xref: /openbmc/u-boot/arch/x86/cpu/ivybridge/lpc.c (revision 0adb5b761f4c789ae47d8abb015f5e017263d3f2)
1 /*
2  * From coreboot southbridge/intel/bd82x6x/lpc.c
3  *
4  * Copyright (C) 2008-2009 coresystems GmbH
5  *
6  * SPDX-License-Identifier:	GPL-2.0
7  */
8 
9 #include <common.h>
10 #include <dm.h>
11 #include <errno.h>
12 #include <fdtdec.h>
13 #include <rtc.h>
14 #include <pci.h>
15 #include <asm/acpi.h>
16 #include <asm/interrupt.h>
17 #include <asm/io.h>
18 #include <asm/ioapic.h>
19 #include <asm/pci.h>
20 #include <asm/arch/pch.h>
21 
22 #define NMI_OFF				0
23 
24 #define ENABLE_ACPI_MODE_IN_COREBOOT	0
25 #define TEST_SMM_FLASH_LOCKDOWN		0
26 
27 static int pch_enable_apic(pci_dev_t dev)
28 {
29 	u32 reg32;
30 	int i;
31 
32 	/* Enable ACPI I/O and power management. Set SCI IRQ to IRQ9 */
33 	x86_pci_write_config8(dev, ACPI_CNTL, 0x80);
34 
35 	writel(0, IO_APIC_INDEX);
36 	writel(1 << 25, IO_APIC_DATA);
37 
38 	/* affirm full set of redirection table entries ("write once") */
39 	writel(1, IO_APIC_INDEX);
40 	reg32 = readl(IO_APIC_DATA);
41 	writel(1, IO_APIC_INDEX);
42 	writel(reg32, IO_APIC_DATA);
43 
44 	writel(0, IO_APIC_INDEX);
45 	reg32 = readl(IO_APIC_DATA);
46 	debug("PCH APIC ID = %x\n", (reg32 >> 24) & 0x0f);
47 	if (reg32 != (1 << 25)) {
48 		printf("APIC Error - cannot write to registers\n");
49 		return -EPERM;
50 	}
51 
52 	debug("Dumping IOAPIC registers\n");
53 	for (i = 0;  i < 3; i++) {
54 		writel(i, IO_APIC_INDEX);
55 		debug("  reg 0x%04x:", i);
56 		reg32 = readl(IO_APIC_DATA);
57 		debug(" 0x%08x\n", reg32);
58 	}
59 
60 	/* Select Boot Configuration register. */
61 	writel(3, IO_APIC_INDEX);
62 
63 	/* Use Processor System Bus to deliver interrupts. */
64 	writel(1, IO_APIC_DATA);
65 
66 	return 0;
67 }
68 
69 static void pch_enable_serial_irqs(pci_dev_t dev)
70 {
71 	u32 value;
72 
73 	/* Set packet length and toggle silent mode bit for one frame. */
74 	value = (1 << 7) | (1 << 6) | ((21 - 17) << 2) | (0 << 0);
75 #ifdef CONFIG_SERIRQ_CONTINUOUS_MODE
76 	x86_pci_write_config8(dev, SERIRQ_CNTL, value);
77 #else
78 	x86_pci_write_config8(dev, SERIRQ_CNTL, value | (1 << 6));
79 #endif
80 }
81 
82 static int pch_pirq_init(const void *blob, int node, pci_dev_t dev)
83 {
84 	uint8_t route[8], *ptr;
85 
86 	if (fdtdec_get_byte_array(blob, node, "intel,pirq-routing", route,
87 				  sizeof(route)))
88 		return -EINVAL;
89 	ptr = route;
90 	x86_pci_write_config8(dev, PIRQA_ROUT, *ptr++);
91 	x86_pci_write_config8(dev, PIRQB_ROUT, *ptr++);
92 	x86_pci_write_config8(dev, PIRQC_ROUT, *ptr++);
93 	x86_pci_write_config8(dev, PIRQD_ROUT, *ptr++);
94 
95 	x86_pci_write_config8(dev, PIRQE_ROUT, *ptr++);
96 	x86_pci_write_config8(dev, PIRQF_ROUT, *ptr++);
97 	x86_pci_write_config8(dev, PIRQG_ROUT, *ptr++);
98 	x86_pci_write_config8(dev, PIRQH_ROUT, *ptr++);
99 
100 	/*
101 	 * TODO(sjg@chromium.org): U-Boot does not set up the interrupts
102 	 * here. It's unclear if it is needed
103 	 */
104 	return 0;
105 }
106 
107 static int pch_gpi_routing(const void *blob, int node, pci_dev_t dev)
108 {
109 	u8 route[16];
110 	u32 reg;
111 	int gpi;
112 
113 	if (fdtdec_get_byte_array(blob, node, "intel,gpi-routing", route,
114 				  sizeof(route)))
115 		return -EINVAL;
116 
117 	for (reg = 0, gpi = 0; gpi < ARRAY_SIZE(route); gpi++)
118 		reg |= route[gpi] << (gpi * 2);
119 
120 	x86_pci_write_config32(dev, 0xb8, reg);
121 
122 	return 0;
123 }
124 
125 static int pch_power_options(const void *blob, int node, pci_dev_t dev)
126 {
127 	u8 reg8;
128 	u16 reg16, pmbase;
129 	u32 reg32;
130 	const char *state;
131 	int pwr_on;
132 	int nmi_option;
133 	int ret;
134 
135 	/*
136 	 * Which state do we want to goto after g3 (power restored)?
137 	 * 0 == S0 Full On
138 	 * 1 == S5 Soft Off
139 	 *
140 	 * If the option is not existent (Laptops), use Kconfig setting.
141 	 * TODO(sjg@chromium.org): Make this configurable
142 	 */
143 	pwr_on = MAINBOARD_POWER_ON;
144 
145 	reg16 = x86_pci_read_config16(dev, GEN_PMCON_3);
146 	reg16 &= 0xfffe;
147 	switch (pwr_on) {
148 	case MAINBOARD_POWER_OFF:
149 		reg16 |= 1;
150 		state = "off";
151 		break;
152 	case MAINBOARD_POWER_ON:
153 		reg16 &= ~1;
154 		state = "on";
155 		break;
156 	case MAINBOARD_POWER_KEEP:
157 		reg16 &= ~1;
158 		state = "state keep";
159 		break;
160 	default:
161 		state = "undefined";
162 	}
163 
164 	reg16 &= ~(3 << 4);	/* SLP_S4# Assertion Stretch 4s */
165 	reg16 |= (1 << 3);	/* SLP_S4# Assertion Stretch Enable */
166 
167 	reg16 &= ~(1 << 10);
168 	reg16 |= (1 << 11);	/* SLP_S3# Min Assertion Width 50ms */
169 
170 	reg16 |= (1 << 12);	/* Disable SLP stretch after SUS well */
171 
172 	x86_pci_write_config16(dev, GEN_PMCON_3, reg16);
173 	debug("Set power %s after power failure.\n", state);
174 
175 	/* Set up NMI on errors. */
176 	reg8 = inb(0x61);
177 	reg8 &= 0x0f;		/* Higher Nibble must be 0 */
178 	reg8 &= ~(1 << 3);	/* IOCHK# NMI Enable */
179 	reg8 |= (1 << 2); /* PCI SERR# Disable for now */
180 	outb(reg8, 0x61);
181 
182 	reg8 = inb(0x70);
183 	/* TODO(sjg@chromium.org): Make this configurable */
184 	nmi_option = NMI_OFF;
185 	if (nmi_option) {
186 		debug("NMI sources enabled.\n");
187 		reg8 &= ~(1 << 7);	/* Set NMI. */
188 	} else {
189 		debug("NMI sources disabled.\n");
190 		/* Can't mask NMI from PCI-E and NMI_NOW */
191 		reg8 |= (1 << 7);
192 	}
193 	outb(reg8, 0x70);
194 
195 	/* Enable CPU_SLP# and Intel Speedstep, set SMI# rate down */
196 	reg16 = x86_pci_read_config16(dev, GEN_PMCON_1);
197 	reg16 &= ~(3 << 0);	/* SMI# rate 1 minute */
198 	reg16 &= ~(1 << 10);	/* Disable BIOS_PCI_EXP_EN for native PME */
199 #if DEBUG_PERIODIC_SMIS
200 	/* Set DEBUG_PERIODIC_SMIS in pch.h to debug using periodic SMIs */
201 	reg16 |= (3 << 0);	/* Periodic SMI every 8s */
202 #endif
203 	x86_pci_write_config16(dev, GEN_PMCON_1, reg16);
204 
205 	/* Set the board's GPI routing. */
206 	ret = pch_gpi_routing(blob, node, dev);
207 	if (ret)
208 		return ret;
209 
210 	pmbase = x86_pci_read_config16(dev, 0x40) & 0xfffe;
211 
212 	writel(pmbase + GPE0_EN, fdtdec_get_int(blob, node,
213 						"intel,gpe0-enable", 0));
214 	writew(pmbase + ALT_GP_SMI_EN, fdtdec_get_int(blob, node,
215 						"intel,alt-gp-smi-enable", 0));
216 
217 	/* Set up power management block and determine sleep mode */
218 	reg32 = inl(pmbase + 0x04); /* PM1_CNT */
219 	reg32 &= ~(7 << 10);	/* SLP_TYP */
220 	reg32 |= (1 << 0);	/* SCI_EN */
221 	outl(reg32, pmbase + 0x04);
222 
223 	/* Clear magic status bits to prevent unexpected wake */
224 	setbits_le32(RCB_REG(0x3310), (1 << 4) | (1 << 5) | (1 << 0));
225 	clrbits_le32(RCB_REG(0x3f02), 0xf);
226 
227 	return 0;
228 }
229 
230 static void pch_rtc_init(pci_dev_t dev)
231 {
232 	int rtc_failed;
233 	u8 reg8;
234 
235 	reg8 = x86_pci_read_config8(dev, GEN_PMCON_3);
236 	rtc_failed = reg8 & RTC_BATTERY_DEAD;
237 	if (rtc_failed) {
238 		reg8 &= ~RTC_BATTERY_DEAD;
239 		x86_pci_write_config8(dev, GEN_PMCON_3, reg8);
240 	}
241 	debug("rtc_failed = 0x%x\n", rtc_failed);
242 
243 #if CONFIG_HAVE_ACPI_RESUME
244 	/* Avoid clearing pending interrupts and resetting the RTC control
245 	 * register in the resume path because the Linux kernel relies on
246 	 * this to know if it should restart the RTC timerqueue if the wake
247 	 * was due to the RTC alarm.
248 	 */
249 	if (acpi_get_slp_type() == 3)
250 		return;
251 #endif
252 	/* TODO: Handle power failure */
253 	if (rtc_failed)
254 		printf("RTC power failed\n");
255 	rtc_init();
256 }
257 
258 /* CougarPoint PCH Power Management init */
259 static void cpt_pm_init(pci_dev_t dev)
260 {
261 	debug("CougarPoint PM init\n");
262 	x86_pci_write_config8(dev, 0xa9, 0x47);
263 	setbits_le32(RCB_REG(0x2238), (1 << 6) | (1 << 0));
264 
265 	setbits_le32(RCB_REG(0x228c), 1 << 0);
266 	setbits_le32(RCB_REG(0x1100), (1 << 13) | (1 << 14));
267 	setbits_le32(RCB_REG(0x0900), 1 << 14);
268 	writel(0xc0388400, RCB_REG(0x2304));
269 	setbits_le32(RCB_REG(0x2314), (1 << 5) | (1 << 18));
270 	setbits_le32(RCB_REG(0x2320), (1 << 15) | (1 << 1));
271 	clrsetbits_le32(RCB_REG(0x3314), ~0x1f, 0xf);
272 	writel(0x050f0000, RCB_REG(0x3318));
273 	writel(0x04000000, RCB_REG(0x3324));
274 	setbits_le32(RCB_REG(0x3340), 0xfffff);
275 	setbits_le32(RCB_REG(0x3344), 1 << 1);
276 
277 	writel(0x0001c000, RCB_REG(0x3360));
278 	writel(0x00061100, RCB_REG(0x3368));
279 	writel(0x7f8fdfff, RCB_REG(0x3378));
280 	writel(0x000003fc, RCB_REG(0x337c));
281 	writel(0x00001000, RCB_REG(0x3388));
282 	writel(0x0001c000, RCB_REG(0x3390));
283 	writel(0x00000800, RCB_REG(0x33a0));
284 	writel(0x00001000, RCB_REG(0x33b0));
285 	writel(0x00093900, RCB_REG(0x33c0));
286 	writel(0x24653002, RCB_REG(0x33cc));
287 	writel(0x062108fe, RCB_REG(0x33d0));
288 	clrsetbits_le32(RCB_REG(0x33d4), 0x0fff0fff, 0x00670060);
289 	writel(0x01010000, RCB_REG(0x3a28));
290 	writel(0x01010404, RCB_REG(0x3a2c));
291 	writel(0x01041041, RCB_REG(0x3a80));
292 	clrsetbits_le32(RCB_REG(0x3a84), 0x0000ffff, 0x00001001);
293 	setbits_le32(RCB_REG(0x3a84), 1 << 24); /* SATA 2/3 disabled */
294 	setbits_le32(RCB_REG(0x3a88), 1 << 0);  /* SATA 4/5 disabled */
295 	writel(0x00000001, RCB_REG(0x3a6c));
296 	clrsetbits_le32(RCB_REG(0x2344), ~0x00ffff00, 0xff00000c);
297 	clrsetbits_le32(RCB_REG(0x80c), 0xff << 20, 0x11 << 20);
298 	writel(0, RCB_REG(0x33c8));
299 	setbits_le32(RCB_REG(0x21b0), 0xf);
300 }
301 
302 /* PantherPoint PCH Power Management init */
303 static void ppt_pm_init(pci_dev_t dev)
304 {
305 	debug("PantherPoint PM init\n");
306 	x86_pci_write_config8(dev, 0xa9, 0x47);
307 	setbits_le32(RCB_REG(0x2238), 1 << 0);
308 	setbits_le32(RCB_REG(0x228c), 1 << 0);
309 	setbits_le16(RCB_REG(0x1100), (1 << 13) | (1 << 14));
310 	setbits_le16(RCB_REG(0x0900), 1 << 14);
311 	writel(0xc03b8400, RCB_REG(0x2304));
312 	setbits_le32(RCB_REG(0x2314), (1 << 5) | (1 << 18));
313 	setbits_le32(RCB_REG(0x2320), (1 << 15) | (1 << 1));
314 	clrsetbits_le32(RCB_REG(0x3314), 0x1f, 0xf);
315 	writel(0x054f0000, RCB_REG(0x3318));
316 	writel(0x04000000, RCB_REG(0x3324));
317 	setbits_le32(RCB_REG(0x3340), 0xfffff);
318 	setbits_le32(RCB_REG(0x3344), (1 << 1) | (1 << 0));
319 	writel(0x0001c000, RCB_REG(0x3360));
320 	writel(0x00061100, RCB_REG(0x3368));
321 	writel(0x7f8fdfff, RCB_REG(0x3378));
322 	writel(0x000003fd, RCB_REG(0x337c));
323 	writel(0x00001000, RCB_REG(0x3388));
324 	writel(0x0001c000, RCB_REG(0x3390));
325 	writel(0x00000800, RCB_REG(0x33a0));
326 	writel(0x00001000, RCB_REG(0x33b0));
327 	writel(0x00093900, RCB_REG(0x33c0));
328 	writel(0x24653002, RCB_REG(0x33cc));
329 	writel(0x067388fe, RCB_REG(0x33d0));
330 	clrsetbits_le32(RCB_REG(0x33d4), 0x0fff0fff, 0x00670060);
331 	writel(0x01010000, RCB_REG(0x3a28));
332 	writel(0x01010404, RCB_REG(0x3a2c));
333 	writel(0x01040000, RCB_REG(0x3a80));
334 	clrsetbits_le32(RCB_REG(0x3a84), 0x0000ffff, 0x00001001);
335 	/* SATA 2/3 disabled */
336 	setbits_le32(RCB_REG(0x3a84), 1 << 24);
337 	/* SATA 4/5 disabled */
338 	setbits_le32(RCB_REG(0x3a88), 1 << 0);
339 	writel(0x00000001, RCB_REG(0x3a6c));
340 	clrsetbits_le32(RCB_REG(0x2344), 0xff0000ff, 0xff00000c);
341 	clrsetbits_le32(RCB_REG(0x80c), 0xff << 20, 0x11 << 20);
342 	setbits_le32(RCB_REG(0x33a4), (1 << 0));
343 	writel(0, RCB_REG(0x33c8));
344 	setbits_le32(RCB_REG(0x21b0), 0xf);
345 }
346 
347 static void enable_hpet(void)
348 {
349 	/* Move HPET to default address 0xfed00000 and enable it */
350 	clrsetbits_le32(RCB_REG(HPTC), 3 << 0, 1 << 7);
351 }
352 
353 static void enable_clock_gating(pci_dev_t dev)
354 {
355 	u32 reg32;
356 	u16 reg16;
357 
358 	setbits_le32(RCB_REG(0x2234), 0xf);
359 
360 	reg16 = x86_pci_read_config16(dev, GEN_PMCON_1);
361 	reg16 |= (1 << 2) | (1 << 11);
362 	x86_pci_write_config16(dev, GEN_PMCON_1, reg16);
363 
364 	pch_iobp_update(0xEB007F07, ~0UL, (1 << 31));
365 	pch_iobp_update(0xEB004000, ~0UL, (1 << 7));
366 	pch_iobp_update(0xEC007F07, ~0UL, (1 << 31));
367 	pch_iobp_update(0xEC004000, ~0UL, (1 << 7));
368 
369 	reg32 = readl(RCB_REG(CG));
370 	reg32 |= (1 << 31);
371 	reg32 |= (1 << 29) | (1 << 28);
372 	reg32 |= (1 << 27) | (1 << 26) | (1 << 25) | (1 << 24);
373 	reg32 |= (1 << 16);
374 	reg32 |= (1 << 17);
375 	reg32 |= (1 << 18);
376 	reg32 |= (1 << 22);
377 	reg32 |= (1 << 23);
378 	reg32 &= ~(1 << 20);
379 	reg32 |= (1 << 19);
380 	reg32 |= (1 << 0);
381 	reg32 |= (0xf << 1);
382 	writel(reg32, RCB_REG(CG));
383 
384 	setbits_le32(RCB_REG(0x38c0), 0x7);
385 	setbits_le32(RCB_REG(0x36d4), 0x6680c004);
386 	setbits_le32(RCB_REG(0x3564), 0x3);
387 }
388 
389 #if CONFIG_HAVE_SMI_HANDLER
390 static void pch_lock_smm(pci_dev_t dev)
391 {
392 #if TEST_SMM_FLASH_LOCKDOWN
393 	u8 reg8;
394 #endif
395 
396 	if (acpi_slp_type != 3) {
397 #if ENABLE_ACPI_MODE_IN_COREBOOT
398 		debug("Enabling ACPI via APMC:\n");
399 		outb(0xe1, 0xb2); /* Enable ACPI mode */
400 		debug("done.\n");
401 #else
402 		debug("Disabling ACPI via APMC:\n");
403 		outb(0x1e, 0xb2); /* Disable ACPI mode */
404 		debug("done.\n");
405 #endif
406 	}
407 
408 	/* Don't allow evil boot loaders, kernels, or
409 	 * userspace applications to deceive us:
410 	 */
411 	smm_lock();
412 
413 #if TEST_SMM_FLASH_LOCKDOWN
414 	/* Now try this: */
415 	debug("Locking BIOS to RO... ");
416 	reg8 = x86_pci_read_config8(dev, 0xdc);	/* BIOS_CNTL */
417 	debug(" BLE: %s; BWE: %s\n", (reg8 & 2) ? "on" : "off",
418 	      (reg8 & 1) ? "rw" : "ro");
419 	reg8 &= ~(1 << 0);			/* clear BIOSWE */
420 	x86_pci_write_config8(dev, 0xdc, reg8);
421 	reg8 |= (1 << 1);			/* set BLE */
422 	x86_pci_write_config8(dev, 0xdc, reg8);
423 	debug("ok.\n");
424 	reg8 = x86_pci_read_config8(dev, 0xdc);	/* BIOS_CNTL */
425 	debug(" BLE: %s; BWE: %s\n", (reg8 & 2) ? "on" : "off",
426 	      (reg8 & 1) ? "rw" : "ro");
427 
428 	debug("Writing:\n");
429 	writeb(0, 0xfff00000);
430 	debug("Testing:\n");
431 	reg8 |= (1 << 0);			/* set BIOSWE */
432 	x86_pci_write_config8(dev, 0xdc, reg8);
433 
434 	reg8 = x86_pci_read_config8(dev, 0xdc);	/* BIOS_CNTL */
435 	debug(" BLE: %s; BWE: %s\n", (reg8 & 2) ? "on" : "off",
436 	      (reg8 & 1) ? "rw" : "ro");
437 	debug("Done.\n");
438 #endif
439 }
440 #endif
441 
442 static void pch_disable_smm_only_flashing(pci_dev_t dev)
443 {
444 	u8 reg8;
445 
446 	debug("Enabling BIOS updates outside of SMM... ");
447 	reg8 = x86_pci_read_config8(dev, 0xdc);	/* BIOS_CNTL */
448 	reg8 &= ~(1 << 5);
449 	x86_pci_write_config8(dev, 0xdc, reg8);
450 }
451 
452 static void pch_fixups(pci_dev_t dev)
453 {
454 	u8 gen_pmcon_2;
455 
456 	/* Indicate DRAM init done for MRC S3 to know it can resume */
457 	gen_pmcon_2 = x86_pci_read_config8(dev, GEN_PMCON_2);
458 	gen_pmcon_2 |= (1 << 7);
459 	x86_pci_write_config8(dev, GEN_PMCON_2, gen_pmcon_2);
460 
461 	/* Enable DMI ASPM in the PCH */
462 	clrbits_le32(RCB_REG(0x2304), 1 << 10);
463 	setbits_le32(RCB_REG(0x21a4), (1 << 11) | (1 << 10));
464 	setbits_le32(RCB_REG(0x21a8), 0x3);
465 }
466 
467 int lpc_early_init(const void *blob, int node, pci_dev_t dev)
468 {
469 	struct reg_info {
470 		u32 base;
471 		u32 size;
472 	} values[4], *ptr;
473 	int count;
474 	int i;
475 
476 	count = fdtdec_get_int_array_count(blob, node, "intel,gen-dec",
477 			(u32 *)values, sizeof(values) / sizeof(u32));
478 	if (count < 0)
479 		return -EINVAL;
480 
481 	/* Set COM1/COM2 decode range */
482 	x86_pci_write_config16(dev, LPC_IO_DEC, 0x0010);
483 
484 	/* Enable PS/2 Keyboard/Mouse, EC areas and COM1 */
485 	x86_pci_write_config16(dev, LPC_EN, KBC_LPC_EN | MC_LPC_EN |
486 			   GAMEL_LPC_EN | COMA_LPC_EN);
487 
488 	/* Write all registers but use 0 if we run out of data */
489 	count = count * sizeof(u32) / sizeof(values[0]);
490 	for (i = 0, ptr = values; i < ARRAY_SIZE(values); i++, ptr++) {
491 		u32 reg = 0;
492 
493 		if (i < count)
494 			reg = ptr->base | PCI_COMMAND_IO | (ptr->size << 16);
495 		x86_pci_write_config32(dev, LPC_GENX_DEC(i), reg);
496 	}
497 
498 	return 0;
499 }
500 
501 int lpc_init(struct pci_controller *hose, pci_dev_t dev)
502 {
503 	const void *blob = gd->fdt_blob;
504 	int node;
505 
506 	debug("pch: lpc_init\n");
507 	pci_write_bar32(hose, dev, 0, 0);
508 	pci_write_bar32(hose, dev, 1, 0xff800000);
509 	pci_write_bar32(hose, dev, 2, 0xfec00000);
510 	pci_write_bar32(hose, dev, 3, 0x800);
511 	pci_write_bar32(hose, dev, 4, 0x900);
512 
513 	node = fdtdec_next_compatible(blob, 0, COMPAT_INTEL_PCH);
514 	if (node < 0)
515 		return -ENOENT;
516 
517 	/* Set the value for PCI command register. */
518 	x86_pci_write_config16(dev, PCI_COMMAND, 0x000f);
519 
520 	/* IO APIC initialization. */
521 	pch_enable_apic(dev);
522 
523 	pch_enable_serial_irqs(dev);
524 
525 	/* Setup the PIRQ. */
526 	pch_pirq_init(blob, node, dev);
527 
528 	/* Setup power options. */
529 	pch_power_options(blob, node, dev);
530 
531 	/* Initialize power management */
532 	switch (pch_silicon_type()) {
533 	case PCH_TYPE_CPT: /* CougarPoint */
534 		cpt_pm_init(dev);
535 		break;
536 	case PCH_TYPE_PPT: /* PantherPoint */
537 		ppt_pm_init(dev);
538 		break;
539 	default:
540 		printf("Unknown Chipset: %#02x.%dx\n", PCI_DEV(dev),
541 		       PCI_FUNC(dev));
542 		return -ENOSYS;
543 	}
544 
545 	/* Initialize the real time clock. */
546 	pch_rtc_init(dev);
547 
548 	/* Initialize the High Precision Event Timers, if present. */
549 	enable_hpet();
550 
551 	/* Initialize Clock Gating */
552 	enable_clock_gating(dev);
553 
554 	pch_disable_smm_only_flashing(dev);
555 
556 #if CONFIG_HAVE_SMI_HANDLER
557 	pch_lock_smm(dev);
558 #endif
559 
560 	pch_fixups(dev);
561 
562 	return 0;
563 }
564 
565 void lpc_enable(pci_dev_t dev)
566 {
567 	/* Enable PCH Display Port */
568 	writew(0x0010, RCB_REG(DISPBDF));
569 	setbits_le32(RCB_REG(FD2), PCH_ENABLE_DBDF);
570 }
571 
572 static const struct udevice_id bd82x6x_lpc_ids[] = {
573 	{ .compatible = "intel,bd82x6x-lpc" },
574 	{ }
575 };
576 
577 U_BOOT_DRIVER(bd82x6x_lpc_drv) = {
578 	.name		= "lpc",
579 	.id		= UCLASS_LPC,
580 	.of_match	= bd82x6x_lpc_ids,
581 };
582