/* Report the memory regions */
685 	add_memory_area(info, 1 << 20, 2 << 28);
686 	add_memory_area(info, (2 << 28) + (2 << 20), 4 << 28);
687 	add_memory_area(info, (4 << 28) + (2 << 20), tseg_base);
688 	add_memory_area(info, 1ULL << 32, touud);
689 
690 	/* Add MTRRs for memory */
691 	mtrr_add_request(MTRR_TYPE_WRBACK, 0, 2ULL << 30);
692 	mtrr_add_request(MTRR_TYPE_WRBACK, 2ULL << 30, 512 << 20);
693 	mtrr_add_request(MTRR_TYPE_WRBACK, 0xaULL << 28, 256 << 20);
694 	mtrr_add_request(MTRR_TYPE_UNCACHEABLE, tseg_base, 16 << 20);
695 	mtrr_add_request(MTRR_TYPE_UNCACHEABLE, tseg_base + (16 << 20),
696 			 32 << 20);
697 
698 	/*
699 	 * If >= 4GB installed then memory from TOLUD to 4GB
700 	 * is remapped above TOM, TOUUD will account for both
701 	 */
702 	if (touud > (1ULL << 32ULL)) {
703 		debug("Available memory above 4GB: %lluM\n",
704 		      (touud >> 20) - 4096);
705 	}
706 
707 	return 0;
708 }
709 
710 static void rcba_config(void)
711 {
712 	/*
713 	 *             GFX    INTA -> PIRQA (MSI)
714 	 * D28IP_P3IP  WLAN   INTA -> PIRQB
715 	 * D29IP_E1P   EHCI1  INTA -> PIRQD
716 	 * D26IP_E2P   EHCI2  INTA -> PIRQF
717 	 * D31IP_SIP   SATA   INTA -> PIRQF (MSI)
718 	 * D31IP_SMIP  SMBUS  INTB -> PIRQH
719 	 * D31IP_TTIP  THRT   INTC -> PIRQA
720 	 * D27IP_ZIP   HDA    INTA -> PIRQA (MSI)
721 	 *
722 	 * TRACKPAD                -> PIRQE (Edge Triggered)
723 	 * TOUCHSCREEN             -> PIRQG (Edge Triggered)
724 	 */
725 
726 	/* Device interrupt pin register (board specific) */
727 	writel((INTC << D31IP_TTIP) | (NOINT << D31IP_SIP2) |
728 	       (INTB << D31IP_SMIP) | (INTA << D31IP_SIP), RCB_REG(D31IP));
729 	writel(NOINT << D30IP_PIP, RCB_REG(D30IP));
730 	writel(INTA << D29IP_E1P, RCB_REG(D29IP));
731 	writel(INTA << D28IP_P3IP, RCB_REG(D28IP));
732 	writel(INTA << D27IP_ZIP, RCB_REG(D27IP));
733 	writel(INTA << D26IP_E2P, RCB_REG(D26IP));
734 	writel(NOINT << D25IP_LIP, RCB_REG(D25IP));
735 	writel(NOINT << D22IP_MEI1IP, RCB_REG(D22IP));
736 
737 	/* Device interrupt route registers */
738 	writel(DIR_ROUTE(PIRQB, PIRQH, PIRQA, PIRQC), RCB_REG(D31IR));
739 	writel(DIR_ROUTE(PIRQD, PIRQE, PIRQF, PIRQG), RCB_REG(D29IR));
740 	writel(DIR_ROUTE(PIRQB, PIRQC, PIRQD, PIRQE), RCB_REG(D28IR));
741 	writel(DIR_ROUTE(PIRQA, PIRQH, PIRQA, PIRQB), RCB_REG(D27IR));
742 	writel(DIR_ROUTE(PIRQF, PIRQE, PIRQG, PIRQH), RCB_REG(D26IR));
743 	writel(DIR_ROUTE(PIRQA, PIRQB, PIRQC, PIRQD), RCB_REG(D25IR));
744 	writel(DIR_ROUTE(PIRQA, PIRQB, PIRQC, PIRQD), RCB_REG(D22IR));
745 
746 	/* Enable IOAPIC (generic) */
747 	writew(0x0100, RCB_REG(OIC));
748 	/* PCH BWG says to read back the IOAPIC enable register */
749 	(void)readw(RCB_REG(OIC));
750 
751 	/* Disable unused devices (board specific) */
752 	setbits_le32(RCB_REG(FD), PCH_DISABLE_ALWAYS);
753 }
754 
755 int dram_init(void)
756 {
757 	struct pei_data pei_data __aligned(8) = {
758 		.pei_version = PEI_VERSION,
759 		.mchbar = DEFAULT_MCHBAR,
760 		.dmibar = DEFAULT_DMIBAR,
761 		.epbar = DEFAULT_EPBAR,
762 		.pciexbar = CONFIG_PCIE_ECAM_BASE,
763 		.smbusbar = SMBUS_IO_BASE,
764 		.wdbbar = 0x4000000,
765 		.wdbsize = 0x1000,
766 		.hpet_address = CONFIG_HPET_ADDRESS,
767 		.rcba = DEFAULT_RCBABASE,
768 		.pmbase = DEFAULT_PMBASE,
769 		.gpiobase = DEFAULT_GPIOBASE,
770 		.thermalbase = 0xfed08000,
771 		.system_type = 0, /* 0 Mobile, 1 Desktop/Server */
772 		.tseg_size = CONFIG_SMM_TSEG_SIZE,
773 		.ts_addresses = { 0x00, 0x00, 0x00, 0x00 },
774 		.ec_present = 1,
775 		.ddr3lv_support = 1,
776 		/*
777 		 * 0 = leave channel enabled
778 		 * 1 = disable dimm 0 on channel
779 		 * 2 = disable dimm 1 on channel
780 		 * 3 = disable dimm 0+1 on channel
781 		 */
782 		.dimm_channel0_disabled = 2,
783 		.dimm_channel1_disabled = 2,
784 		.max_ddr3_freq = 1600,
785 		.usb_port_config = {
786 			/*
787 			 * Empty and onboard Ports 0-7, set to un-used pin
788 			 * OC3
789 			 */
790 			{ 0, 3, 0x0000 }, /* P0= Empty */
791 			{ 1, 0, 0x0040 }, /* P1= Left USB 1  (OC0) */
792 			{ 1, 1, 0x0040 }, /* P2= Left USB 2  (OC1) */
793 			{ 1, 3, 0x0040 }, /* P3= SDCARD      (no OC) */
794 			{ 0, 3, 0x0000 }, /* P4= Empty */
795 			{ 1, 3, 0x0040 }, /* P5= WWAN        (no OC) */
796 			{ 0, 3, 0x0000 }, /* P6= Empty */
797 			{ 0, 3, 0x0000 }, /* P7= Empty */
798 			/*
799 			 * Empty and onboard Ports 8-13, set to un-used pin
800 			 * OC4
801 			 */
802 			{ 1, 4, 0x0040 }, /* P8= Camera      (no OC) */
803 			{ 1, 4, 0x0040 }, /* P9= Bluetooth   (no OC) */
804 			{ 0, 4, 0x0000 }, /* P10= Empty */
805 			{ 0, 4, 0x0000 }, /* P11= Empty */
806 			{ 0, 4, 0x0000 }, /* P12= Empty */
807 			{ 0, 4, 0x0000 }, /* P13= Empty */
808 		},
809 	};
810 	pci_dev_t dev = PCI_BDF(0, 0, 0);
811 	int ret;
812 
813 	debug("Boot mode %d\n", gd->arch.pei_boot_mode);
814 	debug("mcr_input %p\n", pei_data.mrc_input);
815 	pei_data.boot_mode = gd->arch.pei_boot_mode;
816 	ret = copy_spd(&pei_data);
817 	if (!ret)
818 		ret = sdram_initialise(&pei_data);
819 	if (ret)
820 		return ret;
821 
822 	rcba_config();
823 	quick_ram_check();
824 
825 	writew(0xCAFE, MCHBAR_REG(SSKPD));
826 
827 	post_code(POST_DRAM);
828 
829 	ret = sdram_find(dev);
830 	if (ret)
831 		return ret;
832 
833 	gd->ram_size = gd->arch.meminfo.total_32bit_memory;
834 
835 	return 0;
836 }
837