1 /* 2 * From coreboot southbridge/intel/bd82x6x/lpc.c 3 * 4 * Copyright (C) 2008-2009 coresystems GmbH 5 * 6 * SPDX-License-Identifier: GPL-2.0 7 */ 8 9 #include <common.h> 10 #include <dm.h> 11 #include <errno.h> 12 #include <fdtdec.h> 13 #include <rtc.h> 14 #include <pci.h> 15 #include <asm/acpi.h> 16 #include <asm/intel_regs.h> 17 #include <asm/interrupt.h> 18 #include <asm/io.h> 19 #include <asm/ioapic.h> 20 #include <asm/lpc_common.h> 21 #include <asm/pci.h> 22 #include <asm/arch/pch.h> 23 24 #define NMI_OFF 0 25 26 #define ENABLE_ACPI_MODE_IN_COREBOOT 0 27 #define TEST_SMM_FLASH_LOCKDOWN 0 28 29 static int pch_enable_apic(struct udevice *pch) 30 { 31 u32 reg32; 32 int i; 33 34 /* Enable ACPI I/O and power management. Set SCI IRQ to IRQ9 */ 35 dm_pci_write_config8(pch, ACPI_CNTL, 0x80); 36 37 writel(0, IO_APIC_INDEX); 38 writel(1 << 25, IO_APIC_DATA); 39 40 /* affirm full set of redirection table entries ("write once") */ 41 writel(1, IO_APIC_INDEX); 42 reg32 = readl(IO_APIC_DATA); 43 writel(1, IO_APIC_INDEX); 44 writel(reg32, IO_APIC_DATA); 45 46 writel(0, IO_APIC_INDEX); 47 reg32 = readl(IO_APIC_DATA); 48 debug("PCH APIC ID = %x\n", (reg32 >> 24) & 0x0f); 49 if (reg32 != (1 << 25)) { 50 printf("APIC Error - cannot write to registers\n"); 51 return -EPERM; 52 } 53 54 debug("Dumping IOAPIC registers\n"); 55 for (i = 0; i < 3; i++) { 56 writel(i, IO_APIC_INDEX); 57 debug(" reg 0x%04x:", i); 58 reg32 = readl(IO_APIC_DATA); 59 debug(" 0x%08x\n", reg32); 60 } 61 62 /* Select Boot Configuration register. */ 63 writel(3, IO_APIC_INDEX); 64 65 /* Use Processor System Bus to deliver interrupts. */ 66 writel(1, IO_APIC_DATA); 67 68 return 0; 69 } 70 71 static void pch_enable_serial_irqs(struct udevice *pch) 72 { 73 u32 value; 74 75 /* Set packet length and toggle silent mode bit for one frame. */ 76 value = (1 << 7) | (1 << 6) | ((21 - 17) << 2) | (0 << 0); 77 #ifdef CONFIG_SERIRQ_CONTINUOUS_MODE 78 dm_pci_write_config8(pch, SERIRQ_CNTL, value); 79 #else 80 dm_pci_write_config8(pch, SERIRQ_CNTL, value | (1 << 6)); 81 #endif 82 } 83 84 static int pch_pirq_init(struct udevice *pch) 85 { 86 uint8_t route[8], *ptr; 87 88 if (fdtdec_get_byte_array(gd->fdt_blob, pch->of_offset, 89 "intel,pirq-routing", route, sizeof(route))) 90 return -EINVAL; 91 ptr = route; 92 dm_pci_write_config8(pch, PIRQA_ROUT, *ptr++); 93 dm_pci_write_config8(pch, PIRQB_ROUT, *ptr++); 94 dm_pci_write_config8(pch, PIRQC_ROUT, *ptr++); 95 dm_pci_write_config8(pch, PIRQD_ROUT, *ptr++); 96 97 dm_pci_write_config8(pch, PIRQE_ROUT, *ptr++); 98 dm_pci_write_config8(pch, PIRQF_ROUT, *ptr++); 99 dm_pci_write_config8(pch, PIRQG_ROUT, *ptr++); 100 dm_pci_write_config8(pch, PIRQH_ROUT, *ptr++); 101 102 /* 103 * TODO(sjg@chromium.org): U-Boot does not set up the interrupts 104 * here. It's unclear if it is needed 105 */ 106 return 0; 107 } 108 109 static int pch_gpi_routing(struct udevice *pch) 110 { 111 u8 route[16]; 112 u32 reg; 113 int gpi; 114 115 if (fdtdec_get_byte_array(gd->fdt_blob, pch->of_offset, 116 "intel,gpi-routing", route, sizeof(route))) 117 return -EINVAL; 118 119 for (reg = 0, gpi = 0; gpi < ARRAY_SIZE(route); gpi++) 120 reg |= route[gpi] << (gpi * 2); 121 122 dm_pci_write_config32(pch, 0xb8, reg); 123 124 return 0; 125 } 126 127 static int pch_power_options(struct udevice *pch) 128 { 129 const void *blob = gd->fdt_blob; 130 int node = pch->of_offset; 131 u8 reg8; 132 u16 reg16, pmbase; 133 u32 reg32; 134 const char *state; 135 int pwr_on; 136 int nmi_option; 137 int ret; 138 139 /* 140 * Which state do we want to goto after g3 (power restored)? 141 * 0 == S0 Full On 142 * 1 == S5 Soft Off 143 * 144 * If the option is not existent (Laptops), use Kconfig setting. 145 * TODO(sjg@chromium.org): Make this configurable 146 */ 147 pwr_on = MAINBOARD_POWER_ON; 148 149 dm_pci_read_config16(pch, GEN_PMCON_3, ®16); 150 reg16 &= 0xfffe; 151 switch (pwr_on) { 152 case MAINBOARD_POWER_OFF: 153 reg16 |= 1; 154 state = "off"; 155 break; 156 case MAINBOARD_POWER_ON: 157 reg16 &= ~1; 158 state = "on"; 159 break; 160 case MAINBOARD_POWER_KEEP: 161 reg16 &= ~1; 162 state = "state keep"; 163 break; 164 default: 165 state = "undefined"; 166 } 167 168 reg16 &= ~(3 << 4); /* SLP_S4# Assertion Stretch 4s */ 169 reg16 |= (1 << 3); /* SLP_S4# Assertion Stretch Enable */ 170 171 reg16 &= ~(1 << 10); 172 reg16 |= (1 << 11); /* SLP_S3# Min Assertion Width 50ms */ 173 174 reg16 |= (1 << 12); /* Disable SLP stretch after SUS well */ 175 176 dm_pci_write_config16(pch, GEN_PMCON_3, reg16); 177 debug("Set power %s after power failure.\n", state); 178 179 /* Set up NMI on errors. */ 180 reg8 = inb(0x61); 181 reg8 &= 0x0f; /* Higher Nibble must be 0 */ 182 reg8 &= ~(1 << 3); /* IOCHK# NMI Enable */ 183 reg8 |= (1 << 2); /* PCI SERR# Disable for now */ 184 outb(reg8, 0x61); 185 186 reg8 = inb(0x70); 187 /* TODO(sjg@chromium.org): Make this configurable */ 188 nmi_option = NMI_OFF; 189 if (nmi_option) { 190 debug("NMI sources enabled.\n"); 191 reg8 &= ~(1 << 7); /* Set NMI. */ 192 } else { 193 debug("NMI sources disabled.\n"); 194 /* Can't mask NMI from PCI-E and NMI_NOW */ 195 reg8 |= (1 << 7); 196 } 197 outb(reg8, 0x70); 198 199 /* Enable CPU_SLP# and Intel Speedstep, set SMI# rate down */ 200 dm_pci_read_config16(pch, GEN_PMCON_1, ®16); 201 reg16 &= ~(3 << 0); /* SMI# rate 1 minute */ 202 reg16 &= ~(1 << 10); /* Disable BIOS_PCI_EXP_EN for native PME */ 203 #if DEBUG_PERIODIC_SMIS 204 /* Set DEBUG_PERIODIC_SMIS in pch.h to debug using periodic SMIs */ 205 reg16 |= (3 << 0); /* Periodic SMI every 8s */ 206 #endif 207 dm_pci_write_config16(pch, GEN_PMCON_1, reg16); 208 209 /* Set the board's GPI routing. */ 210 ret = pch_gpi_routing(pch); 211 if (ret) 212 return ret; 213 214 dm_pci_read_config16(pch, 0x40, &pmbase); 215 pmbase &= 0xfffe; 216 217 writel(pmbase + GPE0_EN, fdtdec_get_int(blob, node, 218 "intel,gpe0-enable", 0)); 219 writew(pmbase + ALT_GP_SMI_EN, fdtdec_get_int(blob, node, 220 "intel,alt-gp-smi-enable", 0)); 221 222 /* Set up power management block and determine sleep mode */ 223 reg32 = inl(pmbase + 0x04); /* PM1_CNT */ 224 reg32 &= ~(7 << 10); /* SLP_TYP */ 225 reg32 |= (1 << 0); /* SCI_EN */ 226 outl(reg32, pmbase + 0x04); 227 228 /* Clear magic status bits to prevent unexpected wake */ 229 setbits_le32(RCB_REG(0x3310), (1 << 4) | (1 << 5) | (1 << 0)); 230 clrbits_le32(RCB_REG(0x3f02), 0xf); 231 232 return 0; 233 } 234 235 static void pch_rtc_init(struct udevice *pch) 236 { 237 int rtc_failed; 238 u8 reg8; 239 240 dm_pci_read_config8(pch, GEN_PMCON_3, ®8); 241 rtc_failed = reg8 & RTC_BATTERY_DEAD; 242 if (rtc_failed) { 243 reg8 &= ~RTC_BATTERY_DEAD; 244 dm_pci_write_config8(pch, GEN_PMCON_3, reg8); 245 } 246 debug("rtc_failed = 0x%x\n", rtc_failed); 247 248 /* TODO: Handle power failure */ 249 if (rtc_failed) 250 printf("RTC power failed\n"); 251 } 252 253 /* CougarPoint PCH Power Management init */ 254 static void cpt_pm_init(struct udevice *pch) 255 { 256 debug("CougarPoint PM init\n"); 257 dm_pci_write_config8(pch, 0xa9, 0x47); 258 setbits_le32(RCB_REG(0x2238), (1 << 6) | (1 << 0)); 259 260 setbits_le32(RCB_REG(0x228c), 1 << 0); 261 setbits_le32(RCB_REG(0x1100), (1 << 13) | (1 << 14)); 262 setbits_le32(RCB_REG(0x0900), 1 << 14); 263 writel(0xc0388400, RCB_REG(0x2304)); 264 setbits_le32(RCB_REG(0x2314), (1 << 5) | (1 << 18)); 265 setbits_le32(RCB_REG(0x2320), (1 << 15) | (1 << 1)); 266 clrsetbits_le32(RCB_REG(0x3314), ~0x1f, 0xf); 267 writel(0x050f0000, RCB_REG(0x3318)); 268 writel(0x04000000, RCB_REG(0x3324)); 269 setbits_le32(RCB_REG(0x3340), 0xfffff); 270 setbits_le32(RCB_REG(0x3344), 1 << 1); 271 272 writel(0x0001c000, RCB_REG(0x3360)); 273 writel(0x00061100, RCB_REG(0x3368)); 274 writel(0x7f8fdfff, RCB_REG(0x3378)); 275 writel(0x000003fc, RCB_REG(0x337c)); 276 writel(0x00001000, RCB_REG(0x3388)); 277 writel(0x0001c000, RCB_REG(0x3390)); 278 writel(0x00000800, RCB_REG(0x33a0)); 279 writel(0x00001000, RCB_REG(0x33b0)); 280 writel(0x00093900, RCB_REG(0x33c0)); 281 writel(0x24653002, RCB_REG(0x33cc)); 282 writel(0x062108fe, RCB_REG(0x33d0)); 283 clrsetbits_le32(RCB_REG(0x33d4), 0x0fff0fff, 0x00670060); 284 writel(0x01010000, RCB_REG(0x3a28)); 285 writel(0x01010404, RCB_REG(0x3a2c)); 286 writel(0x01041041, RCB_REG(0x3a80)); 287 clrsetbits_le32(RCB_REG(0x3a84), 0x0000ffff, 0x00001001); 288 setbits_le32(RCB_REG(0x3a84), 1 << 24); /* SATA 2/3 disabled */ 289 setbits_le32(RCB_REG(0x3a88), 1 << 0); /* SATA 4/5 disabled */ 290 writel(0x00000001, RCB_REG(0x3a6c)); 291 clrsetbits_le32(RCB_REG(0x2344), ~0x00ffff00, 0xff00000c); 292 clrsetbits_le32(RCB_REG(0x80c), 0xff << 20, 0x11 << 20); 293 writel(0, RCB_REG(0x33c8)); 294 setbits_le32(RCB_REG(0x21b0), 0xf); 295 } 296 297 /* PantherPoint PCH Power Management init */ 298 static void ppt_pm_init(struct udevice *pch) 299 { 300 debug("PantherPoint PM init\n"); 301 dm_pci_write_config8(pch, 0xa9, 0x47); 302 setbits_le32(RCB_REG(0x2238), 1 << 0); 303 setbits_le32(RCB_REG(0x228c), 1 << 0); 304 setbits_le16(RCB_REG(0x1100), (1 << 13) | (1 << 14)); 305 setbits_le16(RCB_REG(0x0900), 1 << 14); 306 writel(0xc03b8400, RCB_REG(0x2304)); 307 setbits_le32(RCB_REG(0x2314), (1 << 5) | (1 << 18)); 308 setbits_le32(RCB_REG(0x2320), (1 << 15) | (1 << 1)); 309 clrsetbits_le32(RCB_REG(0x3314), 0x1f, 0xf); 310 writel(0x054f0000, RCB_REG(0x3318)); 311 writel(0x04000000, RCB_REG(0x3324)); 312 setbits_le32(RCB_REG(0x3340), 0xfffff); 313 setbits_le32(RCB_REG(0x3344), (1 << 1) | (1 << 0)); 314 writel(0x0001c000, RCB_REG(0x3360)); 315 writel(0x00061100, RCB_REG(0x3368)); 316 writel(0x7f8fdfff, RCB_REG(0x3378)); 317 writel(0x000003fd, RCB_REG(0x337c)); 318 writel(0x00001000, RCB_REG(0x3388)); 319 writel(0x0001c000, RCB_REG(0x3390)); 320 writel(0x00000800, RCB_REG(0x33a0)); 321 writel(0x00001000, RCB_REG(0x33b0)); 322 writel(0x00093900, RCB_REG(0x33c0)); 323 writel(0x24653002, RCB_REG(0x33cc)); 324 writel(0x067388fe, RCB_REG(0x33d0)); 325 clrsetbits_le32(RCB_REG(0x33d4), 0x0fff0fff, 0x00670060); 326 writel(0x01010000, RCB_REG(0x3a28)); 327 writel(0x01010404, RCB_REG(0x3a2c)); 328 writel(0x01040000, RCB_REG(0x3a80)); 329 clrsetbits_le32(RCB_REG(0x3a84), 0x0000ffff, 0x00001001); 330 /* SATA 2/3 disabled */ 331 setbits_le32(RCB_REG(0x3a84), 1 << 24); 332 /* SATA 4/5 disabled */ 333 setbits_le32(RCB_REG(0x3a88), 1 << 0); 334 writel(0x00000001, RCB_REG(0x3a6c)); 335 clrsetbits_le32(RCB_REG(0x2344), 0xff0000ff, 0xff00000c); 336 clrsetbits_le32(RCB_REG(0x80c), 0xff << 20, 0x11 << 20); 337 setbits_le32(RCB_REG(0x33a4), (1 << 0)); 338 writel(0, RCB_REG(0x33c8)); 339 setbits_le32(RCB_REG(0x21b0), 0xf); 340 } 341 342 static void enable_hpet(void) 343 { 344 /* Move HPET to default address 0xfed00000 and enable it */ 345 clrsetbits_le32(RCB_REG(HPTC), 3 << 0, 1 << 7); 346 } 347 348 static void enable_clock_gating(struct udevice *pch) 349 { 350 u32 reg32; 351 u16 reg16; 352 353 setbits_le32(RCB_REG(0x2234), 0xf); 354 355 dm_pci_read_config16(pch, GEN_PMCON_1, ®16); 356 reg16 |= (1 << 2) | (1 << 11); 357 dm_pci_write_config16(pch, GEN_PMCON_1, reg16); 358 359 pch_iobp_update(pch, 0xEB007F07, ~0UL, (1 << 31)); 360 pch_iobp_update(pch, 0xEB004000, ~0UL, (1 << 7)); 361 pch_iobp_update(pch, 0xEC007F07, ~0UL, (1 << 31)); 362 pch_iobp_update(pch, 0xEC004000, ~0UL, (1 << 7)); 363 364 reg32 = readl(RCB_REG(CG)); 365 reg32 |= (1 << 31); 366 reg32 |= (1 << 29) | (1 << 28); 367 reg32 |= (1 << 27) | (1 << 26) | (1 << 25) | (1 << 24); 368 reg32 |= (1 << 16); 369 reg32 |= (1 << 17); 370 reg32 |= (1 << 18); 371 reg32 |= (1 << 22); 372 reg32 |= (1 << 23); 373 reg32 &= ~(1 << 20); 374 reg32 |= (1 << 19); 375 reg32 |= (1 << 0); 376 reg32 |= (0xf << 1); 377 writel(reg32, RCB_REG(CG)); 378 379 setbits_le32(RCB_REG(0x38c0), 0x7); 380 setbits_le32(RCB_REG(0x36d4), 0x6680c004); 381 setbits_le32(RCB_REG(0x3564), 0x3); 382 } 383 384 static void pch_disable_smm_only_flashing(struct udevice *pch) 385 { 386 u8 reg8; 387 388 debug("Enabling BIOS updates outside of SMM... "); 389 dm_pci_read_config8(pch, 0xdc, ®8); /* BIOS_CNTL */ 390 reg8 &= ~(1 << 5); 391 dm_pci_write_config8(pch, 0xdc, reg8); 392 } 393 394 static void pch_fixups(struct udevice *pch) 395 { 396 u8 gen_pmcon_2; 397 398 /* Indicate DRAM init done for MRC S3 to know it can resume */ 399 dm_pci_read_config8(pch, GEN_PMCON_2, &gen_pmcon_2); 400 gen_pmcon_2 |= (1 << 7); 401 dm_pci_write_config8(pch, GEN_PMCON_2, gen_pmcon_2); 402 403 /* Enable DMI ASPM in the PCH */ 404 clrbits_le32(RCB_REG(0x2304), 1 << 10); 405 setbits_le32(RCB_REG(0x21a4), (1 << 11) | (1 << 10)); 406 setbits_le32(RCB_REG(0x21a8), 0x3); 407 } 408 409 static void set_spi_speed(void) 410 { 411 u32 fdod; 412 413 /* Observe SPI Descriptor Component Section 0 */ 414 writel(0x1000, RCB_REG(SPI_DESC_COMP0)); 415 416 /* Extract the1 Write/Erase SPI Frequency from descriptor */ 417 fdod = readl(RCB_REG(SPI_FREQ_WR_ERA)); 418 fdod >>= 24; 419 fdod &= 7; 420 421 /* Set Software Sequence frequency to match */ 422 clrsetbits_8(RCB_REG(SPI_FREQ_SWSEQ), 7, fdod); 423 } 424 425 static int lpc_init_extra(struct udevice *dev) 426 { 427 struct udevice *pch = dev->parent; 428 const void *blob = gd->fdt_blob; 429 int node; 430 431 debug("pch: lpc_init\n"); 432 dm_pci_write_bar32(pch, 0, 0); 433 dm_pci_write_bar32(pch, 1, 0xff800000); 434 dm_pci_write_bar32(pch, 2, 0xfec00000); 435 dm_pci_write_bar32(pch, 3, 0x800); 436 dm_pci_write_bar32(pch, 4, 0x900); 437 438 node = fdtdec_next_compatible(blob, 0, COMPAT_INTEL_PCH); 439 if (node < 0) 440 return -ENOENT; 441 442 /* Set the value for PCI command register. */ 443 dm_pci_write_config16(pch, PCI_COMMAND, 0x000f); 444 445 /* IO APIC initialization. */ 446 pch_enable_apic(pch); 447 448 pch_enable_serial_irqs(pch); 449 450 /* Setup the PIRQ. */ 451 pch_pirq_init(pch); 452 453 /* Setup power options. */ 454 pch_power_options(pch); 455 456 /* Initialize power management */ 457 switch (pch_silicon_type(pch)) { 458 case PCH_TYPE_CPT: /* CougarPoint */ 459 cpt_pm_init(pch); 460 break; 461 case PCH_TYPE_PPT: /* PantherPoint */ 462 ppt_pm_init(pch); 463 break; 464 default: 465 printf("Unknown Chipset: %s\n", pch->name); 466 return -ENOSYS; 467 } 468 469 /* Initialize the real time clock. */ 470 pch_rtc_init(pch); 471 472 /* Initialize the High Precision Event Timers, if present. */ 473 enable_hpet(); 474 475 /* Initialize Clock Gating */ 476 enable_clock_gating(pch); 477 478 pch_disable_smm_only_flashing(pch); 479 480 pch_fixups(pch); 481 482 return 0; 483 } 484 485 static int bd82x6x_lpc_early_init(struct udevice *dev) 486 { 487 set_spi_speed(); 488 489 /* Setting up Southbridge. In the northbridge code. */ 490 debug("Setting up static southbridge registers\n"); 491 dm_pci_write_config32(dev->parent, PCH_RCBA_BASE, 492 RCB_BASE_ADDRESS | 1); 493 dm_pci_write_config32(dev->parent, PMBASE, DEFAULT_PMBASE | 1); 494 495 /* Enable ACPI BAR */ 496 dm_pci_write_config8(dev->parent, ACPI_CNTL, 0x80); 497 498 debug("Disabling watchdog reboot\n"); 499 setbits_le32(RCB_REG(GCS), 1 >> 5); /* No reset */ 500 outw(1 << 11, DEFAULT_PMBASE | 0x60 | 0x08); /* halt timer */ 501 502 dm_pci_write_config32(dev->parent, GPIO_BASE, DEFAULT_GPIOBASE | 1); 503 dm_pci_write_config32(dev->parent, GPIO_CNTL, 0x10); 504 505 return 0; 506 } 507 508 static int bd82x6x_lpc_probe(struct udevice *dev) 509 { 510 int ret; 511 512 if (!(gd->flags & GD_FLG_RELOC)) { 513 ret = lpc_common_early_init(dev); 514 if (ret) { 515 debug("%s: lpc_early_init() failed\n", __func__); 516 return ret; 517 } 518 519 return bd82x6x_lpc_early_init(dev); 520 } 521 522 return lpc_init_extra(dev); 523 } 524 525 static const struct udevice_id bd82x6x_lpc_ids[] = { 526 { .compatible = "intel,bd82x6x-lpc" }, 527 { } 528 }; 529 530 U_BOOT_DRIVER(bd82x6x_lpc_drv) = { 531 .name = "lpc", 532 .id = UCLASS_LPC, 533 .of_match = bd82x6x_lpc_ids, 534 .probe = bd82x6x_lpc_probe, 535 }; 536